
Under review as a conference paper at ICLR 2022

EP-GAN: UNSUPERVISED FEDERATED LEARNING
WITH EXPECTATION-PROPAGATION PRIOR GAN

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Adversarial Networks (GANs) are overwhelming in unsupervised learn-
ing tasks due to their expressive power in modeling fine-grained data distributions.
However, it is challenging for GANs to model distributions of separate non-i.i.d
data partitions as it usually adopts an over-general prior, limiting its capability
in capturing the latent structure of multiple data partitions and thus leading to
mode collapse. In this paper, we present a new Bayesian GAN, dubbed expec-
tation propagation prior GAN (EP-GAN), which addresses the above challenge
of modeling non-i.i.d federated data through imposing a partition-invariant prior
distribution on a Bayesian GAN. Furthermore, unlike most existing algorithms
for deep-learning-based EP inference that require numerical quadrature, here we
propose a closed-form solution for each update step of EP, leading to a more
efficient solution for federated data modeling. Experiments on both synthetic
extremely non-i.i.d image data partitions and realistic non-i.i.d speech recogni-
tion tasks demonstrate that our framework effectively alleviates the performance
deterioration caused by non-i.i.d data.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are overwhelming in unsuper-
vised learning tasks due to their expressive power in modeling fine-grained data distributions. GANs
usually consist of a generator, which takes white noises as input and generates data points, and a
discriminator, which encourages the generator to generate high-quality data points via discriminating
whether a data point follows a real distribution. Successful training of GANs requires large-scale
public data in a centralized setting. Recently there has also been an increasing need for training
GANs on decentralized private data. Unfortunately, due to concern about data privacy, conventional
ways of aggregating cross-silo data have become controversial.

On the other hand, federated learning is an increasingly important machine learning paradigm where
many clients jointly train a powerful global model with cross-silo training data. The major target of
federated learning is to utilize the massive data created and collected by different clients while obeying
privacy protection regulations such as the European Union’s General Data Protection Regulation
(GDPR) (Voss, 2016). The most representative federated learning algorithm is FederatedAveraging
(FedAvg) (McMahan et al., 2017), which successfully trains a powerful global model while keeping
training data on each client (i.e., each mobile phone) on mobile applications. Since then, FedAvg has
been quickly adopted in many other applications, such as medical image classification (Choudhury
et al., 2019). Recently, more and more federated learning researchers turn their attention to a more
practical setting where the data distributions are non-i.i.d. A federation usually consists of different
clients from diverse sources whose data distributions are intrinsically distinct. Vanilla federated
learning algorithms fail under such non-i.i.d settings, as the simple averaging tends to over-smooth
the distributions of each client.

Such an over-smoothing effect is exacerbated in GANs, which notoriously often suffer from mode
collapse. To gain initial insight into this issue, we conduct a toy experiment of learning a mixture
of Gaussians (see Section 5.1 for more details). Fig. 1 shows the learned density map of the data
centralized setting (the first column) and the extremely non-i.i.d federated learning setting (the last
column), where ‘red’ indicates higher scores, and ‘blue’ indicates lower scores. Ideally, GANs should
be able to rebuild four red circles around the data points, as shown in the centralized settings. We can

1

Under review as a conference paper at ICLR 2022

observe that although both WGAN (Goodfellow et al., 2014) and ProbGAN (He et al., 2019) work
well in the centralized setting, but in federated learning, their locally learned data distributions are
over-smoothed after FedAvg, resulting in a collapsed mode.

WGAN

ProbGAN

EP-GAN

0-th

Turn

5-th

Turn

9-th

Turn

0-th

Turn

5-th

Turn

9-th

Turn

0-th

Turn

5-th

Turn

9-th

Turn

Client 0 Client 1 Client 2 Client 3 After FedAvgCentralized Setting

(Oracle）

F
in

a
l

F
in

a
l

F
in

a
l

D-MSE: 0.0723

D-MSE: 0.0505

D-MSE: 0.0450

D-MSE

0.1609

D-MSE

0.1505

D-MSE

0.0929

Figure 1: Density map visualizations on the toy federated
datasets of WGAN, ProbGAN and EP-GAN at different feder-
ated turns. WGAN and ProbGAN suffer from mode collapse
after FedAvg in the federated setting, while EP-GAN suc-
cessfully recovers all four modes (last column). D-MSE score
(defined in Appendix F.2) indicates the similarity between the
density maps of GANs and the ground-truth GMM. The lower
D-MSE is better.

This phenomenon can be inter-
preted from the Bayesian perspective.
WGAN can be treated as a special
case of Bayesian GAN by assuming
a uniform prior instead of a Gaussian
prior for GAN’s parameters and fit-
ting the point estimate of GAN’s pa-
rameters during training. ProbGAN
is a special case of Bayesian GAN,
which simply adopts the generator
distribution at the previous turn as
the prior. Therefore, both WGAN
and ProbGAN have the similar issue
of enforcing an over-general prior,
limiting their capability in capturing
the latent multi-modal structure of
non-i.i.d data partitions under feder-
ated learning setting and thus leading
to mode collapse. Similar problems
are also observed in the VAE litera-
ture, where researchers refer to such
problems as ”posterior collapse” (i.e.,
the learned posterior collapses to the
over-general prior).

To tackle this challenge, we present
a novel GAN, dubbed expectation
propagation prior GAN (EP-GAN),
which is equipped with a complex
prior that is learned automatically
from data partitions. EP-GAN treats
the prior of parameter distributions in each client as a latent variable and models the joint distribution
of all clients. In doing so, EP-GAN introduces several approximate factors, where each approximates
the posterior contribution from each data partition. As these approximate factors are updated itera-
tively and parallelly in a similar spirit of EP, we name the prior of our EP-GAN as EP-prior. The
major contributions of our work are three-fold:

• We identify the mode collapse problem of Bayesian GANs under non-i.i.d cross-silo unsupervised
learning scenarios. Inspired by EP, we propose an effective solution, dubbed EP-GAN, that
imposes a partition-invariant prior distribution on a Bayesian GAN.

• In the solution, we derive closed-form expressions of the moments of the hybrid/tilted distribution
approximations for neural networks. Unlike the previous work on EP with deep learning that
requires numerical quadratures, our EP-GAN obtains a relatively more efficient closed-form
solution without requiring numerical quadratures.

• Our proposed method is evaluated on real-world image and speech datasets. The experimental
results demonstrate that our framework effectively alleviates the performance deterioration caused
by non-i.i.d federated data compared to other state-of-the-art Bayesian GANs.

2 RELATED WORK

In this work, we develop a new Bayesian GAN equipped with an expectation propagation (EP) prior
for unsupervised federated learning under non-i.i.d settings; therefore, recent studies on federated
learning, Bayesian GANs and EP with neural networks are reviewed in this section.

Federated Learning with Non-i.i.d Data. Federated learning, as a new collaborative learning
paradigm, has been gaining more attention in recent years (McMahan et al., 2017; Yang et al.,

2

Under review as a conference paper at ICLR 2022

2019), and the challenges of federated learning from non-i.i.d data have been noticed (Li et al.,
2021; Sahu et al., 2018; Zhao et al., 2018; Xie et al., 2019; Yu et al., 2020). However, they only
focus on the supervised federated learning settings, where the label information can help reduce
the heterogeneity; in contrast, we focus on the unsupervised federated learning setting, where the
heterogeneity embeds in the distributions across clients and these methods cannot handle well. On
the other hand, some works have been proposed to adapt GANs to federated settings to deal with
unsupervised federated learning tasks, but they are either proposed to improve the privacy protection
of multiple GANs (Augenstein et al., 2019; Zhang et al., 2018; Jordon et al., 2018; Xie et al., 2018)
or improve the communication efficiency when training in a federated manner (Rasouli et al., 2020).
More importantly, they ignore another critical challenge: mode collapse of federated GANs under the
non i.i.d federated learning setting. Addressing this problem is one of the main focuses of our model.
The detailed discussion of existing federated GANs with non-i.i.d data is reported in Appendix C.

Bayesian GANs. Recent advances in Bayesian formulation of GANs, such as BayesGAN (Saatchi &
Wilson, 2017) and ProbGAN (He et al., 2019), are proposed to address the notorious mode-collapse
issue. The BayesGAN and ProbGAN assume a Gaussian prior and a carefully constructed prior for
GANs, respectively. However, from the Bayesian perspective, both BayesianGAN and ProbGAN
have the similar issue of enforcing an over-general prior, limiting their capability in capturing the
latent multi-modal structure of non-iid data partitions under federated learning setting and thus
leading to mode collapse. In contrast, our proposed EP-GAN successfully avoids such an issue by
imposing a partition-invariant prior distribution inferred by EP.

EP with Neural Networks. To efficiently model the joint distribution from partitioned data, we
follow the spirit of Expectation Propagation (EP). EP is one of the most popular Bayesian infer-
ence methods in Bayesian neural networks (Minka, 2013), which approximates the posterior with
exponential-family factors that are iteratively updated via moment matching. However, the moment
matching can be intractable if the likelihood term involves many latent variables or has a complex
form, which results in the intractability of the moments of the hybrid/tilted distribution. An intuitive
solution is to approximate the likelihood term by numerical quadrature (Jylänki et al., 2014; Soudry
et al., 2014), but it fails to scale to large datasets or complex neural networks. The closest work to
ours is proposed by Bui et al. (2018), which adopts variational inference (VI) to simulate EP, allowing
to identify new ways of performance VI on federated settings with synthetic data, but their EP update
is inefficient as it is simulated with gradient descent with a deliberately designed KL loss. In contrast,
we propose a closed-form solution for moment matching without requiring numerical approximation
and is more efficient than estimating through gradient descent.

The detailed comparisons with related works are described in Appendix C, and some of the represen-
tative methods are compared with empirical experiments, shown in Section 5.

3 PRELIMINARIES

Federated Learning. In this paper, we consider the problem of training Bayesian GANs under the
cross-silo FL setting1 (Kairouz et al., 2019), where the datasets are non-identically and isolatedly
distributed on different clients. To avoid losing the focus, we leave the formulation of federated
learning in Appendix D.

Expectation Propagation (EP). Before introducing our EP-GAN, we begin by reviewing the tradi-
tional EP algorithm (Minka, 2013). EP is a deterministic approximation algorithm that is often used
for Bayesian inference of posterior distributions of model parameters, which is believed to be able to
provide significantly more accurate approximations than variational inference methods (Jordan et al.,
1999).

