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ABSTRACT

In recent years contrastive learning has become a state-of-the-art technique in rep-
resentation learning, but the exact mechanisms by which it trains are not well
understood. By focusing on physics-inspired datasets with low intrinsic dimen-
sionality, we are able to visualize and study contrastive training procedures in bet-
ter resolution. We empirically study the geometric development of contrastively
learned embeddings, discovering phase transitions between locally metastable
embedding conformations towards an optimal structure. Ultimately we show a
strong experimental link between stronger augmentations and decreased training
time for contrastively learning more geometrically meaningful representations.
Our code is available here.

1 INTRODUCTION

One of the key problems in modern machine learning is crafting effective representations of data
without human-generated labels. Contrastive learning and self-supervised learning methods are
among the most popular and effective methods to date for tackling this problem. In practice, self-
supervised learning methods require a large output dimensionality for optimal performance (Chen
et al., 2020; Chen & He, 2021; Grill et al., 2020; Bardes et al., 2022).

There is still little insight into the mechanisms by which contrastive learning works. Some prior
work has been done in understanding the contrastive training process through augmentation graphs
(HaoChen et al., 2021; Wang et al., 2022). From a theoretical perspective, Wang & Isola (2020) and
Zimmermann et al. (2021) proved that the optimal contrastive representation is uniform and a linear
transformation of the latent space under some conditions.

Visualization is an exceptionally powerful tool for analyzing learned representations, but is difficult
because of the typical large dimensionality of representations. Dimensionality reduction and/or
aggregation is necessary, which destroys much meaningful information, such as in (Zhu et al., 2021).
Contrastive learning can also create interpretable low-dimensional representations (Hua et al., 2021).
However, because the intrinsic dimensionality of datasets such as CIFAR-10 is quite high, the real
embeddings in high-dimensional space may look radically different.

Instead, we propose visualizing learned representations of a dataset that has a low intrinsic dimen-
sionality but rich structure. In order to do this, we use data generated from a classic physics problem:
extracting the three conserved quantities from instantaneous observations of position and velocity
of a gravitational orbit. Using “Kepler” datasets, we are able to visualize and interpret the changing
output geometry of contrastively trained toy networks. Ultimately we discover a replicable phase
transition between two output geometries and show the importance of augmentation strength in ac-
complishing the phase transition earlier in training.

* denotes equal contribution
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1.1 RELATED WORK

Augmentation strength and quality of representations. Commonly, it is understood that there
is a “sweet spot” in terms of augmentation strength for which the amount of mutual information
contained in the resultant embeddings is optimal for performance on a downstream task (Tian et al.,
2020). In particular, augmentation overlap between similar samples is important in contrastive learn-
ing (Wang et al., 2022).

Contrastive learning on low-dimensional systems. Previous work has been done on contrastive
learning on datasets with low intrinsic dimensionality. In particular the 3DIdent dataset (Zimmer-
mann et al., 2021) uses orientation, position, and color of an object to parameterize the latent space.
In these datasets, positive pairs are created by sampling the generated output corresponding to the
nearest neighbors in the latent space.

Our Kepler dataset is equally simple to study but has a more natural temporal augmentation. More-
over, the dynamics of image generation or ConvNet training can be controlled for in our study, and
our results are more applicable to contrastive learning in non-computer vision domains.

Deep learning to uncover conserved quantities. Prior work on discovering conserved quantities
from the geometry of trajectory data used a variety of approaches, including manifold learning
combined with symbolic regression (Liu & Tegmark, 2021), manifold identification in a known
symplectic geometry (Mototake, 2021), manifold learning with an optimal transport metric (Lu
et al., 2022), and regression with a Siamese network (Wetzel et al., 2020). However, we use our
physics dataset to analyze training dynamics and do not focus on the performance of our method.

2 PRELIMINARIES

2.1 CONTRASTIVE LEARNING

We use the SimCLR framework outlined by Chen et al. (2020) with variants of the InfoNCE loss
(Oord et al., 2018).

