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ABSTRACT

Deploying black-box LLMs requires managing uncertainty in the absence of
token-level probability or true labels. We propose introducing an unsupervised
conformal inference framework for generation, which integrates: generative mod-
els, incorporating: (i) an LLM-compatible atypical score derived from response-
embedding Gram matrix, (ii) UCP combined with a bootstrapping variant (BB-
UCP) that aggregates residuals to refine quantile precision while maintaining
distribution-free, finite-sample coverage, and (iii) conformal alignment, which
calibrates a single strictness parameter 7 so a user predicate (e.g., factuality lift)
holds on unseen batches with probability > 1 — «. Across different benchmark
datasets, our gates achieve close-to-nominal coverage and provide tighter, more
stable thresholds than split UCP, while consistently reducing the severity of hal-
lucination, outperforming lightweight per-response detectors with similar compu-
tational demands. The result is a label-free, API-compatible gate for test-time
filtering that turns geometric signals into calibrated, goal-aligned decisions.

1 INTRODUCTION

Reliable uncertainty quantification (UQ) for large language models (LLMs) is needed for trustwor-
thy AL An assertive yet baseless claim can swiftly spread and cause damage, but for most practition-
ers, frontier models arrive only as black-box APIs with no access to gradients, exact log probabilities,
or hidden states (Lin et al., 2024). Hence deployment teams must make keep-or-discard decisions
from samples alone.

In black-box deployments, LLM uncertainty must be inferred from the sampled outputs themselves.
Query-only signals include: (i) semantic-entropy methods that quantify dispersion across equiva-
lence classes of responses and are effective for hallucination detection (Farquhar et al., 2024; Kossen
et al., 2024); (ii) self-consistency, which uses agreement among independently sampled answers as a
proxy for confidence (Wang et al., 2023; 2025); and (iii) geometry-based measures computed from
response embeddings—e.g., local density or Gram-volume statistics—that correlate with quality
and robustness (Qiu & Miikkulainen, 2024; Li et al., 2025). Because these signals require neither
logits nor gradients, they are natural conformity scores for our unsupervised conformal calibration;
in parallel, conformal wrappers for language modeling and factuality control are emerging (Quach
et al., 2024; Mohri & Hashimoto, 2024).

Conformal prediction (CP) is model-agnostic and supplies finite-sample, distribution-free guaran-
tees (Angelopoulos & Bates, 2022; Vovk et al., 2005b). However, the generative workflow breaks
the classical supervised setting: prompts are not quantifiable covariates. A practical procedure must
therefore calibrate in a label-only regime and use few, parallelizable API calls to expensive models.

We introduce a practical unsupervised conformal prediction (UCP) framework that increases data ef-
ficiency, reduces computation via bootstrapped conformal calibration, and reconciles heterogeneous
modalities through conformal alignment, while delivering distribution-free, finite-sample guaran-
tees and strong empirical gains in hallucination detection and factuality. Our framework calibrates
directly on raw outputs and is compatible with black-box APIs:
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1. an LLM-friendly atypicality score based on inner-product interaction energy of
the response-embedding Gram matrix (unit-norm, cosine), Yyielding a bounded,
exchangeability-compatible conformity score;

2. batched unsupervised conformal procedures—split UCP for single-batch queries and new
batched variants (B-UCP and bootstrap-stabilized BB-UCP )—with finite-sample coverage
under batch exchangeability and improved stability/efficiency over split UCP;

3. conformal alignment: a batch-level calibration of a single strictness knob 7 that ensures
any predicate (e.g., factuality improvement) holds on unseen batches with probability at
least 1 — «, enabling label-free test-time gating

The structure of the paper is outlined as follows. §2 explores query-only UQ and the founda-
tional unsupervised CP techniques. In §3, we introduce the concepts of Gram-matrix typicality,
batched/bootstrapped calibration, and conformal alignment. Experimental outcomes are presented
in §4, while §5 discusses conclusions and future research directions.

2 BACKGROUND

2.1 CONFORMAL PREDICTION FOR GENERATIVE OUTPUTS

Conformal prediction (CP) is a model-agnostic, distribution-free method that turns arbitrary scores
into set-valued inferences with finite-sample guarantees under a common exchangeability assump-
tion (Vovk et al., 2005a; Angelopoulos & Bates, 2022; Lei et al., 2017). Classical assumptions
can be relaxed via covariate-shift and dependence-aware extensions (Barber et al., 2023; Gibbs &
Candes, 2021). Conformal Risk Control (Angelopoulos et al., 2025) not only addresses coverage
but also aims to manage expected losses. Recent developments in language models use conformal
calibration to enhance modeling accuracy, concentrating on removing and verifying claims (Quach
et al., 2024; Mohri & Hashimoto, 2024; Cherian et al., 2024).

Building on the concepts in (Vovk et al., 2005a; Lei et al., 2017; Lei & Wasserman, 2012; Sadinle
etal., 2018), we adopt the formal definitions of Full-UCP and Split-UCP as presented in Wasserman.
The corresponding algorithms also appear in the Appendix. We observe the responses Y., paired
with fixed prompts X7.,, and a future pair (X, 1, Yy,+1). We primarily calibrate on the responses Y’
(i.e., model outputs), treating prompts/contexts X as covariates that may be implicit. We treat Y.,
as exchangeable. We define residuals via a permutation-invariant map ¢ by R; = ¢(Y;;S;). For
tolerance o € (0, 1), we target PrY,,.1 € C,, > 1 — a.