Consider a dataset X = {xi}Ni=1 sampled from a distribution p(X|θ) whose parameter θ follows
the prior p0(θ). As the posterior distribution p(θ | X) is computationally intractable, EP attempts
to approximate it with a tractable approximating distribution q(θ), which can be further factorized
into multiple approximate factors: q(θ) = p0(θ)

∏N
i=1 qi(θ), where the approximate factor qi(θ) is

1In this work, we focus on presenting a novel solution for modeling non-i.i.d federated data, without diving
into the privacy and security protection techniques. As our proposed method is a mild modification to the existing
federated learning algorithm in implementation, the current advanced privacy and security protection techniques
such as secure aggregation (Bonawitz et al., 2017) can be directly applied to our method.

3

Under review as a conference paper at ICLR 2022

iteratively refined so that they capture the contribution of each datapoint xi to the posterior p(θ | X):

p(θ | X) ∝ p0(θ)

N∏
i=1

li (xi) , (1)

where the likelihood li (xi) = p (xi | θ) and X represents the data distribution. More specifically,
EP iterates over the following four steps:

1. Construct the cavity distribution by removing one of the approximate factor, i.e., the i-th
factor. It can be written as: q−i(θ) = p0(θ)

∏
j 6=i qj(θ)

2. Integrate the likelihood contribution li(xi) to the cavity to produce the hybrid distribution:
hi(θ) ∝ q−i(θ)li(xi).

3. Update the parameters of the i-th approximate factor qi(θ) through minimizing the KL
divergence between the hybrid distribution hi(θ) and the approximating distribution q(θ) ,
namely, KL [hi(θ)‖q−i(θ)qi(θ)].

4. Update the approximating distribution q(θ) by including the updated approximate factor
qi(θ): q(θ)← q−i(θ)qi(θ).

It is worth noting that when qi(θ) is assumed to follow an exponential family distribution (e.g. the
Gaussian), the minimizing of KL divergence in Step 3 can be reduced to the moment matching
(ichi Amari & Nagaoka, 2000). However, when applying EP to deep neural networks, this moment
matching step is computationally intractable, requiring numerical approximation or sampling and
therefore have to compromise between accuracy and efficiency. Addressing this problem is one of
the main focuses of our model.

4 EXPECTATION-PROPAGATION PRIOR GAN

The local nature of EP brings about several benefits, such as distributability and parallelisability,
appears to make it an ideal candidate for handling data under non-i.i.d federated learning settings.
Meanwhile, Bayesian GANs (Saatchi & Wilson, 2017; He et al., 2019) have shown superior per-
formance over traditional GANs in terms of modeling distributions for centralized data, yet fail to
model distributions for non-i.i.d federated data as they suffer from mode collapse according to our
carefully designed experiments. To combine the best of two worlds, in this section, we introduce
a new Bayesian GAN algorithm, called expectation-propagation prior GAN (EP-GAN). While the
over-general prior assumed by conventional Bayesian GANs could hinder the learning of the latent
structure of multiple non-i.i.d data partitions, EP-GAN introduces several approximate factors, each
approximating the posterior contribution from the local non-i.i.d data partition. As these approximate
factors are updated iteratively in a similar spirit of EP, we name the prior of our Bayesian GAN as
EP-prior. Our EP-prior allows EP-GAN to approximate joint posteriors of model parameters over
all data partitions through integrating all approximate factors. Moreover, the closed-form EP-prior
update proposed in this work makes it affordable for tractable algorithm design as the update is
feasible to approximate.

In the following discussion, we assume that only the generator of GAN has the EP-prior and the
parameter of the generator θG ∈ R1. Its extension to both generator and discriminator of GAN with
θG,θD ∈ RM , where M > 1, is straightforward.

Our EP-GAN involves several variants, depending on which type of Bayesian GANs (Saatchi &
Wilson, 2017; He et al., 2019) is adopted as the backbone. For simplicity, we first discuss extending
the vanilla Bayesian GAN (Saatchi & Wilson, 2017) with the proposed EP-prior. The resultant model
is called EP-BGAN. While the vanilla Bayesian GAN adopts a Gaussian prior for constructing the
generator distributions, our EP-BGAN updates generator distributions based on the EP-prior, which
can be written as:

q(t+1)(θG) ∝ p(t)(θG|θD) · q(t)ep (θG) (2)

where θG and θD denotes the parameters of generator and discriminator, respectively; q(t+1)(θG)
is the posterior distribution of the generator at (t+ 1)-th turn; p(t)(θG|θD) is the likelihood of the
generator proportional to L (θG|θD,xi), the likelihood term depending on discriminator and data, at
t-th trun, whose parameterization is similar to that of Bayesian GANs (Saatchi & Wilson, 2017; He
et al., 2019); q(t)ep (θG) represents the EP-prior at the t-th trun. We will discuss the derivation of the
EP-prior in the following section.

4

Under review as a conference paper at ICLR 2022

4.1 DERIVATION OF THE EXPECTATION-PROPAGATION PRIOR

Suppose we are given K private datasets {Xk}Kk=1. The k-th private dataset Xk = {xk,i}nk
i=1

contains nk data items, where xk,i is a data item contained in k-th private dataset. The goal of
EP-prior is to approximate a prior distribution for model parameters of a Bayesian GAN given these
datasets, such that it can lend itself to obtain an approximate posterior that captures the latent structure
of cross-silo data distributions.

EP-prior adopts K approximate Gaussian factors to approximate the posterior contribution of each
particular private dataset.

q(t)ep (θG) =

K∏
k=1

q
(t)
k (θG), (3)

where q(t)k (θG) is the approximate factor for k-th dataset. Different from Eq. (1), we omit the prior
p0(θG) in the expression as we assume it is a uniform distribution for simplicity. The corresponding
cavity distribution q(t)ep,−k(θG) is written as:

q
(t)
ep,−k(θG) =

∏
j 6=k

q
(t)
k (θG), (4)

Since we adopt Gaussian distributions to implement the approximate factors, Step 3 of the EP update
can be achieved by performing moment matching. However, if we directly adopt the product of
likelihood p(t)(θG|θD) and the cavity distribution q(t)ep,−k(θG) to construct the hybrid distribution,
the moments of such distributions are computationally intractable as p(t)(θG|θD) is complex.

A likelihood function can be treated as a nonlinear function of the model parameters and the
observations. Inspired by this, we propose to simplify this problem by introducing an auxiliary neural
network for approximating the likelihood of each individual parameter of the generator θG. For
simplicity, in the following discussion we use θ to denote the parameter of the generator θG, such
that the likelihood term is approximated as:

l
(t)
k (xk,i; θ) = σ (f(xk,i)θ) (5)

where f is a neural network (see the detailed implementation in Appendix F.3 and F.4.2); σ(·) denotes
the Sigmoid activation function; l(t)k (xk,i; θ) refers to the likelihood contribution of a data item xk,i.
Notice that this is not the usual likelihood which describes the probability of observing a collection
of data items. Since such likelihood contribution can be treated as a probability, we use Sigmoid to
ensure its value to be within the range of [0, 1]. On the other hand, the Sigmoid and auxiliary function
f introduce nonlinearity to the approximation of the likelihood contribution.

Assume the cavity distribution q(t)ep,−k(θ) = N (θm,−k, θs,−k) has a Gaussian distribution with mean
θm,−k and variance θs,−k and let C = f(xk,i)θ. C then still follows a Gaussian distribution, Hence
denoting this distribution of C as q(t)c,−k(C), we have that:

q
(t)
c,−k(C) = N (Cm,−k, Cs,−k) , (6)

where N (Cm,−k, Cs,−k) is a Gaussian distribution with mean Cm,−k and variance Cs,−k, which
can be calculated as: [

Cm,−k
Cs,−k

]
=

[
f (xk,i) θm,−k
f2 (xk,i) θs,−k

]
. (7)

Eq. 5-7 introduce several important terms before we can analytically approximate the EP updates
(which we shall discuss in the following text).

Then we adopt the following lemma to calculate the first three moments of the likelihood term
l
(t)
k (xk,i; θ) = σ (C), namely, EC(σ(C)), EC(σ2(C)) and EC(σ3(C)).

Lemma 4.1. Suppose C ∼ N (Cm,−k, Cs,−k). Let d > 1 be a positive integer. There exist two real
constants a and b, such that the first d moments can be expressed in closed form:

EC(σd(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
, (8)

5

Under review as a conference paper at ICLR 2022

whose proof is in Appendix A. Based on this lemma, the following theorem provides an analytical
solution for calculation of the first two moments of the hybrid/tilted distribution:

h
(t)
k (θ) = l

(t)
k (xk,i; θ)q

(t)
ep,−k(θ) (9)

Theorem 4.1. Suppose we are given a data item the xk,i located at k-th party during federated
learning. Let f : R|xk,i| → R1 be a neural network taking as input xk,i. Let θ be the parameters of
the generator/discriminator of a EP-GAN. Let C = f(xk,i)θ ∼ N (Cm,−k, Cs,−k). Let h(t)k (θ) be
the hybrid/tilted distribution of θ as defined in Eq. (9). Let the EP-prior q(t)ep (θ) = N (θm, θs), the
update rules of θm and θs can be written in closed form as:

θm = S1, (10)

θs = S2 − S2
1 , (11)

where

S1 =
[
(Cm,−k + Cs,−k)EC(σ(C))− Cs,−kEC(σ2(C))

]
/ S0f(xk,i), (12)

S2 =
[
(Cm,−k + 2Cs,−k)EC(σ2(C))− 2Cs,−kEC(σ3(C))

]
/ S0f

2(xk,i), (13)

S0 = EC(σ(C)). (14)

We leave the proof in Appendix B.

With first two moments of the hybrid distribution, S1 and S2, being expressed in closed form, we
can follow Step 4 (Section 3) to update the EP-prior q(t)ep (θ) = N (θm, θs), whose parameters θm
and θs can be updated in closed form as well (Theorem 4.1). Through iterating with the four steps
(discussed in Section 3), we can analytically approximate the prior distribution for model parameters
of a Bayesian GAN, such that it can help the model to infer the global multi-modal data distribution
for the datasets stored on different clients while following the cross-silo federated learning settings
(see details of our EP algorithm in Appendix E.5).

In summary, by simplifying the likelihood term, we can derive closed-form moments for hybrid/tilted
distribution approximation without requiring numerical approximation (see Appendix for the proof
of Theorem 4.1). Hence, the matching of moments is in closed form, resulting in closed-form update
rules for EP-prior parameters, θm and θs.

