
CoCoST: Automatic Complex Code Generation
with Online Searching and Correctness Testing

Anonymous ACL submission

Abstract

Large Language Models have revolutionized001
code generation ability by converting natu-002
ral language descriptions into executable code.003
However, generating complex code within real-004
world scenarios remains challenging due to in-005
tricate structures, subtle bugs, understanding of006
advanced data types, and lack of supplementary007
contents. To address these challenges, we intro-008
duce the CoCoST framework, which enhances009
complex code generation by online searching010
for more information with planned queries and011
correctness testing for code refinement. More-012
over, CoCoST serializes the complex inputs013
and outputs to improve comprehension and gen-014
erates test cases to ensure the adaptability for015
real-world applications. CoCoST is validated016
through rigorous experiments on the DS-1000017
and ClassEval datasets. Experimental results018
show that CoCoST substantially improves the019
quality of complex code generation, highlight-020
ing its potential to enhance the practicality of021
LLMs in generating complex code.022

1 Introduction023

Automatic code generation from natural language024

descriptions is becoming more realistic, as large025

language models (LLMs) show their potential to026

generate accurate code (Li et al., 2023; Luo et al.,027

2023; Rozière et al., 2024). Various methods have028

been proposed to improve the quality of LLM029

code generation, such as retrieving offline docu-030

ments (Zhou et al., 2023; Jiang et al., 2023) and de-031

bugging generated code (Zhang et al., 2023; Chen032

et al., 2023). However, complex code generation033

is a more difficult task, which involves intricate034

problem description, sophisticated code logic, and035

advanced data types (Lai et al., 2022; Du et al.,036

2023; He et al., 2023). The existing methods strug-037

gle to address the arising challenges:038

Challenge 1: Offline documents cannot meet the039

diverse demands of code generation. In real-world040

scenarios, these demands often exceed the capa- 041

bilities of limited offline documents. For example, 042

problem descriptions may involve functions that 043

are not covered by pre-collected documents. Addi- 044

tionally, complex code generation for diverse needs 045

often entails highly complex logic and a series 046

of transformation functions like the programming 047

problem in Figure 1, where simple API examples 048

in documents fail to provide adequate guidance. 049

Challenge 2: In real-world situations, there is 050

often a shortage of test cases (e.g., test cases in 051

Figure 1) for automatic code generation. Most 052

existing work depends heavily on pre-existing test 053

cases in datasets (Zhang et al., 2023; Jiang et al., 054

2023) , which are difficult to acquire directly in 055

practical scenarios. 056

Challenge 3: Hidden bugs in complex code re- 057

quire meticulous identification and refinement. Cur- 058

rent techniques frequently enhance code by analyz- 059

ing execution errors (Zhang et al., 2023; Jiang et al., 060

2023). But in the case of complex code, the exe- 061

cutable code sometimes contains hidden bugs like 062

the highlighted part of the initial code in Figure 1. 063

To address these challenges, we introduce a new 064

code generation framework named CoCoST1 (Au- 065

tomatic Complex Code Generation with Online 066

Searching and Correctness Testing) that improves 067

the generation and refinement of complex code by 068

LLMs through the planned online searching and 069

automatic correctness testing steps. The intuition 070

of CoCoST is straightforward: During the coding 071

process, most human developers are not bothered 072

by the above challenges, as illustrated in Figure 1. 073

Developers can easily overcome these obstacles by 074

searching online through engines (e.g., Google and 075

Bing) for solutions, experiences, and guidelines. 076

In addition, they can create test cases and execute 077

code to ensure the correctness of the code logic. 078

To address Challenges 1, CoCoST proposes 079

1The code will be publicly available upon acceptance.

1

I am building a custom metric to measure the accuracy
of one class in my multi-class dataset during training. I
am having trouble selecting the class.
The targets are one hot. I have 10 classes in total, so I
need a n*10 tensor as a result. Now I have a list of
integers, how to get a tensor like:

[[0 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1 0 1 1 1]

…
[1 1 0 1 1 1 1 1 1 1]]

Problem Description

Developer Online Search Initial Code

tensor = tf.zeros((len(labels), 10), dtype=tf.int32)

indices = tf.constant([[i, label] for i, label in
enumerate(labels)])

updates = tf.ones(len(labels), dtype=tf.int32)

result = tf.tensor_scatter_nd_update(tensor,
indices, updates)

Initial Code

Test

Refine with
Correctness Testing

case1:```python labels = [0, 6, 5, 4, 2]```
case2: …

Test Cases

Search Result
This scatter operation would look like this:
>>> tensor = [[1, 1], [1, 1], [1, 1]] # tf.rank(tensor) == 2
>>> indices = [[0, 1], [2, 0]] # num_updates == 2, index_depth == 2
>>> updates = [5, 10] # num_updates == 2
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates))

output1:tf.Tensor([[1 0 0 0 0 0 0 0 0
0] …], shape=(5, 10), dtype=int32)
output2: …

Output Result

Final Code

tensor = tf.ones((len(labels), 10), dtype=tf.int32)

indices = tf.constant([[i, label] for i, label in
enumerate(labels)])

updates = tf.zeros(len(labels), dtype=tf.int32)

result = tf.tensor_scatter_nd_update(tensor, indices,
updates)

Final Code

Figure 1: An Example of the Human Developer Code-writing Process Imitated by the CoCoST. After the problem
is received, an online search is performed to simulate search results and create an initial version of code. Test cases
are then generated, and the code is executed to produce output results. The code is refined based on the correctness
of these results.