Consider an encoder network f(x) and a batch of b inputs, {(x1
i , x

2
i )}1≤i≤b, where x1

i and x2
i are

two randomly augmented versions of the same data, which together form a positive sample. Then
the contrastive loss can be written as
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where δ is a distance function. We use two variants of the InfoNCE loss based on different δ func-
tions: the traditional cosine distance (termed CosNCE) and Euclidean distance (termed L2NCE).
For the Kepler experiments, we use L2NCE to facilitate visualization (Böhm et al., 2022), whereas
for CIFAR-10 experiments, we use standard CosNCE. More details can be found in Appendix A.

2.2 KEPLER ORBITS DATASETS

The elliptical orbit of a planet around a central star can be uniquely defined by three conserved scalar
quantities: energy H , angular momentum ∥L∥, and the angle of the Laplace-Runge-Lenz vector ϕ0.

Latent Space
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Figure 1: Data generation for our Kepler dataset with example numerical and image data.
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These conserved quantities can be reconstructed from position r and momentum p with the above
where arg(v) is the angle of vector v with respect to the positive x-axis.

H =
∥p∥2

2
− 1

∥r∥
L = r× p ϕ0 = arg(p× L− r̂)

In the numerical domain, we use different states (i.e. position-momentum pairs, a 4-vector) of the
same orbit at different times to produce positive examples for learning representations of the orbits,
and states from different orbits as negative examples. Details for the image domain are in Appendix
A.1. Our time-based augmentation is similar to sampling from video data (Dave et al., 2022; Qian
et al., 2021) in encouraging the representations to become temporally invariant. We use datasets of
10,240 newly generated orbits, each with 10 time samples.

The latent space for generating orbits from these conserved quantities is three-dimensional, so the
output embeddings can be visualized in 3 dimensions directly. The exact intervals from which we
sampled H and L, as well as that choice’s impact on representation geometry, are in Appendix B.

Partial trajectories. We can weaken our time augmentations by restricting the range of times for
positive examples. Formally, set α to be the proportion of the orbit that positive samples are sampled
from. Let T be the period of the orbit. For each orbit, we uniformly sample a starting time t from
[0, T ], and then we sample positive examples uniformly from the range [t, t+ αT ].

3 ANALYZING TRAINING DYNAMICS THROUGH VISUALIZATION

Numerical

Image

Weak AugmentationsStrong Augmentations

Figure 2: Representation geometry for mod-
els trained on numerical and image Kepler data
with full and partial trajectories, colored by an-
gular momentum L.

Figure 3: Visual comparison showing poor
alignment in Twisted Disk, but not in the Bowl.
Black outline is embedding of a single orbit.

The Kepler orbit problem is easily solved using our contrastive framework in both the numerical and
image domains. All three conserved quantities are clearly present in the representation, and it show-
cases the geometry of the latent space in nontrivial ways; see Figure 2 and Appendix B. We have
nicknamed this particular representation the Bowl because of its shape. We can also visualize the
development of the representation geometry towards the Bowl shape during training (Appendix C).

When weakening the augmentation strength α, the bowl can still be recovered rather easily (Fig-
ure 2). Although global structure is generally preserved, alignment degrades considerably.

As α approaches zero, the contrastively trained network begins to see less and less of the possible
augmentation space of its input dataset. This intuitively forces the model to optimize the geometries
of local clusters in the embedding space instead of being able to make large geometric reorganiza-
tions in a small handful of epochs.

Through the Kepler datasets we present visualizations of global phase transitions with only local
deformations. The loss does not sharply drop during the phase transition (Figure 18) and as a result
the transitions can only be found through visualization.
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Figure 4: Number of epochs needed
to reach and complete final unwrap-
ping of the bowl phase transition for
Kepler charted against percentage of
trajectory seen during training. 16 tri-
als for each α, with a 95% confidence
interval (in black).
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Figure 5: Tracking multiple validation losses, i.e. normal
contrastive loss but calculated on datasets with increasing
augmentation strength, on Kepler and CIFAR-10 models
trained with weak augmentations (α = 0.05, croplow 0.8,
respectively). Each loss curve is normalized so that the
top of the graph is maximum and the bottom is minimum.
See Appendix H for controls.

