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Abstract
In the field of multi-modal learning, model parameters are typi-
cally large, necessitating the use of parameter-efficient fine-tuning
(PEFT) techniques. These methods have been pivotal in enhancing
training efficiency for downstream tasks in almost all situations.
However, directly applying PEFT methods struggles to fully address
the intricate demands of multi-modal tasks, such as multi-modal
sarcasm detection (MSD), which demands the extraction and com-
parison of cues from different modalities. MSD, particularly when
reliant on textual and visual modalities, faces challenges in identi-
fying sarcasm’s incongruity. This issue often arises from the lack of
intermodality interaction during tuning, resulting in a disconnect
between textual and visual information. In this paper, we introduce
a novel approach called Bi-directional Adapter (BA), designated as
MoBA. This approach is designed to minimize training parameters
while enhancing the model’s ability to interpret sarcasm across
modalities. By facilitating an exchange between textual and visual
information through a low-rank representation, our method adeptly
captures the nuances of sarcastic expressions with a reduced num-
ber of training parameters. Our empirical studies, carried out on
two publicly accessible and emerging datasets, demonstrate that our
model substantially improves sarcasm detection accuracy. These
findings indicate that our approach provides a more reliable and
efficient solution to address the complexities of MSD.

CCS Concepts
• Information systems → Multimedia information systems;
Information retrieval; • Computing methodologies → Artificial
intelligence.

Keywords
multi-modal learning, parameter-efficient tuning, mixture of ex-
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Figure 1: Comparison of our model with the other exist mul-
timodal methods on the multi-modal sarcasm detection task.

1 Introduction
In the rapidly evolving landscape of artificial intelligence (AI), of ar-
tificial intelligence, the strategy of pretraining models has emerged
as a critical foundation for developing specialized AI capabilities.
This approach has achieved significant success in natural language
processing (NLP) [40, 44, 57, 58], computer vision (CV) [5, 11], and
multi-modal modeling [6, 27, 39]. Demonstrating remarkable effi-
cacy across domains, this method enhances model performance in
terms of accuracy and efficiency on downstream tasks.

Subsequently, various downstream tasks involvingmultiplemodal-
ities are to show improved performance after fine-tuning with
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the pre-train model. For instance, sarcasm–a prevalent and in-
tricate mode of communication–presents a significant challenge
in the realm of multi-modal learning. Accurate detection of sar-
casm is vital for numerous applications, including sentiment anal-
ysis [9, 17, 51], social media monitoring [1], and conversational
systems [21, 26, 43, 50]. Traditional sarcasm detection methods
primarily rely on textual features, which may not capture the full
spectrum of information required for accurate detection. With the
increasing availability of multi-modal data, including text, images,
audio, and videos, researchers have started exploring the potential
of integrating these diverse data sources to enhance multi-modal
sarcasm detection (MSD) performance [3, 45, 52, 59]. This advance-
ment demands that models possess the ability to recognize the cues
across modalities accurately. The complexity of the task requires
more power of the multi-modal model.

Pretraining involves training a model on a large corpus of data
to learn broad and generalizable representations, which can then be
adapted to specific tasks, including MSD, through a process known
as fine-tuning. The pretrain-finetune paradigm, involving the initial
training of models on large-scale datasets to learn broad, general-
izable representations followed by task-specific fine-tuning, is a
common approach. Some studies in multi-modal sarcasm detection
have adopted this strategy, attempting to learn the incongruity
between textual and visual modalities by merging features from
multiple sources. However, fully fine-tuning these models for com-
plex tasks requires training numerous parameters, which can be
resource-intensive [2, 8, 47, 48].

Therefore, finding new ways to efficiently transfer existing foun-
dation models to downstream tasks without incurring excessive
costs becomes an important challenge in the field. The Parameter
Efficient Fine-tuning (PEFT) method aims to solve these problems.
By fine-tuning only a select few additional model parameters and
freezing the majority of the pre-trained model’s parameters, PEFT
significantly cuts down on computational and storage demands.
This method has been demonstrated to outperform traditional fine-
tuning in settings with limited data and exhibits superior gener-
alization [23, 28, 34]. It is versatile enough to be applied across
different modalities. With PEFT, only a few training weights are
introduced to the top layer of the pre-trained model. This allows
the same pre-trained model to be repurposed for multiple tasks by
adding minimal weights, thereby eliminating the need to full fine-
tune the entire model. In short, PEFT methods enable achievement
of performance comparable to that of full-parameter fine-tuning
while requiring only a limited number of trainable parameters.
However, the effectiveness of existing PEFT methods in handling
the complexities of MSD remains less than optimal.