an online search methodology. This process in-080

volves querying web search engines and then ex-081

tracting pertinent information to construct prompts082

for LLMs. The approach presents several bene-083

fits: (1) Retrieving information from the up-to-date084

blogs or Q&A platforms, such as StackOverflow,085

facilitates the emulation of commonly used code086

patterns, thereby reducing the complexity of gen-087

erated code. (2) Online search extends beyond the088

scope of static offline documentation, covering a089

wider array of problems without being confined to a090

predetermined set. Meanwhile, it reduces the effort091

developers need to expend in assembling documen-092

tation, thereby increasing the framework’s level093

of automation. However, using problem descrip-094

tions as search queries can be challenging due to095

the complexity of the problems, which often en-096

compass multiple issues. Therefore, we propose097

an online search with generation query through098

planning.099

To address the Challenge 2, we introduce gen-100

eration of test cases during refinement. Several101

studies (Chen et al., 2022; Shinn et al., 2023) have102

attempted to generate tests. However, these meth-103

ods often fall short when applied to the generation104

of complex code due to its intricate logic and out-105

puts, which complicate the direct production of106

accurate tests (both the inputs and expected outputs107

for the solution code). CoCoST utilizes LLMs to108

automatically generate test cases (the inputs for the109

code). This strategy cleverly focuses on generating110

test cases without attempting to produce complete111

tests. It significantly simplifies the process of test 112

case generation and facilitates its precise creation 113

for complex code. 114

To address the Challenge 3, this work priori- 115

tizes correctness testing in refinement. During 116

the refinement process, it is more critical to verify 117

that the executed code produces the correct results 118

rather than just checking for the existence of the 119

errors. CoCoST incorporate both the execution 120

output results and the errors into within the refine- 121

ment prompts for LLMs to enhance the correctness. 122

Moreover, during refinement, sophisticated data 123

types and structures (within complex code itself, 124

its inputs, and its execution results) are challeng- 125

ing for LLMs to understand, e.g., large Pandas 126

DataFrames, Matplotlib charts. Thus, CoCoST pro- 127

pose serialization of input and output to convert 128

them into understandable sequences before being 129

processed by LLMs. Particularly those are exces- 130

sively long or non-textual modalities. 131

We evaluate the effectiveness of CoCoST on 132

two complex code generation datasets (DS-1000 133

and ClassEval). By comparing with the existing 134

state-of-the-art (SOTA) baseline, we achieve a 7.8% 135

improvement on DS-1000 and average 9.47% on 136

ClassEval.Moreover, we analyze and discovery that 137

CoCoST requires models to have different capabil- 138

ities such as planning, which vary according to the 139

complexity of the problem. 140

In summary, our main contributions are: 141

• We propose the novel CoCoST framework to 142

2

generate complex code, and can be automatic143

in real-world scenarios.144

• We apply online search in code generation for145

the first time to our knowledge, in order to146

generate the complex code.147

• We prioritize correctness testing in refinement148

with test case generation and serialization of149

input and output, in order to refine hidden150

bugs in complex code.151

• We conduct experiments on DS-1000 and152

ClassEval datasets anddemonstrate the effec-153

tiveness and universality of CoCoST.154

2 Related Work155

Code generation datasets. The realm of au-156

tomated code generation has been propelled by157

benchmark datasets such as HumanEval (Chen158

et al., 2021), MBPP (Austin et al., 2021), and159

APPS (Hendrycks et al., 2021), which assess the160

proficiency of language models in generating ex-161

ecutable code from descriptions. These datasets162

encompass a variety of programming problems,163

yet recent studies have sought to escalate the com-164

plexity of code generation tasks. Works like DS-165

1000 (Lai et al., 2022), ClassEval (Du et al., 2023)166

and Text2Analysis (He et al., 2023) have intro-167

duced datasets targeting specialized domains, in-168

cluding data science, object-oriented class genera-169

tion, and data analysis. These endeavors reflect an170

emerging trend towards enhancing models’ abili-171

ties to produce sophisticated and domain-specific172

code structures. In this paper, we select datasets173

with complex code generation to evaluate CoCoST.174

Retrieval-augmented code generation. With175

the emergence of Large Language Models176

(LLMs), a variety of retrieval-augmented tech-177

niques have been developed to compensate for178

issues such as the inherent knowledge limita-179

tions. DocPrompt(Zhou et al., 2023) and SELVE-180

VOLVE(Jiang et al., 2023) leverage document li-181

braries or models as knowledge bases to improve182

code generation. However, their reliance on fixed183

document libraries limits the scope of informa-184

tion they can provide and confines the generated185

code to the context of these libraries. Further-186

more, the prerequisite of preestablished document187

libraries prevents these approaches from being188

fully autonomous in real-world frameworks. So-189

lutions such as WebGPT (Nakano et al., 2022),190

LaMDA (Thoppilan et al., 2022), and Fresh- 191

LLMs (Vu et al., 2023) enhance the performance 192

of natural language tasks by using online search or 193

open web knowledge. However, because complex 194

code generation often involves multiple steps and 195

complexities, these methods struggle with direct 196

application to complex code generation. 197

Code refinement. Refine iteratively enhances 198

generated code for greater precision. Self- 199

Debug(Chen et al., 2023), SELFEVOLVE(Jiang 200

et al., 2023), and Self-Edit(Zhang et al., 2023) im- 201

prove code generation by refining code through 202

the resolution of errors identified during execution. 203

These methods effectively address errors, while 204

when it comes to complex code generation, subtle 205

bugs also play a significant role in the overall error 206

landscape. Moreover, relying on pre-existing tests 207

from datasets in refinement limits their autonomy in 208

real-world applications, where such tests may not 209

be readily available. CodeT (Chen et al., 2022), Re- 210

flexion (Shinn et al., 2023), and CODECHAIN (Le 211

et al., 2023) seek to strengthen code generation by 212

creating tests. But the tests they generate include 213

not only the inputs for the solution code but also 214

the expected outputs. This poses a substantial chal- 215

lenge for complex code generation, where the logic 216

can be intricate and certain problems may not lend 217

to straightforward ground truth generation. 218

3 Methodology 219

The code generation task involves predicting a solu- 220

tion code W given a problem description D. When 221

given an input i, the execution of code W produces 222

an output result o and a potential error e, where 223

both o and e can be empty ∅. The generated codes 224

are evaluated against a set of test cases and ground 225

truth {(tj , gj)}Jj=1. The correctness of the code W 226

is determined by verifying oj = gj ∧ ej = ∅ when 227

all ij = tj , j ∈ {1, . . . , J}. 228

In this work, we adopt a two-step approach for 229

code generation, mirroring the way humans write 230

code. The first step is retrieval, where relevant 231

information is obtained through online search and 232

utilized by LLMs to generate initial code. The 233

second step is refinement, where the initial code is 234

refined based on the execution results, leading to 235

the generation of the final version of the code. 236

3.1 Retrieval 237

The difficulty in achieving effective online retrieval 238

lies in formulating optimal search queries. On the 239

one hand, for complex code generation, the prob- 240

3

LLM

LLM

PLANS
1. Iterate over each column in the DataFrame.
2. For each column, calculate the value counts.
3. …

Plans & Queries Online Search

Step 1: Retrieve with Online Searching

QUERIES
1. No need to search.
2. Need to search, <search> pandas calculate

value counts for each column </search>
3. …

..

…

ndarray.max(axis=None, out=None,
keepdims=False, initial=<no value>,
where=True)

Return the maximum…

Document Info

pandas.DataFrame.apply#...
DataFrame.apply(_func_ ,
_axis …
…

Document Info

StackOverflow title: …
StackOverflow question:…
StackOverflow top answers:…
…

QA Info

Query N…
Query 2… Query 1… …

LLM

Step 2: Refine with Correctness Testing

Situation 1: Output & Serialize

Situation2: Error & Online Search

NumPy Array: (16 x 5),
…
Min: 0.00, Max: 1.00.

Serialized content

NumPy Array: (16 x 5),
…
Min: 0.00, Max: 1.00.

Serialized content

LLMarray([[0. 1. 0. 0. 0.] …])array([[0. 1. 0. 0. 0.] …])

Generated
Test Cases

Interpreter
Codepython Pandas TypeError…

python Numpy TypeError: int()…

Problem
Description

Figure 2: The Pipline of CoCoST. Step 1: LLM is employed to strategize the Problem and formulate queries based
on the outlined steps. These queries enable the retrieval of diverse information from the internet. A high-quality
initial code can be obtained through effective planning and leveraging internet information. Step 2: LLM generates
test cases for testing the initial code. The test results serve as crucial inputs for the subsequent cycle of code
refinement. Through iterative refinement processes, the quality of the initial code can be significantly improved.