3.1 OBSERVING EMBEDDING EVOLUTION FROM “TWISTED DISK” TO “BOWL”

In the numerical domain, when we set α ≤ 0.01, the shape of the representations looks radically
different. The representations remain stuck at a shape that we have named the Twisted Disk (Fig-
ure 3), which has a twist at the center at which orbits with L ≈ 0, 1 are embedded together. Despite
being able to achieve low loss with partial trajectories (Figure 5), the disk is misleading about the
global structure of the data. Visually the orbits also align poorly, maintaining their elliptical shape -
the disk is effectively a direct embedding of the position/momentum input space.

In contrastive learning, models have been observed to take “shortcut” solutions or suppress fea-
tures (Chen et al., 2021; Robinson et al., 2021). The disk geometry is an good toy model of this
phenomenon: as the strength of the time augmentation decreases, the model begins to embed time-
variant quantities, especially position.

We observed that the timing of phase transitions (tracked quantitatively through a regression metric
on the representation geometry - Appendix G) seems to be controlled by the augmentation strength
(Figure 4). This suggests a continuous element to whether or not certain phase transitions can occur;
instead of either occurring or not occurring, they take longer and longer to occur as augmentations
are weakened. We observe the same phenomenon in the image domain, except with multiple phases
and more complicated training dynamics. A detailed treatment can be found in Appendix F.

3.2 GLOBAL STRUCTURE EMERGES GRADUALLY DURING TRAINING

The reason why weaker augmentations prolong the time needed for phase transitions is unclear. We
stress a distinction between local and global structure in representations, with respect to distances in
the embedding space. Models gradually recover global structure by piecing together local chunks of
information. Intuitively, as augmentation strength decreases, each chunk gets smaller, so more train-
ing iterations are needed for global structure to be recovered. Therefore, any decrease on a validation
loss computed with respect to a dataset with stronger augmentations—which requires more global
structure—should happen after similar decreases on a validation loss with weak augmentations.

To test this, we monitored multiple validation losses, evaluated on datasets containing a series of
increasingly strong augmentations, during training of both Kepler and CIFAR-10 models (Figure 5).
More detailed experimental results are in Appendix H.

4 CONCLUSION

Through visualizations on a low-dimensional physics dataset, we have shown the existence of phase
transitions in contrastive learning. We propose a more subtle understanding of the effect of weak
augmentations, wherein they slow down training by encouraging contrastive models to focus on
local structure.
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A MORE TRAINING DETAILS

Our model architectures are as follows:

• For numerical experiments on the Kepler dataset, we use ReLU MLP networks with four
hidden layers of width 64 trained with the L2NCE loss.

• For image experiments on the Kepler dataset, we use a ResNet-18 backbone, with its fi-
nal fully-connected layer replaced by the same ReLU MLP network used for numerical
experiments. The model is trained with the L2NCE loss.

• For experiments on CIFAR-10, we use a ResNet-18 encoder with a one-hidden layer pro-
jector with hidden size 2048 and output size 2048. We use a CIFAR version where the first
layer has kernel size 3, stride 1, and padding 1. The model is trained with the CosNCE loss
and all standard hyperparameter choices, following (Dangovski et al., 2022).

Notably we do not use a projector in our Kepler dataset experiments in order to force encoder
representations to be time invariant, allowing for better visualization of the geometric structure of
the latent space.

A.1 IMAGE DATASET GENERATION

We generate simple, 56×56-dimensional images based on the Kepler dataset. Because both position
and velocity are needed to encode the three conserved quantities, we start with a blank image and
fill in a sequence of ten positions along the orbit, spaced 0.1 time units apart with a gradient from
black to red, giving the visual appearance of a comet tail. While the images are relatively simple,
this dataset has a relatively high dimensionality like that of real images while keeping the exact same
structure as the numerical version.

B DISCUSSION OF REPRESENTATION GEOMETRY

B.1 RELU NETWORKS: THE BOWL GEOMETRY

Figure 6: Bowl representation geometry obtained from a ReLU network trained over 1500 epochs
with L2NCE loss presented from two different angles and colored by conserved quantities H,L, ϕ0

from left to right.