Approximation Error and Computational Efficiency. In Lemma 4.1, we use the probit function
Φ (ζa(C + b)) . to approximate σd(C). Similar approximation is also adopted by Wang et al. (2016)
and Wang & Manning (2013). Both the numerical and theoretical approximation analysis has been
well studied in Section 3.2 (Wang et al., 2016). Our closed-form update for EP approximation is
efficient in computation. Suppose there is a system with K subsamples/clients (note that K is usually
known beforehand). For EP with neural networks in (Jylänki et al., 2014) which requires numerical
quadratures, its computational complexity is O(MK), where M is the number of quadratures points.
For EP with MCMC, its computational complexity is O(NK), where N is the number of MCMC
samples. To approach a good approximation, both N and M should be sufficiently large (Barthelmé
& Chopin, 2014). In contrast, with the closed-form update, our EP-GAN’s computational complexity
is reduced to O(K).

4.2 INCORPORATING EP-PRIOR TO PROBGAN

In the previous sections, we have discussed EP-BGAN, which can be implemented by simply
replacing the normal prior imposed by the vanilla Bayesian GAN (Saatchi & Wilson, 2017) with
an EP-prior. However, the vanilla Bayesian GAN lacks the convergence guarantee; ProbGAN (He
et al., 2019) then improves upon the vanilla Bayesian GAN by introducing a carefully crafted prior,
resulting in a variant of Bayesian GAN with the desirable convergence guarantee. We therefore
propose to incorporating EP-prior to ProbGAN, dubbed EP-ProbGAN. In EP-ProbGAN, the prior is
factorized by a Gaussian prior inferred by EP and a ProbGAN prior. The EP-prior here plays the role
of adjusting the original ProbGAN prior with the client-invariant distribution shift. With the spirit of
Gaussian Mixture Approximation (GMA) (He et al., 2019) and to encourage our EP-prior to capture
the client-invariant distribution shift, we extend the EP-prior to a mixture of EP-priors using a mixture
density network (Bishop, 1994), and the corresponding model is dubbed Mixture-EP-ProbGAN.
Details of inference methods for EP-ProbGAN and Mixture-EP-ProbGAN are left in Appendix E.

6

Under review as a conference paper at ICLR 2022

5 EMPIRICAL EXPERIMENTS

In this section, we evaluate our EP-GANs on non-i.i.d cross-silo datasets to demonstrate its effec-
tiveness of learning the global distribution on a toy federated dataset, an extremely non-i.i.d image
dataset, and a realistic non-i.i.d speech recognition dataset. To keep conciseness, we report the
implementation of all experiment details in Appendix F.

5.1 TOY EXPERIMENTS

Setting. We evaluate our EP-GANs on a toy cross-silo non-i.i.d dataset, where 4 parts of the data,
generated by 4 Gaussians centered at (−3, 3), (3, 3), (−3,−3), (3,−3), respectively, with variances
randomly sampled from [0.3, 0.5]. The detailed model architecture, training protocol and hyper-
parameters is reported in Appendix F.2.

Results. Fig. 1 visualizes the density maps (decision boundaries) produced by WGAN, ProbGAN,
and EP-ProbGAN at different federated turns on the toy federated dataset. Specifically, we feed the
grid points into the discriminator and use the output classification scores to construct the density map.
‘Red’ indicates higher scores, and ‘blue’ indicates lower scores. Figures in the first column of Fig. 1
show the density maps of three GANs with a centralized 4-Gaussian dataset. In this oracle setting, all
GANs successfully learn the Gaussian mixture after 200 epochs. The figures in the next four columns
show the density maps of the discriminators in each client after local training. The figures in the last
column show the density maps of the averaged global models after the first turn, the middle turn, and
the last turn, from which we can observe mode collapse after every federated aggregation of WGAN
and ProbGAN (see the last column). More specifically, in WGAN and ProbGAN, FedAvg over-
smoothes the 4 locally learned modes, causing mode collapse after global model aggregation. With
the regularization of our EP-prior, EP-ProbGAN can, to some extent, preserve structural information
during local training, preventing such pathological over-smoothing and successfully recovering a
mixture of 4 Gaussians much closer to the ground-truth global distribution.

5.2 SYNTHETIC EXTREMELY NON-I.I.D IMAGE DATASET

Settings. We evaluate our method on CIFAR-10 (Hinton et al., 2012), a widely-adopted image
dataset that contains 10 classes of images, with 5000 training images and 1000 test images in each
class. Based on CIFAR-10, we construct three datasets corresponding to three settings: (1) i.i.d. K=2,
(2) i.i.d. K=10, and (3) non-i.i.d. In doing so, we simulated two i.i.d. federated scenario and an
extremely non-i.i.d scenario where each client’s data sample is severely biased due to labels. The
dataset construction, model architecture, and training protocols are detailed in Appendix F.3.

Baselines and EP-GAN Variants. We compare our proposed EP-GANs (short for EP-GAN variants)
with multiple representative baselines, which can be categorized as:

• FedAvg + GANs without special design: (1) Vanilla GAN;
• FedAvg + Bayesian GANs: (2) BayesGAN and (3) ProbGAN;
• GANs for non-i.i.d data: (4) F2A-fed (Yonetani et al., 2019);
• GANs with only discriminators federated: (5) FedAvg-GAN (Augenstein et al., 2019).

Baselines (1)-(3) show the performance of non-Bayesian GANs and SOTA Bayesian GANs under non-
i.i.d federated settings. Baselines (4) and (5) are a representative decentralized GANs method designed
for addressing non-i.i.d data and a representative method that only trains discriminators locally,
respectively. Each GAN model is trained with two objectives separately, i.e., WGAN (Arjovsky et al.,
2017) and LS-GAN (Mao et al., 2017). We also conduct experiments on EP-BGAN to ablate the
potential influence of the ProbGAN backbone in EP-PorbGAN. Moreover, we compare EP-ProbGAN
with Mixture-EP-ProbGAN to see whether a mixture of multiple EP-priors can be more informative.
We quantitatively evaluate the methods with two widely-used image generation metrics: Inception
Score (IS) (Salimans et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017).

Running Time Analysis. To facilitate the understanding of EP-prior’s computational efficiency, we
empirically analyze the per-epoch running time of ProbGAN and EP-ProbGAN. We kept a similar
number of parameters of ProbGAN and EP-ProbGAN and trained them on CIFAR-10. Both models
took 25 epochs during training with the same iterations. The average running time per epoch of
ProbGAN and EP-ProbGAN are 4.3s and 5.9s, respectively; this shows that with the proposed

7

Under review as a conference paper at ICLR 2022

Table 1: IS and FID on CIFAR-10. Each model is trained on three different settings with two
GAN objectives, WGAN and LS-GAN. IS and FID are reported with the corresponding relative
improvement compared to ProbGAN (FedAvg) under the same setting.

Model Settings Inception Scores (Higher is better) FIDs (Lower is better)

GAN Objective W LS W LS

Vanilla GAN (oracle) centralized 7.16 7.30 28.61 27.20

ProbGAN (oracle) centralized 7.28 7.36 27.46 26.60

EP-ProbGAN (oracle) centralized 7.34 7.38 26.03 26.42

Vanilla GAN
(federated)

i.i.d. K=2 6.72±0.12 6.33±0.17 28.98 30.21
i.i.d. K=10 5.72±0.18 5.02±0.11 45.87 55.33
non-i.i.d 4.43±0.07 4.02±0.12 69.94 72.34

ProbGAN
(He et al., 2019)

(federaetd)

i.i.d. K=2 6.78±0.23 6.47±0.23 27.38 30.84
i.i.d. K=10 5.65±0.24 4.74±0.16 41.92 60.62
non-i.i.d 4.65±0.15 4.09±0.09 65.74 87.07

FedAvg-GAN
(Augenstein et al., 2019)

(federated)

i.i.d. K=2 5.46±0.12 4.99±0.16 50.25 57.72
i.i.d. K=10 4.35±0.18 3.94±0.08 70.10 83.41
non-i.i.d 3.42±0.12 3.06±0.14 95.89 109.65

F2A-fed
(Yonetani et al., 2019)

(federated)

i.i.d. K=2 5.72±0.08 5.03±0.11 48.98 55.21
i.i.d. K=10 4.72±0.18 4.05±0.11 61.87 72.59
non-i.i.d 3.93±0.07 3.68±0.06 76.94 90.34

EP-BGAN
(ours)

i.i.d. K=2 6.94±0.18 (2.43%) 6.47±0.25 (-) 25.75 (5.81%) 30.56 (0.90%)
i.i.d. K=10 6.01±0.23 (6.46%) 4.68±0.17 (-1.28%) 42.09 (-0.41) 64.37 (-6.18%)
non-i.i.d 5.14±0.09 (10.69%) 4.36±0.15 (6.40%) 54.94 (16.43%) 72.79 (16.40%)

EP-ProbGAN
(ours)

i.i.d. K=2 6.89±0.33 (1.63%) 6.49±0.17 (0.33%) 27.23 (0.01%) 30.10 (2.4%)
i.i.d. K=10 5.87±0.20 (3.98%) 4.74±0.11 (-0.02%) 42.11 (-0.45%) 62.86 (-3.69%)
non-i.i.d 5.17±0.14 (11.21%) 4.43±0.23 (8.26%) 52.47 (20.19%) 76.26 (12.42%)

Mixture-EP-ProbGAN
(ours)

i.i.d. K=2 6.86±0.28 (1.17%) 6.50±3.00 (0.77%) 27.30 (0.29%) 30.60 (0.78%)
i.i.d. K=10 5.90±0.20 (4.50%) 4.69±0.21 (-1.09%) 40.55 (0.50%) 62.52 (-3.13%)
non-i.i.d 5.18±0.21 (11.42%) 4.46±0.15 (9.05%) 51.92 (21.02%) 73.74 (15.31%)

closed-form update, our EP-ProbGAN can run almost as fast as ProbGAN, demonstrating that the
calculation of EP-prior in EP-GANs is not dominant, and that our proposed closed-form update
successfully improves the computation efficiency.

Results. Results are reported in Table 1. Centralized vs. Non i.i.d.: Comparing ProbGAN’s
performance in the centralized and federated settings, we observe a noticeable gap, which increases
as the number of partitions increases. In the non-i.i.d setting, there is a drastic drop of performance
in terms of both IS and FID, which demonstrates the difficulty of unsupervised federated learning
on extremely non-i.i.d datasets. FedAvg-GAN and F2A-fed vs. EP-GANs: FedAvg-GAN suffers
from mode collapse when handling the extremely non-i.i.d federated data. This is because simply
averaging over model parameters pathologically over-smooths the data distributions captured by local
clients. F2A-fed also suffers from mode collapse as it relies on the estimation of the weight of each
local discriminator when aggregating their parameters, which requires high-frequent server-client
communication. Such a training strategy is unstable in federated learning, as the larger number
of local updates will accumulate deviation between the global and local models. In contrast, with
deliberately crafted EP-prior, our EP-GANs are capable of preserving global structural information
during federated learning, achieving better performance on non-i.i.d federated data. ProbGAN
(federated) vs. EP-GANs: With the additional guidance from our EP-prior, we can observe IS
improvements of 10.69% and 6.40% for the objectives of ‘WGAN’ and ‘LS-GAN’, respectively.
The improvement rates for FID are both around 16%, which demonstrates the effectiveness of
EP-GAN. Moreover, we show that two EP-GAN variants, EP-BGAN and EP-ProbGAN, have
roughly comparable performances. Mixture of EP-priors: After integrating multiple EP-priors, we
observe a further improvement. Our Mixture-EP-ProbGAN achieves the best performance under the
non-i.i.d setting. In conclusion, these comprehensive experiments demonstrate the effectiveness of
EP-GAN on extremely non-i.i.d cross-silo image datasets. To further elaborate the improvement,
we performed a statistical significance test on Inception Scores of EP-BGAN, EP-ProbGAN, and
Mixture-EP-ProbGAN for CIFAR10. Results are listed in Appendix F.3.4.