Full-UCP augments data with a candidate ¥,,1, and residuals are recalculated for the augmented set
{Y1,..., Y0, Ynt1}. A conformal p-value is then derived from the residual ranking, incorporating y
when 7(y) > «. Split-UCP partitions the data into sets D1 = {Y;: ¢ € 1} and Dy = {Y;: i € I},
where index sets I; and I5 partition the set {1, ..., n}. We then calculate calibration residuals R; =
¢(Y;; D) fori € I to establish the (1—a) (1+‘}—2‘)-quantile g of these residual values, subsequently

yielding the set C,, = {y: ¢(y; D1) < ¢}. In addition, the Split-UCP marginal theorem states that
under exchangeability of (Y., Y,,11), the resulting set C,, satisfies Pr{Y,,y; € C;,} > 1 — a.

Full-UCP can be computationally inefficient due to retraining and ineffective searching over future
candidates y (grid/root-finding). On the other hand, Split-UCP is data-inefficient as only the cali-
bration split D5 influences the quantile, leading to sample-splitting costs. The challenges motivate
us to design our framework for better alignment with the generative stochastic process P(Y | X) to
ensure that practical applications effectively capture underlying variability.

2.2  GRAM MATRIX CONSTRUCTION, INNER—PRODUCT ENERGY, AND ATYPICAL SCORE

To quantify LLM response uncertainty, we build our framework on the response-embedding Gram
matrix. Given n responses Y7, . . ., Y, with embeddings v; := (Y;) € R?, we stack the embeddings
as rows to create the matrix V' € R™*? with Vi, = ’uiT and form the (uncentered) Gram G =
VVT € R™ " with entries G;; = (v;,v;), where unit-norm embeddings ||v;|l2 = 1 by default.

We then define the inner—product (interaction) energy:
e(i;G) = ||G.illz = IV will2. 2.0
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In unit-norm embeddings, e(i; G) = (Z?Zl cos? 6;5) Y ?, where 0;; denotes the angle between v;
and v;. Thus, e(i; G)? quantifies the total squared directional alignment of v; with its peers. Since
cos? treats aligned and anti-aligned directions equally, a large e(i; G) indicates central, redundant
elements (high agreement), while a small e(i; G) denotes unique or irrelevant content (high nov-
elty). The following theorem states that e(-; G) ranges from 1 to \/n (the proof is available in the
Appendix).

Theorem 2.1 (Unit-norm interaction-energy bound). If ||v;||2 = 1 foralli, then1 < e(i;G) < \/n
for each i. Equality e(i; G) = \/n holds when v; is perfectly aligned with all v;; e(i; G) = 1 when
v; Is orthogonal to all vj for j # i.

Letting B denote the supremum of e(+; G), we define the Atypical Score as

Ne

o(1;G) == 1— 6(27) € [0,1]. (2.2)
Bpg

Under unit-norm embeddings, the upper bound By equals y/n. Note that any strictly monotone

transform of e is equivalent for ranking.

3 METHODOLOGY

3.1 BATCH UNSUPERVISED CONFORMAL PREDICTION

We adapt UCP to a batched setting that gathers information across exchangeable batches and may
stabilize calibration using a within-batch bootstrap. For notational simplicity, assume there are n +
1 = (J+1)I responses Y1, ..., Y, 1 for pre-chosen integers J and I. Partition the n + 1 responses
into J+1 disjoint batches B; = {Y}1,...,Y; r} for j = 1,..., J+1. The entire §3 assumes barch
exchangeability, i.e., that the J+1 batches By, ..., By, By41 arei.i.d. and that within each batch the
responses are exchangeable. (The latter condition is also called partial exchangeability (de Finetti,
1938).) Thus we will assume without loss of generality that Y, 1 = Y1 1.

We design two statistically distinct methods under this setting:

* Batch-UCP (B-UCP). For each calibration batch j, residuals are computed within batches
against leave-one-out Gram matrix base, where R;; = ¢(Y;;;B;_;) using a bounded,
permutation-invariant score ¢ € [0, Bg]. Pool {R; ;},=1.s, i=1.7 and take a single adjusted con-
formal quantile.

* Batch Bootstrap-UCP (BB-UCP). For each calibration batch 7, bootstrap the empirical residual
multiset {R;;}/_; to obtain {S; 1} . Pool {S;}; and apply the same adjusted quantile.
The bootstrap mitigates noise caused by irregularity from outlier batches, maintaining exchange-
ability.

The block below clarifies how B-UCP and BB-UCP differ. We present the formal algorithms in the
Appendix (Algorithms B.3-B.4).