The bowl nontrivially represents the latent geometry in the following ways:

1. Orientation ϕ0, which is a rotational component, is encoded rotationally, so that ϕ0 = 0, 2π
are encoded to be at the same location. H,L are encoded linearly.

2. The bowl has a hollow interior, which makes it a bowl as opposed to a cone (see B.5). This
is because of the data generation process we use; for any given momentum L, the range of
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possible energies H cuts off at or above the true physical minimum, meaning that parts of
the dataset are “missing”.

3. The rotational axis of symmetry, about which we can define orientation ϕ0 (and on which
ϕ0 is ill-defined), corresponds to the lowest given H for any given L, which is also when
the orbit is perfectly circular and thus its orientation ϕ0 becomes ill-defined.

We can validate this visually by plotting slices of the input space (as below), or empirically by
polynomial regression of degree 2.

Figure 7: Portion of overall representation geometry corresponding to fixing two conserved quan-
tities and varying the other (i.e. H ∈ [−0.5,−0.25], L = 0.5, ϕ0 = π in the leftmost embedding)
colored by the remaining conserved quantity. An additional single orbit (all quantities fixed - i.e.
H = −0.375, L = 0.5, ϕ0 = π in the leftmost embedding) is also plotted as denser, shaded circles.

B.1.1 FIGURE-EIGHT BOWL AND OTHER RARE VARIANTS

Occasionally, when training with short trajectories, we observe a figure-eight variant of the bowl,
which is identical to the bowl but ϕ0 is encoded rotationally around a figure-eight instead of a circle
(Figure 8). It appears to be an artifact of the training data; it happens particularly often (20-50%) for
some datasets generated with the same general parameters.

Figure 8: Two views of figure eight bowl, colored by L.

More rarely, we have observed other bowl variants, e.g. ones with an extremely thin H axis, or flat-
tened into 2D (dimensional collapse). These, similarly, appear to be hinged on unusual generations
of the input data. They converge for very long training times to various bowl variations (> 1000
epochs) but will “retrain” into the normal bowl if trained on other random generations of the same
input data. Additionally, shapes tend to change slightly when changing training parameters, e.g.
BatchNorm, although the difference tends to be minimal in most cases.

B.2 SIGMOID NETWORKS: MORE TWISTED DISKS

One rather important training parameter is the choice of activation function. We have already seen
the subpar Twisted Disk geometry as the primary precursor to the Bowl geometry in subsection 3.1.
It turns out that trying to train a sigmoid-activation network with L2NCE loss also leads to the
twisted disk conformation (albeit with better alignment), and never makes it past this local minimum
on the loss landscape. One difference between this Twisted Disk and the other is the hole in the
middle.
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Figure 9: Twisted Disk representation geometry obtained from a sigmoid network trained over 1500
epochs with L2NCE loss presented from two different angles and colored by conserved quantities
H,L, ϕ0 from left to right.

Notably this variant of the twisted disk obtains significantly better alignment than the version showed
in Figure 3, however empirically evaluating the contrastive loss shows the inferiority of this confor-
mation. Plotting the training loss clearly shows the Bowl geometry (Figure 10) better optimizes the
loss compared to the Twisted Disk geometry.
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L2NCE Training Loss over 1500 Epochs for models ultimately converging to Bowl/Disk
Bowl
Twisted Disk

Figure 10: Twisted Disk representation geometry obtained from a sigmoid network trained over
1500 epochs with L2NCE loss presented from two different angles and colored by conserved quan-
tities H,L, ϕ0 from left to right.

Currently we hypothesize that this due to the smoothness of a random-initialized sigmoid networks
deformations on input manifolds making it difficult for the network to slowly phase transition local
pieces of the geometry into the Bowl shape.

Figure 11: Toy demonstration comparing smoothness of output for randomly intialized ReLU v.s.
Sigmoid networks on a simple loop.

B.3 GETTING AROUND THE HYPERSPHERE: COSNCE AND “TRADITIONAL” SIMCLR

We can follow SimCLR (Chen et al., 2020) more exactly by using CosNCE and a projector head.
We attempt to bypass the normalization of the CosNCE loss chewing up a visualization dimension
by using the nonlinear projector to “convert” a geometrically sensible output space from R3 to S3.