8

Under review as a conference paper at ICLR 2022

5.3 NATURAL NON-I.I.D CONVERSATIONAL SPEECH DATASET

Below we describe a set of experiments that demonstrate the potential of our EP-ProbGAN for
classification tasks on natural real-world non-i.i.d speech datasets. More specifically, EP-GANs are
used to conduct unsupervised representation learning over cross-silo non-i.i.d speech data, and the
learned representations are used as additional input for the acoustic modeling in ASR.

Datasets. We evaluate EP-ProbGAN on a challenging conversational speech dataset CHiME-
5 (Barker et al., 2018), whose data are collected from daily life with diverse environments and
various speakers. The training set is originally collected by 16 conversation sessions, each consisting
of different speakers at different places and different conversation topics, which composes a natural
non-i.i.d data partition. Hence, the non-i.i.d federated speech setting has 16 clients of each session
respectively for training and use the original testing set, containing 4 conversation sessions. The
detailed composition of dataset is reported in Appendix F.4.1.

Table 2: The WERs on CHiME-5 of dif-
ferent models in centralized and non.i.i.d.
settings.

Model WER

Centralized SRU (oracle) 62.6
(Huang et al., 2020)

SRU (non-i.i.d baseline) 68.58
w/ ProbGAN 66.86 (2.51%)
w/ EP-ProbGAN (ours) 66.20 (3.47%)

SRU (EP) w/ EP-ProbGAN (ours) 64.30 (6.24%)

Evaluated Models The baseline speech recognition
system is obtained by training SRU acoustic model on
clients using FedAvg. We further incorporate GANs
including EP-ProbGAN and ProbGAN to SRU acous-
tic model for comparing their ability of unsupervised
client-invariant representation learning. Notably, the
EP-ProbGAN in this experiment refers to the Mixture-
EP-ProbGAN. By jointly training the EP-ProbGAN
and the SRU acoustic model, we obtain a model called
SRU w/ EP-ProbGAN. Similarly, by jointly training the
ProbGAN and the SRU acoustic model, SRU w/ Prob-
GAN is obtained. Moreover, we explore incorporating
EP-prior to SRU acoustic model based on SRU w/ EP-ProbGAN, noted as SRU (EP) w/ EP-ProbGAN.
The implementation and training details are reported in Appendix F.4.2 and F.4.3.

Results. We report the WER of different models in Table 2. Centralized vs. non-i.i.d: With the
identical SRU acoustic model, we can observe a noticeable gap between the oracle centralized setting
and the realistic non-i.i.d setting, which reveals the fact that federated learning faces performance
deteriorate when deploying in non-i.i.d environments. ProbGAN vs. EP-ProbGAN: Our SRU w/
EP-ProbGAN achieves around 0.7 % absolute WER reduction compared with SRU w/ ProbGAN,
suggesting that our EP-ProbGAN is capable of learning a client-invariant representations for the
downstream ASR task. We further augment SRU w/ EP-ProbGAN through adopting EP-prior to the
SRU acoustic model itself, which outperforms SRU w/ ProbGAN in a large margin, yielding around
2.6 % absolute WER reduction. Overall, our SRU (EP) w/ EP-ProbGAN performs the best among
all models under non-i.i.d setting in terms of WER, outperforming the baseline SRU trained with
the non-i.i.d setting by 6.24 %. This demonstrates the potential of our EP-prior and EP-GAN for the
supervised learning task.

6 CONCLUSION

We present a novel Bayesian GAN, named EP-GAN, for unsupervised learning from non-i.i.d cross-
silo data. More importantly, we tackle defects of existing algorithms for deep-learning-based EP
inference and derive a closed-form solution for each update step of EP, leading to an more efficient
solution for federated data modeling. Experiments on both toy federated data and synthetic extremely
non-i.i.d image data partitions demonstrate that our framework effectively alleviates the performance
deterioration caused by non-i.i.d data compared to other Bayesian GANs. The realistic non-i.i.d
speech recognition task validates EP-GAN’s potential for classification tasks. So far, we have not
thoroughly explored the potential of EP-GAN, such as exploring nonparametric methods to allow the
number of EP-prior components to grow with the cross-silo data, nor have we perform experiments
on other data modalities such as text, which would be an interesting future work. Meanwhile, the
increasing capability of generative models prompts public concerns on the adverse social impacts, but
we hope that more discussions on federated generative models will help promote related defending
methods as well as related regulations to protect privacy and security.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

SS Airey and MJF Gales. Product of gaussians for speech recognition. 2003.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Sean Augenstein, H Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz,
Mingqing Chen, Rajiv Mathews, et al. Generative models for effective ml on private, decentralized
datasets. arXiv preprint arXiv:1911.06679, 2019.

Jon Barker, Shinji Watanabe, Emmanuel Vincent, and Jan Trmal. The fifth’chime’speech separation
and recognition challenge: dataset, task and baselines. arXiv preprint arXiv:1803.10609, 2018.

Simon Barthelmé and Nicolas Chopin. Expectation propagation for likelihood-free inference. Journal
of the American Statistical Association, 109(505):315–333, 2014.

Alain Biem, Shigeru Katagiri, Erik McDermott, and Biing-Hwang Juang. An application of discrimi-
native feature extraction to filter-bank-based speech recognition. IEEE Transactions on Speech
and Audio Processing, 9(2):96–110, 2001.

Christopher M Bishop. Mixture density networks. 1994.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis, and Wei
Shi. Federated learning of predictive models from federated electronic health records. International
journal of medical informatics, 112:59–67, 2018.

Thang D Bui, Cuong V Nguyen, Siddharth Swaroop, and Richard E Turner. Partitioned variational
inference: A unified framework encompassing federated and continual learning. arXiv preprint
arXiv:1811.11206, 2018.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pp. 1683–1691. PMLR, 2014.

Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated transfer
learning framework for wearable healthcare. IEEE Intelligent Systems, 2020.

Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, Issa Sylla, Yoonyoung Park, Grace
Hsu, and Amar Das. Differential privacy-enabled federated learning for sensitive health data. arXiv
preprint arXiv:1910.02578, 2019.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

Xiawei Guo, Quanming Yao, WeiWei Tu, Yuqiang Chen, Wenyuan Dai, and Qiang Yang. Privacy-
preserving transfer learning for knowledge sharing. arXiv preprint arXiv:1811.09491, 2018.

Hao He, Hao Wang, Guang-He Lee, and Yonglong Tian. Probgan: Towards probabilistic gan with
theoretical guarantees. In ICLR (Poster), 2019.

Nicolas Heess, Daniel Tarlow, and John Winn. Learning to pass expectation propagation messages.
Advances in Neural Information Processing Systems, 26:3219–3227, 2013.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pp. 6629–6640, 2017.

10

Under review as a conference paper at ICLR 2022

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Hengguan Huang, Fuzhao Xue, Hao Wang, and Ye Wang. Deep graph random process for relational-
thinking-based speech recognition. In International Conference on Machine Learning, pp. 4531–
4541. PMLR, 2020.

Shun ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191 of translations
of mathematical monographs, 2000.

Jonathan E Ingersoll. Theory of financial decision making, volume 3. Rowman & Littlefield, 1987.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with
differential privacy guarantees. In International conference on learning representations, 2018.

Pasi Jylänki, Aapo Nummenmaa, and Aki Vehtari. Expectation propagation for neural networks with
sparsity-promoting priors. Journal of Machine Learning Research, 15(54):1849–1901, 2014. URL
http://jmlr.org/papers/v15/jylanki14a.html.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. arXiv preprint arXiv:1709.02755, 2017.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. arXiv preprint arXiv:2102.02079, 2021.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. In Proceedings of the IEEE international conference on
computer vision, pp. 2794–2802, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Thomas P Minka. Expectation propagation for approximate bayesian inference. arXiv preprint
arXiv:1301.2294, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Mohammad Rasouli, Tao Sun, and Ram Rajagopal. Fedgan: Federated generative adversarial
networks for distributed data. arXiv preprint arXiv:2006.07228, 2020.

Yunus Saatchi and Andrew Gordon Wilson. Bayesian gan. arXiv preprint arXiv:1705.09558, 2017.

11

http://jmlr.org/papers/v15/jylanki14a.html

Under review as a conference paper at ICLR 2022

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith.
On the convergence of federated optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 3:3, 2018.

Tim Salimans, Ian J Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, 2016.

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free training of
multilayer neural networks with continuous or discrete weights. In NIPS, volume 1, pp. 2, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

W Gregory Voss. European union data privacy law reform: General data protection regulation,
privacy shield, and the right to delisting. The Business Lawyer, 72(1):221–234, 2016.

Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Natural-parameter networks: A class of probabilistic
neural networks. arXiv preprint arXiv:1611.00448, 2016.

Sida Wang and Christopher Manning. Fast dropout training. In international conference on machine
learning, pp. 118–126. PMLR, 2013.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739, 2018.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):12, 2019.

Ryo Yonetani, Tomohiro Takahashi, Atsushi Hashimoto, and Yoshitaka Ushiku. Decentralized
learning of generative adversarial networks from non-iid data. arXiv preprint arXiv:1905.09684,
2019.

Felix Yu, Ankit Singh Rawat, Aditya Menon, and Sanjiv Kumar. Federated learning with only
positive labels. In International Conference on Machine Learning, pp. 10946–10956. PMLR,
2020.

Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep generative
model (technical report). arXiv preprint arXiv:1801.01594, 2018.

Yikai Zhang, Hui Qu, Qi Chang, Huidong Liu, Dimitris Metaxas, and Chao Chen. Training
federated gans with theoretical guarantees: A universal aggregation approach. arXiv preprint
arXiv:2102.04655, 2021.