lems are intricate and may involve multiple chal-241

lenges. Directly searching for solutions to such242

problems is inaccurate and difficult. On the other243

hand, it is challenging that match queries directly244

through methods for offline documents like similar-245

ity calculations, due to the nature of online libraries.246

So we propose generating queries through planning247

to solve the challenge.248

The retrieval process is divided into three steps:249

1. Search queries Q = {q1, . . . , qN} are generated250

through planning. 2. Conducting online searches251

using these queries to obtain relevant background252

information INFO = {info1, . . . , infoM}. 3.253

The initial code W0 is generated by the LLMs θ254

with the information obtained INFO:255

Ŵ0 ∼ pθ(.|D, INFO) (1)256

3.1.1 Generation Query through Planning257

In order to generate more targeted queries, we258

initiate the process by using LLMs to do plan-259

ning regarding the given problem. The planning260

phase involves outlining the natural language steps261

P = {plan1, . . . , planN} required to address the262

problem. Later, the assessment involves utilizing263

LLMs to determine whether each planning step re-264

quires an online search. Subsequently, the planning265

steps identified as necessitating online search are266

translated into queries Q = {q1, . . . , qN} for use267

in the subsequent search process.268

P̂ , Q̂ ∼ pθ(.|D) (2) 269

3.1.2 Online Search 270

For the above generated queries, we conduct an 271

online search. In this study, we use the online 272

search API2 for the search process as Equation (3). 273

CoCoST can also be applied to private or domain- 274

specific knowledge repositories as long as they are 275

accessible via query, with details in §A. 276

{url1, . . . , urlNu} = search(qj), j ∈ {1, . . . , Nq} (3) 277

where, Nq is the number of queries for the prob- 278

lem, Nu is the number of urls for one query. In this 279

study, we use Nq = 1 , Nu = 1. 280

Through the analysis of the website distribution 281

Table 4, we observed that more than 90% of the 282

URLs are concentrated on a total of 8 websites. 283

Specific extraction rules are established for promi- 284

nent websites such as StackOverflow to extract key 285

information, facilitating a more comprehensive un- 286

derstanding of the website’s content by subsequent 287

models. Generic extraction rules are employed for 288

extracting key information from other websites. 289

infoj,k = extract(urlk), k ∈ {1, . . . , Nu} 290

The information INFO is composed of details 291

from each query qj , each url urlk, with each piece 292

of information infoj,k extracted. 293

2https://github.com/Nv7-GitHub/googlesearch

4

3.2 Refinement294

Existing work (Chen et al., 2023; Jiang et al., 2023)295

typically emphasizes the correctness of errors iden-296

tified during the refinement process. However, we297

observe that refining code that produces error-free298

outputs is equally crucial during the refinement pro-299

cess. Therefore, we introduce correctness testing in300

§3.2.1. Additionally, we propose methods for the301

generation of test cases and serialization of inputs302

and outputs during the refinement process.303

3.2.1 Correctness Testing304

Correctness testing refers to the refinement of gen-305

erated code based on correctness, determined by306

analyzing errors and output results obtained during307

code execution. In the context of complex code308

generation, the intricate logic of the code makes it309

challenging for the LLMs to consider every detail310

during code generation, and precisely ascertain the311

results obtained at each step of the execution pro-312

cess. Consequently, some code may be executed313

without errors, producing output results that do not314

align with what is expected. Incorporating both315

the error and the output result into the refinement316

process allows the model to take advantage of self-317

correction mechanisms.318


ej,k, oj,k = execute(Wj , ik), j ∈ {1, . . . , Nf}
INFOej,k = {ej,k, extract(search(ej,k))}

Ŵj+1 ∼ pθ(.|D,Wj , {Si, Soj , INFOej}k),
k ∈ {1, . . . , Ni}

319

where, Nf is the total number of refinement steps,320

Ni is the number of inputs. iK is the k-th input for321

the problem from Equation (4), Si and Soj is the322

serialization of input and output from Equation (5).323

3.2.2 Generation of Test Cases324

Test cases are crucial, as they serve as indispensable325

inputs for the code execution in refinement. While,326

existing works in refining code predominantly rely327

on pre-existing test cases in datasets (Zhang et al.,328

2023; Jiang et al., 2023), which are challenging to329

obtain directly in real-world scenarios. Moreover,330

some existing work (Chen et al., 2023) even uses331

the ground truth output of the test case to refine332

the code, which is even more challenging to obtain333

for complex code problems in real-world scenar-334

ios. Because their problems involve various logical335

operations, deriving answers directly without code-336

based computations is demanding.337

CoCoST introduces generation of test cases with338

LLMs to adapt to real-world scenarios.339

{
Î ∼ pθ(.|D)
I = {i1, . . . , iNi}

(4) 340

3.2.3 Serialization of Input and Output 341

Serialization of input and output makes them more 342

intuitive and understandable for the model. For 343

complex code, some inputs and outputs are intri- 344

cate, such as Pandas DataFrames, PyTorch tensors, 345

and Matplotlib PNG images. Understanding such 346

inputs and outputs poses challenges for LLMs due 347

to large matrices, image modalities, and so on. 348

In this study, we serialize common data struc- 349

tures in Python as follows: 350

1. For NumPy arrays, Pandas DataFrames, PyTorch 351

tensors, and TensorFlow tensors, the serialization 352

includes data truncated string, data type, data shape, 353

and statistical information. 354

2. For image structures (such as PNG images gen- 355

erated by the Matplotlib library), we serialize them 356

into SVG (Scalable Vector Graphics) format for 357

LLMs to comprehend. 358

Sn = serialize(n), n ∈ {ik, oj,k} (5) 359

4 Experiment 360

4.1 Experiment Setup 361

4.1.1 Datasets 362

We conduct experiences on two complex code gen- 363

eration datasets: 364

DS-1000 (Lai et al., 2022): DS-1000 is a code 365

generation benchmark with a thousand data science 366

questions spanning seven Python libraries. The 367

complexity of this dataset is manifested in two as- 368

pects. First, complexity arises from intricate logical 369

reasoning required during code generation due to 370

the complex nature of the problems. For exam- 371

ple, on the DS-1000 dataset, the average length of 372

problem descriptions is 140 words, whereas other 373

commonly used code generation datasets such as 374

HumanEval (Chen et al., 2021) and MBPP (Austin 375

et al., 2021) have lengths of 23 and 15.7 words, 376

respectively. Secondly, the input-output involves 377

various complex data structures related to data sci- 378

ence, making the code logic intricate during trans- 379

formations of the data. Further details of DS-1000 380

implementation are shown in §B.1. 381

ClassEval (Du et al., 2023): ClassEval is the 382

first class-level Python code generation benchmark 383

designed to evaluate code generation models’ per- 384

formance on a diverse set of object-oriented pro- 385

gramming tasks. The dataset comprises a curated 386

5

Table 1: Main Results and Ablation Study for DS-1000. The base model for CoCoST is GPT-4. All metrics are
represented as percentages. For each metric, the bold number indicates the highest performance.

Method
Perturbation

Total/Avg.Origin Surface Semantic Diff-Rewrite

Codex 44.93 37.94 34.35 16.94 39.20
DocPrompting 53.95 50.00 38.39 21.05 43.30
Self-Debugging 63.38 59.21 45.65 28.40 53.00
SELFEVOLVE 66.23 67.11 48.70 33.95 57.10
Reflexion 58.99 73.03 52.17 48.77 57.90

