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Abstract

We introduce VISOR, a new dataset of pixel annotations and a benchmark suite
for segmenting hands and active objects in egocentric video. VISOR annotates
videos from EPIC-KITCHENS, which comes with a new set of challenges not
encountered in current video segmentation datasets. Specifically, we need to ensure
both short- and long-term consistency of pixel-level annotations as objects undergo
transformative interactions, e.g. an onion is peeled, diced and cooked - where we
aim to obtain accurate pixel-level annotations of the peel, onion pieces, chopping
board, knife, pan, as well as the acting hands. VISOR introduces an annotation
pipeline, Al-powered in parts, for scalability and quality. In total, we publicly
release 272K manual semantic masks of 257 object classes, 9.9M interpolated
dense masks, 67K hand-object relations, covering 36 hours of 179 untrimmed
videos. Along with the annotations, we introduce three challenges in video object
segmentation, interaction understanding and long-term reasoning.

For data, code and leaderboards: http://epic-kitchens.github.io/VISOR

1 Introduction

Consider a video capturing the tedious process of preparing bread, from obtaining, measuring and
mixing ingredients to kneading and shaping dough. Despite being a routine task, the discrete nature
of computer vision models, trained mostly from images, expects to recognise objects as either flour
or dough. Capturing the transformation through pixel-level annotations has not been attempted to
date. Building on top of EPIC-KITCHENS egocentric videos [12], VISOR utilises action labels
and provides sparse segmentations, of hands and active objects, with a rate of annotations so as
to represent both short (e.g. ‘add salt’) and long (‘knead dough’) temporal actions. In Fig. 1, we
introduce sample annotations from one video of VISOR.

Rich pixel-level annotations have transformed image understanding [ 17, 23] and autonomous driv-
ing [10, 13], amongst other tasks. By augmenting action labels with semantic segmentations, we hope
to enable complex video understanding capabilities. Previous efforts to incorporate spatio-temporal
annotations and object relations [15, 16, 19, 22] have only featured bounding boxes. A few seminal
video datasets [31, 41, 43] provide pixel labels over time, but are often short-term, and are not
associated with fine-grained action labels. We compare VISOR to other datasets in §2.

We obtain VISOR annotations via a new pipeline consisting of three stages that we describe in §3:
() identifying active objects that are of relevance to the current action, as well as their semantic label;
(ii) annotating pixel-level segments with an Al-powered interactive interface iterated with manual
quality-control checks; and (iii) relating objects spatially and temporally for short-term consistency
and hand-object relations.
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Figure 1: VISOR Annotations and Benchmarks. Sparse segmentations from one video (P06_03),
where flour turns into dough over the course of over 11 minutes. The colours of the timeline represent
the stages: flour—mixture—dough. By building off of the EPIC-KITCHENS dataset, our segments
join a rich set of action labels. We use the annotations to define three challenges at different timescales:
(i) Semi-Supervised VOS over several actions; (ii)) Hand«>Object Segmentation and contact relations
in the moment; and (iii) where did this come from? for long-term reasoning.

In total, we obtain annotations of 271.6K masks across 50.7K images of 36 hours, interpolated to
9.9M dense masks, which we analyse in §4. Moreover, these new annotations directly plug in with a
strong existing ecosystem of annotations, from action labels to closed-vocabulary of objects.

In §5, we use these new annotations to define three benchmarks, depicted in Fig. | (bottom). Our first
task, Semi-Supervised Video Object Segmentation (VOS), requires tracking object segments across
consecutive actions. We extend previous VOS efforts [3 1, 41, 43] by tackling 2.5-4x longer sequences.
Our second task, Hand Object Segmentation (HOS), involves predicting the contact between hands
and the active objects, and extends past efforts by predict both the relation and accurate segmentations
of hands and objects. Our final task, Where Did This Come From (WDTCF)?, is a taster benchmark
for long-term perception with scene segmentation, where one traces back a given segment to the
container it came from (e.g., milk from the fridge, and a plate from a particular cupboard) and
identifies the frame(s) containing evidence of the query object emerging from the container.