Jing Zhao, Xiao Liu, Shaojie He, and Shiliang Sun. Probabilistic inference of bayesian neural
networks with generalized expectation propagation. Neurocomputing, 412:392–398, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

Under review as a conference paper at ICLR 2022

A PROOF OF LEMMA 4.1

Lemma 4.1. Suppose C ∼ N (Cm,−k, Cs,−k). Let σ(x) be the sigmoid function, let d > 1 be a
positive integer and let ζ2 = π

8 . There exist two real constants a and b, such that the first d moments
of σ(C) can be expressed in closed form:

EC(σd(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
(15)

Proof. Let a, b be two real constants. Taking the probit funtion Φ (ζa(C + b)) to approximate σd(C)
by matching their value and derivative at median of the probit function, we have:

σk(C) ≈ Φ(ζa(C + b))

where
a = 2d(1− 2−1/d)

b = log(21/d − 1)
(16)

Let d = 1, we have:
σ(C) ≈ Φ(ζC) (17)

With Theorem 3 (Wang et al., 2016) and Eq. (17), we have:

EC(σd(C)) =

∫
σd(C)N (Cm,−k, Cs,−k) dC

≈
∫

Φ(ζa(x+ b)N (Cm,−k, Cs,−k) dC

= Φ

(
ζa (Cm,−k + b)√

1 + ζ2a2Cs,−k

)

≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
(18)

Combining Eq. (16) and Eq. (18) concludes the proof.

B PROOF OF THEOREM 4.1

We formally state the Stein’s Lemma here, following the version in (Ingersoll, 1987).
Lemma B.1. Let C ∼ N (Cm,−k, Cs,−k), and let g be a differentiable function satisfying
E[g′(X)] <∞. Then

E[g(C)(C − Cm,−k)] = Cs,−kE[g′(C)] (19)

Theorem 4.1. Suppose we are given a data observation xk,i. Let f : R|xk,i| → R1 be a neural
network taking as input the data xk,i. Let θ be the parameters of the generator/discriminator of a
EP-GAN. Let C = f(xk,i)θ ∼ N (Cm,−k, Cs,−k). Let h(t)k (θ) be the hybrid/tilted distribution of θ
as defined in Eq. (9). Let the EP-prior q(t)ep (θ) = N (θm, θs), we have the closed-form update rules
of θm and θs:

θm = S1, (20)

θs = S2 − S2
1 , (21)

where

S1 =
[
(Cm,−k + Cs,−k)EC(σ(C))− Cs,−kEC(σ2(C))

]
/ S0f(xk,i), (22)

S2 =
[
(Cm,−k + 2Cs,−k)EC(σ2(C))− 2Cs,−kEC(σ3(C))

]
/ S0f

2(xk,i), (23)

S0 = EC(σ(C)). (24)

13

Under review as a conference paper at ICLR 2022

Proof. With C ∼ N (Cm,−k, Cs,−k) and Lemma B.1, we have that the first three moments of σ(C)
can be expressed in closed form, e.g.:

EC(σ(C)) ≈ σ

(
(Cm,−k)√

1 + ζ2Cs,−k

)
; (25)

E(σ2(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
, (26)

where ζ2 = π
8 , a = 4− 2

√
2, and b = ln (

√
2 + 1);

E(σ3
C(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
, (27)

where ζ2 = π
8 , a = 6

(
1− 1

3√2

)
, and b = ln (3

√
2− 1).

Let the normalizer S0 =
∫
h
(t)
k (θ)dθ. With Eq. (25), we have:

S0 =

∫
σ (f (xk,i) θ) q

(t)
ep,−k(θ)dθ

= EC(σ(C))

≈ σ

(
(Cm,−k)√

1 + ζ2Cs,−k

) (28)

Let the first moment of θ, S1 =
∫
θh

(t)
k (θ)dθ/

∫
h
(t)
k (θ)dθ. We have:

S1 =

∫
f(xk,i)θσ (f (xk,i) θ) q

(t)
ep,−k(θ)dθ

f(xk,i)S0
=
EC (C · σ(C))

f(xk,i)S0
(29)

We then take Lemma B.1 to compute EC (C · σ(C)), we have

EC (σ(C) · (C − Cm,−k)) = Cs,−kEC (σ′(C)) (30)

Then we have:

EC(σ(C) · C) = (Cs,−k + Cm,−k)EC(σ(C))− Cs,−kEC(σ2(C)), (31)

With Eq. (29) and Eq. (31), we therefore have:

S1 =

[
(Cm,−k + Cs,−k)E(σ(C))− Cs,−kE(σ2(C))

]
S0f(xk,i)

. (32)

Combining Eq. (25), Eq. (26), Eq. (28) and Eq. (32) , we have the first moment S1 being expressed
in closed form.

Let the second moment of θ, S2 =
∫
θ2h

(t)
k (θ)dθ/

∫
h
(t)
k (θ)dθ. We have:

S2 =

∫
θ2σ (f (xk,i) θ) q

(t)
ep,−k(θ)dθ

f2(xk,i)S0
=
EC
(
C2 · σ(C)

)
f2(xk,i)S0

(33)

With Lemma B.1, we have

EC (σ(C) · C · (C − Cm,−k)) = Cs,−kEC
(
σ(C) +

(
σ(C)− σ2(C)

)
· C
)

(34)

Then we have:

EC
(
C2 · σ(C)

)
= Cs,−kE (σ(C))+(Cs,−k + Cm,−k)EC(C·σ(C))−Cs,−kEC(σ2(C)·C) (35)

14

Under review as a conference paper at ICLR 2022

We further adopt Lemma B.1 to derive EC(σ2(C) · C), then we have:

EC
(
σ2(C)(C − Cm,−k)

)
= Cs,−kEC

(
2σ2(C)− 2σ3(C)

)
(36)

Then
EC
(
σ2(C) · C

)
= (Cm,−k + 2Cs,−k)EC(σ2(C))− 2Cs,−kEC(σ3(C)) (37)

With Eq. (33), Eq. (35) and Eq. (37), we have:

S2 =

[
(Cm,−k + 2Cs,−k)E(σ2(C))− 2Cs,−kE(σ3(C))

]
S0f2(xk,i)

. (38)

Combining Eq. (26)-(28) and Eq. (38), we have the second moment S2 being expressed in closed
form as well.

With first two moments of θ, S1 and S2, being expressed in closed form, we have the EP-prior
q
(t)
ep (θ) = N (θm, θs), whose parameters θm and θs can be updated in close-form:

θm = S1, (39)

θs = S2 − S2
1 , (40)

C DETAILED COMPARISON WITH RELATED WORKS

Federated Learning with non-i.i.d Datasets. While federated learning has been gaining more
and more attention in recent years (McMahan et al., 2017; Yang et al., 2019; Chen et al., 2020;
Brisimi et al., 2018; Guo et al., 2018), few works have explored federated learning with non-i.i.d
datasets (Li et al., 2021). Sahu et al. (2018) extend FedAvg with a proximal term, named FedProx,
considering the dissimilarity between clients, and provides a theoretical analysis of convergence under
a similarity assumption in a view of parameter divergence. They only demonstrate their effectiveness
on supervised learning datasets. Zhao et al. (2018) address supervised federated learning on non-i.i.d
data with parameter regularization. Similarly, Xie et al. (2019) propose an asynchronous federated
optimization algorithm, and shows that their method can achieve comparable performance as FedAvg
(which is synchronous) with asynchronous optimization in supervised learning tasks.

Closest to our work is proposed by Yu et al. (2020), which uses labels to regularize local and global
models during local training. Different from aforementioned works which focus on the supervised
learning setting and therefore requires access to labels, we focus on unsupervised learning without
label information. Another closely related work proposed by Yonetani et al. (2019), which studies
the problem of learning vanilla GANs from multiple separate and non-i.i.d data collections under the
decentralized learning setting where the server and clients can communicate at a low cost. Similarly,
Zhang et al. (2021) propose UA-GAN, which improves multi-discriminator GAN by providing
theoretical guarantee through carefully crafted aggregation of distributed discriminators, which
is design to simulate the centralized discriminator. However, their works require highly frequent
server-client communication, which is impractical in the federated learning (McMahan et al., 2017)
that our work focuses on.

Generative Adversarial Networks The existing federated GAN methods focus on addressing the
practical issues on adapting the training of GANs to federated scenarios from two directions, privacy
protection and communication efficiency.

DP-FedAvg-GAN (Augenstein et al., 2019) is one of the earliest works that combine GANs with
federated learning, whose target is to address the possible privacy leakage problem. The core of their
method is two-fold. First, they argue that the training of Generator can be conducted at the server and
only the discriminators are trained locally and aggregated at the server. Second, the training of GANs
is protected by a differentially private FedAvg algorithm (DP-FedAvg). Apart from DP-FedAvg-GAN,
there are multiple works combining GANs with privacy protection techniques, such as DPGAN (Xie
et al., 2018), dp-GAN (Zhang et al., 2018), and PATE-GAN Jordon et al. (2018). Although our
work is not directly proposed to improve the privacy protection of GANs under federated settings,

15

Under review as a conference paper at ICLR 2022

the aforementioned privacy protection techniques, e.g. DP-Fedavg, can be directly applied to our
framework. Moreover, adding DP to the algorithm usually harms the performance, as it introduces
noises to the model.

On the other hand, the aforementioned federated/decentralized GANs suffer from communication
inefficiency, as they require large communication bandwidth among data sources or between data
sources and an intermediary (to ensure convergence) due to architectures that separate generators
from discriminators. Rasouli et al. (2020) propose to train discriminators and generators locally, and
the server (intermediary) only averages the agents’ parameters. They empirically show that with their
strategy, they can achieve less communication overhead and faster convergence, but they do not focus
on the mode collapse of GANs caused by the non-i.i.d data. In their paper, authors claim to achieve
similar performance to general distributed GAN. We take a similar strategy to train EP-GAN in the
non-i.i.d federated setting, i.e., generators and discriminators are updated at the clients, and the server
only averages the parameters from clients.

Also related to our work are recent advances in Bayesian formulation of GANs, such as BayesGAN
(Saatchi & Wilson, 2017) and ProbGAN (He et al., 2019), to address the notorious mode-collapse
issue. The Bayesian GAN assumes a Gaussian prior for both generator and discriminator distribution,
while ProbGAN, as a special case of Bayesian GAN, simply adopts the generator distribution at
the previous iteration as the prior. Therefore, from the Bayesian perspective, both BayesianGAN
and ProbGAN have the similar issue of enforcing an over-general prior, limiting their capability in
capturing the latent multi-modal structure of non-iid data partitions under federated learning setting
and thus leading to mode collapse. In contrast, our proposed EP-GAN successfully avoids such an
issue by treating the prior of parameter distributions in each client as a latent variable and modeling
the joint distribution of all clients as a product of these latent variables.