CoCoST 71.71 74.34 66.96 53.09 68.00
w/o refinement of output 68.42 69.74 62.61 48.77 64.10
w/o refinement of error 68.20 73.03 62.61 49.38 64.60
w/o serialization 70.18 75.00 65.22 51.23 66.70
w/o generation of test case 66.23 71.05 59.57 45.68 62.10
w/o online retrieval 68.64 70.39 60.00 51.23 64.10
w/o all (GPT-4 only) 64.47 69.74 56.96 43.83 60.20

collection of 100 tasks. These tasks cover a wide387

range of concepts, including inheritance, polymor-388

phism, encapsulation, etc. Each coding task is in389

the format of the class skeleton, outlining the tar-390

get method description inside the class. The com-391

plexity of this dataset resides in its abstraction and392

hierarchical class structure. Tested models must393

generate large-scale code units and establish con-394

nections between each target method within the395

entire class, rather than focusing solely on individ-396

ual functions.397

The dataset provides two prompt designs for398

LLMs with or without IF ability. In our experi-399

ments, we employ the class skeleton as the prompt400

for GPT-based models, a system prompt along with401

task instructions for the WizardCoder.402

4.1.2 Evaluation403

We employ the same evaluation methodology as the404

original datasets for both DS-1000 and ClassEval.405

DS-1000. We follow the original dataset using406

Pass@1 accuracy. This evaluation is conducted407

across total and perturbations: Origin, Surface, Se-408

mantic, and Diff-Rewrite.409

ClassEval. We follow the original dataset using410

Pass@K metric. We calculate both class-leval and411

method-level Pass@K with K = 1, 3, 5.412

4.1.3 Base LLMs413

This work primarily utilizes the GPT (OpenAI,414

2023) series as the LLM base model to validate415

the effectiveness of the framework. GPT-4 is uti-416

lized in gpt-4-32k-0613 version, while GPT-3.5 is417

utilized in the gpt-35-turbo-16k-0613 version. To418

further investigate the performance of CoCoST on419

both open-source and specialized code generation420

models, we have also employed WizardCoder (Luo 421

et al., 2023) as a base model with WizardCoder- 422

Python-13B-V1.0 version. 423

4.1.4 Baselines 424

For the DS-1000, we selected four LLM-based 425

frameworks as baselines: DocPrompt (Zhou et al., 426

2023), Self-Debugging (Chen et al., 2023), SELF- 427

EVOLVE (Jiang et al., 2023) and Reflexion (Shinn 428

et al., 2023). DocPrompting enhances the LLM by 429

employing a fine-tuned retriever to fetch problem- 430

relevant documentation from offline document 431

pools. Self-Debugging depends on a Python in- 432

terpreter to instruct language models in revising 433

Python code containing errors. SELFEVOLVE 434

employs LLMs as both sources of knowledge and 435

self-reflective programmers. Reflexion utilizes re- 436

flective feedback with generated tests and episodic 437

memory to process task feedback. Details are 438

shown in §B.3. 439

For the ClassEval, we select five LLM-based 440

code generation models and frameworks as base- 441

lines: Instruct-CodeGen3, SantaCoder (Allal et al., 442

2023), Instruct-StarCoder4, WizardCoder (Luo 443

et al., 2023) and Reflexion (Shinn et al., 2023). 444

4.2 Main Results 445

Regarding the DS-1000 dataset, the main results 446

are shown in Table 1. CoCoST surpasses the cur- 447

rent SOTA framework, SELFEVOLVE, by 10.9%, 448

establishing itself as the new SOTA. Especially un- 449

der the Diff-Rewrite perturbation setting, CoCoST 450

3https://huggingface.co/sahil2801/instruct-codegen-16B
4https://huggingface.co/GeorgiaTechResearchInstitute/

starcoder-gpteacher-code-instruct

6

Table 2: Main Results and Ablation Study for ClassEval. All metric numbers are represented as percentages. For
each metric, the bold number indicates the highest performance.

Method
Class-level Method-level

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Instruct-StarCoder 10.2 12.7 14.0 23.1 26.5 27.7
SantaCoder 8.6 9.9 10.0 27.7 33.0 34.9
Instruct-CodGen 8.2 12.3 13.0 24.9 34.3 37.1
WizardCoder 12.2 20.0 23.0 35.2 47.1 51.1
Reflexion 24.1 30.7 35.2 43.4 51.6 61.8

CoCoST 46.3 49.5 52.8 67.9 72.5 77.6
w/o refinement of output 43.5 46.8 51.4 66.4 69.0 73.4
w/o refinement of error 46.2 49.5 51.7 67.9 72.5 77.2
w/o generation of test case 42.7 47.9 50.6 65.9 70.8 72.4
w/o online retrieval 37.2 42.5 44.9 60.4 65.7 69.8
w/o all (GPT-4 only) 36.2 39.3 43.5 58.6 64.9 67.3

exceeds SELFEVOLVE by 19.95%, which demon-451

strates the effectiveness of CoCoST in generating452

complex code. CoCoST employs online search and453

correctness testing to allow the model to imitate ex-454

isting code patterns, thereby reducing the difficulty455

of generating new code, and refining the details to456

further enhance the correctness of the code.457

For the ClassEval dataset, the results are shown458

in Table 2. Our experiments demonstrate that Co-459

CoST has an overall higher performance on both460

class-level and method-level Pass@K evaluation.461

Specifically, CoCoST outperforms the Reflexion462

(best baseline model) significantly by an average of463

19.5% and 20.4% on the Class and Method level.464

4.3 Ablation Study465

In this work, to validate the effectiveness of Co-466

CoST, we conduct different ablation studies, with467

results presented in Table 1 and 2. Details on the468

ablation study are shown in §B.4.469

CoCoST significantly enhances the base470

model’s ability to generate complex code. Com-471

pared to the base model, CoCoST has shown im-472

provements of 7.8% on the DS-1000 dataset and473

average 9.47% on ClassEval, demonstrating the474

effectiveness of the CoCoST.475

Online search, generation of test cases, and476

serialization each contribute to the model’s per-477

formance improvements. Compared to CoCoST,478

after performing ablation studies, these features479

showed a decrease in performance of 3.9%, 5.9%,480

and 1.3% respectively on the DS-1000 dataset. The481

online search improves the model by providing482

common code patterns, which reduces the difficulty483

of the model in generating initial code. Serializa-484

tion, by converting inputs and outputs into a sequen-485

tial format, allows the model to more intuitively486

observe inputs and outputs that are too lengthy or 487

are in non-textual modalities, thereby strengthening 488

its ability to solve complex code problems. 489

Online search outperforms offline retrieval in 490

effectiveness and has a wider range of applica- 491

bility. As shown in Table 1, using only online re- 492

trieval (the row w/o generation of test case) outper- 493

forms DocPrompting, which is an offline retrieval 494

approach. Moreover, in real-world scenarios, as 495

opposed to specific datasets, the types of problems 496

encountered are more diverse. The scalability of 497

online retrieval enables them to effectively address 498

a wide range of problems. However, offline re- 499

trieval systems struggle to encompass all relevant 500

information comprehensively. 501

During the refinement process, correctness 502

testing is crucial, meaning that both the output 503

result and error are equally important. After 504

separately conducting ablation studies on the out- 505

put result and error, CoCoST shows a decrease 506

of 3.9% and 3.4% respectively on the DS-1000 507

dataset, and average 2.7% and 0.3% on the Clas- 508

sEval dataset. This indicates that the output result 509

contributes more to the refinement process than the 510

error. However, in previous works, the output result 511

is often overlooked, which should not be the case, 512

especially in the generation of complex code. The 513

evidence from the ablation study emphasizes the 514

necessity of paying attention to the output results 515

during the refinement phase to ensure the genera- 516

tion of high-quality, complex code. 517

4.4 Analysis of Different Base Models 518

Performance 519

Table 3 shows the performance results of CoCoST 520

on the DS-1000 dataset with different base models. 521

We can see that GPT-4 has been comprehensively 522

7

Table 3: Different Base Models Results for DS-1000 and ClassEval. All metric numbers are represented as
percentages. For each metric in each section, the bold number indicates the highest performance.