Unified Batch U-CP (demo; K=0 = B-UCP, K>1 = BB-UCP)

Inputs: {Yk}g];ll)lfl, score ¢, batch count J, tolerance «, bootstrap count K > 0

Partition: calibration {B;}7_,, hold-out B 1 1
for ) = 1to J do
fori=1to [ do Rj,i — (ﬁ(Y})i; Bj)_i), 67‘7_1‘ = Bj \ {}/j)z}
end for
if K > 0 then draw {S; ;} 5, from {R;,;}/_,
end if
end for
Bag: D+ {Rj,i}j,i if K =0;else D « {Sj,k}j,k
Quantile: §; = (J+1)a — 1;set g « By if 5 < 0, else g < (1 — d;/J)-quantile of D
Output: C,, = {y : ¢(y; By1,-1) < ¢}

ra A A PEAN AN

—_ =




Under review as a conference paper at ICLR 2026

Under the batch exchangeability assumption, we have the following coverage guarantees, and we
present the proofs in the Appendix.

Theorem 3.1 (B-UCP coverage). The prediction set C, returned by Batch U-CP satisfies
Pr{Y,11€C,} >1—a.

Theorem 3.2 (BB-UCP coverage). The prediction set C,, returned by Batch Bootstrap U-CP satis-
fiesPr{Y,11 € Cp} >1—a.

Our design incorporates three main mechanisms.

1) Batching. In the unsupervised setting, conventional CP loses the easy exchangeability of
supervised CP because the conformity score depends on the other responses. By organiz-
ing data into exchangeable batches and using within-batch leave-one-out residuals (each
R; ; computed against a base of size [—1), we effectively re-enable cross-validation—style
conformalization.

2) Within-batch LOO under batch exchangeability. This alignment makes the calibration and
test residual laws match, removing the split-sample penalty in split-UCP (which inflates
the order-statistic index) and yielding tighter thresholds at a fixed risk level.

3) Bootstrap aggregation. Averaging replicated empirical laws within each batch stabilizes the
empirical quantile and down-weights idiosyncratic batches, reducing the chance of under-
estimating the target quantile. Realized coverage therefore tends to be slightly conservative
while intervals remain short. Resampling {R; ;} is inexpensive and preserves exchange-
ability; and because the method is rank-based, any strictly non-decreasing transform of ¢
leaves C',, unchanged. These effects anticipate our observations: BB-UCP is typically more
conservative than split-UCP yet produces tighter, more stable intervals.

3.2 CONFORMAL ALIGNMENT

Conformal alignment functions as a quality control technique across various modalities, enabling
multilevel filtering and alignment superior to standard UCP schemes. Initially, we parameterize
strictness using a single knob 7 € [0,1] to filter batches with a low-cost, consistently available
signal (here, the Gram matrix inner energy). During calibration, this signal is aligned with a rare
or expensive quality measure (e.g., factuality), enabling deployment with just the low-cost signal
while retaining the calibrated assurance Pr(predicate on future batch) > 1 — a. The idea scales to
various contexts: establishing an accessible, cost-effective score allows the use of the same method
to determine a global 7 from past batches, which is then applied to unlabeled new data. By utilizing
text and Gram scores, the predicate can adapt any non-decreasing, right-continuous batch metric to
inexpensive scores derived from text, vision, audio, or multimodal embeddings, offering substantial
flexibility and a wide range of applications.

Similar to §3.1, partition the data into J disjoint batches B; = {Y;1,...,Y;}forj =1,...,J,
with {B; }3’;1 exchangeable and ;1 the future batch. Let RC be the space of right-continuous,
non-decreasing maps [0, 1] — [0, 1], and define ¢ : (3;) — RC. For each batch j, set P;(-) = ¥(B;);
then P; is non-decreasing and right-continuous, and {P;} is exchangeable.

We use P;(7) as a batch predicate with a subset-selection parameter 7 € [0, 1], which describes the
j-th batch. For instance, let fj(r) C {1,..., I} be right-continuous filtered sets; that is, for any
0 <7 < 7’ <1 thereexists § > 0 with jj(T’) C jj(T) = jj(T + ). From the set fj(T) of indices,
we define P;(7) as the indicator of the event “jj (1) satisfies property A” where “property A” is to
be determined according to a specific prediction target. We search for 7 such that Py 1(7) = 1

with high probability, which means that the selected set J. J+1(T) satisfies “property A” with high
probability.

Define the minimal passing strictness
S; ==min{r € [0,1]: P;(r) =1} € [0, 1], 3.1

withinf @ = 1. Let K = [(1 — a)(J + 1)] and calibrate 7 as the K -th order statistic of {5 }le.
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Algorithm 3.1 Batch U-CP Conformal Alignment

1: Input: calibration batches By, ..., By; test batch Byi1,—1; K < [(1 — «)(J + 1)]; function
1; tolerance o € (0, 1).
for j =1to J do
Compute P;(-) = ¥(B;)
Compute S; = inf{7 € [0,1]: P;(7) = 1}.
end for
Calibrate 7 < the K -th smallest value among {5 }5]:1. (If K=J+1,then7 < 1) (Split-
conformal quantile with J+1 total batches)
7: Output 7.

AN

A remark of Algorithm 3.1 is that, for a target threshold € (0,1) which we want Py1(7) > r
to hold for high probability, define P}(7) = 1{P;(7) > r}. Then P; is also non-decreasing and
right-continuous, and P;(7) > r <= Pj(7) = 1. Hence Algorithm 3.1 records {S} and returns
asingle 7 with Pr{P;,1(7) > r} = Pr{P},,(7) = 1} > 1 — a under exchangeability.