Expectation Propagation for Bayesian Neural Networks. Expectation Propagation is one of
the most popular Bayesian inference methods in Bayesian neural networks (Minka, 2013). It
approximates the posterior with exponential-family factors, which are iteratively updated via moment
matching.

A critical difficulty of applying EP to neural networks is that the moment matching can be intractable
if the likelihood term involves many latent variables or has a complex form, which results in the
intractability of the moments of the hybrid/tilted distribution. Jylänki et al. (2014), as the initial
trial of EP to a shallow neural network, attempt to approximate the likelihood term by numerical
quadrature. However, such a method requires numerical approximation for each data point, limiting
its scalability to large datasets. A more scalable solution is proposed in (Soudry et al., 2014). Though
it has been successfully applied to neural networks with binary weights, its extension to continuous
weights fails to produce estimates of posterior variance. In contrast, we propose a close-formed
solution for moment matching without requiring numerical approximation. Our method is capable of
capturing global latent structure for complex Bayesian neural networks such as Bayesian GANs over
cross-silo realistic datasets.

The closest work to ours is (Bui et al., 2018), which adopts variational inference (VI) to simulate EP,
allowing to identify new ways of performing VI on federated learning settings. However, their EP
update is inefficient as it is calculated via gradient descent with a deliberately designed KL loss, while
our EP-GAN adopts a closed-form solution for the EP update that is more efficient than estimating
through gradient descent. Meanwhile, their approach doesn’t consider the realistic non-i.i.d scenarios.
To confirm the significance of the contribution in terms of EP with neural networks, we give a
comparison of related works with our EP-GAN in the following table:

Table 3: The comparison of supported features of representative methods

Representative method Convergence
guarantee

Sampling-free
EP update

Closed-form EP
update approximation

Numerical approxima-
tion/quadrature free

Jylänki et al. (2014) 7 3 3 7
Bui et al. (2018) 7 7 7 7

Heess et al. (2013) 7 7 7 7
Zhao et al. (2020) 7 7 7 7

Ours 7 3 3 3

16

Under review as a conference paper at ICLR 2022

D FEDERATED LEARNING FORMULATION

Following the popular federated learning (FL) formulation (Li et al., 2019), we formulate unsupervised
federated learning (UFL) problem with the unlabeled data distributed on separate clients. Denote
K as number of clients in the UFL system, and the private dataset in the party k ∈ {1...K} as
Xk. We have K clients with their private datasets Xk = {x|x ∼ pk(x)} drawn from non-identical
distributions, i.e., pk(x) 6= pk′(x) for all k 6= k′. The UFL target is to optimize the model with
private data distributed on different clients:

min
w

F (w) ,
K∑
k=1

vkFk(w), (41)

where F and Fk represent the global model and local model of client k respectively, w represents
the model parameters, and vk is the weight of the corresponding party k such that vk ≥ 0 and∑K
k=1 vk = 1.

In UFL, each party k optimizes their local model on its private data set Xk with the objective Fk(·),

Fk(w) ,
1

nk

nk∑
i=1

` (w;xk,i) , (42)

where `(·; ·) is the localized loss function, nk is the number of instances in Xk.

E DETAILS OF INFERENCE FOR EP-GANS

In this section, we introduce details of EP-GANs inference in practice that we omit in the main paper.

E.1 INFERENCE FOR EP-PROBGAN

For EP-ProbGAN, the update of generator distributions becomes the following:

q(t+1)(θG) ∝ p(t)(θG|θD) ·
[
q(t)(θG) · p̃(t)ep (θG)

]
, (43)

where q(t)(θG) is the prior imposed by ProbGAN, which is essentially the generator distribution
at the previous update iteration; p(t)(θG|θD) is the likelihood term. Overall, the prior of the new
Bayesian GAN is factorized by EP-prior p̃(t)ep (θG) and the ProbGAN prior q(t)(θG). The EP-prior
here plays the role of adjusting the original ProbGAN prior with the client-invariant distribution shift.

We then develop the inference algorithm to compute the posterior. To approximate the usually
intractable posterior, we follow the strategy of Bayesian GANs (Saatchi & Wilson, 2017; He et al.,
2019) and adopt the Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014)
technique to generate samples. We generate N samples as {θ(t)

G,n}Nn=1 from generator distribution
q(t)(θG). With the adapted SGHMC algorithm (described in Appendix E.4), we can sample the
consequent posterior q(t+1)

G (θG) from gradients by:

∇θG
log q(t+1) (θG) = ∇θG

(
JG
(
θG;D(t)

)
+ log q(t) (θG) + log p̃(t)ep (θG)

)
. (44)

Calculating the gradient of the first term is trivial, while the remaining terms have no exact analytic
form. We therefore adapt Partial Summation Approximation (PSA) (He et al., 2019) to calculate the
second term (described in Appendix E.3).

E.2 INFERENCE FOR MIXTURE-EP-PROBGAN

With the spirit of Gaussian Mixture Approximation (GMA) (He et al., 2019) and to encourage our
EP-prior to capture the client-invariant distribution shift, we re-parameterized our EP-prior in the
following form:

p̃(t)ep (θG) = C · exp

[∑N

n=1
‖θm − θ

(t)
G,n‖

2
2 / 2θs

]
, (45)

17

Under review as a conference paper at ICLR 2022

where C is a constant; N is the number of generated samples {θ(t)
G,n}Nn=1 from generator distribution;

θm and θs are the mean and variance of the old EP-prior. The new EP-prior provides the way
of linking the old EP-prior with generator distribution q(t)(θG) at previous updating iteration in
achieving client-invariant model distribution for the generator. To enhance the expressive power of
EP-priors, we derive a mixture of multiple EP-priors using a mixture density network (Bishop, 1994).

Assume we have N observations of generator parameters {θ(t)
G,n}Nn=1, and J EP-priors in a mixture.

The GMA for mixture of EP-priors can be written as:

p̃(t)ep (θG) ≈ C ·
J∑
j=1

πj exp

[
N∑
n=1

‖θm,j − θ
(t)
G,n‖22

2θs,j

]
, (46)

where
∑J
j=1 πj = 1; C is the normalization constant; θm,j and θs,j are the mean and variance of the

j-th EP-prior in the mixture. Notably, in practice, {π}Jj=1 are estimated with Gumble-Softmax (Jang
et al., 2016).

Algorithm 1 Our adapted SGHMC algorithm for EP-GANs

1: Input: Initial Monte Carlo samples of {θ(0)
G,N}Nn=1, learning rate η, SGHMC noise factor α,

number of updates in SGHMC procedure L, number of updating iterations T
2: for t = 1, ..., T do
3: for n = 1, 2..., N do
4: θG,n ← θ

(t−1)
G,n

5: for l = 1, 2, ..., L do
6: v← (1− α)v + η∇θG

log q(t) (θG,n) + n;
n ∼ N (0, 2αηI)

7: θG,n ← θG,n + v
8: end for
9: θ

(t)
G,n ← θG,n

10: end for
11: end for

E.3 PARTIAL SUMMATION APPROXIMATION (PSA)

We adopt Partial Summation Approximation (PSA) (He et al., 2019) for computing the second term
of Eq. (44) in the main paper, which can be written as:

∇θG
log q(t) (θG) = ∇θG

JG
(
θG;D(t−1)

)
+∇θG

log q(t) (θG) =

t−1∑
i=0

∇θG
JG
(
θG;D(i)

)
(47)

It is calculated by summing over all historical GAN objective gradients. However, such operation is
computationally expensive. We therefore follow the implementation in (He et al., 2019) to improve
the computation efficiency.

E.4 THE SGHMC FOR EP-GANS

We utilize the Stochastic Gradient HMC (SGHMC) algorithm (Chen et al., 2014) to sample the
posterior distributions over the generators, as it is convenient and practically beneficial to integrate
with GAN training (Saatchi & Wilson, 2017). Adapted from He et al. (He et al., 2019), we propose
an adapted SGHMC algorithm for EP-GAN sampling, as shown in Algorithm 1. The gradient
∇θG

log q(t) (·) in the 6-th line of Algorithm 1 is inferenced from the GMA mentioned in above
sections.

18

Under review as a conference paper at ICLR 2022

E.5 EP-GAN WITH FEDERATED LEARNING

EP-GAN can easily be adapted to the commonly used federated learning algorithm (FedAvg), as
shown in Algorithm 2.

Algorithm 2 EP-GAN with FedAvg
1: Input: K clients, and nk examples at the k-th client; L be the local training iterations; T be the

total number of training iterations.
2: Server initializes model parameters

(
θ
(0)
G ,θ

(0)
D

)
, Global EP-prior

(
θ
(0)
m , θ

(0)
s

)
and broadcasts to

all clients.
3: for t = 0, ..., T − 1 do
4: for k = 1, ...,K (parallelly) do
5: Update the EP-prior (θ

(t)
m,k, θ

(t)
s,k) according to Eq. (10) and Eq. (11).

6: Update the model parameters (θ
(t)
G,k,θ

(t)
D,k) with Algorithm 1.

7: if (t > 0 and t mod L == 0) or (t == T − 1) then
8: Upload

(
θ
(t)
G,k,θ

(t)
D,k

)
and

(
θ
(t)
m,k, θ

(t)
s,k

)
to server.

9: Server updates the model parameters:

θ
(t+1)
G =

K∑
k=1

1

nk
θ
(t)
G,k, θ

(t+1)
d =

K∑
k=1

1

ki
θ
(t)
D,k.

10: Server updates the global EP-prior with the mixture as Product-of-Gaussian (Airey &
Gales, 2003)

θ(t+1)
s =

K∑
k=1

(
θ
(t)
s,k

)−1
, θ(t+1)

m = θ(t+1)
s

K∑
k=1

θ
(t)
m,k

θ
(t)
s,k

11: The server broadcasts
(
θ
(t)
G ,θ

(t)
D

)
and

(
θ
(t)
m , θ

(t)
s

)
to the k-th client:(

θ
(t)
G,k,θ

(t)
D,k

)
←
(
θ
(t)
G ,θ

(t)
D

)
,

(
θ
(t)
m,k, θ

(t)
s,k

)
←
(
θ(t)m , θ(t)s

)
12: end if
13: end for
14: end for

The algorithm runs on a federation consisting of a central server and K clients, where the k-th client
has nk training examples. The algorithm conducts T updating iterations at each client. After every
L updates, the clients send updated parameters to the server; the server aggregates the received
model parameters with weighted averaging (McMahan et al., 2017) and computes the new EP-prior
parameter with Product-of-Gaussian (Airey & Gales, 2003).