Method
DS-1000 ClassEval

Origin Surface Semantic Diff-Rewrite Total/Avg. Class-level Method-level

GPT-4 64.47 69.74 56.96 43.83 60.20 43.5 67.3
+ retrieve 66.23 71.05 59.57 45.68 62.10 50.6 72.4
+ refine 68.64 70.39 60.00 51.23 64.10 44.9 69.8
CoCoST 71.71 74.34 66.96 53.09 68.00 52.8 77.6

GPT-3.5 57.02 43.42 40.00 32.72 47.10 35.4 59.4
+ retrieve 47.15 25.00 36.96 25.31 37.90 41.9 61.7
+ refine 55.70 50.66 44.35 35.80 49.10 42.8 62.3
CoCoST - - - - - 45.8 64.7

WizardCoder 41.01 21.71 31.74 16.05 31.90 23.0 51.1
+ retrieve 15.79 9.21 12.17 9.88 13.00 18.2 41.8
+ refine 39.69 21.71 30.00 15.43 30.80 22.3 50.7

improved with CoCoST, but the performance on523

GPT-3.5 and WizardCoder is mixed. This indicates524

that CoCoST requires the model to have the follow-525

ing capabilities to enhance its performance:526

For code generation planning ability, the527

higher the complexity of the code that needs528

to be generated, the higher the demand for plan-529

ning ability. Planning capability is key to online530

retrieval; only correct planning can generate appro-531

priate queries to retrieve useful information. After532

incorporating online retrieval, GPT-3.5 has an in-533

crease of 4.75% on ClassEval, yet it decreased by534

9.2% on DS-1000 as shown in Table 3. The chal-535

lenge of ClassEval lies in how to generate the entire536

class and the interrelated functions, but the com-537

plexity of individual function codes is not as high538

as that of DS-1000. Therefore, the planning ability539

of GPT-3.5 can handle ClassEval, but it is inferior540

on DS-1000.541

Code generation necessitates models to have542

in-context learning abilities. The generated code543

should be built on all the above provided con-544

tents, and the understanding of the preceding input545

prompt is of great importance in the refinement546

stage. In Table 3, it is observed that WizardCoder547

has a noticeable drop of 18.9% and 1.1% on the DS-548

1000 dataset when utilizing online retrieval and re-549

finement respectively. And the overall performance550

of WizardCoder is comparatively interior to GPT551

models. This could be due to WizardCoder’s lim-552

ited in-context learning ability, especially with the553

complex and lengthy prompts, hindering accurate554

context comprehension and code modification.555

4.5 Case Study and Error Analysis556

For the case study on online retrieval, refer to Fig-557

ure 4. It can be observed that by imitating the558

usage of functions found through online search, the 559

model is better equipped to prepare the required 560

parameters for the functions and to generate cor- 561

responding code. This significantly reduces the 562

difficulty of generating complex code. 563

For the case study on correctness testing, refer 564

to Figure 3. It is evident that, although the initially 565

generated code did not show obvious errors, the 566

output of the code did not align with the expected 567

results. The model refines the code based on the 568

output, thus improving hidden errors and generat- 569

ing the correct code. 570

Our framework consists of multiple components 571

cascaded together, which results in certain interme- 572

diate steps that cannot be explicitly validated for 573

effectiveness, as well as the potential generation 574

of cascading errors. For the former, a discussion 575

is provided in §C.2, while for the latter, an error 576

analysis is conducted in §C.3. 577

5 Conclusion 578

In conclusion, CoCoST introduces a novel frame- 579

work for generating complex code in real-world 580

scenarios by emulating human coding processes 581

like online searching and test case creation. It ef- 582

fectively overcomes challenges in code structure 583

and logic, subtle bug detection, and handling of 584

complex data. The framework’s innovative use 585

of online search, planning for query generation, 586

correctness testing, and input-output serialization 587

significantly improves code accuracy and model un- 588

derstanding. Tested on various datasets, CoCoST 589

outperforms existing methods, demonstrating its 590

efficacy in real-world code generation tasks. 591

8

Limitations592

The main limitation of our research is that it has593

underlying issues of exceeding the allowed times of594

accesses due to multiple calls to the Google Search595

API. Similarly, we also have made multiple API596

calls to test and enhance the performance of the597

GPT models.598

Ethics Policy599

This research does not pose any ethical concerns.600

The datasets and other associated resources utilized601

in this study are publicly available and widely used602

in various other existing work.603

References604

Loubna Ben Allal, Raymond Li, Denis Kocetkov,605
Chenghao Mou, Christopher Akiki, Carlos Munoz606
Ferrandis, Niklas Muennighoff, Mayank Mishra,607
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t608
reach for the stars! arXiv preprint arXiv:2301.03988.609

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten610
Bosma, Henryk Michalewski, David Dohan, Ellen611
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.612
Program synthesis with large language models. arXiv613
preprint arXiv:2108.07732.614

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,615
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.616
Codet: Code generation with generated tests. arXiv617
preprint.618

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming619
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-620
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,621
Greg Brockman, Alex Ray, Raul Puri, Gretchen622
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-623
try, Pamela Mishkin, Brooke Chan, Scott Gray,624
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz625
Kaiser, Mohammad Bavarian, Clemens Winter,626
Philippe Tillet, Felipe Petroski Such, Dave Cum-627
mings, Matthias Plappert, Fotios Chantzis, Eliza-628
beth Barnes, Ariel Herbert-Voss, William Hebgen629
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie630
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,631
William Saunders, Christopher Hesse, Andrew N.632
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan633
Morikawa, Alec Radford, Matthew Knight, Miles634
Brundage, Mira Murati, Katie Mayer, Peter Welinder,635
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya636
Sutskever, and Wojciech Zaremba. 2021. Evaluating637
large language models trained on code.638

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and639
Denny Zhou. 2023. Teaching large language models640
to self-debug. Preprint, arXiv:2304.05128.641

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,642
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng643

Sha, Xin Peng, and Yiling Lou. 2023. Classe- 644
val: A manually-crafted benchmark for evaluat- 645
ing llms on class-level code generation. Preprint, 646
arXiv:2308.01861. 647

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, 648
Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen, 649
Shi Han, Zejian Yuan, and Dongmei Zhang. 2023. 650
Text2analysis: A benchmark of table question an- 651
swering with advanced data analysis and unclear 652
queries. Preprint, arXiv:2312.13671. 653

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 654
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 655
Samir Puranik, Horace He, Dawn Song, and Jacob 656
Steinhardt. 2021. Measuring coding challenge com- 657
petence with apps. NeurIPS. 658

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Self- 659
evolve: A code evolution framework via large lan- 660
guage models. Preprint, arXiv:2306.02907. 661

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 662
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih, 663
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000: 664
A natural and reliable benchmark for data science 665
code generation. ArXiv, abs/2211.11501. 666

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, 667
Doyen Sahoo, and Shafiq Joty. 2023. Codechain: To- 668
wards modular code generation through chain of self- 669
revisions with representative sub-modules. Preprint, 670
arXiv:2310.08992. 671

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 672
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 673
Marone, Christopher Akiki, Jia Li, Jenny Chim, 674
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 675
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 676
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 677
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 678
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 679
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 680
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 681
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 682
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 683
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 684
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 685
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 686
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 687
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 688
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 689
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 690
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 691
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro 692
von Werra, and Harm de Vries. 2023. Starcoder: may 693
the source be with you! Preprint, arXiv:2305.06161. 694

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 695
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 696
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 697
Empowering code large language models with evol- 698
instruct. Preprint, arXiv:2306.08568. 699

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 700
Long Ouyang, Christina Kim, Christopher Hesse, 701

9

https://doi.org/10.48550/ARXIV.2207.10397
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568

