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ABSTRACT

The escalating impact of global climate change has heightened the demand for
accurate and reliable weather forecasting. As we confront challenges from ex-
treme weather events and seek to understand long-term climate variations, precise
predictions are considered hard to achieve. Autoregressive methods, commonly
used for temporal modeling, have paved the way for data-driven approaches to
overcome the limitations of traditional numerical methods. However, their per-
formance significantly diminishes when tasked with extended long-term predic-
tions due to error accumulation stemming from prior predictions. Meanwhile, the
lead time embedding method has been explored as a means to mitigate the er-
ror accumulation in autoregressive models. Nevertheless, this method does not
guarantee the preservation of correlations between outputs, a crucial consider-
ation in atmospheric phenomena. To address these limitations, we present the
Implicit Stacked Autoregressive Model for Weather Forecasting (IAM4WF). This
innovative model combines the strengths of both autoregressive and lead time em-
bedding methods. It offers flexibility in modeling the lead time of outputs, akin
to the lead time embedding method, and it also iteratively integrates its predic-
tions, similar to the autoregressive approach. We rigorously evaluate IAM4WF
against weather and climate forecasting datasets, and additional common video
frame prediction datasets. Our findings underscore IAM4WF’s superior perfor-
mance across six tested datasets. Result videos are best viewed on our project
website: iam4wf.github.io/project-page.

1 INTRODUCTION

The atmosphere on the Earth is a chaotic system (Lorenz, 1963). This inherent chaos poses a signif-
icant challenge in accurately predicting the future states of weather phenomena, including variables
such as clouds, temperature, and other relevant information. In order to capture the intricate dynam-
ics of the atmosphere, the Numerical Weather Prediction (NWP) was introduced. NWP leverages
the laws of physics to make forecasts. Despite the continuous development and widespread utiliza-
tion of NWP over the decades, it encounters challenges in the aspect of computational cost and the
limited understanding of the chaotic nature of complex atmospheric phenomena (Bauer et al., 2015).

Recently, the emergence of data-driven methodologies for weather forecasting demonstrated a po-
tential to rival the operational NWP models (Lam et al., 2022; Pathak et al., 2022; Keisler, 2022; Gao
et al., 2022b; Bi et al., 2023). Many studies have predominantly focused on the autoregressive archi-
tecture to achieve versatility in forecasting lead times (Lam et al., 2022; Pathak et al., 2022; Keisler,
2022). While these approaches offer weather predictions for various time scales, they inherently
involve error propagation since they employ their own predictions as input information (Bi et al.,
2023; Ning et al., 2023). Furthermore, they are intrinsically restricted to making predictions within
the fixed time intervals for which they were trained. In an effort to broaden the scope of lead time
options, several works have explored the lead time embedding method (Sønderby et al., 2020; Espe-
holt et al., 2022). This method takes the target lead time as input and generates predictions based on
the specified lead time. However, it is important to note that the lead time embedding methods can-
not guarantee dense spatiotemporal correlation of model outputs, which are fundamental properties
of many meteorological phenomena.
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To address these challenges, we propose a novel structured forecasting model that integrates the lead
time embedding method with the autoregressive approach. Our implicit weather forecasting predic-
tion model mimics the versatility of autoregressive models without the error-accumulated structure.
In addition to this, we introduce a stacked autoregressive method to address the lack of output cor-
relation in lead time embedding methods. Our proposed model, the Implicit Stacked Autoregressive
Model for Weather Forecasting (IAM4WF), incorporates these two dominant methods of data-driven
weather forecasting and achieves state-of-the-art performance on three benchmark weather and cli-
mate prediction datasets.

Our contributions can be summarized as follows:

• We propose a novel autoregressive model that predicts future frames recursively with a
Multiple-In-Single-Out design that can consider the spatiotemporal correlation of weather
events.

• We propose a stacked structure to avoid the problem of error accumulation and missing
input data.

• We demonstrate that our Implicit Stacked Autoregressive Model for Weather Forecasting
(IAM4WF) achieves state-of-the-art performance on three benchmark datasets for weather
and climate prediction.

2 RELATED WORK

Autoregressive Approach for weather forecasting. Most of the efforts to employ data-driven
models for weather forecasting have been dominated by the autoregressive approach. The most
dominant approach deploys memory units (Shi et al., 2015; Ayzel et al., 2020; Kumar et al., 2019;
Wang et al., 2022; Ehsani et al., 2022). Typically, this type of work deploys memory cells like Long
Short-Term Memory (Graves & Graves, 2012) or Gated Recurrent Unit (Cho et al., 2014). Such an
approach, however, presents a mathematical vulnerability in which errors can propagate and accu-
mulate. It makes multi-step forecasts increasingly uncertain, particularly as the lead time expands.
This challenge is not just theoretical; it has been evidenced in practical applications. For instance,
Shi et al. (2015) unveiled the ConvLSTM structure with an emphasis on long-term forecasting, while
Ayzel et al. (2020) merged the autoregressive technique with the U-Net structure, predicting rainfall
60 minutes into the future in 5-minute segments. Notwithstanding these applications, the issue of
error accumulation is still deeply ingrained, with results deteriorating significantly for extended lead
times. This has steered the recent trend away from purely autoregressive methods using memory
unit.

