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Abstract

In-context learning is a new learning paradigm
where a language model observes a few exam-
ples and then directly outputs the test input’s
prediction. Previous works have shown that
it is sensitive to the provided examples and
randomly sampled examples probably cause in-
ferior performance. In this paper, we propose
finding “support examples” for in-context learn-
ing: Given a training dataset, it aims to select
one permutation of a few examples, which can
well characterize the task for in-context learn-
ing and thus lead to superior performance. Al-
though for traditional gradient-based training,
there are extensive methods to find a coreset
from the entire dataset, they struggle to iden-
tify important in-context examples, because in-
context learning occurs in the language model’s
forward process without gradients or parame-
ter updates and thus has a significant discrep-
ancy with traditional training. Additionally,
the strong dependency among in-context exam-
ples makes it an NP-hard combinatorial opti-
mization problem and enumerating all permuta-
tions is infeasible. Hence we propose LENS, a
fiLter-thEN-Search method to tackle this chal-
lenge in two stages: First we filter the dataset to
obtain informative in-context examples individ-
ually. Specifically, we propose a novel metric,
InfoScore, to evaluate the example’s in-context
informativeness based on the language model’s
feedback, and further propose a progressive fil-
tering process to filter out uninformative exam-
ples. Then we propose diversity-guided exam-
ple search which iteratively refines and evalu-
ates the selected example permutations, to find
examples that fully depict the task. The exper-
imental results show that LENS significantly
outperforms a wide range of baselines.

1 Introduction
In-Context Learning (ICL) is a new paradigm using
the language model (LM) to perform many NLP
tasks (Brown et al., 2020; Dong et al., 2022; Zhao
et al., 2023). In ICL, by conditioning on a few train-
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Figure 1: In-context learning and model training learn in
different ways , where and are forward and backward
processes, respectively, and L(·,·) is the loss function.

ing examples, LM can directly output the predic-
tion of a given test input without parameter updates.
Restricted by LM’s max input length, it is typical to
randomly sample a small set of examples from the
entire dataset for in-context learning (Brown et al.,
2020; Zhang et al., 2022a). However, in-context
learning is sensitive to the provided examples and
randomly sampled in-context examples show sig-
nificant instability and probably cause inferior per-
formance (Lu et al., 2022; Chang and Jia, 2023). In
this paper, we propose to select a small list of ex-
amples that are informative and representative for
the entire dataset as in-context examples. Inspired
by the traditional machine learning method, Sup-
port Vector Machine (SVM) (Cortes and Vapnik,
1995), where a few support vectors are closest to
the decision boundary and provide crucial discrimi-
native information for SVM, we name the selected
examples for ICL as support examples since they
provide crucial task information for the LM and
their quantity is usually limited, too.

There is a similar problem in traditional gradient-
based deep learning like fine-tuning (Devlin et al.,
2019), typically called Coreset Selection (Guo
et al., 2022), which aims to select a set of rep-
resentative training examples for the dataset to ben-
efit many downstream scenarios like data-efficient
learning (Adadi, 2021), active learning (Ren et al.,
2022), neural architecture search (Shim et al.,
2021), etc. However, it is challenging for these
coreset selection methods to select important in-



Examples Acc

The casting of Raymond J. Barry as the ‘assassin’
greatly enhances the quality ... It was [great] 82.0

At some point , all this visual trickery stops being
clever ... It was [terrible] 85.3

1. The casting of Raymond ... It was [great] 2. At
some point , all this visual trickery... It was [terrible] 56.0

1. At some point , all this visual trickery ... It was
[great] 2. The casting of Raymond ... It was [terrible] 74.4

Table 1: The case study of examples’ combinatorial
dependency on SST-2, where “it was [great/terrible]”
is the template. Although two examples bring good
performance separately, combining them instead hurts
performance.

context examples because there is a significant dis-
crepancy between traditional training and ICL. As
shown in Figure 1, the “learning” paradigms of
model training and ICL are highly different. Tra-
ditional training depends on back-propagation’s
gradients to update parameters while ICL occurs in
LM’s forward process without gradients and param-
eter updates. Existing coreset selection methods
are always coupled with the training procedure,
i.e., they usually depend on gradients or run with
the training procedure. For example, Paul et al.
(2021) select informative examples by their gra-
dients’ norm. Toneva et al. (2019) evaluate each
example’s importance by counting how many times
it is forgotten, i.e., the example is misclassified af-
ter being correctly classified in the previous epoch.
Additionally, coreset selection methods mainly de-
pend on the example’s gradients as the feature of
example selection (Mirzasoleiman et al., 2020; Kil-
lamsetty et al., 2021a,b; Guo et al., 2022). However,
LM performs ICL through inference, which does
not rely on gradients or parameter updates. Hence,
the gap between gradient-based training and ICL
makes these methods struggle to effectively select
informative examples for in-context learning.

Another challenge is the strong dependency
among in-context examples. Previous work (Lu
et al., 2022) shows that even the same example
set with different orderings can result in drastically
different performance from random-guess level to
state-of-the-art. Here we also conduct an additional
case study to shed light on examples’ combinatorial
dependency in Table 1. We see that compared with
two examples’ individual performance, combining
them instead significantly hurts the performance.
To cope with examples’ dependency, a straightfor-
ward method is to enumerate all possible examples’

combinations and verify their performance. How-
ever, it will lead to combinatorial explosion and
thus is infeasible.