Consequently, we introduce a novel approach known as the Bi-
directional Adapter (BA) and propose a plug-in, termed MoBA,
which is designed for seamless integration into MSD models to
significantly enhance their performance. As illustrated in Figure 1,
MoBA achieves impressive results with a minimal number of train-
ing parameters. Our approach directly addresses the challenges of
large-scale modeling by refining both pre-training and fine-tuning
techniques to suit the complexities of MSD.We utilize BA to dynam-
ically extract relevant features from changes in each modality. This
method allows eachmodal branch to learn prompt information from
the alternate modality and combine it with the feature information

of its own modality, thereby improving the model’s representa-
tion capabilities. Furthermore, MoBA adopts a mixture-of-experts
(MoE) style approach. A wealth of research and experimental evi-
dence has shown that MoE can significantly enhance the model’s
capacity to tackle various downstream tasks through fine-tuning
with extensive instructional data [12, 53]. Therefore, we have also
leveraged MoE to optimize BA’s performance. Moreover, MoBA can
be appended to the pre-trained model without adding numerous
trainable parameters, maintaining efficiency in model adaptation.

The main contributions of this paper are as follows: (1) To our
knowledge, this is the first work to apply PEFT to theMSD task. Our
innovative module is designed for plug-and-play integration into
existing MSD models, significantly reducing the need for trainable
parameters by freezing most of them and utilizing only a select few
for fine-tuning. (2) We introduce a novel approach, termed MoBA,
specifically tailored for the MSD task. This approach combines the
PEFT method with a MoE strategy. It adeptly merges multi-modal
information in a dynamic fashion, facilitating effective cross-modal
interactions through a straightforward and efficient framework. (3)
Our experimental findings highlight MoBA’s exceptional perfor-
mance on MSD benchmarks, showcasing significant advancements
over other PEFT approaches and previous baselines. We provide a
comprehensive analysis, supported by extensive experimental data,
to underscore the effectiveness of our proposed method.

2 Related Work
2.1 Multi-modal Sarcasm Detection
Multi-modal sarcasm detection (MSD) is an area of research that has
gained significant attention due to its importance in understanding
human communication, particularly on social media platforms,
where text and images are often used together to convey messages.
The initial approach to the MSD task utilized both textual and visual
information [41]. Subsequently, a significant effort established an
MSD benchmark and introduced a hierarchical fusion model to
integrate these modalities [3]. Most recently, advancements have
been made by utilizing the capabilities of pre-trained CLIP [39]
models to perform MSD, achieving state-of-the-art results [38].

Despite significant advancements, MSD remains a challenging
task, and relies on full fine-tune for the pre-trained model, which is
too resource intensive. Additionally, whether the model can truly
understand the signals of sarcasm between different modalities is
also open to question. In response to these challenges, we propose
MoBA, a low-rank approach that utilizes bidirectional adapters
for efficient interaction between the two modalities, further en-
hancing the sarcasm detection capabilities. This method aims to
overcome the limitations of previous approaches, improving both
the efficiency and effectiveness of multi-modal sarcasm detection.

2.2 Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) has become a vital area of
research in deep learning, particularly due to the increasing scale
of pre-trained models. One of the initial methods to achieve this
efficiency is the use of adapter modules [19]. These small, trainable
layers are strategically inserted between the layers of a pre-trained
model. During fine-tuning, only the parameters of these adapter
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Figure 2: Illustration of the model inserted our proposed module.

modules are updated, leaving the original model parameters un-
changed. Another approach to improving the efficiency of parame-
ters is prompt tuning, which involves adding a few trainable tokens
(prompts) to the input sequence [25]. These prompts are optimized
during fine-tuning, directing the pre-trained model to produce out-
puts that align with the target task while maintaining fixed model
parameters. Low-rank factorization techniques also contribute to
parameter efficiency by applying matrix decomposition to reduce
the parameter space of the neural network weights [20]. This allows
for efficient fine-tuning by optimizing a smaller subset of factors
rather than the entire set of weight matrices, which simplifies the
model architecture without compromising performance. Despite
these advances, these methods still require some retraining. As a
result, we aim to explore alternative strategies for MSD that may
circumvent or minimize the need for extensive retraining.