Another development in weather forecasting models is the emergence of the autoregressive structure
without a memory cell, which utilizes multiple past frames as input (Bi et al., 2023; Zhang et al.,
2023; Pathak et al., 2022; Gao et al., 2022b). A model highlighting this trend, Bi et al. (2023),
achieved leading-edge outcomes using a 3D Swin-Transformer architecture, taking cues from Liu
et al. (2021). This model processes a span of 10 days with 24-hour intervals and forecasts the subse-
quent 10 days in similar periods. However, a discernible limitation is its inability to predict beyond
its trained time frames. Therefore, for varying intervals, such as 1-hour or 12-hour predictions,
separate models are necessary, and the model’s performance tends to diminish for non-fixed lead
times.

Lead Time Embedding for Weather Forecasting. A distinct approach to weather forecasting,
known as the lead time embedding technique (Sønderby et al., 2020; Espeholt et al., 2022), rep-
resents a significant departure from the traditional autoregressive methods. The model put forth by
Sønderby et al. (2020) uniquely processes both sequential spatiotemporal data and a defined lead
time as inputs, generating forecasts specifically tailored to that lead time. This strategy effectively
circumvents the recurring error accumulation dilemma inherent to autoregressive methods. To fur-
ther enhance the predictive capabilities of this model, Espeholt et al. (2022) introduced a physics-
based constraint, thereby improving the model’s forecasting performance. However, a challenge
persists: the model’s deliberate omission of feedback from previous forecasts creates an informa-
tional void for long-term predictions. It potentially compromises model accuracy and correlation
among model outputs.
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Figure 1: An overview of IAM4WF’s training process. IAM4WF is an implicit model for time step
t. IAM4WF consists of a spatial encoder e(·), a spatio-temporal predictor p(·), and a spatial decoder
d(·). Note that, IAM4WF is trained stacked autoregressive manner with error-prone queue.

3 IMPLICIT STACKED AUTOREGRESSIVE MODEL

3.1 MODEL DESIGN

In our model framework named Implicit Stacked Autoregressive Model for Weather Forecast-
ing (IAM4WF), the goal of the future frame prediction model F (·) is to map the input X ∈
RC×T×H×W to the target output yt ∈ RC×H×W using the lead time t and the history of model
predictions Ŷt−1. The learnable parameters of the model are denoted by Θ. These parameters are
optimized to minimize the following objective function:

min
Θ

∑
t<T̂

L(FΘ(X, Ŷt−1, t), yt), (1)

where the objective is to learn the mapping from inputs to the T̂ -time future frame yt. In this context,
X = {xT−1, xT−2, . . . , x0} represents the T observed frames, Ŷt = {ŷ1, ŷ2, . . . , ŷt} represents the
history of t predicted frames, Y = {y1, y2, . . . , yT̂ } represents the T̂ ground-truth future frames, C
is the number of channels, T is the observed frame length, T̂ is the future frame length, H is the
height, and W is the width of the frames. We define Ŷ0 as the empty set, with this case being an
exception.

Various loss functions L can be utilized for optimization, such as mean squared error (MSE) (Gao
et al., 2022a), mean absolute error (MAE) (Ning et al., 2023), smooth loss (Seo et al., 2022), or
perceptual loss (Shouno, 2020). In this work, we specifically employ the MSE loss, which is the
most commonly used loss function for future frame prediction tasks.

Relationship with the previous approaches Both IAM4WF and existing autoregressive models
use model outputs as subsequent inputs in succession. However, IAM4WF distinctively re-engages
with all initial observations X , irrespective of the extent of the history of predicted frames Ŷ . In
contrast, traditional autoregressive models work with either single or multiple fixed-length inputs.
Over time, these models lose track of the initial observation, which leads to error accumulation,
especially in long-term predictions. This key distinction positions IAM4WF as a potentially more
robust framework for long-term forecasting scenarios.

In terms of the lead time embedding approach, IAM4WF addresses the error accumulation that’s
commonly associated with traditional autoregressive models. By using lead time t as an input,
models are capable of generating specific interval forecasts, effectively tackling error propagation.
Unlike other lead time models, IAM4WF, with its stacked autoregressive method, ensures both
adaptable lead times and the preservation of spatiotemporal correlations — vital for time-consistent
prediction. In Section 4.3, we highlight the empirical advantages of our design choice.
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3.2 MODEL INSTANTIATION

Figure 1 illustrates our model instantiation of IAM4WF in this work. IAM4WF comprises multiple
modules, including an encoder, error-free and error-prone queues, a predictor, and a decoder. Given
an input X and target time step t, X passes through the encoder and its output is given to the error-
free queue. The iterative prediction process up to the t − 1 time step, Ŷt−1 = {ŷ1, ŷ2, . . . , ŷt−1},
is stacked in the error-prone queue. Subsequently, the error-free queue and error-prone queue are
concatenated, and the concatenated output is passed through the predictor and decoder to produce
the final output ŷt.