9
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We obtain our best results by using an encoder output dimension of 3 and a nonlinear 3-layer pro-
jector with output dimension of 4. Although the training of the CosNCE models by this approach is
somewhat tricky, we ultimately are able to also extract the bowl representation with some level of
distortion (Figure 12).

Figure 12: Bowl representation geometry obtained from a ReLU encoder (with projector discarded)
trained over 1500 epochs with CosNCE loss presented from two different angles and colored by
conserved quantities H,L, ϕ0 from left to right.

Because traditional cosine similarity InfoNCE provided an clear conceptual framework for con-
trastive learning, we did not try MoCo (He et al., 2020), but since it is also a contrastive method, we
expect it would likely have similar behavior to SimCLR as opposed to other methods.

B.4 NON-CONTRASTIVE METHODS

Generally, recovering all three conserved quantities was much more difficult with non-contrastive
methods, which was one of the reasons we did not study them in detail. We did recover a bowl shape
for VICreg (Bardes et al., 2022), but were not able to with SimSiam (Chen & He, 2021).

B.5 COMPLETE INPUT SPACE

We picked gravitational parameter µ = Gm = 1. We chose to restrict H ∈ [−0.5,−0.25] and L ∈
[0, 1] to provide numerical stability for the training. In reality, H ∈ [−∞, 0], L ∈ [0,∞] are okay as

long as the eccentricity
√
1 + 2HL2

µ2 is between 0 and 1. We can get a closer approximation of the
true input space by allowing H,L to vary on larger intervals given that the eccentricity condition is
not violated. When trained on such a dataset, we get a cone shape:

H eccentricity

Figure 13: Model trained on complete Kepler dataset visualizing the complete Kepler dataset:
“cone”. Eccentricity is used instead of L because it is more easy to interpret; it is also a “con-
served quantity”.

This requires setting a much lower learning rate (0.005 vs 0.05 normally).
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C VISUALIZING TRAINING DYNAMICS: MANIFOLD DEFORMATION IN
RADIAL BOWL COMPONENT

Thanks to the low dimensional output space, we can visualize individual pieces of a model’s output
representation geometry being deformed into the their final shape. Here, a two-dimensional input
manifold (sampled from a 1D slice of the 3D latent space), parameterizable by (H, t) (energy and
time sampled from orbit, with L, ϕ0 fixed), folds into a line segment-like shape along which the
main axis of variation is along H , whereas it is mostly invariant to t.

Figure 14: Changing embedding space over training time for 10,240 datapoints of varying H with
constant L, ϕ0, with a single orbit also plotted in denser, shaded circles (as in Figure 7).

There are two important features to address:

• The untrained network in Figure 14 produces a naively reasonable result when colored
by H because a randomly initialized network produces a simple deformation on the input
manifold of orbits of varying H (see Figure 11). This phenomenon is not equivalent to
“solving” local or global structure - we seek a less trivial transformation on the manifold
(as is accomplished after 60 epochs).

• In these developing manifolds we see long, narrow tails which are not condensed well in
the folded manifold. These correspond to a relatively narrow time-slice of the orbits of the
same energy during which the orbit is near the origin and thus moving with high velocity.
These points are seldom sampled in training, and are intrinsically hard to distinguish, lead-
ing to poor alignment compared to the rest of the manifold. These “tail” points can be seen
on the interior of the H-colored bowl in Figure 10.

We also see occasional instances of delayed local optimization. In small chunks of a Bowl represen-
tation, the locally line-segment like manifold unfolds and refolds to a new shape that does a slightly
better job at condensing the orbit tails, and results in a long term decrease in loss (corresponding to
movement to a slightly better local minima in the loss landscape).

Figure 15: Delayed optimization in embedding space of the same (H, t) manifold as Figure 14 after
700 epochs. The formerly slightly crumpled manifold unfolds and reshapes over 100 further epochs
allowing the geometry to better separate tails.