2 Related Efforts

We compare VISOR with previous efforts that have both pixel-level and action annotations in Table 1.
We divide our comparison into three sections: basic statistics on the videos themselves, pixel-level
annotation statistics on images annotated, masks and average masks per image and action annotations
where entities or action classes have been labelled. Our videos are significantly longer. On average,
VISOR videos are 12 minutes long. To make the challenge feasible to current state-of-the-art models,
we divide our videos into shorter sequences that are 12 seconds long on average. VISOR is also the
only dataset that combines pixel-level segmentations with both action and entity class labels.

The closest effort to VISOR is that of the seminal UVO work [4 1] that annotates videos from the
Kinetics dataset [7]. As every video in Kinetics captures a single action, UVO only offers short-term
object segmentations, focusing on translated objects and occlusions. In contrast, VISOR annotates
videos from EPIC-KITCHENS [1 1] that capture sequences of 100s of fine-grained actions. VISOR
segmentations thus capture long-term object segmentations of the same instance undergoing a series
of transformations — the same potato is seen being picked from the fridge, washed, peeled, cut,



Table 1: Comparison with Current Data. Compared to past efforts featuring both pixel- and action-
level annotations, VISOR features longer sequences and provides the largest number of manually
annotated masks on diverse actions and objects. *:Stats from train/val public annotations. TAvg
VISOR video is 12 minutes long. We divide these into sub-sequences w/ consistent entities (See §3).
Masks are semantically consistent, through class knowledge, across all videos.

Basic Statistics Pixel-Level Annotations Action Annotations

Total Avg Total Total Avg Masks #Action #Entity
Dataset Year Mins SeqLn Masks Images  per Image Actions Classes Classes
EgoHand [3] 2015 72 - 15.1K 4.8K 32 - - 2
DAVIS [6] 2019 8 3s 32.0K 10.7K 3.0 - - -
YTVOS [43] 2018 335 5s  197.2K  1204K 1.6 - - 94
UVOvVO0.5 (Sparse) [41] 2021 511 3s  *#200.6K 30.5K *8.8 10,213 300 -
VISOR (Ours) 2022 2,180 12s' 271.6K 50.7K 53 27,961 2,594 257

and cooked. Object transformations are also significantly more varied, beyond translation and
deformation, offering a challenge previously unexplored. Ensuring long-term temporal consistency in
VISOR requires a more complex framework for relating objects over sequences and through semantic
classes. In doing so, we take inspiration from UVO [41] in how sparse segmentations were used with
bi-directional interpolations to obtain dense annotations (See appendix 3.4).

VISOR is also related to efforts that capture hand-object relations, including for identifying active
objects [35, 4], next active objects [33, 25], object articulation [44] and grasping [18, 39, 38, 40].
Distinct from these works, we provide the first pipeline, annotations and benchmark suite for pixel-
level segmentations.

3 VISOR annotation pipeline

Our annotation pipeline consists of multiple stages. In the first stage, we identify the frames and active
entities to be annotated (§3.1). Having identified what should be segmented, we obtain pixel-level
annotations, substantially accelerated by an Al-powered tool. To achieve consistency, we subject
annotators to extensive training, and employ manual verification (§3.2). Finally, we collect additional
annotations that are needed for our challenges (§3.3). We next describe our pipeline in detail.
Background: EPIC-KITCHENS Dataset and Annotations. We build on the large-scale egocentric
EPIC-KITCHENS-100 dataset [ 1], collected with University of Bristol faculty ethics approval and
signed consent forms of participants (anonymous). Participants wear a head-mounted camera, start
recording before they enter the kitchen and only stop recording when they leave the room. These
videos have fine-grained action labels comprising: (i) video file (e.g., PO6_108); (ii) start and end
times of an action (e.g., from 03:52.6 to 03:58.4); (iii) short open-vocabulary narration describing
the action (e.g., ‘take mozzarella out of packet’); (iv) closed-vocabulary of verb and noun classes
(e.g. mapping ‘mozzarella’ to the class ‘cheese’). Table 2 of [1 1] compares EPIC-KITCHENS to
publicly available action recognition datasets in size, annotations and classes (e.g., [7, 16, 37]).