Encoder-Predictor-Decoder Framework In the task of video frame prediction, the current lead-
ing architectural paradigm is the encoder-predictor-decoder structure (Gao et al., 2022a). Unlike
autoregressive models, the encoder-predictor-decoder structure is trained using convolutional neural
networks (CNN) to map multi-step inputs X to multi-step outputs Y . The encoder e(·) functions
to extract features from observed frames X . In contrast to the encoder, which treats the observed
frames as independent images without considering their spatiotemporal relationships, the predictor
p(·) is tasked with capturing these relationships and transforming them into features for predicting
future frames. Finally, the decoder d(·) reconstructs the forthcoming frames Y based on the fea-
tures provided by the predictor. IAM4WF adopts the encoder-predictor-decoder structure, which
consists of (Conv, LayerNorm (Ba et al., 2016), SiLU (Elfwing et al., 2018)) for the encoder, (Conv,
LayerNorm, SiLU, PixelShuffle (Shi et al., 2016)) for the decoder, and ConvNeXt (Liu et al., 2022)
blocks for the predictor. In contrast to the original encoder-predictor-decoder structure, our model’s
output is a specific future frame corresponding to the given target lead time, rather than predicting
multiple future frames simultaneously.

Error-prone Queue & Error-free Queue To ensure that IAM4WF retains the history of the initial
observation and predictions, it incorporates two key components: an error-free queue and an error-
prone queue. The error-free queue Qerror-free serves as an explicit memory bank, storing feature
vectors derived from the observed frames X . This explicit memory queue enables the model to
preserve all the information from the initial observation when making forecasts across all lead times.
In contrast, common autoregressive models undergo alterations of initial observed information as
the lead time increases. In addition to this, IAM4WF introduces an error-prone queue Qerror-prone,
which comprises feature vectors from the history of predicted frames Ŷ . This component explicitly
maintain the history of predictions and enables the model to consider spatiotemporal correlations
between predictions, which is not guaranteed in the common lead time embedding approaches.

Lead Time Embedding The approach in IAM4WF utilizes the lead time embedding methodol-
ogy for flexible lead time prediction. For a given lead time t, sinusoidal positional embedding is
performed at position t. This embedded representation, tembed, is subsequently passed through an
MLP, where its dimensionality is adjusted to match the number of channels in each layer of the
predictor p(·).
The sinusoidal positional encoding for a given position t and dimension i is articulated as proposed
by Vaswani et al. (2017):

PE(t,2i) = sin

(
t

10000
2i
d

)
, (2)

PE(t,2i+1) = cos

(
t

10000
2i
d

)
, (3)

where PE denotes the 2D positional encoding matrix, i is the dimension index, and d stands for the
embedding dimension. The complete positional embedding for t is obtained by aggregating across
the dimension i:

tembed =
[
PE(t,0), PE(t,1), . . . , PE(t,d−1)

]
. (4)

Upon computation of the embedding tembed, it is forwarded through two fully-connected layers
equipped with the GELU activation function (Hendrycks & Gimpel, 2016): (Linear, GELU, Lin-
ear). In the context of this work, the lead time embedding s(·) is described as a composition of the
sinusoidal positional embedding and processing through a two-layer network.
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Algorithm 1 PyTorch-style pseudo code of loss computation for IAM4WF

def compute_loss_IAM4WF(X, Y, hat_T):
"""
Args:
- X (torch.Tensor): Observed frame input (batch_size, C, T, H, W).
- Y (torch.Tensor): Future frame target (batch_size, C, hat_T, H, W).
- hat_T (int): Target time step.
"""
Q_error_free = encoder(X)
B, C, T, H, W = X.size()
Q_error_prone = torch.zeros(B, hat_T - 1, C, H, W)

predicted_frame = None
total_loss = 0.0

for t in range(hat_T):
if t > 0:

Q_error_prone[:, t - 1, :, :, :] = e(predicted_frame)
stacked_features = torch.cat((Q_error_free, Q_error_prone), dim=1)
predicted_frame = d(p(stacked_features, s(t)))
loss = mse_loss(predicted_frame, Y[:, :, t, :, :])
total_loss += loss

return total_loss

3.3 MODEL TRAINING

The stacked autoregressive model F (·) is trained to predict the future frame yt by taking as input the
observed frames X , the sequentially predicted frames Ŷt−1, and the lead time step t. Thus, given a
pair of input frames X , target frames Y , and the final lead time T̂ , objective function of the model
F (·) is computed as: ∑

t<T̂

L
(
d
(
p(e(X), e(Ŷt−1), s(t))

)
, yt

)
, (5)

where e(·) is the encoder, p(·) is the predictor, d(·) is the decoder, and s(·) is the lead time embed-
ding.

Algorithm 1 describes the loss computation for IAM4WF. The proposed model is trained sequen-
tially, with Qerror-prone being accumulated from t = 0 to T̂ − 1. It is noteworthy that Qerror-prone is
pre-allocated as a zero tensor, following a similar approach as that used in Masked Autoencoders
(MAE) (He et al., 2022). This training strategy enables both the predictor p(·) and the decoder d(·)
to be trained on inputs that incorporate errors from Qerror-prone with the error-free features Qerror-free
during training. As a result, the predictions are robust against error accumulation during inference.
Furthermore, this approach facilitates the consideration of correlations between outputs.

4 EXPERIMENTS

In this section, we present the evaluation of IAM4WF on benchmarks for both weather/climate fore-
casting and video frame prediction. Additionally, we conducted an ablation study to gain insights
into the design of weather forecasting models. We also showcase the qualitative results of video
frame interpolation, one of IAM4WF’s notable strengths, in Appendix A.4.