F EXPERIMENT DETAILS

F.1 EXPERIMENTAL ENVIRONMENTS

We run our experiments on a machine with 314 GB RAM, an Intel Xeon PHI 7290 CPU Processor,
and two Tesla V100 GPUs. The operation system is CentOS 7. For detailed versions of software
environments, please refer to the README.md files in corresponding code projects.

19

Under review as a conference paper at ICLR 2022

F.2 EP-GAN FOR TOY EXPERIMENTS

F.2.1 SYNTHETIC DATASET DETAILS

For all models, we examine them on the same generated dataset, which is shown in Figure 2. Data
points with identical colors belong to the same client. In order to simulate a more realistic distribution,
the variances of generated samples are random.

F.2.2 QUANTIFIABLE SCORE

Figure 2: The generated non-i.i.d four Gaus-
sian Dataset.

To facilitate ascertaining the gains, we propose a quan-
tifiable score, Density Mean Square Error (D-MSE),
to supplement the evaluation of density map figures.
The D-MSE score is defined as the MSE between two
density maps fP and fQ over a given sample space X ,
i.e.,

D-MSE(fP , fQ) =
1

N

∑
x∈X

(fP (x)− fQ(x))2, (48)

where N is the total number of sampling poits.
Compared to KL divergence DKL(P‖Q) =∑
x∈X P (x) log

(
P (x)
Q(x)

)
, which explodes to in-

finity when P (x) >> Q(x), D-MSE is more suitable
in our case to compare different density maps generated by GANs given the ground-truth GMM. To
achieve the D-MSE score, we uniformly sample 10000 points from a square area from (−5,−5) to
(5, 5), and compute the score according to Eq. 48 with density map from the ground-truth GMM as
fP and density map from GAN as fQ. With the quantifiable metric, we are able to clearly observe
the gains of our EP-GANs in the federated setting.

F.2.3 IMPLEMENTATION DETAILS

Model Architectures. We evaluate three models, WGAN, ProbGAN, and our proposed EP-
ProbGAN.

WGAN: We implement a WGAN (Arjovsky et al., 2017) with gradient penalty. The generator is a
3-layer MLP with a hidden size of 32. Between each layer, we employ a batch normalization layer.
The discriminator is a 3-layer MLP, with a batch normalization layer after the first MLP layer. We
use the ReLU activation function (Agarap, 2018) between linear layers.

ProbGAN: Based on the implementation of WGAN, ProbGAN extends it with multiple discriminators
and generators. Specifically, we adopt the parameter sharing technique to implement the Bayesian
discriminators and generators, i.e., the last two layers in Bayesian generators and the first two layers
in the discriminators are shared in implementation.

EP-ProbGAN: EP-ProbGAN utilizes ProbGAN as the backbone. Apart from the main struc-
ture of ProbGAN, EP-ProbGAN introduce parameters of the mixture of EP-priors θm =
[θm,1, ..., θm,J],θs = [θs,1, ..., θs,J], where J is the number of components in the mixture. Moreover,
EP-ProbGAN introduces a neural network f(x) for likelihood approximation, as mentioned in Eq.
(5). To take advantage of the ability to capture input features, f(x) reuses the first two layers of the
discriminator, appending with an independent output layer.

For federated learning, we propose a historical parameter interpolation technique for clearer visual-
ization. After each epoch of training local models, the current parameters are interpolated with the
latest global model broadcasted to the client.

Training Protocol. The goal of this experiment is to learn a global distribution of 4 Gaussians on the
4-mode toy dataset using FedAvg. For fair comparisons, we fix the hyper-parameters of all GANs,
including the number of layers, their width, the number of local training epochs, and the number
of federated learning turns. The number of local training epochs indicates how many epochs are
conducted inside the client between two consecutive federated aggregations of model parameters.

20

Under review as a conference paper at ICLR 2022

Hyper-parameter Selection. We use the Adam optimizer (Kingma & Ba, 2014) for generators and
discriminators with learning rates of 2× 10−4 and 1× 10−4, respectively; they are selected from the
range [1 × 10−2 ∼ 1 × 10−5] with a validation set. For federated learning on all models, we first
train local models within clients for 50 epochs as a warm-up, and then in each of the remaining 10
aggregation turns, the number of local training epochs is 20. The numbers of samples of Bayesian
generators and discriminators are both 4 in ProbGAN and EP-ProbGAN. The number of components
in the mixture of EP-priors is 4.

F.3 EP-GAN FOR EXTREMELY NON-I.I.D IMAGE DATASETS

F.3.1 DATASET DETAILS

The datasets of three settings are constructed as following: (1)i.i.d. N=2: randomly split the whole
training set into two parts, (2)i.i.d. N=10: randomly split the whole training set into ten parts, and
(3)non-i.i.d the extremely non-i.i.d data partitions with 10 clients. To simulate the extremely non-i.i.d
federated setting (the third setting), the dataset is divided into 10 partitions of equal size, and each
partition contains only images with the same label. In doing so, we simulated an extremely non-i.i.d
scenario where each client’s data sample is severely biased due to labels. We use the official testing
set split for evaluation.

F.3.2 IMPLEMENTATION DETAILS

The models are all implemented in PyTorch (Paszke et al., 2017), with the adaptation from the
open-source code of ProbGAN(He et al., 2019)2. Besides ProbGAN, we implement the EP-BGAN
(extended from BayesGAN (Saatchi & Wilson, 2017)), EP-ProbGAN, and Mixture-EP-ProbGAN.
These models are then trained with FedAvg on the extremely non-i.i.d dataset.

Model Architectures. All of the models apply the similar DCGAN (Radford et al., 2015) as the
backbone.

The generators consist of 4 deconvolution layers (kernel size 4, stride 2), where each of the first
three deconvolution layers is followed by a batch normalization layer and the ReLU (Agarap, 2018)
activation function, and the last deconvolution layer is directly followed by the Tanh function
to generate images. The discriminators consist of 3 convolution layers (kernel size 5, stride 2)
respectively with a batch normalization layer and a LeakyReLU (Xu et al., 2015) activation function.

We also adopt the parameter sharing techniques in ProbGAN to implement the Bayesian discriminators
and generators. Only the first few layers are disjoint for generators, while all parameters in the
following layers are shared. For discriminators, only the last few layers are disjoint, while the
remaining parameters are shared. Previous research shows such a parameter-sharing scheme can
improve the performance and stability of probabilistic models (Saatchi & Wilson, 2017).

It is worth noting that F2A (Yonetani et al., 2019) is not designed for federated learning; therefore,
the implementation details for the federated learning setting are lacking. We refer to the training
configurations of FedAvg-GAN (Augenstein et al., 2019), which adopts a similar training strategy
(only federates discriminators from clients and trains the generator centrally at the server) with F2A
but aims to address the federated learning setting (though only i.i.d. data is evaluated in the paper), to
train F2A, noted as F2A-fed.

In EP-ProbGAN and Mixture-EP-ProbGAN, we implement the likelihood approximation function
f(x), as mentioned in Eq. (5) as a neural network with the backbone and the output module, where
the backbone is shared with the discriminator and the output module is a two-layer NN with hidden
size of 128. The neural network is trained with FedAvg. For J components of the mixture of
EP-priors, the output dimension of f(x) is J , where each dimension relates to one component in the
mixture of EP-priors.

Hyper-parameter Selection. For baselines (1)-(3) and our EP-GANs, we conduct experiments on
four models suited for the federated learning algorithm FedAvg with 25 turns of aggregations in
total. Every client performs local training for 400 local updates between two consecutive turns of
model aggregations. As baselines (5)-(6) do not support large local updates, we follows the training

2https://github.com/hehaodele/ProbGAN

21

Under review as a conference paper at ICLR 2022

configuration of (6), which conducts local training steps of 6 between two consecutive federated turns.
The federated turns of (5)-(6) are set as 1667 (≈ 400×25

6). Therefore, the total number of training
updates is 10000 for all baselines and EP-GANs, which is identical to the total training epochs in
centralized training baseline. For all models, we use the Adam optimizer (Kingma & Ba, 2014) with
the learning rate of 0.0003, which is commonly used and achieves stable performances. For SGHMC,
the noise factor is set to 3 × 10−2. The batch size is set as 128. All models are trained with 10
generators and 4 discriminators. For EP-ProbGAN and Mixture-EP-ProbGAN, the EP-prior loss
factor is set to 1× 10−3, which is tuned from {1× 10−3, 1× 10−4, 1× 10−5} on the i.i.d. setting.
The number of components in the mixture of EP-priors is set as 10.

F.3.3 EVALUATION METRICS

We quantitatively evaluate the methods with two image generation metrics: Inception Score (IS) (Sal-
imans et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017). IS computes
exp (Ex[KL(p(y | x)‖p(y))]) where p(y|x) is the predicted label distribution by a pre-trained Incep-
tion model (Szegedy et al., 2015), and p(y) is the average of p(y|x) over all images in the dataset. IS
aims to match the fidelity and diversity of images with human-like judgment (Salimans et al., 2016).
On the other hand, FID is used to measure the similarity between real images and synthetic images
by computing the Fréchet distance between the two image distributions in the feature embedding
space given by the Inception model. For IS, higher values indicate better performance; for FID, lower
values indicate better performance.

F.3.4 T-TEST P-VALUES ON IS AND FID OF EP-GANS FOR CIFAR10

To further elaborate the improvement, we performed a statistical significance test on Inception Scores
and FID Scores of EP-BGAN, EP-ProbGAN, and Mixture-EP-ProbGAN for CIFAR10. Results are
listed in Table 4-5, from which we can see that the improvements are statistically significant.

Table 4: T-test p-values on Inception Scores for CIFAR10
W-objective
LS-objective EP-BGAN EP-ProbGAN Mixture-EP-ProbGAN

EP-BGAN - 2.05× 10−3

3.39× 10−6
1.30× 10−3

1.77× 10−8

EP-ProbGAN 2.05× 10−3

3.39× 10−6 - 1.34× 10−2

6.97× 10−3

Mixture-EP-ProbGAN 1.30× 10−3

1.77× 10−8
1.34× 10−2

6.97× 10−3 -

Table 5: T-test p-values on FID Scores for CIFAR10
W-objective
LS-objective EP-BGAN EP-ProbGAN Mixture-EP-ProbGAN

EP-BGAN - 1.82× 10−3

1.71× 10−8
2.18× 10−4

1.73× 10−6

EP-ProbGAN 1.82× 10−3

1.71× 10−8 - 2.49× 10−2

1.69× 10−7

Mixture-EP-ProbGAN 2.18× 10−4

1.73× 10−6
2.49× 10−2

1.69× 10−7 -

F.3.5 EXAMPLE CIFAR-10 GENERATED IMAGES

This section displays randomly selected generated images by different models in different settings.
Fig. 3-10 show that our proposed EP-GAN successfully alleviates the performance deterioration
under the extremely non-i.i.d setting, though their performances are still worse than the i.i.d. settings.