3.1 Entities, frames and sub-sequences

Our first stage aims to identify what data and entities ought to be annotated. Our data selection
aims to find clear frames to annotate and distribute annotation uniformly across actions rather than
time, to cover actions of varying length. Entity selection aims to find all active objects, relevant to
the action, including tools, crockery and appliances. This step is needed since the narrations do not
include objects that are implied by common-sense, and are different per sample: e.g., one example
of the action ‘peel carrot’ might involve a peeler and a bowl while another might use a knife and
chopping board. Note that as videos are captured in people’s homes, frames can be highly cluttered
with background/irrelevant objects we do not wish to segment.

We show the pipeline for the selection of frames and entities in Fig. 2. We divide the untrimmed
videos into sequences comprising 3 non-overlapping actions. This achieves a mean of 12 seconds
of temporally consistent annotations. We chose 3 actions so as to introduce slight but reasonable
challenge to previous video segmentation datasets, increasing sequence lengths from 3-5s to 12s (see
Table 1). We annotate 6 frames per sequence, avoiding blurred frames when possible for better object
boundaries. We candidate active entities to annotate from parsing nouns in narrations, correlations
with actions from parsed verbs (e.g., ‘cut’ and ‘knife’) and manual annotations. Annotators select the
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Figure 2: Part of the VISOR Annotation Pipeline. We divide untrimmed videos to subsequences of
3 consecutive actions, sampling 6 frames/seq. We find entities to annotate via the union of automatic
parsing of narrations, manual rules, and human annotations. These are then manually segmented.

Table 2: VISOR splits statistics. Details of VISOR splits.

VISOR splits Train Val Train+Val Test Total

# Kitchens 33 24 (5 unseen) 38 13 (4 unseen) 42

# Untrimmed Videos 115 43 158 21 179

# Images (and %) 32,857 (64.8%) 7,747 (15.3%) 40,604 (80.0%) 10,125 (20.0%) 50,729
# Masks (and %) 174,426 (64.2%) 41,559 (15.3%) 215,985 (79.5%) 55,599 (20.5%) 271,584
# Entity Classes 242 182 (9 zero-shot) 251 160 (6 zero-shot) 257

entities that are present per frame from this over-complete list. A showcase of the dataset’s diversity
in actions and entities is visualised in Fig. 3 and more details are in the appendix.

3.2 Tooling, annotation rules and annotator training

During the project’s 22 months, we worked closely with 13 annotators: training, answering questions,
and revising their annotations. A more complete description of the annotation pipeline and interface,
including cross-annotator agreement, is included in the appendix.

Al-Powered Segmentation Tooling. To reduce the cost of pixel-level annotation, we use TORonto
Annotation Suite (TORAS) [20], which uses interactive tools built from variants of [24, 42]. The
interface combines a mix of manual and Al-enhanced tools that we found to dramatically improve
the speed of obtaining accurate annotations. The AI models were trained on generic segmentation
datasets like ADE-20K [45]. We found they generalised well to our domain as shown in [2, 8, 24].
Annotator Recruiting, Onboarding, and Rules. We hired freelance annotators via Upwork. They
received an overview of the project, training sessions with the tool, and a glossary of objects.
We devised rules to facilitate consistent segmentations across frames for containers, packaging,
transparency and occlusion, detailed in Appendix. To give an example, first image in Fig 3 shows
our ‘container’ rule where other inactive objects in the cupboard are not segmented out, to show
the full extent of the cupboard. Each video was annotated by one annotator to maximise temporal
consistency. In addition to actively resolving annotator confusions, each video was manually verified.
We created an interface for fast correction of annotations, focusing on temporal consistency.