To tackle these challenges, we propose LENS, a
fiLter-thEN-Search that finds support examples in
two stages: in the first stage, we filter the dataset
to obtain informative in-context examples individu-
ally. Specifically, we propose InfoScore to evalu-
ate the example’s in-context informativeness based
on the LM’s feedback, and further propose a pro-
gressive filtering process to filter out uninforma-
tive examples; In the second stage, we propose a
diversity-guided example search method that itera-
tively refines and evaluates the selected examples
to find support examples that can fully depict the
task. We summarize our contributions as follows:

• To the best of our knowledge, we are the first
to define the support examples selection prob-
lem for in-context learning and introduce a
novel filter-then-search method to tackle it.

• We conduct experiments on various text clas-
sification datasets and compare our method
with a wide range of baselines. Experimental
results demonstrate that our method signif-
icantly outperforms baselines and previous
coreset selection methods bring marginal im-
provements over the random baseline, which
shows the necessity of ICL-specific designing
for finding support examples.

• We conduct further analyses on support ex-
amples and find that they exhibit different
trends from random examples in many as-
pects, which can shed light on the principle
of them and ICL. We provide the following
key takeaways: 1. Support examples are less
sensitive to the order compared with random
examples (Lu et al., 2022). 2. Ground truth
labels matter for support examples, while the
previous study (Min et al., 2022b) show that
they are not important for randomly sampled
examples. 3. One LM’s support examples can
be well transferred to other LMs with differ-
ent sizes and pre-training corpora and keep
the superiority over random examples.

• We provide comprehensive empirical results
of previous coreset selection methods on ICL,
which has not been explored. We release the
implementation of our method and baselines
to facilitate future research1.

1https://github.com/LeeSureman/ICL_Support_Example

https://github.com/LeeSureman/ICL_Support_Example


2 Background:In-Context Learning
In this section, we introduce the definition of in-
context learning. We focus on text classifica-
tion’s in-context learning using the causal language
model (Radford et al., 2018). Given a language
model G, n examples {xi, yi}ni=1 and a test input
xtest, the prediction of xtest is generated as:

argmax
y∈Y

pG(y|x1 ⊕ y1 · · ·xn ⊕ yn ⊕ xtest), (1)

where Y is the label space and ⊕ is the con-
catenation operation. To deal with classification
tasks, the original label is often mapped to word
or words in G’s vocabulary. For example, the pos-
itive/negative label in a binary sentiment classifi-
cation can be mapped to “great”/“terrible”. For
simplicity, we omit the verbalizer, special tokens
and prompting templates in Eq (1).

As Eq.(1) shows, G receives the task’s supervi-
sion only from the concatenated {xi, yi}ni=1 and
directly output the prediction of xtest. Typically,
n is limited by the max input length of G, so it
is typical for researchers to randomly sample a
small set of samples from the entire dataset D
(Brown et al., 2020; Zhang et al., 2022a). How-
ever, ICL is sensitive to the provided examples and
random in-context examples show significant insta-
bility and probably cause inferior performance(Lu
et al., 2022; Chen et al., 2022). In this paper, we
focus on selecting a small list of support examples
that are informative for the task and performant for
in-context learning, from the entire dataset D.

3 Method
The strong dependency among in-context exam-
ples makes selecting support examples essentially
an NP-hard combinatorial optimization problem.
Enumerating all combinations and evaluating them
is infeasible due to the combinatorial explosion.
In this section, we propose LENS, a fiLter-thEN-
Search method to find support examples: 1. we
first filter the training dataset to obtain informative
examples individually, 2. then we search the ex-
ample permutation that fully depicts the task from
them. In this paper, we instantiate the two stages
as a novel example metric with progressive filter-
ing and diversity-guided example search, we leave
the development of more powerful components as
future work. We introduce these two stages below.

3.1 Informative Examples Filtering
In the first stage, we aim to find those informa-

tive examples individually. There are extensive

Algorithm 1 Progressive Example Filtering
Input: Training set D = {ei}ni=1, language model G, de-

sired candidate size m, progressive factor ρ, initial score
data size l.

Output: Individually informative examples D′

1: D′ ← D
2: S ← Randomly sample l examples from D.
3: while |D′| > m do
4: for ei ∼ D′ do
5: s(ei)← I(ei, S)
6: end for
7: if |D′|/ρ < m then
8: D′ ← the top-m of D′ using {s(ei)}|D

′|
i=1

9: Break;
10: else
11: D′ ← the top 1

ρ
of D′ using {s(ei)}|D

′|
i=1

12: end if
13: S′ ← Randomly sample l ∗ (ρ− 1) examples fromD
14: S ← S ∪ S′

15: end while
16: return D′

methods to measure the example’s importance for
gradient-based training, like the example’s gradient
norm (Paul et al., 2021), loss value in the early train-
ing stage or the times of being forgotten (Toneva
et al., 2019), etc. However, these methods strug-
gle to identify important in-context examples since
ICL is based on LM-inference without gradients
and parameter updates. Here we propose InfoS-
core (Informativeness Score) to measure the indi-
vidual in-context informativeness of one example
e = {x, y} for ICL based on LM’s feedback as:

I(e,D) =
∑
e′∈D

c(e, e′) (2)

c(e, e′) = pG(y
′|x, y, x′)− pG(y

′|x′), (3)

where e′ = {x′, y′}, and D is the training dataset.
Eq (3) is the gap between the probabilities of the
ground truth y′ conditioned on (e, x′) and (x′), re-
spectively. So it evaluates how informative e is for
the LM to correctly classify x′ and thus measures
e’s contribution for e′ in ICL. Hence, I(e,D), the
sum of Eq (3) over D, can evaluate the example’s
task-level in-context informativeness.

However, computing all examples’ InfoScores
over the entire dataset is quadratic in |D| and thus
infeasible. We further propose a progressive filter-
ing process to filter out uninformative examples
progressively, where promising examples receive
more computation while low-quality examples get
less computation, shown in Algorithm 1.