Theorem 3.3 (B-UCP alignment guarantee). Assume the batches { B; }inll are exchangeable (which
implies that predicates {P; }J]ill are exchangeable) and that each P (-) is non-decreasing and right-
continuous in its argument T for j = 1, ..., J+1. Then Algorithm 3.1 satisfies

Pr{ PJ+1<?) = 1} > 1—a.

By Theorem 3.3, any non-decreasing, right-continuous batch predicate calibrated across exchange-
able batches yields a 1 — o guarantee on the held-out batch. We now instantiate this scheme for
black-box LLMs by selecting a cheap Gram-geometry self-consistency score () with the induced fil-

ter jJ (7) and a batch predicate P; that encodes deployment goals (e.g., factuality lift), as specified
next.

Let @;,; denote the inner-product interaction energy e(i; G) from Section 2.2 (unit-norm, cosine
geometry). We keep high-consensus items via

Ji(r) = A{i: Qi>7}
so larger 7 filters out more responses.

Let s;; € [0, 1] be a batch severity with larger = worse (e.g., factuality severity). In strictness 7,
set K;(7) ={i:Qj; >7}and D;(1) = {i : Q;; < 7}, and declare pass when the indicator is
evaluated as 1, where

POVAR(7) = 1{ CVAR,(s;; : i€ D;j(7)) — CVAR, (s, : i€ K (1)) > 5}.

ACVAR; +(q)

CVAR focuses on the worst tail. Requiring a positive gap means that the kept set reduces severe
errors (rare but damaging hallucinations) relative to the dropped set (Chow et al., 2015; Zhao et al.,
2025; Rockafellar & Uryasev, 2000; Acerbi & Tasche, 2002). Because K j(T) enlarges as 7 de-

creases, T — P VAR (7) is non-decreasing/right-continuous, so Alg. 3.1 applies unchanged.

Let s;; be a factuality severity in [0, 1] (lower is better; e.g., BERTScore-F1 dissimilarity). The
predicate ’P]F (1) = 1 asserts that the Q-filtered subset attains a statistically significant median re-
duction in factuality severity (per the test above). Calibrating 7 across historical batches yields a sin-
gle label-free gate which, using @) alone at deployment, preserves this improvement on new batches
with probability at least 1 — « (Theorem 3.3). Applications include: (i) open-domain QA/RAG:
ensure only consistent answers are shown; (ii) customer support and search snippets: reduce the
risk of false confident statements; (iii) summarization/reporting: exclude sections that do not pass
factual accuracy checks before publishing.

4 EXPERIMENTS

We perform three experiments to study three research questions aligned with §3: (RQ1) within a sin-
gle query, does BB-UCP produce tighter prediction sets than S-UCP at the same target miscoverage?
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(RQ2) across multiple queries, do B-/BB-UCP achieve nominal coverage and improve batch quality
by discarding higher-severity responses? (RQ3) in cross-query alignment, can the calibrated global
strictness 7 reliably yield batch-level severity reduction while preserving the conformal guarantee?

4.1 EXPERIMENTAL SETUP

We evaluate across four complementary QA datasets, each exhibiting a distinct failure mode:
ASQA—ambiguity and underspecification (Stelmakh et al., 2023); NO-Open—single-hop factoid
retrieval (Lee et al., 2019; Kwiatkowski et al., 2019); HotpotQA—multi-hop composition (Yang
etal., 2018); and AmbigQA—aliases and answer sets (Min et al., 2020). To probe sensitivity, we add
two ablations: a decoding-entropy stress test and a vendor/model swap. For each open-domain QA
prompt, we (i) synthesize a diverse response set by mixing plain answers, lightly enforced canonical
answers, and structured noise outliers. This controlled injection is standard for stress test hallucina-
tion detection and semantic dispersion UQ signals (Kuhn et al., 2023; Qiu & Miikkulainen, 2024)
and allows us to probe robustness under realistic contamination. All texts are embedded with a
lightweight sentence encoder (all1-MiniLM-L6-v2). We stack unit-normalized embedding vec-
tors by rows to form V and then the Gram matrix G = V'V T; (ii) expand the reference set with
concise paraphrases to reduce aliasing; and (iii) characterize each candidate using a distance-based
metric, Factuality Severity (FS). All artifacts are logged and kept provider-agnostic across OpenAl,
Together, and Gemini (OpenAl et al., 2024; Grattafiori et al., 2024; Team et al., 2024).

We quantify answer quality with respect to references using BERTScore-F1 with baseline rescaling
(roberta-large) (Zhang et al., 2020) on the answer head (first sentence or a Final: field,
truncated to < 16 tokens). Letting head(a) be the head of answer a and R, the reference set, we
define the severity

FS(a) := 1— max BERTScoreF1(head(a), r) € [0,1], 4.1

rERy

so that a value of 0 indicates a near-paraphrase of some reference (high factual alignment), and a
value near 1 flags semantic deviation. Scoring the head avoids rationale contamination and normal-
izes across style/length.

Given a batch B and the kept subset K (7) after filtering by @, we summarize factuality lifting by
the median reduction

Ags (1) = median{ F'S(y) : y € B} — median{FS(y) : y € K(7)}

(larger is better). All conformal calibrations use the Gram inner—energy score e from §3 and are
implemented exactly as specified (S-/B-/BB-UCP and alignment). We fix random seeds, cache em-
beddings/Grams, and run identical pipelines on all datasets.