2.3 Mixture of Experts
The mixture-of-experts (MoE) model, first introduced by [22], repre-
sents a pioneering approach in machine learning, aiming to divide
complex tasks into simpler sub-tasks that can be solved by spe-
cialized models, termed “experts”. Over the years, this framework
has seen significant developments and applications across various
domains. With the rise of deep learning, the MoE has been particu-
larly influential in the realm of neural networks. It addresses the
challenges posed by diverse data types by utilizing contextual cues
or input features to direct information to the most pertinent experts.
The application of this approach has led to an improvement in the
model’s efficacy [7, 12, 42]. Moreover, the MoE concept has been
adapted for multi-modal learning, where it adeptly processes dif-
ferent data sources such as text, images, and audio [4, 35]. In these
contexts, MoE models promote the integration of insights from
multiple modalities, thereby enhancing the predictive accuracy and
coherence of the model’s outputs across diverse input types.

Recently, there has been a surge in research focusing on MoE
models within the context of low-rank approximations. The fu-
sion of low-rank techniques with MoE is especially prominent in
fields where models are required to handle high-dimensional data
efficiently [13, 20, 49]. By enabling more streamlined and resource-
efficient computations, low-rank MoE methods pave the way for

deeper and more intricate ensemble learning strategies. Overall,
MoE has shown robust performance across a diverse range of tasks.
In this study, we explore the application of MoE within the context
of adapters for the MSD models. Our approach presents distinct
advantages over the traditional, complex retraining modules em-
ployed in previous methodologies. By utilizing MoE, we provide a
more efficient and effective means of enhancing model performance
through low-rank techniques.

3 Methodology
Our proposed module can be seamlessly integrated into the MSD
models, effectively freezing most of the training parameters. Within
this framework, MoBA remains trainable, adept at extracting infor-
mation from both modalities for bidirectional interaction. In the
following, we discuss the relevant details.

3.1 Preliminary
For each input sample 𝑋 from the training dataset, there are two
modalities to consider: text (T) and visual (V). The inputs from these
two modalities are processed through encoders to obtain their re-
spective embeddings. These embeddings are subsequently fused
to produce a predicted outcome. The process involves training a
model, denoted by 𝑓 (·), to perform the MSD task. The objective of
the task is to determine whether a given sample contains sarcasm.
Given the multi-modal inputs, the model predicts an outcome repre-
sented by 𝑌 = 𝑓 (𝑇,𝑉 ) ∈ {0, 1}, where 𝑌 = 1 indicates the presence
of sarcasm in the sample, and 𝑌 = 0 indicates its absence.

3.2 Overall Module
As shown in Figure 2, we predominantly freeze the parameters
within the model. Upon being introduced to the pre-trained models,
inputs from the text and visual modalities are transformed into
their respective embeddings. Subsequently, we integrate our novel
module into the model framework.

This module is built on the foundation of transformer-based
encoder layers [46]. It is designed to deeply encode the embeddings,
enhancing their representational richness. In our configuration,
MoBA inputs the features before normalization and outputs at
the residual addition. Each transformer layer includes two MoBAs,
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Figure 3: The detailed architecture ofMoBA. It is composed of
multiple bidirectional adapters and a router that assigns the
weights to these adapters. A𝑖 and B𝑖 are matrices that modify
the dimensions of the embedding, whereas L𝑖 maintain a
constant dimension as matrices. The operation “or” indicates
that two embeddings are input separately rather than jointly.

designed to enhance feature integration. Notably, the multi-head
attention mechanisms of the transformer layers remain frozen, with
the sole exception of the first layer, which is adaptable for tuning.

After obtaining the new information feature E𝑖∈{𝑇,𝑉 } , our mod-
ule seamlessly integrates with existing models, facilitating effective
fusion of modal information. To optimize this process, we experi-
ment with three different fusion techniques:

(1) Concatenate fusion: This method combines features by con-
catenating text and visual embeddings, represented as 𝑌 =

𝑐𝑜𝑛𝑐𝑎𝑡 (E𝑇 , E𝑉 ). This technique is simple but effective in dif-
ferent scenarios;

(2) Guided weight fusion: A guided weighting mechanism cal-
culates weights for each modality, 𝛼𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑖1 ·
𝑡𝑎𝑛ℎ(W𝑖2) · E𝑖 ). The final output is a weighted sum, 𝑌 =∑
𝛼𝑖E𝑖 , rendering it particularly suitable for tasks where the

precise modeling of the interplay between multiple modali-
ties is crucial;

(3) Attention fusion: This approach employs an attention mech-
anism, where attention weights are computed as W𝑇 ,W𝑉 =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W(E𝑇 , E𝑉 )), and the output is an attention-weighted
combination,𝑌 = W𝑇 E𝑇 +W𝑉 E𝑉 . This method significantly
enhances the interactivity between modalities and is espe-
cially well-suited for contexts within multi-modal learning
where such interactions are effective.