Splits. In Table 2 we showcase the Train/Val/Test splits. We provide a train/val publicly-accessible
split along with a held-out test set of 21 videos (* 20% of the frames and the masks). Note that
the Test split aligns with the EPIC-KITCHENS test split, which is used for the action recognition
challenge. For both Val and Test, we keep some kitchens unseen to test generality to new environments.
The Train/Test annotations are available here. Evaluating on the test set is through the challenge
leaderboards - see the EPIC-KITCHENS challenges for details.
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Figure 3: Segmentations from VISOR with entity names (legend) and ongoing action (above).

3.3 VISOR Object Relations and Entities

We now describe additional meta-data we collected to utilise spatial relations between the segmenta-
tions, using crowdsourcing with gold-standard checks (details in appendix).

Entities. EPIC-KITCHENS-100 contains 300 noun classes, grouping open-vocabulary entity names.
Of these, VISOR segmentations cover 252 classes from the annotated 36 hours. VISOR introduces 263
new entities spanning 83 noun classes. We manually re-cluster these into the 300 EPIC-KITCHENS
classes. These entities are mainly objects that are handled in everyday actions but not mentioned in
narrations, such as ‘coffee package’, which is grouped into the ‘package’ class. We also introduce five
new classes: ‘left hand’, ‘right hand’ (previously only ‘hand’), ‘left glove’, ‘right glove’ (previously
only ‘glove’) and ‘foot’. As a result, VISOR contain 257 entity classes.

Hand-Object Relations. The activities depicted in VISOR are driven by hands interacting with
the scene. We augment each hand segmentation in the dataset with contact information indicating
whether it is in contact and, if so, which segment the hand is best described as contacting. We identify
candidate segments as those sharing a border with the hand. Human annotators select from these
segments, or alternatively identify the hand as “not in physical contact” with any object or select
“none of the above” for occluded hands. Where Annotators cannot come to a consensus, we mark
these as inconclusive. We ignore hands annotated with “none of the above” or inconclusive decisions
during training and evaluation. Occasionally, in the kitchen, the hand is concealed by a glove, in
cases of washing, cleaning or oven mats for hot surfaces. We thus also annotate all gloves to find
cases where the glove is on the hand. We further annotate these on-hand gloves and their relations to
active objects, in the same manner as visible hands. We consider both hands and on-hand gloves as
acting hands for all relevant benchmarks.

Exhaustive Annotations. Recall that we annotate active objects rather than all objects. Thus, one
cupboard in use can be segmented while another cupboard would not be segmented. To facilitate use
of our annotations in other tasks, we flag each segment indicating whether it has been exhaustively
annotated [17], i.e., there are no more instances of the entity in the image. Similarly, lack of consensus
is marked as inconclusive. Since the task is imbalanced towards exhaustive, we add one decoy task,
that is artificially made non-exhaustive, for every four real tasks to prevent annotation fatigue.

3.4 Dense annotations

We interpolate manual sparse annotations to produce dense interpolations where feasible. Inspired
by [41], we perform forward and backward multi-mask propagation between every two manually
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Figure 5: Frame-level co-occurences of verbs-entities (Left) and intra-entities (Middle). Percentage
of annotated pixels per macro-class (Right) - large objects (e.g. furniture, storage) are visible.
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Figure 6: Hand Object Relation Statistics. (Left) Samples from 6 kinds of hand-object contacts
with 1 or 2 hands. (Middle) Statistics about the fraction of entities making up the contacted objects,
showing there is a long tail. (Right) Top-10 most common objects in contact with hands.

annotated sparse frames. The two directions’ logits are averaged with a weight on each based on the
distance from the manual frame. We exclude objects that appear in only one of the two frames,, except
for hands which are always interpolated. Additionally, we exclude interpolations longer than Ss.