4.2 EXPERIMENT I — SINGLE-QUERY CONFORMAL CALIBRATION (S-UCP vs. BB-UCP)

In the single-query regime, for each question ¢ we embed all candidate responses, form the
unit-norm response Gram matrix G, and compute the inner-product energy score () for each re-
sponse. We then construct residuals within the same pool and repeatedly split into calibration/test
subsets of fixed sizes. Split UCP thresholds test residuals by directly taking a quantile of residuals;
BB-UCP additionally bootstraps the calibration residuals within the batch and aggregates the quan-
tiles to stabilize the threshold. We report (i) empirical coverage against the 1 — « target and (ii) an
efficiency proxy given by the accepted sublevel endpoint g; _, (smaller is better).

Across AmbigQA, AmbigQA-ENT, ASQA, and HotpotQA, both S-UCP and BB-UCP achieve
near-nominal coverage, while BB-UCP consistently achieves more conservative empirical coverage
across repetitions and « and yields shorter interval length; see Fig. 1 (top/bottom). On NQ-Open
and NQ-Open-Vend, performance is weaker: the answer pools are small and low-diversity, often col-
lapsing into a single high-consensus “heap.” This compresses dispersion in Gram space, produces
near-tied residual ranks, and blunts the bootstrap’s advantage; Split UCP ’s coverage remains close
to target. Slightly enlarging pool size or boosting response diversity effectively restores similar
qualitative improvements as seen in other datasets.
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Figure 1: Experiment 1. Top row: Empirical coverage vs. « for a representative dataset (ASQA).
Shaded bands show £1 SE, and the black line is the 1 — « target. Both the BB and Split UCP achieve
the desired theoretical assurance, consistently staying above the target. BB is typically more conser-
vative to attain greater empirical coverage. Bottom row: Interval size comparison bar are plotted
across datasets, grouped by method (BB, split) and stratified by « € {0.05,0.10,0.15,0.20}. In all
datasets and at all « levels, BB consistently produces smaller interval sizes than Split, indicating the
bootstrapping achieves statistical efficiency as intended.
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Figure 2: Experiment 2. Top row: Empirical coverage vs. «. Each panel corresponds to one
dataset. Shaded bands show =+ SE, and the black line is the 1 — « target. Across all datasets, cross-
query BB-UCP nearly achieves the expected theoretical guarantee, with a single failure occurring
solely in an extreme stress test. Bottom row: The change in median factuality severity (AFS) is
shown across datasets (points indicate the mean, intervals represent + SE). For every dataset, AFS
constantly stay above 0, highlighting the efficacy of BB-UCP in improving factuality.

4.3 EXPERIMENT II — CROSS-QUERY CALIBRATION (BB-UCP) AND FACTUALITY LIFTING

To mimic real-world deployment, each response set of the same query forms a batch. We run
leave-one-query-out (LOQO) cross-validation: hold one batch for testing and calibrate on the rest.
For every calibration batch we compute residuals from @) under within-batch LOO, bootstrap resid-
uals per batch, pool the bootstrapped (1 — a)-quantiles into a single threshold ¢P2 , and apply that
global threshold to the held-out batch. We evaluate (i) empirical coverage vs. 1 —« and (ii) factuality
lifting via the median reduction in factuality severity, AFS (excluded minus kept; better positivity

indicates improved prevention of hallucinations.).
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LOQO empirical coverage closely tracks 1 — « across risk levels and datasets (Fig. 2, top), demon-
strating that a BB-UCP global threshold learned from historical queries generalizes to unseen
queries. More importantly for deployment, filtering by ¢B, consistently improves batch qual-
ity: AFS > 0 across all datasets and all o (Fig. 2, bottom; The hardest panels are instructive: on
NQ-Open, median AFS = 0.209 (largest among benchmarks) despite average empirical coverage
falling short of the 95% target (88.98% vs. 95.00%); NQ-Open-Vend shows the same trade-off (me-
dian AFS~0.112, 92.88% vs. 95.00%) (Appendix C, Table 4). This under-coverage is attributable
to small-/N/low-entropy pools that yield discretization effects and near-ties in residual ranks. As
in Experiment I, standard operational tweaks—increasing per-query pool size or adding response
diversity—tighten coverage without erasing the observed factuality lift.

4.4 EXPERIMENT III — CROSS-QUERY CONFORMAL ALIGNMENT (CVAR-GAP)

We perform LOQO folds for conformal alignment as well. In each fold, for every calibration batch
j we scan a strictness grid 7 and evaluate the CVaR-gap predicate PVAR(7) at tail level ¢ and
margin §, then record the minimal passing strictness S;. We conformally calibrate a global 7 as
the split-batch (1 — «)-quantile of {S;} (Alg. 3.1), then deploy on the held-out batch using only
the cheap score @Q: keep K (7) = {i : Q; > 7} and report (i) empirical pass rate against 1 — «
and (ii) factuality improvement via ACVAR(7). Full predicate and implementation details are in
Appendix B.5/C.