D OVERLY STRONG AUGMENTATIONS

The Kepler dataset intrinsically has perfectly meaningful augmentations. In order to create aug-
mentations that are too strong, one thing we can do is to use the Kepler image dataset and restrict
the image bounds so that occasionally planets will leave the boundary of the image and result in
a blank, white image. Although this is not strictly an augmentation, the existence of a “nonsense”
input (blank, white image) that is a positive example with many normal images is similar to the
effect induced by too-strong augmentations where meaningful information gets destroyed and some
augmented images lose any distinction that belonged to what they were originally. The existence of

11



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

such blank images tends to drastically change representation geometry, generally for the worse, by
creating a central “point of attraction” that many points in the representation must be close to.

Figure 16: If we decrease the bounds of the image generation until a sizable (around 10%) of the
generated images are blank, the bowl geometry gets heavily distorted as slices of the bowl attempt
to approach the “nonsense” image center. Colored by H .

E NOISE IN OBSERVATIONS

For each orbit being generated, we can add Gaussian noise directly to each conserved quantity
for each time step that is being evaluated. As the orbits are generally nonlinear in the conserved
quantities, this prevents different orbits from experiencing effectively different levels of noise. This
noise is equivalent to increasing the connectivity of the augmentation graph proposed by HaoChen
et al. (2021) by introducing nearest-neighbor augmentations.

Typically in the contrastive learning setting, it is assumed that the latent variables between positive
pairs are close but not identical (Wang & Isola, 2020). In our setting, we replicate this by adding
a small amount of Gaussian noise to the conserved quantities. In the partial trajectory setting, this
noise vastly shortens the time needed for the disk-bowl phase transition.

F PHASE CHANGES IN THE IMAGE DOMAIN

Generally, the bowl emerges later and later as α is decreased. Due to the increased difficulty of the
image dataset, this generally happens with larger α than on the numerical dataset.

α Epochs to bowl
0.25 by 60 epochs
0.15 by 250 epochs
0.10 by 1000 epochs

The Kepler image dataset invites considerably more complex training dynamics then the numerical
dataset. Non-phase transition phenomena we observed were:

• Numerous stable variations of the bowl (as well as other representations), which different
augmentation strengths ended up favoring differently. In particular, low α (less than 0.15)
tend to first converge to a bowl and then two opposite sides draw close together, forming a
taco-like shape.

• Medium α or specific data generations incentivized a bowl with one corner flipped over
(i.e. for a range of ϕ0, the H-axis (depth axis) was inverted), which was previously seen
as a transitional form between disk and bowl in the numerical data, but we did not see a
transition into a bowl before 4000 epochs.

• Backwards phase transitions: sometimes the model would reach a bowl, convert back into
a disk-like shape, and then re-converge onto the bowl relatively quickly.

• Generally, more significant quality degradation even when the basic bowl shape was main-
tained.

12
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G TRACKING PHASE TRANSITION TIMING WITH LINEAR REGRESSION

We are able to numerically track the last stage of the phase transition producing the bowl using
linear regression on conserved quantities. Because (in the Kepler orbits dataset) the final represen-
tation geometry is roughly linear in angular momentum L, and the transitional forms/twisted disk
show essentially no linear relationship in L (from visualization of hundreds of model checkpoint
embeddings during testing - for example as in Figure 18) we used L for such evaluations.

This metric helps us to observe phase transitions, even though these large geometry changes do not
correspond to large decreases in loss. Consider the following example run using a training dataset
with α = 5% visible partial trajectories. The loss steadily decreases, even beyond the proposed
phase transition (65 - 85 epochs) but the regression metric effectively captures the phase transition
into the bowl geometry.
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Figure 17: Comparing the training loss and linear regression metric for a standard ReLU network
trained for 200 epochs. The phase transition (occurring between 65-85 epochs) visible through the
regression metric is not apparent from the training loss.

We can also visualize the changing representation geometry during these epochs to observe the phase
transition.

Figure 18: Representation geometry of the model during training between 65 - 95 epochs. Much of
the phase transition occurs between 65-85 epochs - the remaining epochs resolve a kink in the bowl.
Geometry colored by H to best show resolving deformation.