We filter out uninformative examples in a pro-
gressive manner. We first sample a small set of
examples from D as initial “score set” (line 2) to
coarsely evaluate the InfoScore of each example



Algorithm 2 Diversity-Guided Search
Input: Candidate examples D′ = {ei}mi=1, candidates’ fea-

ture {f(ei)}mi=1, a small validation set V , iteration num
I, beam size B, example substitution size B′

Output: A performant examples’ permutation.
1: E = {Ei}Bi=1 ← initialize B examples’ permutations
2: for i in 1, 2 · · · I do
3: E ′ ← {}
4: for E in {Ej}Bj=1 do
5: for b in 1, 2 · · · B′ do
6: e∗ ←Randomly sample an example from E
7: e∗new ← argmaxe∈D′ s(e, E − e∗)
8: E∗ ← Replace e∗ in E with e∗new

9: E ′ ← E ′ ∪ {E∗}
10: end for
11: for b in 1, · · · B − B′ do
12: E∗ ← Randomly shuffle E
13: E ′ ← E ′ ∪ {E∗}
14: end for
15: E ← Evaluate E ′ on V and get the top-B
16: end for
17: end for
18: return The top-1 of E

and filter the entire dataset to 1/ρ of its original
size (line 5). At the following iteration, we pro-
portionally expand the size of the score set to ρ
times by randomly sampling more examples from
training set (line 13∼15) and use it to calculate In-
foScore of the remaining promising examples. As
the score set is expanded, the subsequent InfoScore
can be calculated in a more fine-grained way and
better filter informative examples. Meanwhile, the
uninformative examples are filtered out in the pre-
vious iteration, which helps save the computational
cost. We repeat this procedure until a small set of
examples is left.

Thus we achieve filtering examples with high
in-context informativeness in the complexity of
O(N ∗ logρN), where N is the size of training set.

In experiments, we set ρ to N
1
C to make it a linear

complexity, where C is a constant. According to
the size of dataset, ρ is usually set between 2 - 3.

3.2 Diversity-Guided Example Search

After filtering, we get individually informative
examples D′. Since the in-context examples have
high combinatorial dependency (see Table 1), a
straightforward method is to enumerate all possible
combinations and evaluate them on a validataion
set. However, although we have reduced the candi-
date examples by filtering, it is still impossible to
evaluate all combinations. For example, if there are
50 examples retained after filtering and we want to
find a combination of 8 examples from them, it can
lead to C8

50 (about 536 million) combinations, let

alone considering the examples’ orders.
Hence we propose diversity-guided example

search to iteratively refine the example selection
from filtered examples and obtain the support ex-
amples, as shown in Algorithm 2. It starts with a
set of initial example permutations. At each itera-
tion, we use the diversity of in-context examples to
guide the update of the current candidate permuta-
tions. Specifically, for each candidate permutation
E = [ei]

n
i=1, we randomly select an example e∗ in

E and update it with the example e∗new as:

e∗new = argmaxe∈D′ s(e, E
′) (4)

s(e, E′) = I(e, S)− λ
∑

e′∈E′

sim(f(e), f(e′)), (5)

where E′ = E − e∗, λ is pre-defined hyper-
parameter, S = {esi}mi=1 is the final score set of
the filtering stage. The subsequent term of s(e, E′)
in Eq (5) corresponds to the diversity between e
and E′, and f(·) is the example’s feature vector
calculated as:

f(e) = [c(e, es1), c(e, e
s
2) · · · , c(e, es|S|)], (6)

where f(e) describes e’s contribution on S’s each
example esi in ICL and thus directly encodes e’s
in-context feature. If two examples’ f(·) are sim-
ilar, their effect on ICL can be redundant and we
should avoid selecting both of them in one permuta-
tion. Note that I(e, S) and each c(e, esi ) in f(e) are
calculated in the filtering stage and can be reused.

With s(e, E′) and f(e), the updated candidate
permutations can be informative and diverse, and
help the LM correctly predict various examples,
which can better help find the support examples
that fully depict the task in ICL. In this paper, we
propose and verify a simple yet effective example
ICL feature. We leave the development of more
powerful ones as future work.

Since examples’ order can significantly influ-
ence the performance (Lu et al., 2022; Kumar and
Talukdar, 2021), we also update E with different
orders by randomly shuffling (line 10∼13), which
can reduce the risk of missing performant combina-
tions of examples due to poor ordering. In order To
explore the example search space more comprehen-
sively and alleviate risk of the local-optimal exam-
ple permutation, we consider the beam search (Ju-
rafsky and Martin, 2009) here instead of greedy
search. Specifically, we update each candidate
example permutations by diversity-based exam-
ple substitution and random shuffling for B′ and
B − B′ times, respectively (line 5, 10). Then



we leverage a small validation set sampled from
(D −D′) to evaluate them and keep the top-B per-
mutations with best performance as next iteration’s
candidates. Through these, we can the mitigate
issue of local-optimal example permutation, better
iteratively refine and evaluate the candidate permu-
tations with high informativeness and diversity in
turn and obtain the examples that can fully depict
the task.

To initialize example permutations E with infor-
mativeness and diversity, we formulate it as discrete
optimization that maximizes

∑
e∈E s(e, E − e),

which can be solved by the discrete optimization
solver like CPLEX (Cplex, 2009).

4 Experiments
4.1 Experimental Settings
Dataset In this paper, we conduct experiments on
eight text classification datasets across three task
families, including Sentiment Classification: SST-
2, SST-5 (Socher et al., 2013), Amazon (McAuley
and Leskovec, 2013) and MR (Pang and Lee, 2005);
Subjectivity Classification: Subj (Pang and Lee,
2004); Topic Classification: TREC (Voorhees and
Tice, 2000), AGNews (Zhang et al., 2015) and DB-
Pedia (Lehmann et al., 2015).