This process yields 14.5M generated masks in 3.2M train/val images (compared to 5.6M masks in
683K images in [41]). We filter interpolations by starting from the middle frame, in each interpolation,
and track these automatic segmentations back to the first manually-annotated frame and forward to
the last frame. We compute the average 7 &JF [31] VOS metric to score each reconstructed mask. We
reject all interpolated masks with J&F < 85. As a result of filtering, we keep 69.4% of automatic
interpolations with a total of 9.9M masks, which we release as dense annotations (sample in video).

4 Dataset Statistics and Analysis

Having introduced our dataset and pipeline, we present analysis by answering four questions.
What objects are segmented? Fig. 4 shows the segmented entity classes, clustered into 22 macro-
classes, ordered by the macro-class frequency. Hands are common due to the egocentric perspective,
and right hands are slightly more frequent than left ones. The next most frequent categories tend to
be appliances, cutlery, and cookware like ‘hob’, ‘knife’, and ‘pan’. However, the data has a long tail
with segments for many rare objects such as ‘watch’ (5) and ‘candle’ (4).

What Objects Co-Occur? Correlations in Fig. 5 show frequent co-occurrences between actions and
objects (e.g., ‘measure’/‘spoon’) and amongst objects (e.g., ‘hob’/‘pan’). Although our data shows
many co-occurrences, there is substantial entropy too, demonstrating the dataset’s diversity.
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Table 3: VOS Performance. We use STM [30] as a baseline and report varying training schemes.
We include the scores for unseen kitchens in both Val and Test. These are considerably lower.

Pre-train Fine-Tune Fine-Tune Val Set Performance Test Set Performance
COCO [23] Davis[32]+YT[43] VISOR J&F J F  J&Fuseen | T&F T F J&Funseen
v 569 555 582 48.1 58.7 572 60.3 57.7
v 62.8 60.6 64.9 53.9 63.7 619 655 62.2
v v 609 594 624 55.8 64.5 622 66.7 63.7
v v 75.8 73.6 78.0 71.2 78.0 758 81.0 76.6

What are hands doing? The data shows diverse hand interactions. Hands are marked as visible
in 94.8% of annotated images. We annotated 72.7K hand states, of which 67.2K are in contact. Of
these in-contact relations, 0.9K are contacts with on-hand gloves (76% of all gloves are marked as
on-hand). Fig. 6 presents hand-object relation statistics on 77% of all images, for which conclusive
annotations are present for both hands. The figure shows that 54% of these images include both
hands in some contact with the world. Some objects like knives are over-represented in hand-object
relations, but because the data is unscripted, there is a heavy tail: the least-contacted 90% of entities
make up 24% of hand-object relations.

How prevalent are active objects? Although we annotate active objects, 91.1% of the objects are
exhaustively annotated. 4.1% of the objects are inexhaustive, and 4.8% had inconclusive annotations.
Consistently, exhaustively annotated objects include ‘chopping board’ and ‘spatula’. In contrast,
‘sponge’ and ‘plate’ are likely to have more inactive instances in view. Inconclusive samples occur
with motion blur or objects with semantic ambiguity (e.g., ‘sauce’, ‘pan’/‘pot’).

5 Challenges and Baselines

We now define three challenges that showcase our annotations and comprise the new VISOR bench-
mark suite. We select the three challenges so as to demonstrate the various aspects of VISOR:
short-term understanding of object transformations, in-frame hand-object relations and ultra-long
video understanding respectively. Our first task (§5.1) is Semi-Supervised Video Object Segmentation,
or tracking multiple segments from the first frame over time through a short subsequence. Our second
task, detecting Hand-Object Segmentation Relations (§5.2), segments in-contact objects or active
objects along with the manipulating hand. Our final task, titled Where Did This Come From (§5.3)
tracks highlighted segmentations back in time to find where they were acquired from. We report all
baseline implementation details in the appendix.