Benchmark Datasets We evaluate IAM4WF on six datasets. The SEVIR, ICAR-ENSO, and
WeatherBench (Rasp et al., 2020) datasets are benchmarks for weather and climate prediction. The
SEVIR dataset (Veillette et al., 2020) includes radar-derived measurements of vertically integrated
liquid water (VIL) taken at 5-minute intervals with 1 km spatial resolution, making it a benchmark
for rain and hail detection. The ICAR-ENSO dataset (Ham et al., 2019) merges observational and
simulation data to provide forecasts of El Niño/Southern Oscillation (ENSO), a sea surface tempera-
ture (SST) anomaly in the Equatorial Pacific that is a significant predictor of global seasonal climate.
Understanding and predicting global weather patterns is crucial. The WeatherBench dataset offers
data at resolutions of 5.625° (32×64 grids) and 1.40625° (128×256 grids). In the WeatherBench-S
setup, each climatic variable is trained individually on data from 2010-2015, validated in 2016, and
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Table 1: Performance comparison experiment results between IAM4WF and recent leading weather
prediction models on SEVIR dataset and ICRA-ENSO dataset.

Model SEVIR ICAR-ENSO
#Param. (M) GFLOPS CSI-M CSI-160 CSI-16 MSE #Param. (M) GFLOPS C-Niño3.4-M C-Niño3.4-WM MSE

UNet (Veillette et al., 2020) 16.6 33 0.3593 0.1278 0.6047 4.1119 12.1 0.4 0.6926 2.102 2.868
ConvLSTM (Shi et al., 2015) 14.0 527 0.4185 0.2157 0.7441 3.7532 14.0 11.1 0.6955 2.107 2.657
PredRNN (Wang et al., 2017) 23.8 328 0.4080 0.2928 0.7569 3.9014 23.8 85.8 0.6492 1.910 3.044
PhyDNet (Guen & Thome, 2020) 3.1 701 0.3940 0.2767 0.7507 4.8165 3.1 5.7 0.6646 1.965 2.708
E3D-LSTM (Wang et al., 2018b) 12.9 523 0.4038 0.2708 0.7059 4.1702 12.9 99.8 0.7040 2.125 3.095
Rainformer (Bai et al., 2022) 19.2 170 0.3661 0.2675 0.7573 4.0272 19.2 1.3 0.7106 2.153 3.043
Earthformer (Gao et al., 2022b) 7.6 257 0.4419 0.3232 0.7513 3.6957 7.6 23.9 0.7329 2.259 2.546
IAM4WF 34.7 392 0.4607 0.3430 0.7761 2.9371 34.2 11.8 0.7698 2.484 1.563

Table 2: Performance comparison experiment results between IAM4WF and recent leading weather
forecasting models on weather bench dataset.

Model
Weather Bench

Temperature (t2m) Humidity (r) Wind (uv10) Cloud Cover (tcc)
MSE RMSE MSE RMSE MSE RMSE MSE RMSE

ConvLSTM (Shi et al., 2015) 1.521 1.233 35.146 5.928 1.8976 1.3775 0.0494 0.2223
E3D-LSTM (Wang et al., 2018b) 1.592 1.262 36.534 6.044 2.4111 1.5528 0.0572 0.2393
PredRNN (Wang et al., 2017) 1.331 1.154 37.611 6.133 1.8810 1.3715 0.0550 0.2346
PhyDNet (Guen & Thome, 2020) 285.9 16.91 239.00 15.46 16.798 4.0986 0.0991 0.3148
MIM (Wang et al., 2019) 1.784 1.336 36.534 6.044 3.1399 1.7720 0.0572 0.2393
MetNet (Sønderby et al., 2020) 1.545 1.243 52.199 7.224 2.0072 1.416 0.0505 0.2247
SimVP (Gao et al., 2022a) 1.238 1.113 34.355 5.861 1.9993 1.4140 0.0476 0.2182
IAM4WF 1.150 1.072 30.833 5.552 1.5842 1.258 0.0453 0.2128

tested in 2017-2018 at one-hour intervals. Conversely, WeatherBench-M trains all variables simulta-
neously using data from 1979-2015, with the same validation and testing periods as WeatherBench-S
but at six-hour intervals.

MovingMNIST (Srivastava et al., 2015), TrafficBJ (Zhang et al., 2017), and Human 3.6 (Ionescu
et al., 2013) serve as benchmark datasets for video frame prediction. MovingMNIST is composed
of synthetically generated video sequences, each featuring two digits representing numbers between
0 and 9. TrafficBJ contains taxicab GPS and meteorological data recorded in Beijing. Human 3.6
provides motion capture data of a person taken using a high-speed 3D camera.

Evaluation metric For the evaluation of video frame prediction datasets, we adopt widely used
evaluation metrics, including Mean Square Error (MSE), Mean Absolute Error (MAE), Peak Signal
to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Fréchet Video Distance
(FVD) (Unterthiner et al., 2018). For rain forecasting models, we use the Critical Success Index
(CSI) as an evaluation metric (Shi et al., 2015). In addition, we validate ENSO forecasting using the
Nino SST indices (Gao et al., 2022b). Specifically, the Nino3.4 index represents the averaged SST
anomalies across a specific Pacific region (170◦-120◦W, 5◦S-5◦N), and defines El Niño/La Niña
events based on the SST anomalies around the equator.