Method Comparison We mainly compare our
proposed methods with the following baselines:
Random: We randomly select examples from the
training set; Random & Validation: We evaluate
multiple sets of random examples on the validation
set and select the best one. We consider Random
& Validation under two settings whose computa-
tional cost is similar to our method: 1. the size
of validation set is the same as ours at stage 2
(100) and the number of random example sets is
the same as our searched and evaluated example
permutations (640). 2. the size of validation set
is larger, 1000, and the number of random exam-
ple sets is 100. We also consider a wide range
of Coreset Selection methods in gradient-based
learning scenarios, according to the methodologies,
they can be divided into multiple categories includ-
ing: Geometry-Based Method: it assumes that
data points that are close in the feature space have
similar properties, including Herding (Chen et al.,
2012) and K-Center Greedy (Sener and Savarese,
2018); Uncertainty-Based Method: it assumes ex-
amples with higher uncertainty can have a greater
impact on the model and should be contained in
coreset, including Least Confidence, Entropy,
Margin (Coleman et al., 2020) and CAL (Mar-

gatina et al., 2021); Error/Loss Based Method:
It assumes the example that contributes more to
the error or loss during training is more important
and should be included in coreset, including For-
getting (Toneva et al., 2019) and GraNd (Paul
et al., 2021); Gradient Matching Based Method:
Since deep models are usually trained by gradient
descent, it tries to find a coreset whose gradients
can imitate the entire dataset’s gradients, including
CRAIG (Mirzasoleiman et al., 2020) and Grad-
Match (Killamsetty et al., 2021a); Submodularity-
Based Method: Submodular functions (Iyer and
Bilmes, 2013) naturally measure a subset’s informa-
tiveness and diversity and can thus be powerful for
coreset selection, including Facility Location and
Graph Cut (Iyer and Bilmes, 2013); Bilevel Op-
timization Based Method: It transforms the core-
set selection problem into a bilevel-optimization
problem whose outer and inner objectives are sub-
set selection and model parameter optimization,
respectively: Glister (Killamsetty et al., 2021b).
Due to the page limit, we introduce these methods
and their implementation details in Appendix A
and Appendix B.1, respectively.

Implementation Details For the LM, we follow
Min et al. (2022a) to use GPT2-L (Radford et al.,
2018). We set the number of retained examples of
filtering m, the weight of diversity λ, the beam size
B and the number of diversity search iterations as
500, 1, 8 and 10 respectively. We show the overall
hyper-parameters, implementation details, analysis
details and complexity analysis in Appendix B. For
baselines and LENS, we run each method under
4 prompt templates over 10 random seeds (40 in
total) and report the average performance with and
without calibration (Zhao et al., 2021), unless oth-
erwise specified. We show the overall templates
and dataset statistics in Appendix C and D.

4.2 Main Results

We show the results in Table 2. We observe that
our method significantly outperforms baselines
on all datasets with or without calibration mecha-
nism, which shows our method’s best overall abil-
ity to find task-representative support examples
across different settings and task families. Spe-
cially, our method shows better performance than
the Random-Validation baseline and this directly
demonstrates its non-triviality. Meanwhile, previ-
ous methods for gradient-based learning have simi-
lar performance with the Random baseline, and this



Method SST-2 SST-5 Amazon MR Subj TREC AGNews DBPedia Average

zero-shot 63.0/80.3 27.5/33.3 31.2/37.6 61.7/77.4 51.0/52.0 38.7/27.7 59.8/59.9 32.3/37.6 45.6/50.7
Random 57.9/64.4 27.5/23.9 73.7/78.5 59.5/67.1 55.0/60.9 30.3/24.9 33.6/47.8 16.3/64.7 44.2/54.0

Herding 62.0/63.7 24.8/20.5 75.4/71.9 54.1/57.3 56.5/56.7 26.4/22.2 38.7/35.7 7.4/61.7 43.2/48.7
K-Center Greedy 58.6/61.6 25.1/23.0 78.6/76.3 59.0/61.3 59.9/57.0 31.3/26.4 42.3/37.8 32.1/72.1 48.4/51.9

Entropy 62.4/67.4 25.5/26.6 71.4/76.2 54.1/56.2 53.9/51.7 26.2/21.3 30.6/35.3 14.5/46.9 42.3/47.7
LeastConfidence 58.4/63.0 26.0/23.2 73.8/72.1 55.9/57.3 58.0/51.9 23.5/21.5 31.6/36.7 9.1.59.9 42.0/48.2
Margin 62.4/67.4 26.1/22.6 76.9/76.6 54.1/56.2 53.9/51.7 24.2/21.0 38.1/45.0 7.1/58.4 42.9/49.9
Cal 59.3/66.7 25.3/25.5 75.7/75.4 66.2/67.7 64.6/55.6 31.8/30.7 42.3/46.6 30.3/73.9 49.4/55.3

Forgetting 61.6/68.2 27.7/23.5 77.1/78.2 56.7/59.4 55.1/53.2 28.7/28.6 33.4/39.8 10.5/64.7 43.9/52.0
GraNd 54.6/56.5 27.8/24.9 75.5/73.4 52.8/55.8 55.7/51.9 28.2/23.9 33.4/53.2 21.2/64.0 43.7/50.5

CRAIG 63.4/72.0 26.4/25.3 75.4/80.6 59.3/66.7 57.0/54.8 32.0/24.8 37.4/55.4 29.5/71.0 47.6/56.3
GradMatch 57.0/61.9 26.3/23.4 75.1/76.0 56.6/62.1 55.8/64.6 25.8/21.4 32.6/39.4 9.7/57.8 42.3/49.6