Alignment preserves the statistical target while delivering consistent factuality gains: for every
dataset and every risk level, the reduction in factuality severity on the kept set is positive on av-
erage (Fig. 3). Notably, the largest median and mean improvements occur on the two hardest
datasets—NQ-Open and NQ-Open-Vend—with median AFS ~ 0.206 and ~ 0.112, respectively
(Appendix C, Table 5). Aligning the affordable Gram-geometry score with the factuality signal
provides an effective, economical filtering method, ensuring conformal assurance for new batches.
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Figure 3: Experiment 3. Median of AFS by dataset (points: mean, intervals: 4+ SE), and each panel
corresponds to one dataset. Across every dataset and at every risk level, the reduction in factuality
severity is consistently above 0 on average, demonstrating that conformal alignment with the gram
matrix energy effectively enhances factuality while preserving statistical guarantees.

5 CONCLUSION

We introduced an unsupervised conformal inference framework for black-box LLMs that oper-
ates entirely on sampled outputs. The framework comprises three deployable components: (i) a
Gram-geometry atypicality score based on unit-norm response-embedding inner products, yield-
ing a bounded, interpretable, and stable signal; (ii) batched conformal procedures (B-UCP and the
bootstrap-stabilized BB-UCP) that provide distribution-free, finite-sample guarantees under batch
exchangeability while improving quantile stability and data efficiency over split UCP; and (iii) con-
formal alignment, which calibrates a global strictness parameter 7 so that a batch predicate (e.g., a
CVaR-gap factuality lift) holds on new batches with probability at least 1 — «. Conformal alignment
provides a principled way to synchronize an expensive signal (ground truth) with a cheaper proxy
and performs well when deployment relies only on the proxy, yielding a probabilistic approach to
multimodal signal gating and filtering.

Limitations and outlook. Our guarantees assume exchangeability across batches and within-
batch permutation invariance; violations due to drift or covariate shift motivate weighted or
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covariate-aware variants. Performance depends on embedding quality and normalization, under-
scoring the need for robustness audits and principled model/embedding selection. Predicate design
(e.g., CVaR vs. median lifts and multi-metric trade-offs) invites cost-aware utilities and multi-task
calibration. Extending alignment to multimodal settings and adding adaptive or online recalibration
are promising directions for stronger reliability under non-stationarity.

Use of AI for language editing. We used OpenAl ChatGPT and Overleaf Writefull solely for
language polishing (grammar, clarity, style) of author-written text. All ideas, experiments, and
conclusions are the authors’ own, and the authors reviewed and take responsibility for all content.
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A  PROOFS

A.1 GRAM MATRIX

Theorem 2.1 (Unit-norm interaction—energy bound). If ||v;||2 = 1 for alli, then 1 < e(i; G) < v/n
for each i. Equality e(i; G) = \/n holds when v; is perfectly aligned with all v;; e(i; G) = 1 when
v; is orthogonal to all vj for j # i.

Proof.

n

) 1/2 n 1/2
e(isG) = [Guillz = (Do (wiw)?) = (il + D (wi,v))?)

=1 i

Since ||v;]|2 = 1, the j = i term equals 1, so
e(i;G)? =1+ Z(vi,vj)z.
J#i
Now for j # 4, because both v; and v; are unit vectors, (v;,v;) = cos;; € [0, 1]. Therefore,
1<e(i;G)? <1+ (n—1)=n,

and taking square roots gives the bound

1 < e(i;G) < V/n.

The lower bound is attained when v; is orthogonal to all v;’s with j # i; the upper bound is attained
when v; is perfectly aligned or anti-aligned with all v;’s. O

A.2 SpLiT UCP

Theorem A.1 (Split-UCP marginal coverage). For exchangeable {Y;}'"! and ¢, the split confor-
mal prediction set as stated in Section 3 satisfies Pr{Y,,11 € C,,} > 1 — .

Proof. Let R,y 1 = ¢(Ynq1;D1). Given Dy, the distribution of (R;)ier,ufn+1} i exchangeable.
Hence

Pr{Y,1 € Cp) = Pr{Rn_,_l

IN

the [(1 — @)(|Io| + 1)]-th smallest of {Rz-}ie,z}

= Pr{RnH < the [(1 — a)(|12| 4 1)]-th smallest of {Ri}iebu{nﬂ}}

Q-+ |
|Io] + 1 -

A.3 BatrcH U-CP

Theorem 3.1 (B-UCP coverage). The prediction set C, returned by Batch U-CP satisfies
Pr{Y,41€Cr}>1—q.

Proof. 1f %H > a, then C,, is the whole space and the claim is trivial. Now assume %ﬂ < a.