Implementation details We use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and
β2 = 0.999, and a cosine scheduler without warm-up (Loshchilov & Hutter, 2016) in all experi-
ments. The learning rate is set to 0.001, and the mini-batch size is 16. To mitigate the learning
instability of the model, we introduce an exponential moving average (EMA) approach (Rombach
et al., 2022), which is not typically adopted in existing future frame prediction models. Updates to
the EMA model occur every 10 iterations, starting at the 2000th iteration, with an update momentum
set to 0.995. The MovingMNIST dataset is trained for 10K epochs, while all other datasets undergo
training for 2K epochs.

4.1 WEATHER/CLIMATE BENCHMARK RESULTS

SEVIR The SEVIR data possesses a relatively higher resolution, and water objects’ shapes in
it are less distinct compared to numbers and humans in other datasets. Even though Earthformer
already set a state-of-the-art benchmark on this dataset, our model surpassed its scores with a
CSI-M of 0.4607 and MSE of 2.9371, as depicted in Tab. 1. The CSI index typically vali-
dates the model’s precipitation forecast accuracy (Jolliffe & Stephenson, 2012), defined as CSI =

6



Under review as a conference paper at ICLR 2024

Table 3: Performance comparison results of IAM4WF and recent leading approaches on three future
frame prediction video frame prediction datasets. IAM4WF achieved state-of-the-art performance
on all three benchmark datasets, which have different characteristics: MovingMNIST, TrafficBJ,
and Human 3.6. The asterisk (*) indicates the performance reported in the author’s paper.

MovingMNIST TrafficBJ Human 3.6
Method MSE MAE SSIM FVD MSE ×100 MAE SSIM FVD MSE/10 MAE /100 SSIM FVD
ConvLSTM (Shi et al., 2015) 103.3 182.9 0.707 102.43 48.5 17.7 0.978 133.28 50.4 18.9 0.776 153.90
PredRNN (Wang et al., 2017) 56.8 126.1 0.867 152.34 46.4 17.1 0.971 113.06 48.4 18.9 0.781 102.19
Causal LSTM (Wang et al., 2018a) 46.5 106.8 0.898 86.39 44.8 16.9 0.977 55.20 45.8 17.2 0.851 66.38
MIM (Wang et al., 2019) 44.2 101.1 0.910 178.0 42.9 16.6 0.971 153.29 42.9 17.8 0.790 122.46
E3D-LSTM (Wang et al., 2018b) 41.3 86.4 0.920 22.20 43.2 16.9 0.979 90.21 46.4 16.6 0.869 88.91
PhyDNet (Guen & Thome, 2020) 24.4 70.3 0.947 15.87 41.9 16.2 0.982 50.76 36.9 16.2 0.901 80.22
SimVP (Gao et al., 2022a) 23.8 68.9 0.948 11.75 41.4 16.2 0.982 13.08 31.6 15.1 0.904 9.52
MIMO-VP* (Ning et al., 2023) 17.7 51.6 0.964 - - - - - - - - -
IAM4WF 16.9 49.9 0.963 7.319 39.0 16.7 0.985 8.251 12.9 11.5 0.948 5.251

Hits/(Hits + Misses + F.Alarms). Both CSI-160 and CSI-16 calculate Hits (obs = 1, pred = 1),
Misses (obs = 1, pred = 0), and False Alarms (obs = 0, pred = 1) based on binary thresholds
from [0, 255] pixel values. We employed thresholds {16, 74, 133, 160, 181, 219}, and the CSI-M
represents their average value (Gao et al., 2022b).

ICAR-ENSO The forecast evaluation metric, termed C-Nino3.4, computes the correlation skill
of the three-month-averaged Nino3.4 index (Ham et al., 2019). We make forecasts for up to 14-
month SST anomalies (extending 2 months beyond the input data used for three-month averaging)
based on a 12-month SST anomaly observation. As Table 1 indicates, IAM4WF outperforms all
other methods across the board. The metric C-Nino3.4-M represents the mean correlation skill over
12 forecasting steps, while C-Nino3.4-WM is its time-weighted average. We also assessed MSE
to gauge the spatiotemporal accuracy between predicted and observed values. Our model not only
enhanced the C-Nino3.4 indices but notably reduced the MSE by more than 1 compared to other
models.

Weather Bench Tab. 2 showcases the results from an experiment where IAM4WF was assessed
on Weather Bench, a task dedicated to weather prediction. We employed baseline models typically
utilized for video prediction tasks. As seen in Table 2, our IAM4WF demonstrates state-of-the-art
performance across weather variables, including Temperature (t2m), Humidity (R), Wind (uv10),
and Cloud Cover (tcc). These findings suggest that IAM4WF holds significant promise for global
modeling tasks.

4.2 VIDEO FRAME PREDICTION RESULTS

MovingMNIST In Tab. 3, the first row illustrates the performance of IAM4WF in comparison
to other recent leading approaches on the MovingMNIST dataset. Both PhyDNet and SimVP are
acknowledged for their state-of-the-art achievements. Notably, PhyDNet employs a memory cell,
while SimVP does not incorporate one. On the MovingMNIST dataset, IAM4WF registers an MSE
of 17.3, MAE of 49.9, SSIM of 0.963, and FVD of 7.319, surpassing other state-of-the-art models
for this rule-based synthetic dataset.

TrafficBJ The second row of Tab. 3 showcases IAM4WF’s performance in comparison to other
methods on the TrafficBJ dataset. Given the predominantly linear relationship between the past and
future in the TrafficBJ dataset, most models exhibit saturated values for metrics like MSE, MAE,
SSIM, and FVD. However, IAM4WF still achieves state-of-the-art results, outdoing other methods
by a significant margin. This suggests that IAM4WF is adept at handling simple real-world datasets,
even those with straightforward linear relationships.