FacilityLocation 65.5/73.2 23.9/24.3 77.7/77.6 61.7/69.6 59.0/54.5 35.7/29.1 42.5/58.6 30.4/74.3 49.6/57.7
GraphCut 65.0/71.4 25.3/24.6 76.5/78.4 66.3/72.3 63.2/56.6 34.7/28.4 41.9/50.8 14.0/47.3 48.4/53.7

Glister 59.0/61.0 25.8/25.2 78.0/77.7 60.1/66.6 60.6/57.0 29.4/23.4 38.6/41.1 24.1/69.8 46.7/52.7

Random & Valid (100) 70.1/72.8 33.2/29.6 76.3/78.4 53.2/57.9 60.7/58.9 30.3/24.9 40.1/33.6 37.2/56.7 50.1/51.6
Random & Valid (1000) 65.0/62.6 29.0/30.8 78.5/78.6 57.7/62.5 61.9/53.4 32.8/29.4 43.5/56.1 37.8/73.6 49.5/55.9
LENS 86.3/87.6 44.9/42.1 80.2/83.9 83.1/83.9 86.4/81.5 59.0/48.8 77.9/78.1 40.8/80.7 69.8/73.3

Table 2: Results on GPT2-L. Each entry shows the ICL accuracy without and with calibration (Zhao et al., 2021).
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Figure 2: The performance distribution of support ex-
amples and random examples with multiple orders.

indicates: 1. there is a non-negligible gap between
ICL and these methods 2. it is necessary to design
to ICL-specific method to find support examples.

Additionally, the Random baseline slightly un-
derperforms the Zero-Shot, which shows that ran-
dom examples are hard to fully characterize the
task and the necessity of finding support examples
for ICL. In experiments, we observe that Random-
Validation suffers from the ICL’s instability. Specif-
ically, we find that considerable example permuta-
tions selected by the validation set do not consis-
tently yield satisfactory results on the test set and
this degrades its performance, whereas our method
is more robust and less susceptible to this issue.

4.3 Analysis
The Sensitivity of Support Examples to Orders
The recent study (Lu et al., 2022) shows that the

ordering of in-context examples for ICL has a sig-
nificant influence on the performance. Specifically,
to the same set of randomly sampled examples,
different orders can result in near state-of-the-art
and random-guess performance. In this section,
we explore the effect of ordering for our support
examples on SST-2, Amazon, MR and Subj. For
each task, we select four sets of support examples
and four sets of random examples and then evalu-
ate their performance with eight randomly sampled
orders. We show the performance distribution in
Figure 2. We see that random examples with dif-
ferent orders show highly unstable performance
where the worst drops to the random-guess level,
which is consistent with the conclusion in previous
work (Lu et al., 2022). In contrast, the support ex-
amples’ performance is significantly more stable
than random examples. Generally, most orders can
still lead to approximately equivalent performance
as the searched orders and few orders lead to the
random-guess performance. The phenomenon is
compatible with the conclusion from the recent
work (Chen et al., 2022), which shows a strong
negative correlation between ICL sensitivity and
accuracy. Moreover, our support examples’ lower
sensitivity to the ordering demonstrates that they
can more effectively depict and characterize the
corresponding task.

Transferablity across Different LMs In the
main experiments, we get GPT2-L’s support ex-
amples and evaluate them using the same LM. And



Examples SST-2 MR TREC AGNews Average

GPT2-XL

Random 60.3 66.7 34.4 56.9 54.6
LENS 73.0 70.7 44.0 60.4 62.0

GPT2-M

Random 59.6 65.0 33.4 51.7 52.4
LENS 82.0 75.5 37.5 75.3 67.6

GPT-Neo-2.7B

Random 57.3 55.8 29.4 71.6 53.5
LENS 62.5 65.2 45.0 80.2 63.2

Table 3: The transfer of GPT2-L’s support examples
on LMs with different sizes and pre-training corpora:
GPT2-M, GPT2-XL and GPT-Neo-2.7B.
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Figure 3: The results under gold and random labels.

here we explore the transferability of these sup-
port examples across different LMs with various
sizes and pre-training corpora. Specifically, we
test the support examples of main experiments on
GPT2-M (355M), GPT2-XL (1.5B) and GPT-Neo-
2.7B (Black et al., 2021). The results are shown
in Table 3. We see that GPT2-L’s support exam-
ples also show better performance than the Random
baseline. Additionally, our support examples also
demonstrate the consistent superiority on GPT-Neo-
2.7B which has a different pre-training corpus from
GPT2-L. Since random examples’ performance can
not be well transferred to other LMs (Lu et al.,
2022), these can show the strong transferability of
our support examples and the utility of our method
when more powerful LMs are proposed.

Ground Truth Matters for Support Examples
Recently, Min et al. (2022b) suggests that ground
truth (GT) labels are not important for ICL, which
differs from traditional supervised learning. In their
experiments, for randomly sampled examples, us-
ing ground truth labels or not leads to similar ICL
performance. Here we explore the effect of ground
truth labels for support examples. We show the

SST-2 Subj TREC Average

Random 57.9 55.0 30.3 47.7

p=1.5 86.6 86.1 59.5 77.4
p=2 86.3 86.4 59.0 77.2
p=3 85.1 86.0 58.7 76.6

m = 50 83.6 84.1 56.2 74.6
m = 500 86.3 86.4 59.0 77.2
m = 1000 86.1 85.9 59.1 77.0

λ = 1 86.3 86.4 59.3 77.3
λ = 2 86.5 86.2 58.8 77.2
λ = 0.5 85.9 86.1 58.7 76.9
λ = 0 67.5 68.2 37.7 57.8