The fusion will not impact the interaction within the ABC. Further-
more, the effects of our three distinct fusions will be experimented
in Table 2 to verify their influence.

Following the previous works [38], we employ the cross-entropy
loss to optimize the MSD task: L = 𝑦𝑙𝑜𝑔(𝑦) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦),
where 𝑦 is the ture label and 𝑦 is our predict value.

3.3 MoBA
The core element of our module is the MoBA. This model is charac-
terized by its fully trainable parameters. As depicted in Figure 3, the
MoBA is meticulously crafted to ensure the smooth transition of
features between different modalities. This intricate architecture is
instrumental in bolstering the model’s proficiency in understanding
and processing multi-modal information. It is important to note
that the dimensions remain unchanged before and after passing
through the MoBA. To ensure that the lengths of the two modali-
ties entering the MoBA are identical, we apply zero-padding to the
modality features after they have passed through the embedding.

Bidirectional Adapter. Bidirectional Adapter (BA) is engineered
to independently process inputs from each modality before serving
as the output for another modality, thereby fostering interaction
and synergy between modalities. Initially, the hidden dimension
𝑑𝑒 is reduced to 𝑑𝑡 through a down-projection layer, where 𝑑𝑡 is
significantly smaller than 𝑑𝑒 . This reduction is crucial for man-
aging computational complexity. Subsequently, the embeddings
pass through both a linear projection layer and an up-projection
layer, which collaboratively restore the hidden dimension to𝑑𝑒 . The
output from this streamlined, low-rank structure is then used to
interact with features from the other modality. This configuration
utilizes specialized low-rank matrices to facilitate the interactions
between modalities, which are particularly skilled at detecting sub-
tle cues that are indicative of inter-modal sarcasm. By doing so,
it markedly improves the model’s capacity to accurately interpret
and process complex multimodal data.

Mixture of Expert for BA. Contrasting with the aforementioned
method, MoBA introduces a more intricate structure. It enhances
its design by integrating the BA within a Mixture of Experts (MoE)
framework, which allows for flexibility in the number of experts
across each layer. MoBA utilizes multiple sets of low-rank matrices,
with each set identified as a BA expert, comprising a total of 𝑛 BAs
throughout the entire model. The routing module, denoted as G, is
employed to direct each input token to the appropriate BA experts.
This module calculates a weight vector through a linear transforma-
tion and then applies a softmax layer to distribute weights among
the BA experts effectively. This dynamic weighting mechanism
ensures that each input is processed by the most relevant experts
based on the task.

The architecture ofMoBA ismeticulously crafted for adaptability,
allowing for the fine-tuning of the number of BA experts to enhance
performance. The incorporation of the MoE strategy within the BA
framework significantly improves the model’s efficacy, providing
a customized approach to MSD. This sophisticated structure not
only adapts to the complex demands of MSD but also optimizes the
interaction and processing capabilities of the model. The formulas
of the whole MoBA are as follows:

H𝑖𝑘 = A𝑘L𝑘B𝑘E𝑖 , 𝑖 ∈ {𝑇,𝑉 }, 𝑘 ∈ {1, 2, ..., 𝑛} (1)
G𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑖E𝑖 ), 𝑖 ∈ {𝑇,𝑉 } (2)

E
′
𝑖 =

𝑛∑︁
𝑘=1

H𝑖𝑘G𝑖 , 𝑖 ∈ {𝑇,𝑉 } (3)

E
′′
𝑖 = E𝑖 + 𝐸

′
𝑗 , 𝑖 ≠ 𝑗, 𝑖 ∈ {𝑇,𝑉 }, 𝑗 ∈ {𝑇,𝑉 } (4)
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Here, E denotes the initial embedding serving as the input, E
′
is

the updated embedding following transformation and interaction,
and E

′′
is utilized as the final embedding for subsequent processing.

The variables A, L,B, and W represent the weight matrices within
the adapter.

4 Experiments
To evaluate the effectiveness of our proposed module, we conducted
experiments on two benchmark datasets and compared our method
with state-of-the-art sarcasm detection techniques. In this section,
we describe the datasets, experimental setup, results, and analysis.

4.1 Experiment Setup
4.1.1 Datasets. In our experiments, we utilized two significant
datasets: MMSD [3] and MMSD2.0 [38]. MMSD dataset comprises
English tweets from Twitter (recently rebranded as X), labeling
positive examples by the presence of specific hashtags like #sarcasm,
while tweets without such tags are classified as negative examples.
MMSD2.0 dataset refines MMSD dataset by removing misleading
signals and correcting inaccurate annotations, aiming for a more
precise benchmark. The detailed characteristics of these datasets
are presented in Table 1.