Define the (random) indicator function
Lii(A) = 1{¢(Y};,Bj_;) > A}, j=1,...,J+1, i=1,...,1.
Since Y7411 is not used to construct C,,, we have
Pr(Y, 1 € Cp) = Pr(¢(Yoy1,Br41,-1) <q) =1 —E[Ly11,1(q)],

where g is the (1 — ZFH2=1)_quantile of the set {$(V;,, Bj—i)};—1.; i=1.;- Define

J+1 1 J I
No=infe A o YD) LM <ap, A=infdh ghr > Y LA+ g <a
j=1 i=1 j=11i=1
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These two \’s exist because L; ;(Bg) = 0 for any (3, j).
Then N < \ < ¢, so LJ+17i(;\/) > LJJ,.l)i(j\) > L j+1,:(q) for all 7. Therefore

E[Lr41.0(0)) SE [Lrsrs(V)] = E[E[LosV) | {B}]]] = E [} Z LJHJ:(X)]

where the last equality uses exchangeability within batch B ;.. Because N < A, the right-most
term is bounded above by

I J+1 1 J+1 1
E }ZL”“'(X)] =E| gy 22 LisN)| <Bl gy 2 Liu(V)| <a
i=1 j=1i=1 j=1i=1

by also using exchangeability of the batches {/5; }3];“11, the inequality A< q, and then the definition

of ¢. Thus Pr(Y, 41 € C,,) > 1 — a. O

A.4 BATCH BOOTSTRAP U-CP
Theorem 3.2 (BB-UCP coverage). The prediction set C,, returned by Batch Bootstrap U-CP satis-
fiesPr{Y,11 € Cp} > 1—a.

Proof. As with the proof in Section A.3, we have
Pr(Y,q1 € Cn) = Pr(¢(Yoy1,Brs1,-1) < q) =1 —E[1{o(YVoi1,Bri1,-1) > q}].

Also do virtual bootstrap in the future batch B 1 to get {S41x} . Independence across j and
identical distributions imply

K
E[1{o(Ynt1,Brs1,-1) > q}] = Il(ZI{SJ+1,k>Q}‘|-
k=1
Let
A 1 J+1 K
N=inf{ A J+1K221{S k> A <a
j=1k=1
J K )
:= By Ainf : 1{S; — <
A= By Ain K;; {Sin >N+ 57 <a

Then ' < ) < q and the same exchangeability argument yields

E[1{¢(Ynt1,Br41,-1) > q}] =E| & Z H{Sy16 > q}]

K
<E|£> 1{Symn> X’}]
k=1

J+l K
=E| g% > > WSk > A}
j=1k=1
Saa
hence Pr(Y,4+1 € C,) > 1—a. O
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A.5 BATCH-WISE CONFORMAL ALIGNMENT

Theorem 3.3 (B-UCP alignment guarantee). Assume the batches { B; jill are exchangeable (which

implies that predicates {P; ;’ill are exchangeable) and that each P; (-) is non-decreasing and right-

continuous in its argument 7 for j = 1,..., J+1. Then Algorithm 3.1 satisfies

Pr{ P]+1<7/:) = 1} > 1—a.

Proof. The algorithm statement provides strictness .S; := inf{r : P;(r) = 1} withinf@ = 1,
value K = [(1 — «)(J + 1)], and 7 being the K-th order statistic of {Sj}}]:r Let 7741 be the
K-th order statistic of {.S; }‘7];"11 Noting that exchangeability of {P; j;rll implies exchangeability

of {Sj}jill, we get

K

Pr{P;1(7) =1} = Pr{S;41 <7} =Pr{Syp1 < 7ypa} = J+1

>1—a.
O

Remark. The proof skills for Theorem 3.1 and 3.2 comes from the attempt to go back from con-
formal risk control to conformal prediction. In the proof we constructed a proper loss function to
achieve this with a standard argument of CRC. This technique can be transfer to many other settings
where we need to go back to CP from CRC.

B ALGORITHMS

B.1 CrLAsSICAL FULL UCP (BACKGROUND)

Algorithm B.1 Full Unsupervised Conformal Prediction (Full-UCP)

1: Input: Data Y7.,, score function ¢, tolerance o € (0, 1)

2: Qutput: prediction set C,

: for candidate y € R (grid or root-finding) do

4: Form A «+ {Y1,...,Y,,y}

5 Compute residuals R; < ¢(Y;;S;) fori =1,...,n,and R,41 < ¢(y; Spt1)
n+1

6: Compute the p-value 7(y) + 1 Z 1{R; > Rni1}

+1 P

[9¥]

7: end for
8: Return C,, + {y: 7(y) > a}

B.2 SpLIT UCP (BACKGROUND)

Algorithm B.2 Split Unsupervised Conformal Prediction (Split-U-CP)

Input: Y7.,, score ¢, tolerance «

Randomly form I, I5; define D,

Compute residuals R; < ¢(Y;;D;) fori € Iy
q < Q(l—a)(l-&-ﬁ)({Ri: i€l})

Return C,, < {y : ¢(y; D1) < q}.

A
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B.3 BATCH UCP AND BATCH BOOTSTRAP U-CP (FORMAL ALGORITHMS)

Algorithm B.3 Batch U-CP

1: Input: responses {Y} k]H , score ¢ (bounded by By), batch count J, tolerance c.

2: Partition the data into J+1 disjoint batches B; = {Yj1,...,Y;} forj = 1,...,J and
Brii—1={Yr10,-- - Yy, 0-1}-
for j =1to J do > Within-batch leave-one-out residuals

fori =1to I do
Rj; < ¢(Yj; Bj—i) where B i = B; \ {Yji}
end for
end for
if J+1 < « then
9: g (1— D) quantile of {Ry )}
10: else
11: q < By
12: end if
13: Return C), = {y : ¢(y;BJ+17_1) < q}

°°\'°\U"'>'W

Algorithm B.4 Batch Bootstrap U-CP

1: Input: responses {Yk}é‘zl)[—l, score ¢ (bounded by By), batch count J, tolerance c, boot-
strap count K.