B = 1 83.1 76.2 42.2 67.2
B = 4 85.9 86.0 58.5 76.8
B = 8 86.3 86.4 59.0 77.2

Table 4: Impact of different hyper-parameters.

performance of support examples and random ex-
amples with GT or random labels in Figure 3. We
see that the results on random examples are con-
sistent with that in the previous paper (Min et al.,
2022b). However, we observe a significantly differ-
ent trend in support examples. Specifically, after re-
moving GT labels, support examples’ performance
gets a strong degradation. We suppose it is because
while random examples can not characterize the
task well and thus their GT labels are not important,
the GT labels of support examples contain crucial
task information and input-output correspondence,
so their GT labels are important for ICL’s perfor-
mance. Meanwhile, we find that under random
labels, support examples also yield noticeable im-
provements over the random examples, which indi-
cates that the inputs of support examples are also
more informative for the task.
The Impact of Hyper-parameters In this sec-
tion, we evaluate the effect of each hyper-parameter.
Specifically, we evaluate the effect of progressive
ratio p, the number of stage 1’s retained examples
m, the weight of diversity λ and the beam size
B by separately tuning them and observing per-
formance. Table 4 shows the results. When B is
set to 0, i.e., we remove stage 2 and just select
those examples with the highest InfoScore, the per-
formance gets significantly degraded, and this di-
rectly demonstrates the effectiveness and necessity
of stage 2. Except when B = 0, our method leads
to consistent performance improvements compared
with the Random baseline in general, across var-
ious hyper-parameter configurations, which indi-
cates our method’s robustness to hyper-parameters.
Meanwhile, we observe two slight performance
degradations when m = 100 or B = 1. For



Subj AGNews

Random 55.0 33.6
Filtering (Uninformative) 52.5 27.4
Filtering (Informative) 65.8 47.8
Filtering + Search 86.4 77.9

Table 5: The Effect of Progressive Filtering.

the case that m = 100, we suppose that is be-
cause there are too few examples being retained
after stage 1, limiting candidate examples’ diversity.
When B = 1, our stage 2 degrades to greedy search
guided by the diversity, causing it susceptible to
the local optimum issue.

InfoScore and Progressive Filtering In this sec-
tion, we evaluate the effect of InfoScore and pro-
gressive filtering in stage 1. Specifically, we ran-
domly sample examples from the retained exam-
ples of stage 1 and test their average performance
across 4 prompt templates with 10 random orders
(40 in total). We compare the Random baseline,
our filtering method and another filtering variant
that filters uninformative examples, which retains
those examples with low InfoScore at each itera-
tion. We show the results in Table 5. We observe
that just the proposed filtering method also leads
to better ICL performance than randomly sampled
examples, which directly shows that stage 1 is ef-
fective for filtering out the uninformative examples.
Meanwhile, the performance points of Filtering
(Informative), Random and Filtering (Uninforma-
tive) present a descending trend, which demon-
strates that the proposed InfoScore can indicate the
examples’ in-context informativeness. However,
compared with our entire method, Filtering (Infor-
mative) still shows a significant discrepancy. This
indicates the necessity of considering in-context
examples’ dependency and the effectiveness of the
proposed diversity-guided search.

5 Related Work
Since we introduce a wide range of coreset selec-
tion methods in Section 4.1, we omit them here
and mainly introduce previous works about ex-
ample selection for ICL. Previous works mainly
consider example-level retrieval for ICL. Liu et al.
(2022) leverage a semantic embedder to retrieve
relevant examples for the given test input. Das
et al. (2021) and Hu et al. (2022) use dense re-
trievers trained by task-specific targets’ similarities
to retrieve in-context examples for question an-
swering and dialogue state tracking, respectively.
Rubin et al. (2022); Shi et al. (2022) train the

demonstration retriever based on the feedback of
the language model for semantic parsing. Wu
et al. (2022) use Sentence-BERT (Reimers and
Gurevych, 2019) to retrieve relevant examples and
introduce an information-theoretic-driven criterion
to rerank their permutations. Levy et al. (2022);
Ye et al. (2023) further consider diversity in exam-
ple retrieval. Different from these methods which
aim to provide example-specific information for the
test input, we focus on task-level example selection,
which seeks to find examples that are representative
for the task and is complementary to them. More-
over, because the large language models (Brown
et al., 2020; Zhang et al., 2022a; Black et al., 2021)
almost adopt purely causal Transformer (Vaswani
et al., 2017) decoder architecture, we can calcu-
late task-level in-context examples representation
in advance and reuse them for different test inputs.
Since these two settings’ goals are orthogonal and
complementary, we regard the hybrid setting and
method as future work. Another line of methods is
active learning (Ren et al., 2022) for ICL. It aims
to select some examples from a large pool of unla-
beled data and annotate them for ICL. Zhang et al.
(2022b) propose to learn an active example selector
by off-line reinforcement learning and use it to se-
lect examples to annotate for ICL. Su et al. (2022)
propose a graph-based annotation method, vote-k,
and use Sentence-BERT to retrieve relevant exam-
ples from the annotated examples for ICL. In this
paper, we explore a different setting for ICL’s ex-
ample selection, where we select support examples
from the annotated dataset since there are massive
annotated datasets for various tasks and the prevail-
ing large language model has shown impressive
data annotation ability (Efrat and Levy, 2020; Gao
et al., 2022; Ye et al., 2022; Meng et al., 2022;
Cheng et al., 2023).

6 Conclusion
In this paper, we propose a two-stage filter-then-
search method to find support examples for in-
context learning from the annotated dataset: First
we propose InfoScore to select informative exam-
ples individually with a progressive filtering pro-
cess. Then we propose diversity-guided example
search which iteratively refines and evaluates the
selected examples, to find the example permuta-
tions that fully depict the task. The experimen-
tal results show that our method significantly out-
performs extensive baselines, and further analyses
show that each component contributes critically to



the improvements and shed light on the principles
of support examples and in-context learning.