Table 1: Statistics of two datasets.

Dataset Train Validation Test
MMSD 39,632 4,820 4,818
MMSD2.0 39,628 4,820 4,818

4.1.2 Evaluation Metrics. Following the previous studies [38], we
adopt several key metrics to assess our model’s performance: ac-
curacy (Acc.), precision (P), recall (R), and the F1-score (F1). These
metrics enable us to conduct a comprehensive and detailed evalua-
tion, shedding light on various aspects of our model’s effectiveness
in accurately identifying and classifying instances in MSD task.

4.1.3 Baselines. To establish the efficacy of our proposed method,
we conduct an extensive comparison with a diverse range of cutting-
edge and traditional approaches. This comprehensive analysis is de-
signed to provide a robust evaluation of our method’s performance
by benchmarking it against a variety of established baselines:

• Text modality: We selected influential models that have
significantly advanced natural language processing. Text-
CNN [24] provides a robust baseline with its ability to cap-
ture local text dependencies. Bi-LSTM [15] enhances se-
quence models by effectively capturing temporal dependen-
cies through its bidirectional structure. BERT [10] revolu-
tionizes language understanding with its deep bidirectional
text representation and pre-training approach.

• Image modality: We choose models that have been pivotal
in the advancement of computer vision. Resnet [18] over-
comes the vanishing gradient problem with its deep residual
network architecture, forming the basis for many subsequent
innovations. ViT [11] repurposes the transformer architec-
ture for image analysis, setting new benchmarks in image
classification.

• Multi-modal modality: For multi-modal tasks, where the
integration of different types of modality is crucial, we select
a variety of models that have shown excellence in handling
such complexity. HFM [3], or Hierarchical Fusion Model, is
a multi-modal model that effectively combines information
from different modalities through a hierarchical fusion ap-
proach. Att-BERT [36] introduces attention mechanisms to
the BERT model, allowing for more focused and context-
aware representations in multi-modal scenarios. InCross-
MGs [29] utilizes intersection and multiplication of modality-
specific graph representations to capture cross-modal depen-
dencies. This method has shown to be effective in tasks
where the relationships between modalities are complex.
CMGCN [30], leverages graph convolutional networks to in-
tegrate information from different modalities in a structured
manner. HKE [32] is a model that focuses on the alignment
and integration of keypoints across modalities, providing
a structured approach to multi-modal fusion. Lastly, Multi-
view CLIP [38] extends the CLIP model to handle multiple
views of data, enabling a more nuanced understanding of
the relationships between text and images.

4.1.4 Experimental Setup. Our proposed method, alongside the
baseline models for comparison, was developed using the PyTorch
framework [37]. For embedding the inputs, we employed the CLIP
as the backbone. The transformer encoder layers within our pro-
posed model consists of 3 layers. We optimized the parameters
of our model using the AdamW optimizer [33]. The training was
conducted with a batch size of 64 and over 10 epochs. To ensure a
fair and equitable comparison with the existing models, we metic-
ulously followed the training configurations as described in their
respective original publications. This included adhering to specified
loss functions, batch sizes, and learning rate schedules, providing a
consistent basis for comparison and ensuring that the evaluation
of our proposed model’s performance was conducted under com-
parable conditions. All computational experiments were conducted
on a single V100 GPU.1

4.2 Main Results
The results of our experiments are presented in Table 2, which
showcases the performance of the three fusion methods mentioned
above plus our proposed MoBA, against the baseline model for
performance. The detailed examination of the results yields several
observations: (1) Multi-modal models consistently outperform the
single-modal models, confirming the hypothesis that integrating
information from multiple modalities typically results in more ro-
bust and accurate models. This is particularly true in complex tasks
requiring nuanced understanding, such as sarcasm detection. (2)
MoBA demonstrates that it is possible to achieve significant per-
formance improvements while using considerably fewer training
parameters. This not only makes the MSD models more efficient,
but also reduces the computational cost associated with training. (3)
Our model not only meets but surpasses the performance of exist-
ing models. Specifically, MoBA achieves superior results compared
to the original state-of-the-art on the MSD dataset, recording scores
of 88.40% accuracy, 82.04% precision, 88.31% recall, and 84.85% F1-
score. These improvements are particularly noteworthy with our



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yifeng Xie, Zhihong Zhu, Xin Chen, Zhanpeng Chen and Zhiqi Huang

Table 2: Main results across different datasets. “TP” denotes the trainable parameter size. Results with † denote that we
re-implemented the model. Results with bold represent our model improves over all baselines at 𝑝 < 0.05.