5.1 Semi-Supervised Video Object Segmentation (VOS)

Definition. We follow the definition of this task from DAVIS [32]. As explained in §3.1, we divide
our videos into shorter sub-sequences. Given a sub-sequence of frames with M object masks in the
first frame, the goal is to segment these through the remaining frames. Other objects not present in
the first frame of the sub-sequence are excluded from this benchmark. Note that any of the M objects
can be occluded or out of view, and can reappear during the subsequene. We include statistics of
train/val/test split for this benchmark in Appendix H.1.

Evaluation Metrics. Following the standard protocol used by [32, 43], we use the Jaccard In-
dex/Intersection over Union (7) and Boundary F-Measure (F) metrics. Unlike other datasets, such
as DAVIS [32], we use all annotated frames, including the last frame, in our evaluation. Moreover,
we report the scores for unseen kitchens to assess generalisation.

Baselines and Results. We use Space-Time Memory Networks (STM) [30] as a baseline on this task
and follow their 2-stage training strategy. First, we train using COCO [23] images by synthesising a
video of 3 images from random affine transforms. We fine-tune this model using VISOR training data,
again sampling 3 images from a sub-sequence. To learn long-term appearance change, we increase
the gap between sampled frames during training in a curriculum learning fashion.

We report the results in Table 3. Pre-training on COCO suffers as many categories are specific to
VISOR (e.g. left/right hands) or not present in COCO (e.g. potato), and due to the limitations of
synthetic sequences. Training on VISOR only without pre-training gives slightly better results, but
fine-tuning increases the overall score by 13% on Val. We show the gap between VISOR and [32, 43]
by reporting the performance of a model trained on these benchmarks. Fig. 7 shows 5 qualitative
examples.

Code and Models. Available from https://github.com/epic-kitchens/VISOR-VOS
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Figure 7: Qualitative Results of STM for VOS on Validation Set. and 2 failures.
Frames are ordered chronologically left-to-right with the first being the reference frame.

Limitations and Challenges. Segmenting objects through transformations offers opportunities for
new research. Common failures arise from: occlusions, particularly in the reference frame (Fig. 7
row 4 where the knife is initially occluded by the drying rack), tiny objects, motion blur (Fig. 7
row 5), and drastic transformations, e.g. objects being cut, broken or mixed into ingredients.

5.2 Hand-Object Segmentation (HOS) Relations

Definition. The goal of this benchmark is to estimate the relation between the hands and the objects
given a single frame as input. Our first task is Hand-Contact-Relation as in [35]. We characterize
each hand in terms of side (left vs right), contact (contact vs no-contact), and segment each hand
and contacted object. Each contacted segment must be associated with a hand, and in the case of
segments with multiple connected components (e.g., multiple onions), we only use the component
in contact with the hand. Our second task is Hand-And-Active-Object, or segmenting hands and all
active objects (in-contact or otherwise). In both tasks, we also consider on-hand gloves as hands.
Related Datasets. Multiple past datasets have provided similar data for hands [1, 3, 27, 29] as well
as hands in contact with objects [28, 34, 35]. Our work is unique in having large numbers of detailed
segments for both hands and objects, distinguishing it from work that has boxes [35]. Most work
with segments has focused only on hands [3] or has been gathered at the few thousand scale [14, 36].
Evaluation Metrics. We evaluate via instance segmentation tasks using the COCO Mask AP [23].
Due to large differences in AP for hands and objects, we evaluate per-category. We evaluate Hand-
Contact by instance segmentation with in-contact objects as a class and three schemes for hand
classes: all hands as one class; hands split by side; and hands split by contact state. Hand-object
association is evaluated implicitly by requiring each in-contact object to associate with a hand.
Baselines and Results. For our baseline, we build on PointRend [21] instance segmentation. We add
three auxiliary detection heads to detect hand side (left/right), contact state (contact/no-contact), and
an offset to the contacted object (using the scheme and parameterisation from [35]). We select the
in-contact object as the closest centre to the hand plus offset.