Limitations

These are the limitations of this work:

• Due to the computation resources limitation,
we mainly conduct experiments on GPT2-
L (Radford et al., 2018) and analyze the cross-
LM transferability of support examples in sec-
tion 4.3. We see the exploration on more LMs
as future work.

• In this paper, the proposed filter-then-search
framework explores how to find support exam-
ples of in-context learning. We see exploring
and analyzing more principles of in-context
learning as future work.

• Language models have exhibited various
kinds of bias (Bender et al., 2021), since our
filtering stage is based on its feedback, the
filtered example might also exhibit these bi-
ases. We see language model debiasing as an
important future research topic.
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A Baselines

We mainly compare our proposed methods with fol-
lowing baselines: Random: We randomly select
examples with random orderings from the train-
ing set; Random & Validation: We evaluate mul-
tiple sets of random examples on the validation
set and select the best one. We consider Random
& Validation under two settings whose computa-
tional cost is similar to our method: 1. the size
of validation set is the same as ours at stage 2
(100) and the number of random example sets is
the same as our searched and evaluated example
permutations (640). 2. the size of validation set is
larger, 1000, and the number of random example
sets is 100. We also consider a wide range of Core-
set Selection methods in traditional gradient-based
learning scenarios, according to the methodologies,
they can be divided into multiple categories includ-
ing: Geometry-Based Method: it assumes that
data points that are close in the feature space have
similar properties. The Herding method (Chen
et al., 2012) adds one data point each time into
the coreset to greedily minimize the distance be-
tween coreset center and the original dataset cen-
ter. The K-Center Greedy method (Sener and
Savarese, 2018) selects examples to minimize the
largest distance between each example in coreset
and its closest example in set of examples that
are not in coreset. Uncertainty-Based Method:
it assumes examples with higher uncertainty can
have a greater impact on the model and should be
contained in coreset. Coleman et al. (2020) pro-
pose Least Confidence (the max probability over
all labels), Entropy and Margin (max probabil-
ity margin between different labels) to measure
the examples’ uncertainty scores and build core-
set. CAL (Margatina et al., 2021) selects examples
whose predictive likelihood exhibits the greatest
divergence from their neighbors to build the core-
set. Error/Loss Based Method: It assumes the
example that contributes more to the error or loss
during training is more important and should be
added to coreset. Toneva et al. (2019) propose For-
getting to evaluate each example’s importance by
counting how many times it is forgotten, i.e., it is
misclassified after begin correctly classified in pre-
vious training epochs. Paul et al. (2021) propose
the GraNd score to select informative examples.
GraNd is the gradient norm expectation of the ex-
ample. The larger one example’s GraNd is, the
more important it is. Gradient Matching Based

Method: Since deep models are usually trained by
gradient descent, it tries to find a coreset whose
gradients can imitate the entire dataset’s gradients.
Mirzasoleiman et al. (2020) propose CRAIG to
convert the gradient matching problem to the maxi-
mization of a monotone submodular function and
optimize it greedily. Killamsetty et al. (2021a) pro-
pose GradMatch based on CRAIG, which adds a
regularization term to discourage assigning large
weights to individual examples and improves the
used greedy algorithm. Submodularity-Based
Method: Submodular functions (Iyer and Bilmes,
2013) naturally measure the subset’s informative-
ness and diversity and thus can be powerful for
coreset selection. Iyer and Bilmes (2013) leverage
Facility Location and Graph Cut as submodu-
lar functions to select the coreset. Bilevel Opti-
mization Based Method: It transforms the core-
set selection problem into a bilevel-optimization
problem whose outer and inner objectives are sub-
set selection and model parameter optimization,
respectively. Glister (Killamsetty et al., 2021b)
leverages a validation set on the outer optimization
and the log-likelihood in the bilevel optimization.

To reduce the gap between these methods and
ICL, we use the same LM (GPT2-L) with “last
pooling” fine-tuned on the whole dataset for 5
epochs to obtain relevant metrics, e.g., gradients
or forgetting times for these methods. Following
Guo et al. (2022), we use the gradients of the final
fully-connected layer’s parameters as these meth-
ods’ example feature.

B Implementation Details

B.1 Baseline Details

For those previous coreset selection methods, to
reduce the gap between these methods and ICL,
we use the same LM (GPT2-L) with “last pool-
ing” fine-tuned on the whole dataset for 5 epochs
to obtain relevant metrics, e.g., gradients or for-
getting times for these methods. Following Guo
et al. (2022), we use the gradients of the final fully-
connected layer’s parameters as these methods’ ex-
ample feature. For baselines that output a weighted
subset of examples, e.g., CRAIG or GradMatch, we
just adopt its examples for simplicity since there
are few methods to weighting in-context examples
for ICL.



B.2 Method Details
We find each prompting template’s corresponding
support examples separately in our method and
compared methods, i.e., we select examples for
each prompting template separately. For simplicity,
we calculate Eq (3) without calibration for experi-
ments without or with calibration. For the filtering
stage, we set the progressive factor and the size
of initial score set according to the dataset’s size.
Specifically, we set the progressive factor to make
the filter iterations be 4.

We run all experiments under the label balance
setting and the total number of in-context examples
for most datasets except DBPedia is set to 8. The
number of some datasets’ in-context examples is
not 8 but close to 8 because 8 can not be divided
by the number of its labels, e.g., 5 for SST-5. Since
DBPedia has 14 labels and significantly longer in-
put sequence, we run experiments on it under the
label-unbalance setting and set the total number
of examples to 4. In label balance setting, we 1.
filter the same number of examples for each label,
2. initialize the example permutation of stage 2
with balanced labels 3. update e∗ with e∗new, whose
label is the same as e∗.