Shantanu Jain, Vineet Kosaraju, William Saunders,702
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen703
Krueger, Kevin Button, Matthew Knight, Benjamin704
Chess, and John Schulman. 2022. Webgpt: Browser-705
assisted question-answering with human feedback.706
Preprint, arXiv:2112.09332.707

OpenAI. 2023. Gpt-4 technical report. Preprint,708
arXiv:2303.08774.709

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten710
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,711
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy712
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna713
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron714
Grattafiori, Wenhan Xiong, Alexandre Défossez,715
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-716
tin, Nicolas Usunier, Thomas Scialom, and Gabriel717
Synnaeve. 2024. Code llama: Open foundation mod-718
els for code. Preprint, arXiv:2308.12950.719

Noah Shinn, Federico Cassano, Ashwin Gopinath,720
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-721
flexion: language agents with verbal reinforcement722
learning. In Thirty-seventh Conference on Neural723
Information Processing Systems.724

Romal Thoppilan, Daniel De Freitas, Jamie Hall,725
Noam M. Shazeer, Apoorv Kulshreshtha, Heng-726
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker,727
Yu Du, Yaguang Li, Hongrae Lee, Huaixiu Steven728
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping729
Huang, Maxim Krikun, Dmitry Lepikhin, James730
Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen,731
Adam Roberts, Maarten Bosma, Yanqi Zhou, Chung-732
Ching Chang, I. A. Krivokon, Willard James Rusch,733
Marc Pickett, Kathleen S. Meier-Hellstern, Mered-734
ith Ringel Morris, Tulsee Doshi, Renelito Delos San-735
tos, Toju Duke, Johnny Hartz Søraker, Ben Zeven-736
bergen, Vinodkumar Prabhakaran, Mark Díaz, Ben737
Hutchinson, Kristen Olson, Alejandra Molina, Erin738
Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajaku-739
mar, Alena Butryna, Matthew Lamm, V. O. Kuzmina,740
Joseph Fenton, Aaron Cohen, Rachel Bernstein, Ray741
Kurzweil, Blaise Aguera-Arcas, Claire Cui, Mar-742
ian Rogers Croak, Ed Huai hsin Chi, and Quoc Le.743
2022. Lamda: Language models for dialog applica-744
tions. ArXiv, abs/2201.08239.745

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry746
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny747
Zhou, Quoc Le, and Thang Luong. 2023. Freshllms:748
Refreshing large language models with search engine749
augmentation. Preprint, arXiv:2310.03214.750

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin.751
2023. Self-edit: Fault-aware code editor for code752
generation. In Proceedings of the 61st Annual Meet-753
ing of the Association for Computational Linguistics754
(Volume 1: Long Papers), pages 769–787, Toronto,755
Canada. Association for Computational Linguistics.756

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo757
Wang, Zhengbao Jiang, and Graham Neubig. 2023.758
Docprompting: Generating code by retrieving the759

docs. In International Conference on Learning Rep- 760
resentations (ICLR), Kigali, Rwanda. 761

10

https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:246063428
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987

A Online Searching Detail762

Website Base Station Distributions Table During763

the DS-1000 Online Retrieval Process:

Table 4: Website Base Station Distributions Table Dur-
ing the DS-1000 Online Retrieval Process.

Website Proportion

https://stackoverflow.com 57.92%
https://numpy.org 8.59%
https://pandas.pydata.org 5.70%
https://www.geeksforgeeks.org 5.07%
https://docs.scipy.org 4.76%
https://matplotlib.org 3.20%
https://www.tensorflow.org 3.04%
http://scikit-learn.org 2.42%
The Others 9.29%