We use the Training set to evaluate on Val, then use both Train and Val to report results on the
Test set. Table 4 shows quantitative results, and Fig. 8 shows sample qualitative examples on Val.
Hands are segmented accurately, with side easier to predict than contact state. Objects are harder,



Table 4: HOS Performance. Hands are segmented accurately, but identifying contact is challenging.

Hand-Contact Hand-Active Object
Hand Hand, Side Hand, Contact Object Hand Active Object
Val Mask AP 90.9 87.1 73.5 30.5 91.1 24.1
Test Mask AP 954 92.4 78.7 33.7 95.6 25.7

Figure 8: HOS Relations Validation Results. Contact (Top): Left Hands, Right Hands, ;
Active Object (Bottom): , . Hands are well-segmented, as are many of the in-contact
objects. In ‘Active’, the method finds all active objects regardless of whether they are in contact. The
rightmost shows a failure when the object is not detected leading to wrong hand-object relation.

which we attribute to the long tail of objects and occlusion. Recognising active objects is harder still,
particularly from single images.

Code and Models. Available from https://github.com/epic-kitchens/VISOR-HOS
Limitations and Challenges. Predicting hand contact state and segmenting contacted objects is hard
due to the difficulty of distinguishing hand overlap and contact, the diversity of held objects, and
hand-object and hand-hand occlusion. Using multiple frames can improve performance.

5.3 Where Did This Come From (WDTCF)? A Taster Challenge

Definition. Given a frame from an untrimmed video with a mask indicating a query object, we aim
to trace the mask back through time to identify ‘where did this come from?’, where the pronoun this
refers to the indicated mask. For tractability, we use 15 sources from which objects emerge in the
dataset: {fridge, freezer, cupboard, drawer, oven, dishwasher, bag, bottle, box, package, jar, can, pan,
tub, cup}. To avoid trivial solutions, the answer must be spatiotemporally grounded in an evidence
frame(s) when the query object emerges from the source.

Annotation Statistics. Annotating long-term relations in videos is challenging. We obtain 222
WDTCF examples from 92 untrimmed videos. These form this challenge’s zest set. We encourage
self-supervised learning for tackling this challenge. The distribution of the sources is long-tailed,
where ‘fridge’ and ‘cupboard’ occupy the largest portions (37% and 31% respectively). Fig. 9 shows
the 78 query objects and four samples with timestamp differences between the query and evidence
frames. The gap between the query and evidence frames adds challenge. The gap is 5.4 mins (19K
frames) on average, but it varies widely with a standard deviation of 8 mins (min=1s, max=52 mins).

When annotating, we aim to find the furthest container as a source. For example, if ‘jam’ emerges from
a ‘jar’, which is a potential source container, but the ‘jar’ itself is seen retrieved from a ‘cupboard’,
the correct answer to the WDTCF question is the ‘cupboard’. In another case, where the ‘jar’ is only
seen on the counter throughout the video, then the ‘jar’ would be considered as the correct source.
Related Datasets. This challenge is related to VQA tasks in previous datasets [9, 15, 26]. In [15],
the aim is to find the previous encounter of the object itself and [9] aims to ground the object in a
single image. In both, the query object is visible in the evidence image, unlike in our challenge where
the query object is occluded and being manipulated. We are also looking for its source, where it was
before it is first encountered, rather than when/where it was spotted last.

Evaluation Metrics. We evaluate by classifying the correct source (accuracy), locating the evidence
frame and segmenting the source and query objects in the evidence frame (IoU). If the evidence
frame is incorrect, the IoU is 0.

Annotations and code. Available from https://github.com/epic-kitchens/VISOR-WDTCF

Baselines and Results. No prior method has tackled this challenge, so we test baselines using
different levels of oracle knowledge. As shown in Table 5, guessing from the source distribution


https://github.com/epic-kitchens/VISOR-HOS
https://github.com/epic-kitchens/VISOR-WDTCF

Evidence

Figure 9: WDTCF Anneotations. Distributions and examples of query entities and 4 samples.