Repeating this metric-tracking for many trials allows us to roughly visualize the distribution of
phase transition times using this procedure when α = 0.5. The steep increase in R2 proves to be an
extremely good signal for the final stage of the phase transition when verified by visualization. We
produce Figure 4 by tracking the time taken for the average R2 of the past 3 epochs to reach 0.8 (as
in the above image) for several different α.
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Figure 19: Tracking R2 value for linear fit of network outputs on a randomly generated validation
dataset of 1024 orbits on conserved quantity L during the training process over training with α =
0.5. 16 fresh runs (training and validation datasets) were tracked and logged until they satisfied
avg(R2

t−3:t) > 0.8.
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H MORE ON TRACKING MULTIPLE LOSSES
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Figure 20: Tracking multiple losses with a full augmentation control, and also further on CIFAR-10
with weak augmentations, demonstrating overfitting.

The loss on strongly augmented datasets dropping later (relatively) is also present with full aug-
mentations. However, this effect is much less prominent then on the weakly augmented version
(Figure 20). The spike in the full augmentation model is due to collapse occurring at around 200
epochs and reversing at around 300 epochs in this particular instance; this is a rather rare occurence
in our experience but may merit more investigation.

Additionally, past fifty epochs, the weakly augmented CIFAR-10 model (with crop low at 0.5) tends
to overfit on all four losses, at which the delay effect no longer becomes interpretable because all
four losses start to rise, which is why this figure cuts off at 50 epochs. No overfitting is present
on the full augmentation model. Loss on stronger augmentations tends to rise the fastest. Less
augmentation weakening may allow this delay effect to persist for longer before overfitting occurs.
We also note that the variation between versions are substantial or even larger than variations in loss
within a single model.

I CONNECTEDNESS IS NOT STRICTLY NECESSARY FOR GOOD
REPRESENTATIONS

Contrastive learning has been analyzed through the lens of augmentation graphs, where an aug-
mentation graph is a graph on the input support where there are edges between any two vertices
correspoding to inputs sharing an augmentation. Oftentimes, the connectedness of such a graph
within a class has been used in previous work as a theoretical assumption in contrastive learning
(HaoChen et al., 2021; Wang et al., 2022), and it is often assumed in practice that such connected-
ness is necessary for classification.

However, contrastive learning can recover global structure and interpolate between gaps in the latent
space even without connectedness. We study this in the Kepler image dataset. In Figure 21, we
sampled a training dataset which consisted of four disconnected components together spanning 44%
of the phase space, while maintaining partial trajectories with α = 0.1. The model is able to
interpolate meaningfully on the unseen regions, albeit with some degrading of the representation
quality.

It is easier for the model to accommodate the structure of the Kepler dataset then to memorize
disconnected components separately. When trying to understand contrastive models, we must in-
corporate a more subtle understanding of the rich structure of the datasets we analyze in which
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Figure 21: Output embeddings from models trained on 44% of the conserved quantity space and
with α = 0.1.

we recognize the natural structure of the dataset itself. In particular, it may not be necessary for
augmentations within the same class to explicitly overlap, although a similar experiment would be
impossible to run directly in CIFAR-10 as it would require reconstruction of the latent space.

I.1 WHEN EXTRAPOLATION FAILS

Although there are a wide variety of cases in which the model can learn to interpolate on unseen
regions, given too small regions of the phase space, generalizing out-of-distribution will break down.
This is visible in extreme distortions of the bowl shape, reversals of trends (e.g. the direction in
which H is positive/negative) across different parts of the representation, extremely long “tails”
emerging out of the representation, etc., although continuous interpolations on the missing regions
will still occur (example Figure 22). At α = 0.1, having L and H each take up 2/3 of the phase
space (extreme lower/upper third) tends to be on the boundary between meaningful interpolation
and breakdown; introducing any gaps in ϕ0 tends to cause breakdown. At α = 1, it is possible to
retrieve the bowl shape with H,L, ϕ0 each restricted to 30% of the given interval (top/bottom 15%).

The most problematic of all is true extrapolation beyond the input intervals. When we introduce
gaps in the phase space in which the model must interpolate, it often can do so well. When forced
to extrapolate beyond the given phase space, the representation tends to have bizarre behavior (in
general, long spikes emerging from the representation). This is visible for, in example, visualizing
the representation of the complete dataset (B.5) on a model trained on the normal, incomplete ver-
sion. This is why in our interpolation experiments we have half the dataset at the upper extreme and
the other half at the lower extreme. The model is likely only learning to model necessary functions
inside the given intervals; symbolic methods may be superior here in order to avoid this problem.