764

Moreover, CoCoST can be applied to special-765

ized, proprietary, or domain-specific knowledge766

repositories as long as they are accessible via767

query. Moreover, implementing queries for pri-768

vate datasets is easily achievable and a growing769

trend in data management. Major companies such770

as Google and Microsoft already offer products de-771

signed to search private data; for example, Google772

Workspace’s Cloud Search provides powerful capa-773

bilities for enterprises to search their private data.774

In this paper, to validate the effectiveness of our775

framework, we conducted tests on public online776

searches. Moving forward, the framework can be777

applied to an even broader range of knowledge778

repositories.779

B Experiment780

B.1 Datasets Detail781

Further details of DS-1000 implementation are as782

follows:783

• The dataset provides both Insertion and Com-784

pletion style prompts, where the data is the same,785

differing only in prompt format, thus yielding simi-786

lar results. In this paper, experiments are conducted787

with the Completion style prompt.788

• We implement a filtering approach to prevent789

data leakage and model replication of existing so-790

lutions from Stack Overflow. The DS-1000 dataset791

originates from Stack Overflow, and concurrently,792

over 50% of the websites we encountered dur-793

ing our online searches are from Stack Overflow.794

Thus, to prevent data leakage, when conducting795

online searching, we filter out all Stack Overflow 796

problems belonging to the source of the DS-1000 797

dataset by using the Stack Overflow question_id. 798

B.2 Base Models 799

The parameter details for each model in the experi- 800

ment are as follows: 801

• GPT-4: model: gpt-4-32k-0613, temperature: 0, 802

top_p: 0.95, max_tokens: 1024. 803

• GPT-3.5: model: gpt-35-turbo-16k-0613, tem- 804

perature: 0, top_p: 0.95, max_tokens: 1024. 805

• WizardCoder: WizardCoder-Python-13B-V1.0, 806

temperature: 0, top_p: 0.95, max_tokens: 1024. 807

B.3 Baselines Details 808

• DocPrompt (Zhou et al., 2023): DocPrompting 809

enhances the LLM by employing a fine-tuned re- 810

triever to fetch problem-relevant documentation 811

from offline document pools. The model then con- 812

ditions on these documents, along with the problem 813

description, to generate code. 814

• Self-Debugging (Chen et al., 2023): This ap- 815

proach depends on a SQL application or Python 816

interpreter to instruct language models in revising 817

SQL commands or Python code containing errors. 818

For the sake of a fair comparison, we utilize its 819

"simple" variant. 820

• SELFEVOLVE (Jiang et al., 2023): Employs 821

LLMs as both sources of knowledge and self- 822

reflective programmers. During the self-reflective 823

process, it refines the code by addressing bugs. 824

• Reflexion (Shinn et al., 2023): Reflexion uti- 825

lize reflective feedback with generated tests and 826

episodic memory to process task feedback. For the 827

sake of a fair comparison, we utilize GPT-4 as base 828

model and set trail number = 1. 829

It is worth noting that the test cases involving 830

the refinement process in the baselines mentioned 831

above all use the test cases from the dataset desig- 832

nated for testing. However, within the context of 833

the real-world scenario of CoCoST, test cases from 834

the dataset should not be used within the frame- 835

work. Without these test cases, they are entirely 836

incapable of functioning. 837

B.4 Ablation Study Details 838

• Without refinement of output: During the refine- 839

ment process, the output result is not refined; that is, 840

refinement is conducted solely based on the error. 841

• Without refinement of error: During the refine- 842

ment process, the error is not refined; that is, re- 843

11

finement is conducted solely based on the output844

result.845

• Without serialization: During the refinement pro-846

cess, the input and output are not serialized; instead,847

their printout results are directly used as input.848

• Without generation of test cases: Test cases are849

not generated. Since refinement cannot be per-850

formed without test cases, only online retrieval is851

conducted.852

• Without online retrieval: Online retrieval is not853

performed, and the process is limited to refinement854

with correctness testing.855

C Experimantal Results856

C.1 DS-1000 Results857

The main results for different packages in DS-1000858

are shown in Table 5.859

The results indicate that CoCoST shows a more860

pronounced effect on libraries whose inputs and861

outputs are more complex or more challenging for862

LLMs to intuitively understand, such as Matplotlib,863

TensorFlow, and PyTorch. On Sklearn, CoCoST864

experiences a slight decline due to its test cases con-865

taining complex objects, which present a significant866

challenge in generating test cases. Consequently,867

CoCoST’s performance on Sklearn is not as strong868

as with the other libraries.869

C.2 Analysis of Pipeline870

Regarding the generation of test cases, to prove871

that the generated test cases are comparable to the872

ground truth test cases, we substitute the generated873

test cases in CoCoST with ground truth test cases874

and conduct experiment on the DS-1000 dataset875

using GPT-4. The results showed that the per-876

formance was 68.70%, only marginally higher by877

0.7% compared to the use of generated test cases878

(68.00%). This proves that the effects of both are879

comparable and that the generated test cases rarely880

lead to errors.881

Regarding generating plans, we attempt to bypass882

the planning step and directly perform online re-883

trieval. On the DS-1000 dataset using GPT-4, this884

approach result in a performance of 55.70%, which885

is 6.4% lower than using planning for online re-886

trieval (62.10%), and even 4.5% lower than only887

using GPT-4 to generate code (60.20%). This con-888

firms that the generated plans are significantly ef-889

fective.890

C.3 Error Analysis 891

For cascading errors, some errors generated by re- 892

trieval processes can be corrected through refine- 893

ment, while others may persist, necessitating fu- 894

ture improvements. Take DS-1000 as an example: 895

Compared to the baseline (GPT-4), we observed 896

that among the instances that turned erroneous af- 897

ter retrieval, 39.6% were corrected, while 60.4% 898

remained incorrect. For the former cases, it shows 899

that CoCoST is able to fix some bad cases in the 900

refinement stage even though the retrieval contents 901

have some errors. For the later cases, we do observe 902

some cases that are worthy of further research as po- 903

tential directions for future work. First, the search 904

content could be more detailed. E.g., Some basic 905

steps that LLMs consider unnecessary to search for 906

are not generating queries, but is exactly where the 907

bug in the code. Second, the search query could be 908

more targeted. The descriptions of some queries 909

are not specific enough in terms of some compli- 910

cated problems. Therefore, more sub-queries are 911

needed to help model receive clearer instructions. 912

C.4 Case Study 913

Figure 4 demonstrates an example of online re- 914

trieval process in DS-1000 dataset. Given a prob- 915

lem description, the tested model firstly attempts 916

to use the tensor_scatter_nd_update function from 917

TensorFlow to achieve the solution, but encounters 918

difficulty in selecting the appropriate class indices. 919

After unsuccessful attempts, the model turns to an 920

online search through a self-generated query and 921

integrates the research results as part of the next 922

prompt. Through the newfound knowledge online, 923

the model re-implements a solution that efficiently 924

generates the desired tensor representing the accu- 925

racy of each class. Overall, the process highlights 926

how online retrieval can provide useful insights 927

and potential solutions to complex challenges for 928

LLMs’ code generation. 929

12

Table 5: Table of Main Results for different packages in DS-1000. All metric numbers are represented as percentages.
The bold number indicates the highest performance.

Method Pandas Numpy Matplotlib Tensorflow Scipy Sklearn Pytorch Total/Avg.

CoCoST 59.45 75.91 75.48 71.11 61.32 63.48 77.94 68.00
+ retrieve 51.89 70.91 68.39 66.67 52.83 70.43 60.29 62.10
+ refine 55.67 72.73 74.19 64.44 54.72 60.00 70.59 64.10
GPT-4 only 52.23 70.45 67.74 55.56 50.00 64.35 55.88 60.20

Problem Description
While nan == nan is always False, in many cases people want to treat them as equal, and this is
enshrined in pandas.DataFrame.equals:
NaNs in the same location are considered equal.
……
Imagine I have a DataFrame which may contain some Nan:

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
0 NaN 6.0 14.0 NaN 5.0 NaN 2.0 12.0 3.0 7.0
1 NaN 6.0 5.0 17.0 NaN NaN 13.0 NaN NaN NaN
……

I just want to know which columns in row 0 and row 8 are different, please present them as pairs
in a list. …

Code before Correctness Testing Refinement
row0 = df.iloc[0]
row8 = df.iloc[8]
diff_cols = row0 != row8
result = list(zip(row0[diff_cols], row8[diff_cols]))

Output Result
[(nan, 18.0), (nan, nan), (nan, nan), (nan, 18.0), (17.0, 16.0), (16.0, nan), (nan, nan), (nan, nan),
(nan, nan), (0.0, nan)]

Code after Correctness Testing Refinement
row0 = df.iloc[0]
row8 = df.iloc[8]
diff_cols = ~(row0.isnull() & row8.isnull()) & (row0 != row8)
result = list(zip(row0[diff_cols], row8[diff_cols]))

Output Result
[(nan, 18.0), (nan, 18.0), (17.0, 16.0), (16.0, nan), (0.0, nan)]

Figure 3: Case Study for Correctness Testing.
Problem Description

I am building a custom metric to measure the accuracy of one class in my multi-class dataset
during training. I am having trouble selecting the class.
The targets are one hot. I have 10 classes in total, so I need a n*10 tensor as a result. Now I have
a list of integers, how to get a tensor like:

[[0 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1 0 1 1 1]

…
[1 1 0 1 1 1 1 1 1 1]]

Code without Online Search
labels_tensor = tf.constant(labels)
ones_tensor = tf.ones_like(labels_tensor)
zeros_tensor = tf.zeros_like(labels_tensor)
result = tf.tensor_scatter_nd_update(ones_tensor, tf.reshape(labels_tensor, (-1, 1)), zeros_tensor)

Search Query
tensorflow tensor_scatter_nd_update usage

Search Results
This scatter operation would look like this:
>>> tensor = [[1, 1], [1, 1], [1, 1]] # tf.rank(tensor) == 2
>>> indices = [[0, 1], [2, 0]] # num_updates == 2, index_depth == 2
>>> updates = [5, 10] # num_updates == 2
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates))

Code with Online Search
tensor = tf.ones((len(labels), 10), dtype=tf.int32)
indices = tf.constant([[i, label] for i, label in enumerate(labels)])
updates = tf.zeros(len(labels), dtype=tf.int32)
result = tf.tensor_scatter_nd_update(tensor, indices, updates)

Figure 4: Case Study for Online Retrieval.

D Prompts of CoCoST930

13

Plan and Queries Generation Prompt
[System]
Help me with the following problem, You need to write python code to solve the following
problem. Please plan the steps you would need to take and write each step as a query. I can help
you to search for relevant information online, if the query needs to be searchable, mark <search>.
I can help you with google search through which you can search for real time information, python
library document, error reporting information etc.

Please return the queries that need to be searched in google.
+ First, [PLAN] plan the steps you would need to take and write each step as a query. Then,
[SEARCH] list the query from [PLAN] that need to search.
+ You only need to plan that can complete the code snippet. You do not need to plan the codes
before BEGIN SOLUTION block.
+ You can search for real-time information, python library documents, error messages, common
usage, and other information.
+ Don't return duplicate query with similar semantics, return different queries.
+ Don't tag to search simple query that can be solved by yourself, return the most critical queries.
[Example]
…
[User]
<problem description>

Predict
[PLAN]
1. …
…
[SEARCH]
1. No need to search. / <search> … </search>
…

Figure 5: Plan and Queries Generation Prompt on DS-1000.