Human 3.6 Tab. 3’s third row highlights IAM4WF’s performance on the Human 3.6 dataset. The
Human 3.6 dataset presents a challenge due to the non-linear relationship between past and future,
given its focus on predicting human behavior. The table reveals that IAM4WF excels over previous
models, boasting a notable performance improvement of 19.0 in the MSE metric. Such results
underscore IAM4WF’s robustness when dealing with complex real-world datasets demanding non-
linear modeling.
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4.3 ABLATION STUDY

Component effect The results of this study are presented in Tab. 4, where we assessed
the performance of IAM4WF by incrementally incorporating each component into the SimVP
baseline (Gao et al., 2022a). In SimVP, we observed a performance improvement of 0.5
points by modifying the encoder structure from (Conv, GroupNorm (Wu & He, 2018),
LeakyReLU (Xu et al., 2015)) to (Conv, LayerNorm, SiLU) and the decoder structure
from (ConvTranspose, GroupNorm, LeakyReLU) to (Conv, LayerNorm, SiLU, PixelShuffle).

Table 4: Ablations for IAM4WF components.

Component #Param (M) MSE
SimVP 20.4 23.5
+Improved Autoencoder 20.4 23.0
+ConvNeXt (replace predictor) 20.4 18.2
+Time Step MLP Embedding 20.6 18.0
+Stacked Autoregressive 20.7 16.9

Furthermore, a significant performance boost
of +4.8 points was achieved by replacing the
existing inception block with the ConvNeXt
block as the spatiotemporal predictor.

These experimental results indicate the impor-
tance of the spatiotemporal predictor in the
video frame prediction task. Subsequently,
by transitioning from the multi-step input and
multi-step output to the lead time embedding
method (multi-step input and the single-step
output), we attained an additional performance

gain of +0.2 points. While this improvement may appear modest, it was a pivotal step in implement-
ing the stacked autoregressive model structure. Finally, the introduction of the stacked autoregres-
sive method led to a substantial performance improvement of 1.1 points. These findings highlight
the significant impact of the stacked autoregressive approach in enhancing overall performance.

Output condition dependency We conducted an ablation study on the MovingMNIST dataset to
assess the impact on output conditions of IAM4WF. The results are presented in Figure 2.

M
A

E

Output length

M
A

E

Time interval

SimVP
IAM4VP

SimVP
IAM4VP

Figure 2: Performance comparison experiment according to
the output length (Left) and time interval (Right) changes of
SimVP and IAM4WF on the MovingMNIST dataset.

The left graph contrasts the per-
formance of SimVP and IAM4WF
based on output length. As depicted,
SimVP’s error increases linearly with
the output length, whereas IAM4WF
remains more consistent, highlight-
ing its robustness to changes in out-
put length. The right graph offers an
analysis based on the size of the time
interval for both input and output; for
both methods, errors rise as the time
interval grows, aligning with expecta-
tions. IAM4WF shows superior per-
formance compared to SimVP for all
time interval values. These findings underscore the importance of the IAM4WF’s design, and our
model can be effectively applied in more challenging tasks.

4.4 QUALITATIVE RESULTS

Due to page limitations, a more exhaustive qualitative video results can be found in our project
website (iam4wf.github.io/project-page).

ICRA-ENSO The predicted results for the ICAR-ENSO dataset are depicted in Figure 3, show-
casing the global map of SST anomalies. In the color bar, blue denotes negative SST anomalies,
while red represents positive ones. The results indicate that IAM4WF tends to overestimate values
but successfully predicts anomalous patterns transitioning from negative to positive, in line with ob-
servations (GT). Notably, even if the model produces incorrect predictions in the initial stages for
certain regions, subsequent predictions align with the correct SST anomaly pattern. This suggests
that the IAM4WF model does not carry forward early prediction errors to subsequent predictions.
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Figure 3: Prediction results of IAM4WF on the ICRA-ENSO dataset. The color bar means SST
anomalies on the global map. Best viewed with zoom.

SEVIR Figure 4 displays the predicted outcomes of IAM4WF and Earthformer on the SEVIR
dataset. This dataset signifies radar-estimated liquid water in a vertical air column, with the color
bar representing water mass per unit area.

Input sequence Ground truth and predictions
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Pred
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Input sequence Ground truth and predictions

Figure 4: Prediction results of IAM4WF and Earthformer
on the SEVIR dataset, represented by vertically integrated
liquid water contents (0-255 scale) shown on the color bar.

A higher VIL value is in-
dicative of elevated wa-
ter content, increasing the
likelihood of precipitation
or even the occurrence of
hail during storms. From
12 input images (the two
on the left), we forecast
12 future frames (four sam-
ples on the right). In both
examples, the initial fu-
ture frame predictions by
both models seem plau-
sible. However, dispari-
ties begin to emerge from
frame 17 onward. Earth-
former exhibits issues with
blurriness, characterized by
oversimplified cell bound-
aries and the omission of
smaller cells. This is a rec-
ognized limitation of deep-learning-based weather prediction models. Conversely, IAM4WF offers
precise predictions of cell boundaries up to frame 24. Notably, even the smaller cells are retained
throughout training, suggesting that some cells, which are not apparent in Earthformer’s outputs, are
discernible in our model’s predictions.