Figure 22: An example of interpolation failure with similar parameters as to Figure 21, colored by
L.
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J AUGMENTATION RADIUS CONTROLS REPRESENTATION DENSITY

Zimmermann et al. (2021) suggests that contrastively learned representations should be a linear
transform of the latent space, in particular, if we let λ be a scale factor for the distribution of positive
samples for a single data input, then the scaling factor between the input and output spaces should
be proportional to 1/λ multiplied by a constant not depending on λ, with some conditions.

However, Zimmermann et al. (2021) assumes that the radius of positive examples is uniform over all
data samples. When this is not true, we can see increased representation density (and thus decreased
representation size) at point where there is more noise, i.e. λ is higher. We can change λ drasti-
cally between different parts of the representation to show this phenomenon in action (Figure 23).
The possibility of nonuniformity of λ may also have an impact on contrastively learned representa-
tions in general. It may apply less to methods like VICreg (Bardes et al., 2022), where variance of
representations is explicitly controlled.

Figure 23: Example of selectively increasing λ to shrink parts of the representation. On the right
is a normally trained representation with roughly uniform λ; on the left, we added Gaussian noise
of scale 0.3 to all three conserved quantities for points on one half of the input domain leading to
significant shrinkage.

K BEYOND INTRINSIC DIMENSIONALITY

Since most of our Kepler experiments focused on representations which had the correct dimension-
ality, we performed some limited analysis on representations with more/less dimensions (Figure 24).

Figure 24: (Left) Too many dimensions (ϕ0 fixed); colored by H,L in that order. (Right) Too few
dimensions.

• With extra dimensions (experimental setup: fixing ϕ0 so that the input is now two-
dimensional), the model tends to preserve the correct number of dimensions, causing di-
mensional collapse (but one that actually corrrectly represents the input space).

• With not enough dimensions, the model loses the least important (most dense, see J) con-
served quantity, H , but otherwise embeds ϕ0 and L in a nice-looking 2d projection of the
bowl.
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L OBSERVED CLUSTERS IN CIFAR-10

Figure 25: Geometrical training progression on projector output of models trained on CIFAR-10
with L2NCE loss; colored by class.

It is unlikely we can observe similarly clear-cut phase transitions when training on CIFAR-10 be-
cause of its complexity. However, we can observe repeatable geometric features of the representation
which occur during training, which is similar in nature. We trained a version of SimCLR where we
forced the projector output to have output dimensionality three (see Hua et al. (2021); Böhm et al.
(2022) for similar techniques) and substituted CosNCE for L2NCE. We consistently observed three
major stages as training progressed: (1) well-mixed clusters between classes; (2) class separation
with noticeable margins; (3) fine-grained cluster emergence within classes (Figure 25). We believe
that this appearance is consistent with a series of more local phase changes that together produce
these three major phases in training.

17


	Introduction
	Related work

	Preliminaries
	Contrastive learning
	Kepler Orbits Datasets

	Analyzing training dynamics through visualization
	Observing Embedding Evolution from ``Twisted Disk'' to ``Bowl''
	Global structure emerges gradually during training

	Conclusion
	More training details
	Image dataset generation

	Discussion of Representation Geometry
	ReLU networks: the Bowl geometry
	Figure-Eight Bowl and other rare variants

	Sigmoid Networks: more Twisted Disks
	Getting around the hypersphere: CosNCE and ``traditional" SimCLR
	Non-contrastive methods
	Complete input space

	Visualizing Training Dynamics: manifold deformation in radial bowl component
	Overly strong augmentations
	Noise in Observations
	Phase changes in the image domain
	Tracking phase transition timing with linear regression
	More on tracking multiple losses
	Connectedness is not strictly necessary for good representations
	When extrapolation fails

	Augmentation radius controls representation density
	Beyond intrinsic dimensionality
	Observed Clusters in CIFAR-10