14

Plan and Queries Generation Prompt
[System]
Help me with the following problem, You need to write python code to solve the following
problem. Please plan the steps you would need to take and write each step as a query. I can help
you to search for relevant information online, if the query needs to be searchable, mark <search>.
I can help you with google search through which you can search for real time information, python
library document, error reporting information etc.

Please return the queries that need to be searched in google.
+ First, [PLAN] plan the steps you would need to take and write each step as a query. Then,
[SEARCH] list the query from [PLAN] that need to search.
+ You only need to plan that can complete the code snippet. You do not need to plan the codes
before BEGIN SOLUTION block.
+ You can search for real-time information, python library documents, error messages, common
usage, and other information.
+ Don't return duplicate query with similar semantics, return different queries.
+ Don't tag to search simple query that can be solved by yourself, return the most critical queries.

For each problem given, there will be a class with several functions inside you need to write
subsequenct code. Please follow the rules below when you [PLAN] and [SEARCH]:
+ Do not PLAN and SEARCH the function with name: __init__(self), this function has been
initialized for you as the setting of the class.
+ For each function in the class you need to implement, only SEARCH the query that you are
unsure of the implementation.
+ For each function in the class you need to implement, you must limit the search up to 3 queries.
[Example]
…
[User]
<problem description>

Predict
[PLAN]
1. Function: …
1.1 …
[SEARCH]
1. Function: …
1.1 No need to search. / <search> … </search>
…

Figure 6: Plan and Queries Generation Prompt on ClassEval.

15

Online Retrieval Code Generation Prompt
[System]
You need to help me write code based on the PROBLEM as follows. Previously had a round of
conversation about this problem, you made a PLAN of it and came up with a QUERY that needs
to be searched. I've searched for the background information you might need. You can
selectively refer to it when writing your code.

There are some rules that you must follow for writing the codes:
+ You only need to output codes that can complete the code snippet. You do not need to output
the codes before the [insert] block.
+ Return the codes directly, if you want to add some explanation, please add them to the
comments.
+ The execution result of the code must meet the requirements, including result formatting, etc.
If the result is a table, it is also necessary to note that the header must be the same as the
requirements, and the format of the table values must meet the requirements.
+ Background knowledge is for reference only and not all of the information you need to use in
your code., please focus on code completion.
[Example]
…
[User]
<problem description>

Here's the plan you made earlier and the query to search for:
<plan and queries>

I've searched for the background information you might need. You can selectively refer to it when
writing your code, noting that not all of the information you need to use in your code. The
following information is the markdown text of the main information on the corresponding website.
<retrieve information>

Again, the PROBLEM is as follows:
<problem description>
Please generate codes in [insert] block following the format rules, and should !!!not!!! generate
the code before the [insert] block.

Predict
```python
…
```

Figure 7: Online Retrieval Code Generation Prompt on DS-1000 and ClassEval.

16

Generation of Test Case Prompt
[System]
I will give you a description of a PROBLEM which needs to be solved by generating code. I need
test case (input for code) for testing if the generated code is correct. Generate up to 3 test cases
for me.

There are some rules that you need to follow:
+ If there is not input for the code, you should not generate test case and should not return any
```python.
+ If the input is fixed or it's not appropriate to have several different inputs, you can just generate 
one test case.
+ If the input has more than one variable, then the test case needs to contain all the variables.
+ Please keep the variable names the same as in the question.
+ If the input variable is a example for a function, you should retain variable names without 
"example".
+ You should return all variables or functions before "BEGIN SOLUTION", and make sure the 
variables or functions can directly be executed. E.g., you should not return the definition of 
load_data() function without using it, you should not load csv from local file, etc. 
[Example]
…
[User]
<problem description> 

Predict
Test case1:
```python
…
```

Test case2:
…

Figure 8: Generation of Test Case Prompt on DS-1000.

17



Generation of Test Case Prompt
[System]
You are a Python Expert. Provided below is a problem of Python class skeleton with several 
functions inside empty. You will help me to generate test cases for the several empty functions in 
the class.
For each function you need to generate test cases, it will give you a instruction as the function 
comments. The instruction contains inforamtion:
1. The short problem description of the function
2. The input parameters' name, type, and its description of the function in order staring with 
':param'
3. The return type of the function starting with ':return'
4. The example of the function usage starting with '>>>'
5. The result for the example of the function usage shown at the last line of the instruction.

Your response must follow the following rules:
+ Please keep the variable names the same as in the question.
+ For each function you need to write test cases, your response code MUST follow the format of: 
```python \n <code> \n ```
+ You MUST generate test cases for any of the functions taking place in the given class except the
constructor function "__init__" in the class.
+ You MUST generate three test cases for each function with the instruction comment, and MUST
follow the format below, '##' is the separator of each test case:

```python
# <function_name>
##
# Test Case 1
<Test Case 1 code>
##
# Test Case 2
<Test Case 2 code>
##
# Test Case 3
<Test Case 3 code>
```

+ For each test case code above, first follow excatly the format of the example of the function
usage in the instruction comment starting with '>>>', then assign the variable 'result' to the
output of your tested function following the format: result = <code of the tested function result>.
[Example]
…
[User]
<problem description>

Predict
<function_name>

##
Test Case 1

…

Figure 9: Generation of Test Case Prompt on ClassEval.

18

Refinement with Correctness Testing Code Generation Prompt
[System]
Help me rewrite the code. I will provide the PROBLEM description, the code for this PROBLEM,
and the execution result of this code. Help me rewrite it into the correct code to solve this
PROBLEM.

There are some rules that you must follow for rewriting the code:
+ Is the code execution result the right answer to the PROBLEM? If not, please rewrite the code, if
yes, please do not return any code.
+ If you need to rewrite the code, you need to follow these format rules:

+ You need to first explain why the original code is incorrect in the comment.
+ You should directly answer the code in [insert] block, and should not generate the code

before the [insert] block.
+ You should answer only one code snippet, not more than one.
+ You should directly answer the correct code, and don't offer the other possibilities.
+ You should output the code as the same format as the examples.

+ If you do not need to rewrite the code, return the original code in [insert] block.
[Example]
…
[User]
<problem description>

Here is a code snippet that may contain errors in solving the above PROBLEM:
<initial code>

Above is the code that GPT4 generated for me, here are the inputs as well as the execution
results. You need to determine if the code is correct and suggest changes if it is not.
<serialized output or error>

I've searched for the background information you might need. You can selectively refer to it when
writing your code, noting that not all of the information you need to use in your code. The
following information is the markdown text of the main information on the corresponding website.
<retrieve information>

Again, the PROBLEM is as follows:
<problem description>
Please generate codes in [insert] block following the format rules, and should !!!not!!! generate
the code before the [insert] block.

Predict
```python
…
```

Figure 10: Refinement with Correctness Testing Code Generation Prompt on DS-1000 and ClassEval.

19

	Introduction
	Related Work
	Methodology
	Retrieval
	Generation Query through Planning
	Online Search

	Refinement
	Correctness Testing
	Generation of Test Cases
	Serialization of Input and Output

	Experiment
	Experiment Setup
	Datasets
	Evaluation
	Base LLMs
	Baselines

	Main Results
	Ablation Study
	Analysis of Different Base Models Performance
	Case Study and Error Analysis

	Conclusion
	Online Searching Detail
	Experiment
	Datasets Detail
	Base Models
	Baselines Details
	Ablation Study Details

	Experimantal Results
	DS-1000 Results
	Analysis of Pipeline
	Error Analysis
	Case Study

	Prompts of CoCoST