Modality Model MMSD MMSD2.0
Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

Text
TextCNN [24] 80.03 74.29 76.39 75.32 71.61 64.62 75.22 69.52
Bi-LSTM [15] 81.90 76.66 78.42 77.53 72.48 68.02 68.08 68.05
BERT† [10] (TP=110 M) 83.60 78.50 82.51 80.45 76.52 74.48 73.09 73.91

Image Resnet [18] 64.76 54.41 70.80 61.53 65.50 61.17 54.39 57.58
ViT† [11] (TP=86 M) 68.51 57.19 70.83 63.46 71.80 64.96 75.15 69.62

Text + Image

HFM [3] (TP=53 M) 83.44 76.57 84.15 80.18 70.57 64.84 69.05 66.88
Att-BERT [36] (TP=136 M) 86.05 80.87 85.08 82.92 80.03 76.28 77.82 77.04
InCrossMGs [29] (TP=198 M) 86.10 81.38 84.36 82.84 – – – –
CMGCN [30] (TP=198 M) 86.54 – – 82.73 79.83 75.82 78.01 76.90
HKE† [31] (TP=113 M) 87.39 81.40 86.93 84.07 76.39 73.50 75.96 74.71
Multi-view CLIP† [38] (TP=156 M) 88.22 82.03 88.13 84.97 85.14 80.33 88.24 84.09
MoBA + Fusion1 (TP=5.6 M) 87.52 82.08 88.03 83.94 83.76 78.08 88.61 82.44
MoBA + Fusion2 (TP=5.6 M) 88.07 82.13 87.85 84.55 85.01 80.46 87.67 83.64
MoBA + Fusion3 (TP=5.6 M) 88.40 82.04 88.31 84.85 85.22 79.82 88.29 84.11

Table 3: Comparison results across different datasets. “TP” denotes the trainable parameter size.

Modality Model MMSD MMSD2.0
Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

Text
BERT [10] (TP=110 M) 83.60 78.50 82.51 80.45 76.52 74.48 73.09 73.91
BERT + Adapter (TP=0.9 M) 81.56 76.34 79.67 77.78 73.84 74.51 75.38 71.92
BERT + LoRA (TP=0.3 M) 83.35 78.73 81.52 80.10 75.23 74.45 73.12 73.78

Image
ViT [11] (TP=86 M) 68.51 57.19 70.83 63.28 71.80 64.96 75.15 69.68
ViT+ Adapter (TP=0.9 M) 65.23 55.84 69.12 61.77 70.56 64.97 70.34 67.55
ViT + LoRA (TP=0.3 M) 67.28 57.12 70.45 63.09 70.34 64.67 74.90 69.41

Text + Image

HKE [31] (TP=113 M) 87.39 81.40 86.93 84.07 76.39 73.50 75.96 74.71
HKE + Adapter (TP=1.8 M) 85.45 79.32 85.68 82.38 74.15 72.12 74.56 73.32
HKE + MoBA (TP=5.6 M) 87.39 82.12 87.56 84.28 76.78 73.64 75.23 74.43
Multi-view CLIP [38] (TP=156 M) 88.22 82.03 88.13 84.97 85.14 80.33 88.24 84.09
Multi-view CLIP + Adapter (TP=0.1 M) 85.58 80.45 87.62 83.88 84.49 79.38 87.76 83.36
Multi-view CLIP + MoBA (TP=3.3 M) 88.96 82.84 88.12 85.40 85.83 80.42 88.67 84.34

fusion techniques, which more effectively leverage the strengths
of both textual and visual modalities. The success of our approach
highlights its potential to deliver insightful and valuable outcomes
through sophisticated inter-modal interactions.

4.3 PEFT Comparison
As shown in Table 3, we evaluate the performance of each tun-
ing method by conducting ablation experiments on the same MSD
dataset. For these evaluations, we selected some tuning methods:
(1) Full-parameter fine-tuning: This traditional method updates all
model parameters for the specific task, typically achieving high per-
formance by allowing complete data fitting. However, it can be com-
putationally expensive and risks overfitting, especially with large
models and datasets. (2) Adapter tuning: Using methods described
in [19] for Bert-based or/and ViT encoders, and another technique
from [14] for the CLIP encoder, this strategy involves inserting
a small trainable network into each layer of a pre-trained model
while keeping the original parameters unchanged. This approach

improves the efficiency of the parameters and adaptability to new
tasks. (3) LoRA: Described in [20], this method incorporates train-
able low-rank matrices parallel to existing weights, reducing the
need for extensive retraining and minimizing parameter updates
while aiming to preserve performance. Although less resource-
intensive, LoRA may not capture task complexity as effectively
as full-parameter fine-tuning. These methods allow us to test the
effectiveness of different tuning strategies on the same model.