We list the total number of examples in Table 6.
And we set the size of initial score set to make the
times of LM’s forwards to be around 10K. We list
the progressive factor p and the size of initial score
set |S0|in Table 7. For other hyper-parameters,
we conduct grid search for the number of retained
examples of filtering m, the weight of diversity
λ, the beam size B and the iteration of diversity-
guided search over {500,1000}, {0.5,1,2}, {4,8,16}
and {5,10,15} respectively on the SST-2 dataset.
And we set them to be 500, 1, 8 and 10 respectively.

B.3 Experimental Details
In section “The Sensitivity of Support Examples
to Orders”, since the performance is sensitive to
the prompting templates, we show the performance
distribution under a specific prompting template.
In other analysis experiments, for simplicity, we
report the average performance under four different
prompting templates without calibration, unless
otherwise specified.

B.3.1 The Complexity of Our Method
Progressive Filtering in the filtering stage, we
need to compute pairwise Eq 3 for N∗l∗ρ/ρ = N∗
l times, where N is size of training set. Since we
filter the dataset into 1/ρ of its previous size until a

Training Size Test Size Label Examples

SST-2 6921 873 2 8
SST-5 8544 2210 5 10
Amazon 30000 2000 2 8
MR 8662 2000 2 8
Subj 8000 2000 2 8
TREC 5452 500 6 12
AGNews 30000 7601 4 8
DBPedia 30000 2000 14 4

Table 6: Data statistics.

small set of examples is left, the number of iteration
is logρN). Thus the filtering stage’s complexity
over N is O(N ∗ logρN). In experiments, we set

ρ to N
1
C to make it a linear complexity, where C

is a constant. According to the size of dataset, ρ is
usually set between 2 - 3, shown in Table 7.

Diversity-Guided Example Search At each iter-
ation, we have B candidate permutations and sepa-
rately update them B times. And then we evaluate
these updated candidate permutations on the small
validation set sampled from the remaining train-
ing set, whose size is fixed. Since updating the
candidate permutations reuses the intermediate re-
sults of the filtering stage and does not involve the
computation of the LLM (see Eq (4) and (5)), we
omit it for complexity analysis. So the complexity
of diversity-guided example search is consistant,
B ∗ B.

C Prompting Templates

We show the prompting verbalizers and templates
in Table 8.

D Dataset Split and Statistics

We use the same dataset split in the previous
work (Min et al., 2022a). Due to computational
resource limitations, for Amazon, AGNews and
DBPedia, we conduct experiments on a randomly
sampled subset of it (30000 and 2000 for the train-
ing and test set), and we show the overall dataset
statistics in Table 6.



p |S0|

SST-2 2 14
SST-5 2 11
Amazon 3 4
MR 2 11
Subj 2 12
TREC 2 20
AGNews 3 4
DBPedia 3 4

Table 7: The progressive factor p and the size of initial
score set S0 for each dataset.



Task Family: Sentiment Classification

Task: SST-2
Prompting Verbalizer: {great, terrible}
Prompting Templates:

• “[INPUT] A [VERBALIZER] one. ”

• “[INPUT] It was [VERBALIZER]. ”

• “[INPUT] All in all [VERBALIZER]. ”

• “[INPUT] A [VERBALIZER] piece. ”

Example:
Input:
I have to admit that I am baffled by jason x.
It was terrible.
If you answered yes, by all means enjoy the new guy.
It was great.
· · ·
Never comes together as a coherent whole.
It was
Output:
terrible.

Task: SST-5
Prompting Verbalizer: {great, good, okay, bad, terrible}
Prompting Templates: Same as SST-2

Task: Amazon
Prompting Verbalizer: {great, good, okay, bad, terrible}
Prompting Templates: Same as SST-2

Task: MR
Prompting Verbalizer: {great, terrible}
Prompting Templates: Same as SST-2

Task Family: Topic Classification

Task: TREC
Prompting Verbalizer: {Description, Entity, Expression, Human, Location, Number}
Prompting Templates:

• “[INPUT] Topic: [VERBALIZER]. ”

• “[INPUT] Subject: [VERBALIZER]. ”

• “[INPUT] This is about [VERBALIZER]. ”

• “[INPUT] It is about [VERBALIZER] piece. ”

Example:
Input:
How do storms form ?
Topic: Description.
What city in Florida is Sea World in?
Topic: Location.
· · ·
What university fired Angela Davis?
Topic:
Output:
Human.

Task: AGNews



Prompting Verbalizer: {World, Sports, Business, Technology}
Prompting Templates: Same as TREC

Task: DBPedia
Prompting Verbalizer: {Company, Educational Institution, Artist, Athlete, Office Holder, Mean of Transportation,
Building, Natural Place, Village, Animal, Plant, Album, Film, Written Work}
Prompting Templates: Same as AGNews

Task Family: Subjective Classification

Task: Subj
Prompting Verbalizer: {subjective, objective}
Prompting Templates:

• “[INPUT] This is [VERBALIZER]. ”

• “[INPUT] It’s all [VERBALIZER]. ”

• “[INPUT] It’s [VERBALIZER]. ”

• “[INPUT] Is it [VERBALIZER]? ”

Example:
Input:
There are two distince paths in life good vs . evil. It’s subjective.
Photographed with melancholy richness and eloquently performed yet also decidedly uncinematic.
It’s objective.
· · ·
The film is an homage to power , strength and individualism.
It’s
Output:
subjective

Table 8: The prompting verbalizers and templates for each task.