22

Under review as a conference paper at ICLR 2022

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 3: Images generated by ProbGAN trained on CIFAR-10 with the WGAN objective under
different settings. Images in different rows are generated by different generators. ProbGAN with
WGAN objective fails to converge under the extremely non-i.i.d setting (right).

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 4: Images generated by EP-BGAN trained on CIFAR-10 with the WGAN objective under
different settings. Images in different rows are generated by different generators.

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 5: Images generated by EP-ProbGAN trained on CIFAR-10 with the WGAN objective under
different settings. Images in different rows are generated by different generators.

23

Under review as a conference paper at ICLR 2022

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 6: Images generated by Mixture-EP-ProbGAN trained on CIFAR-10 with the WGAN
objective under different settings. Images in different rows are generated by different generators.

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 7: Images generated by ProbGAN trained on CIFAR-10 with the LSGAN objective under
different settings. Images in different rows are generated by different generators. We can observe
collapsed generators under the extremely non-i.i.d setting (right).

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 8: Images generated by EP-BGAN trained on CIFAR-10 with the LSGAN objective under
different settings. Images in different rows are generated by different generators.

24

Under review as a conference paper at ICLR 2022

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 9: Images generated by EP-ProbGAN trained on CIFAR-10 with the LSGAN objective under
different settings. Images in different rows are generated by different generators.

i.i.d. N=2 i.i.d. N=10 non-i.i.d.

Figure 10: Images generated by Mixture-EP-ProbGAN trained on CIFAR-10 with the LSGAN
objective under different settings. Images in different rows are generated by different generators.

25

Under review as a conference paper at ICLR 2022

F.4 EP-GAN WITH SRU FOR NON-I.I.D ASR

F.4.1 DETAILED COMPOSITION OF DATASETS

Table 6: The data have been split into training, develop-
ment, and evaluation set as follows.

Dataset Sessions Speakers Hours Utterances

Train 16 32 40:33’ 79,980
Dev 2 8 4:27’ 7,440
Eval 2 8 5:12’ 11,028

CHiME-5 is a large-scale corpus of
real-world multi-speaker conversational
speech in home environments. The train-
ing dataset, development dataset, and test
dataset include about 40 hours, 4 hours,
and 5 hours of conversational speech. Ta-
ble 6 shows the splits of training, devel-
opment, and evaluation sets. In each ses-
sion, there are four speakers with around
130-180 minutes of conversation records.
In the non-i.i.d setting, we treat each session as the cross-silo data in each client, creating a natural
non-i.i.d dataset. For example, the speakers in clients 1, 2, 7, and 8 are all male, and sessions are
recorded in different environments.

F.4.2 IMPLEMENTATION DETAILS

We adopt the EP-GAN and ProbGAN to augment acoustic modeling by joint training them with
SRU-HMM based acoustic model (Lei et al., 2017). SRU is a popular and efficient recurrent neural
network for acoustic modeling. Figure 11 displays the model architectures of our the SRU acoustic
model and SRU (EP) w/ ProbGAN.

In the implementation, SRU is used as a backbone of the acoustic model, which contains 12 stacked
layers with 1280 hidden nodes. We use the similar SRU architecture for the encoders of discriminator
in GANs, whose outputs are then fed into a two-layer MLP for discriminating its true/fake label.
Moreover, we take bottleneck features from the bottleneck layer of the discriminator (Shown in
Figure 11), which are further concatenated with the acoustic feature, feeding to the SRU acoustic
model for supervised learning.

The implementation of SRU w/ EP-ProbGAN is based on SRU w/ ProbGAN, additional with EP-prior
GMA inference on parameters of GANs, as mentioned in Eq. (45). For all EP-GANs, the function f
is implemented as a neural network with a backbone and a output module, where the backbone is
shared with the discriminator and the output module is a two-layer NN with hidden size of 128. The
neural network is trained with FedAvg.

In SRU w/ EP-ProbGAN and SRU (EP) w/ EP-ProbGAN, we introduce a two-layer MLP with the
hidden size of 64 so that we can map the feature representation captured by the discriminator to the
likelihood estimation f(x) (mentioned in Eq. (5)). For SRU (EP) w/ EP-ProbGAN, we regularize the
parameters of the SRU classifier with EP-prior GMA, regarding the SRU classifier’s parameters as an
SGHMC sample from a parameter distribution.

F.4.3 TRAINING DETAILS

We adopt the same configuration with (Huang et al., 2020) to train all GMM-HMM. The speech data is
preprocessed as 40-dimensional Mel-filter bank coefficients (Biem et al., 2001), which are calculated
every 10ms. Inputs of all models consist of the current frame together with its 4 future contextual
frames. The input sequence are chunked into a fixed length of 20. We performed speaker-level mean
and variance normalization on the inputs. The HMM states aligned by GMM-HMM are used to train
the subsequent neural network modules.

The evaluation is performed with a tri-gram language model trained from the transcription of CHiME-
5. The models are optimized with the categorical cross-entropy loss using BPTT with a dropout rate
of 0.1 between the recurrent layers. For federated learning, there are 12 turns of aggregation with 1
local training epoch between each turn.

For simplicity, we denote the categorical cross-entropy loss as Lce(θSRU), whose target is to
minimize the cross-entropy between SRU predictions and the labels, given the input sequences.
Denote the ProbGAN’s objective (He et al., 2019) as Lgan(θG,θD). We denote EP-prior losses
(Eq. (46)) for parameters of generators, discriminators and the SRU as Lep(θG), Lep(θD), and

26

Under review as a conference paper at ICLR 2022

𝑓(⋅)

ProbGAN-generators

ProbGAN-discriminators

20 × 200

20 × 3944

Input features
20 timesteps

200-dimension

Outputs

SRU classifier

20 × 1280

20 × 1280

dense layer

dropout 0.1

dense layer

dropout 0.1

dense layer

dropout 0.1

20 × 1024

ReLU

SoftMax

SRU layer

12 SRU layers

20 × 1280

dropout 0.1

Input features
20 timesteps

200-dimension

Outputs

(a) SRU

dense layer

dropout 0.1

SRU layer

12 SRU layers

20 × 1280

dropout 0.1

SRU classifier

20 × 1280

dense layer

dropout 0.1

SoftMax

SRU layer

12 SRU layers

20 × 1280

dropout 0.1

20 × 200

…

20 × 3944

BatchNorm1D

20 × 200

deconv. 4x4

BatchNorm1D

ReLU

deconv. 4x4

deconv. 4x4

BatchNorm1D

ReLU

deconv. 4x4

BatchNorm1D

ReLU

deconv. 4x4

BatchNorm1D

ReLU

dense layer
ReLU

dense layer

dense layer
ReLU

dense layer

dense layer
ReLU

dense layer

mean pooling

dense layer
dropout 0.1

20 × 40

𝑛𝑜𝑖𝑠𝑒

Fake data

20 × 20020 × 200

20 × 200 20 × 40

concatenate

(b) SRU (EP) w/ EP-ProbGAN

dense layer
ReLU

dense layer

Feature
representations

𝑓(𝐱)

Figure 11: The model architectures of SRU (left) and SRU (EP) w/ EP-ProbGAN (right). The
overlapped modules represent the Bayesian neural network samples. SRU w/ ProbGAN and SRU w/
EP-ProbGAN share similar architecture with SRU (EP) w/ EP-ProbGAN.

Lep(θSRU), respectively. The loss functions of SRU w/ ProbGAN, SRU w/ EP-ProbGAN, and SRU
(EP) w/ EP-ProbGAN are then described as following:

Model Loss function

SRU w/ ProbGAN Lce(θSRU) + λgan · Lgan(θG,θD)
SRU w/ EP-ProbGAN Lce(θSRU) + λgan · [Lgan(θG,θD) + λep · (Lep(θG) + Lep(θD))]
SRU (EP) w/ EP-ProbGAN Lce(θSRU) + λep · Lep(θSRU)

+λgan · [Lgan(θG,θD) + λep · (Lep(θG) + Lep(θD))]

The batch size is set to 128. The optimizer is Adam (Kingma & Ba, 2014) with a learning rate of
3× 10−4. The SGHMC noise factor in Algorithm 1 is set to 3× 10−2, and the EP-prior loss factor
(λep) is set to 1× 10−3. Moreover, the loss of training the GAN objective is multiplied by a factor
λgan, which is set as 0.1. When training SRU w/ ProbGAN, SRU w/ EP-ProbGAN, and SRU (EP)
w/ EP-ProbGAN, we first update the GANs and then update the SRU acoustic model together with
the discriminator in each iteration.

F.4.4 STABILITY STUDY

To examine the stability of proposed methods, we train the models using three different random seeds.
Table 7 reports the mean and standard deviation (STD) of the test WERs, indicating that the variance
of three different runs is moderate.

Table 7: We train SRU w/ ProbGAN, SRU w/ EP-ProbGAN, and SRU (EP) w/ EP-ProbGAN using
three different random seeds and report the mean and standard deviation of the test WERs.

Model SRU w/ ProbGAN SRU w/ EP-ProbGAN SRU (EP) w/ EP-ProbGAN

Mean ± STD 66.86± 0.1105 66.20± 0.2795 64.30± 0.2130

27

	Introduction
	Related Work
	Preliminaries
	Expectation-Propagation Prior GAN
	Derivation of the Expectation-Propagation Prior
	Incorporating EP-prior to ProbGAN

	Empirical Experiments
	Toy Experiments
	Synthetic Extremely non-i.i.d Image Dataset
	Natural non-i.i.d Conversational Speech Dataset

	Conclusion
	Proof of Lemma 4.1
	Proof of Theorem 4.1
	Detailed Comparison with Related Works
	Federated Learning Formulation
	Details of Inference for EP-GANs
	Inference for EP-ProbGAN
	Inference for Mixture-EP-ProbGAN
	Partial Summation Approximation (PSA)
	The SGHMC for EP-GANs
	EP-GAN with Federated Learning

	Experiment Details
	Experimental Environments
	EP-GAN for Toy Experiments
	Synthetic Dataset Details
	Quantifiable Score
	Implementation Details

	EP-GAN for Extremely non-i.i.d Image Datasets
	Dataset Details
	Implementation Details
	Evaluation Metrics
	T-test p-values on IS and FID of EP-GANs for CIFAR10
	Example CIFAR-10 Generated Images

	EP-GAN with SRU for non-i.i.d ASR
	Detailed Composition of Datasets
	Implementation Details
	Training Details
	Stability Study