The results indicate that while full-parameter fine-tuning often
delivers the highest performance, its substantial computational de-
mands and potential for overfitting restrict its widespread use. In
contrast, the LoRA and adapter modules offer improved parame-
ter efficiency, though they may slightly underperform in compari-
son. However, our proposed MoBA matches or even exceeds the
performance of full-parameter fine-tuning while also maintaining
computational efficiency. This is particularly evident in its ability
to handle complex multi-modal data effectively. MoBA is designed
to process and integrate information from various modalities using



MoBA: Mixture of Bi-directional Adapter for Multi-modal Sarcasm Detection MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

an innovative fusion strategy coupled with a parameter-efficient
fine-tuning mechanism. It significantly reduces the number of train-
able parameters while preserving the model’s capability to adapt
to each specific modality.

4.4 Method Analysis
4.4.1 The Impact of Component. Our analysis begin by examining
the role of the MoE and bidirectional adapter mechanism within the
MoBA framework. TheMoE approach facilitates dynamic allocation
of inputs to the most appropriate adapters. In contrast, we designate
a scenario where a BA is used without the MoE feature as “w/o
MoE”. Additionally, we assess the significance of the bidirectional
nature of the adapters in MoBA. The BA is designed to process
inputs from one modality and transfer them to another, thereby
enhancing their interaction. To evaluate the impact of this feature,
wemodify the adapter tomaintain input within its original modality
after processing, termed as “w/o Bi”.

As shown in Table 4, we compare these configurations against
two baseline models – HKE andMulti-view CLIP – on the MMSD2.0
dataset. Our findings underscore the crucial contributions of both
the MoE and BA to the MoBA’s performance in MSD tasks. Elim-
inating these key components results in noticeable performance
declines; for example, under the F1 metric, removing MoE leads
to decreases of 1.66% and 1.94%, while omitting the bidirectional
feature results in reductions of 0.81% and 3.49%, respectively. This
analysis confirms the efficacy of our proposed MoBA. By integrat-
ing these essential elements, the MoBA effectively captures and
processes multi-modal cues, leading to a more accurate and robust
sarcasm detection model.

Table 4: Ablation study about MoBA on MMSD2.0.

Model Metric All w/o MoE w/o Bi

HKE + MoBA Acc. (%) 76.78 75.45 76.15
F1 (%) 74.43 72.77 73.62

Multi-view CLIP + MoBA Acc. (%) 85.83 84.01 83.14
F1 (%) 84.34 82.40 80.85

4.4.2 Low-resource Settings. To further assess the efficacy of MoBA
in low-resource scenarios, we conducted a series of experiments
with different amounts of training data, specifically using 10%, 20%,
and 50% of the available samples, as per the methods described in
[38].

As shown in Figure 4, MoBA, when integrated with Multi-view
CLIP, consistently surpasses the performance of the baseline model
under these constrained conditions. This can be attributed toMoBA’s
ability to enhance interactions within the model, thus boosting
its overall capabilities. This notable improvement highlights our
model’s stability and reliability across varied levels of available
resources, showcasing significant performance gains even with
limited training data. This robustness is particularly valuable in
scenarios with uneven distributions of training and testing sam-
ples, confirming MoBA’s effectiveness in optimizing resource usage
while maintaining high performance standards.

1https://github.com/Evfidiw/MoBA
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Figure 4: In the low-resource, Multi-view CLIP incorporates
MoBA in ablation experiments on MMSD2.0.

4.4.3 Generalizability on Sentiment. To assess the generalizabil-
ity of our proposed MoBA across different tasks, we conducted a
comprehensive evaluation usingmultiple datasets and various senti-
ment classification scenarios. We utilized several well-known multi-
modal sentiment analysis (MSA) datasets, including MOSI [56] and
MOSEI [55]. Additionally, we testedMoBA against three established
MSA models: self-MM [17], MMIM [16], and ConFEDE [54].

As detailed in Table 5, the results confirm that MoBA exhibits
strong generalizability across various MSA tasks. For instance, in-
tegrating MoBA with the three aforementioned MSA models on
the MOSI dataset resulted in performance improvements of 0.90%,
0.87%, and 0.78% in two-class accuracy (Acc-2) and 0.74%, 0.80%,
and 1.31% in seven-class accuracy (Acc-7), respectively. Overall, this
generalizability analysis for sentiment analysis reveals that MoBA,
originally developed for MSD, also shows considerable promise for
broader applications in other multi-modal contexts. These findings
will inform further enhancements of the model, aiming to improve
its performance across a broader spectrum of multi-modal learning.