5 CONCLUSION

In this paper, we introduced a novel implicit weather forecasting model, IAM4WF, which effectively
harnesses the strengths of both the autoregressive method and the lead time embedding method. By
integrating the lead time embedding approach and maintaining an error-free queue, our model effec-
tively mitigates the error accumulation problem that has hindered existing autoregressive methods.
Furthermore, the incorporation of a stacked autoregressive architecture and an error-aware queue
ensures that IAM4WF consistently captures the essential spatiotemporal correlations between pre-
dictions — a fundamental property in atmospheric phenomena that was often overlooked in previ-
ous lead time embedding methods. Our extensive experiments have demonstrated that IAM4WF
achieves state-of-the-art performance on three weather and climate forecasting datasets, as well as
three video frame prediction tasks.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

IAM4WF consists of an encoder e(.), a spatial-temporal predictor p(.), a spatial decoder d(.), and a
positional encoder s(.). We have empirically confirmed that the amount of computation (Flops) and
accuracy depending on the number of e(.), d(.), and p(.). Table 5 shows the number of channels
and layers for each dataset. Most of the hyperparameters were set according to SimVP’s Gao et al.
(2022a) recipe. We empirically found that for larger image sizes, it is more efficient to use more
parameters for both th encoders and decoders, while for smaller image sizes, it is more efficient to
reduce the number of parameters in both the encoders and decoders.

MovingMNIST TrafficBJ Human 3.6 SEVIR ICRA-ENSO
e(.)channels 64 64 64 64 64
d(.)channels 64 64 64 64 64
p(.)channels 512 256 128 512 128
e(.)num 4 3 4 5 2
d(.)num 4 3 4 5 2
p(.)num 6 4 8 6 4

Table 5: IAM4WF hyperparameter settings of each component.

A.2 QUALITATIVE COMPARISON RESULTS

Figure 5 presents a qualitative comparison between competitive models and IAM4WF. As shown
in the Figure 5, representative autoregressive models such as ConvLSTM (Shi et al., 2015), Pre-
dRNN (Wang et al., 2017), and E3D-LSTM (Wang et al., 2018b), which are commonly used in video
frame prediction, exhibit accumulated errors and produce blurry images as the lead time increases.
In contrast, both SimVP and IAM4WF produce relatively clear images across all lead times, with
IAM4WF yielding the clearest images among them. It is worth noting that SimVP here does not
make use of its own prediction as input because the target lead time does not extend beyond the
output length of the trained model.

A.3 DOES IAM4WF REALLY CONSIDER THE CORRELATION BETWEEN EACH LEAD TIME
OUTPUT?

IAM4WF utilizes an error-prone queue, which contains features of its own predicted frames, for in-
ference. To investigate whether IAM4WF depends solely on the error-free queue (composed of fea-
tures of observed frames) for information during inference, we conducted qualitative experiments.
Figure 6 illustrates the outputs of IAM4WF for different error-prone queue configurations. As seen
in the results of the Random experiment in Figure 6, randomly shuffling the error-prone queue leads
to inaccurate IAM4WF outputs. This experiment result indicates that IAM4WF is affected by the
error-prone queue. Additionally, the best performance was achieved when the error-prone queue
is stacked in the correct order (Original). However, as demonstrated in the All Zero experiment,
IAM4WF is still capable of generating plausible images even when the error-prone queue is not
used.

A.4 TIME INTERPOLATION FOR VIDEO PREDICTION

The target lead time is provided as input to IAM4WF, enabling the model to make predictions at
arbitrary time intervals. As a result, IAM4WF has the flexibility to forecast future frames at time
points that were not explicitly observed during training. Figure 7 shows the qualitative results of
time interpolation using the MovingMNIST Dataset. These results demonstrate that IAM4WF can
perform video frame interpolation, a task that existing video frame prediction models were unable
to achieve. The ability of IAM4WF to make predictions at arbitrary time points is particularly ad-
vantageous in weather and climate forecasting Interpolated prediction enables the model to make
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Figure 5: The qualitative comparison between competitive models and IAM4WF on the MovingM-
NIST dataset.

predictions within shorter intervals compared to the actual acquired data, enhancing its temporal
resolution. Furthermore, IAM4WF’s capability to handle arbitrary time intervals opens up oppor-
tunities to exploit data from multiple satellites, each with its own repeat cycle. This flexibility
addresses the challenges of integrating information from various sources with different temporal
characteristics, which is essential for improving the accuracy of weather and climate forecasting
models.

B MOTIVATION OF MULTI-INPUT-MULTI-OUTPUT ARCHITECTURE

In the context of a video frame prediction task, models can be categorized based on their input and
output types. Recurrent neural network-based architecture such as PredRNN and ConvLSTM can
be defined as Single-Input and Single-Output (SISO) architectures. In these models, the input for
one forward pass of the model is a single frame, and the output is also a single frame. On the
other hand, models like SimVP, which is a state-of-the-art architecture in video frame prediction,
can be categorized as Multi-Input and Multi-Output (MIMO) architectures. These models receive
the entire video frame as input and predict multiple future frames simultaneously (Gao et al., 2022a;
Ning et al., 2023). In this section, we aim to investigate the significant factors in MIMO architectures
that influence performance.