Table 5: WDTCF Performance. Performance using oracle knowledge of distribution of source
classes (prior), location of (evidence) frame, (query class) and a model trained with (GT Masks).

Method \ Prior Evidence Query Cls GT Masks \ Source  Query IoU  Source IoU
Random | v | 248 - -
v 28.8 30.3 254
. v v 33.8 31.6 29.7
PointRend [21] v Y 88.3 79.4 78.8
v v 94.1 79.4 84.1

gets 24.8% accuracy; while guessing the most frequent source (‘fridge’) achieves 37% accuracy but
cannot localise the evidence frame and segment. We thus trained a PointRend instance segmentation
model on the all VISOR classes using our Train and Val data to detect objects. Given the query mask,
we predict its class using the mask with the highest IoU, then propose the first three frames containing
both the object and a source as candidates. The relative performance suggests that the hardest task is
temporally localising the evidence frame; when this is given, performance is significantly boosted.
Limitations and Challenges. Since objects often originate from the same source container, e.g., milk
comes from the fridge, bias is expected. While we have introduced the evidence frame grounding
task, shortcuts via the presence of source classes can still be used. As noted above, the baselines use
oracle knowledge; an Al system to answer WDTCEF is left for future work.

6 Conclusion and Next Steps

We introduced VISOR, a new dataset built on EPIC-KITCHENS-100 videos, with rich pixel-level
annotations across space and time. Through the release of these annotations and the proposed
benchmarks, we hope VISOR enables the community to investigate new problems in long-term
understanding of the interplay between actions and object transformations.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] This paper introduces a dataset, with annotation
pipeline and challenges. Throughout the paper and appendix, we thoroughly describe
our annotation pipeline, summarise the statistics, compare to other datasets. For each
benchmark, we clearly define the benchmark, metrics and report baseline and qualitative
results.

(b) Did you describe the limitations of your work? [Yes] We discuss limitations of our
challenges in §5.1, §5.2, §5.3

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
mention this in §3. We also devote a section in appendix to potential bias in the data
and resulting models

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A| There are no
theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] There are no theoreti-
cal results.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the appendix material or as a URL)? [ Yes] Train/Val annotations
are publicly available from: https://epic-kitchens.github.io/VISOR. Code
for reproducing the first two challenges is published on GitHub. Test set annotations,
including those for the third challenge will remain hidden. A leaderboard available
from: https://epic-kitchens.github.io.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Dataset split (Train/Val/Test) is summarised in Sec 2.2, and
specifically for semi-supervised VOS in Appendix. Training details per challenge are
detailed in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? The experiments run are too computationally costly to
do multiple runs of the experiments. Our results form baselines that we expect more
intelligent methods to beat. Code allows replication of baselines where needed.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] We include an analysis of resources
used in the appendix.
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We build on the
EPIC-KITCHENS-100 dataset, which we extensively cite throughout the paper. We
also cite models we use to bulid baselines.

(b) Did you mention the license of the assets? [Yes] VISOR dataset is available under the
same licenses as EPIC-KITCHENS

(c) Did you include any new assets either in the appendix material or as a URL? [Yes]
We introduce new assets in the form of annotations. We share these privately with
reviewers and will share publicly in August.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We mention the dataset, EPIC-KITCHENS-100, that was used.
This dataset was collected with ethics approval and with consent from the people who
are in the data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The EPIC-KITCHENS videos do not contain
any personally identifiable information. It was collected from participants who reviewed
the footage prior to publication.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] Please see the appendix material for detailed descriptions of all
instructions for annotators.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] There are no human studies done in this
paper. However, the dataset that we build upon, EPIC-KITCHENS-100 was collected
with IRB approval, as described in §3.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Freelance annotators were paid hourly, and
self-reported their hours via the Upwork platform. Hourly rate varied by experience and
submitted proposal from $6-$9/hour, with the higher rate reserved for most experienced
annotators who were also in charge of QA checks. We report compensation in the
appendix.
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