Table 5: Performance on two datasets for multi-modal senti-
ment analysis.

Model MOSI MOSEI
Acc-2 (%) Acc-7 (%) Acc-2 (%) Acc-7 (%)

self-MM 82.33 82.71 82.49 83.51
self-MM + MoBA 83.23 83.45 83.75 83.79
MMIM 82.81 82.97 82.29 83.38
MMIM + MoBA 83.68 83.77 83.81 84.05
ConFEDE 84.43 84.52 84.48 84.60
ConFEDE + MoBA 85.21 85.83 85.08 85.16

4.4.4 Sensitivity of Hyper-parameters. In our analysis, we explore
the sensitivity of crucial hyperparameters within our model, specif-
ically the number of experts in the MoE and the number of layers
in the transformer architecture. These factors significantly impact
the model’s complexity, computational efficiency, and overall per-
formance in the MSD task. To explore the effects of each hyperpa-
rameter, we held all other variables constant and varied only one
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(a) Impact of the number of 
experts in MoBA

(b) Impact of the number of
Transformer encoder layers

Figure 5: Performance varies with changes in hyper-parameters: (a) represents variations in the number of experts in MoBA,
and (b) reflects changes in the number of transformer encoder layers.

hyperparameter at a time during our experiments. The results are
detailed in Figure 5. The number of experts in the MoE setup is
vital for the model’s ability to specialize and manage diverse data
effectively. Increasing the number of experts typically enhances
performance; however, excessively high numbers can lead to over-
fitting and unnecessarily high computational costs. In contrast, too
few experts might not sufficiently address the complexity needed
for effective decision-making across different inputs. Thus, iden-
tifying an optimal number of experts is crucial to balance model
complexity with efficiency. Similarly, the depth of the transformer,
indicated by its number of layers, profoundly influences the model’s
capacity to understand and process input features. More layers gen-
erally provide a deeper and more nuanced comprehension, which
is advantageous for complex tasks that require detailed contextual
and relational analysis, such as sarcasm detection. Nevertheless,
more layers also mean more parameters, longer training times,
and an increased risk of overfitting, especially with limited data.
Therefore, it is important to carefully adjust the number of layers
to maintain a balance between depth and operational efficiency.

Our findings indicate that there is a critical threshold where
further increasing the number of experts or layers does not yield
substantial performance gains and may even harm performance
due to the aforementioned issues of complexity and overfitting.
These insights are essential for optimizing our model to ensure it
is not only effective but also resource-efficient.

4.4.5 Error Analysis. Figure 6 presents an error analysis of our
experimental findings. This analysis indicates that a considerable
number of errors stem from samples with significant textual con-
tent within the images. For example, the image in example (a) is
purely textual, which challenges our model due to its lack of mech-
anisms for directly handling the interplay between text and image
modalities. To mitigate this, we performed an additional experi-
ment incorporating Optical Character Recognition (OCR) results
into our model. The experiment results show that there has been
improvements in performance. Additionally, the image in example
(b) includes not only crucial textual information, but also critical
expressive details from the individual depicted. This complexity
underscores the need to better capture the subtle interplay be-
tween visual expressions and textual information. We investigated

Text Input:
i always try to add 
a little extra love 
to my response by 
adding the " o " 

Image Input:

(a)

rushing to work after 
holidays be like -

(b)

Model Acc. (%) P (%) R (%) F1(%)
Ours 85.22 79.82 88.29 84.11
Ours + OCR 85.34 78.94 89.65 84.16

Figure 6: Example of error analysis (Top) and experiments
on incorporating OCR information (Bottom).

methods to refine the model’s ability to interpret these complex
interactions, aiming to enhance its capacity to identify underly-
ing sarcastic nuances. Improving this capability could significantly
advance the model’s effectiveness in recognizing sarcasm across
diverse modalities.

5 Conclusion
In this paper, we presented a novel approach for multi-modal sar-
casm detection that combines the low-rank and MoE design con-
cepts. This innovative strategy boosts the performance of models
engaged in multi-modal sarcasm detection by effectively combining
the strengths of both MoE and BA to facilitate dynamic inter-modal
interactions. Our experimental findings consistently show that the
MoBA enhances the model’s accuracy and robustness while also
preserving computational efficiency. MoBA adeptly captures and
integrates complex inter-modal interactions, resulting in substan-
tial improvements in sarcasm detection across a variety of datasets
Moreover, the generalization and scalability of MoBA indicate its
potential applicability in other areas of multi-modal learning.
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