B.1 ANALYSIS

Recent studies suggest that the MIMO model, may provide an advantage in video prediction prob-
lems. Our questions are whether a MIMO architecture is essential for achieving high performance
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Figure 6: Qualitative comparison results of IAM4WF output according to error-prone queue config-
uration. Original represents stacking the error-prone queue in the correct order, Random represents
random shuffling of the error-prone queue, All ŷ1 and All ŷ8 indicate using only ŷ1 and ŷ8, respec-
tively, for the entire error-prone queue, and All zero represents not using the error-prone queue at all.
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Figure 7: Future frame prediction and interpolation quantitative experiment results on the Mov-
ingMNIST dataset. Since IAM4WF is an implicit model, it was trained with a lead time interval of
1, but it can operate at an interval of 0.5 during inference.

in video prediction and whether the multiple-output component is critical in the MIMO architec-
ture. To answer these questions, we compared autoregressive and non-autoregressive models with
the same structure and hyperparameter settings. We modified the SimVP MIMO model to create the
MISO-autoregressive and MISO-Multi Model and conducted ablation experiments to confirm their
efficacy.

Note that the MISO-autoregressive model predicts the future frame tn+1 by inputting time step
points B = t0, t1, ..., tn and removing them from the queue in a first-in-first-out (FIFO) manner in
the next step. In addition, the MISO-Multi Model also uses multiple inputs like the MIMO model
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but models fn+1(B), fn+2(B), ..., fn+m(B), where m is the number of target future frames that
are specifically configured.

Table 6 presents the effectiveness comparison of the MIMO, MISO-autoregressive, and MISO-Multi
Model. Our experiments reveal that Mean Squared Error (MSE) decreases as the time step increases
in all experiments. Moreover, the Multi Model exhibits the highest performance. These experimen-
tal results demonstrate that the multi-input components, rather than the multi-output, significantly
influence performance in the MIMO method.

Furthermore, the autoregressive model exhibits the lowest performance, indicating that the error
accumulation problem is critical in future frame prediction tasks. Hence, when designing a model
for future frame prediction, it is essential to consider the design of a multi-input structure that does
not accumulate errors.

Method #Param. (M) Training Epoch Time Step MSE
1 2 3 4 5 6 7 8 9 10

SimVP-S (MIMO) 20.4 2K 11.6 14.7 17.5 19.6 22.0 24.4 27.1 29.4 32.6 36.5 23.5
SimVP-S (MIMO)*10 20.4 20K 8.8 11.9 15.6 17.3 19.2 21.4 25.7 28.8 30.3 35.2 21.4
SimVP-L (MIMO) 53.5 2K 13.7 17.5 18.1 20.2 24.1 26.6 29.8 33.1 36.5 38.2 25.7
SimVP-S (MISO-Multi Model) 20.4*10 20K 8.3 10.9 13.1 15.6 17.8 20.0 22.4 24.5 26.1 28.7 18.7
SimVP-S (MISO-Autoregressive) 20.4 2K 8.3 13.4 19.2 24.5 30.3 36.2 42.6 48.7 55.2 62.3 34.1

Table 6: The result of comparing the efficiency of each method after changing the previous archi-
tecture SimVP model to Multiple-In-Single-Out Multi Model (MISO-Multi Model) and Multiple-
In-Single-Out-autoregressive (MISO-Autoregressive) structure. All experiments were conducted on
the Moving MNIST dataset.

B.2 MOTIVATION

The initial experiments in Section B.1 suggest that the MISO model has the potential for high perfor-
mance in video prediction problems. However, the MISO-Multi Model is computationally inefficient
since it requires learning and inference of multiple models. Additionally, the MISO-Multi Model
lacks modeling of time dependence since it does not use previous or subsequent predicted frames
when inferring each future timestamp. In contrast, the MISO-Autoregressive model models time
dependence but suffers from long-term error accumulation, resulting in performance degradation.

Acknowledging the potential observed in MISO models for video prediction, we designed our im-
plicit stacked autoregressive architecture by drawing inspiration from this observation. Specifically,
we integrate the error-free and error-prone queues into our framework, aiming to address the issue of
long-term error accumulation that is often encountered in autoregressive models. This strategic in-
corporation allowed us to mitigate the challenges associated with extended predictions and enhance
the overall performance of our model.

C LIMITATION AND FUTURE WORK

Unlike the existing autoregressive model, the stacked autoregressive method lacks flexibility for lead
time. For example, the lead time of the existing autoregressive model can be increased as much as
desired by adjusting the autoregressive step even if the performance is degraded. However, since
the stacked autoregressive method has to fix the length of the feature map input to the model, the
length of the lead time cannot exceed the existing fixed length. However, the stacked autoregressive
method can also perform inference in the same way as the existing autoregressive methods, but this
does not match the motivation of the stacked autoregressive method. In our future work, we will
conduct research on increasing the output length flexibility of the stacked autoregressive method.

16


	Introduction
	Related Work
	Implicit Stacked Autoregressive Model
	Model Design
	Model Instantiation
	Model Training

	Experiments
	Weather/Climate Benchmark Results
	Video Frame Prediction Results
	Ablation Study
	Qualitative Results

	Conclusion
	Appendix
	Implementation details
	Qualitative Comparison Results
	Does IAM4WF really consider the correlation between each lead time output?
	Time interpolation for Video Prediction

	Motivation of Multi-Input-Multi-Output Architecture
	Analysis
	Motivation

	Limitation and Future Work