2: Partition as in Algorithm B.3.

3: forj=1to J do > Within-batch leave-one-out residuals
4: fori:=1to I do

5 R] i< ¢( ) 7,—1’)

6: end for

7. Draw K bootstrap replicates {S; ¢ }5_, from {R;;}_;

8: end for

9: if J+1 < « then

10 g+ (1- M) -quantile of {S; ¢}; ¢
11: else

12: q < By

13: end if

14: Return C,, = {y : ¢(y; Bys1,-1) < q}

B.4 ALGORITHMIC DETAILS FOR THE CVAR-GAP PREDICATE

Let @;,; denote the inner-product interaction energy from Section 2.2 (unit-norm, cosine geometry).
We keep high-consensus items via

Jj(T) = {Z : Qj’i > 7'}7
so larger T retains fewer and more self-consistent responses.

Let s;; € [0,1] be a batch severity with larger = worse (e.g., factuality severity). At strictness 7,
define the kept and dropped sets K;(7) = {i : Q;; > 7} and D;j(7) = {i : Q;; < 7}. Fora
random variable X with CDF Fx, the upper-tail Conditional Value-at-Risk at level ¢ € (0, 1) is

CVAR,(X) = T q/ VaR, (X)du, where VaR,(X) = inf{z : Fx(x) > u}.

We instantiate a batch predicate that asks for a fail-risk improvement after filtering:
ACVARj7T(q) = CVARq(8j7Z‘ 11 E Dj (T)) — CVARq<Sj7i 11 E Kj (T)),
PEVAR(7) == 1{ACVAR;.(q) > 6}.
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ID  Benchmark (split) #Q ParaP Ans N Mix (N/E/Z) Entropy 7
Cl  ASQA (dev) 60 10 150 (.75/.00/.25) 0.90
C2  NQ-Open (val) 60 6 16 (.67/.00/.33) 0.86
C3  HotpotQA (val) 60 10 100 (.60/.00/.40) 0.86
C4  AmbigQA (dev) 60 10 150 (.75/.00/.25) 0.86
C5  AmbigQA (dev) (ablation: decoding entropy) 40 10 150 (.75/.00/.25) 0.86
C6 NQ-Open (val) (ablation: vendor/model) 60 6 16 (.67/.00/.33) 0.86

Table 1: Benchmarks and per-item sampling settings used in the hallucination study. The mix
column shows (normal/enforced/noise).

CVAR, also known as Expected Shortfall, focuses on the worst tail and is coherent and robust to
heavy tails; demanding a positive CVAR gap concentrates the kept set on reliably low-severity an-
swers and suppresses rare but severe failures.

Algorithm B.5 CVaR-gap alignment: minimal strictness and split-batch calibration

1: Inputs: calibration batches {B; }3’:1; held-out test batch By ;; Gram score @ € [0, 1]; tail
level ¢ € (0,1); margin § > 0; miscoverage « € (0, 1).

2: Kept/excluded at strictness 7: K,;(7) ={i: Q,; > 7}, E;(1) = B; \ K;(7).

3: Empirical CVaR,. For a multiset S C [0, 1] with m = [S], sort in descending order sy >
o+ > 8(my and set h = [(1 — ¢)m], mq(S’) =1 Z?Zl 5(¢y (winsorize if h=0).

4: Predicate: PVeR(7) = 1{ CVaR,(s|E; (7)) — CVaR,(s|K;(r)) > & }.

5: Minimal strictness (per batch). Scan 7 over the right-continuous grid induced by the unique
@ values in B; (plus 0 and 1). Let S; = inf{7 € [0,1] : PJCVE‘R(T) = 1} (set S;«1 if the set
is empty).

6: Split-batch calibration. Return 7 = Quant; o ({S;}/_,) as in §3.2.

7: Deployment on By ;. Keep K j11(7) = {i : Qs+1, > T} and report the CVaR-gap.

Let F'S; ; be a factuality severity in [0, 1] (lower is better; e.g., BERTScore—F1 dissimilarity). The
predicate P]-F (1) = 1 asserts that the (Q)-filtered subset achieves a statistically significant median
reduction in factuality severity (per the test above). Calibrating 7 across historical batches yields a
single label-free gate which, when applied with () alone, preserves this improvement on new batches
with probability at least 1 — o (Theorem 3.3).

C EXPERIMENT

C.1 APPENDIX: HALLUCINATION EXPERIMENT SETTINGS AND CONFIGURATIONS

For each question we generate a response set, compute Factuality Severity = 1 —
maX,erefs BERTScore-F'1(a,r). All runs are seeded and logged to timestamped, self-describing
CSVs: a per-answer file (scores, margins, types, decoding knobs) and a per-run file (dataset/split,
sample counts, model/provider, seeds, thresholds, and paths). Together model IDs are normalized
to serverless fallbacks to avoid availability regressions.

We evaluate across four core datasets—ASQA (dev), NQ-Open (validation), HotpotQA (valida-
tion), AmbigQA (dev)—plus two ablations that stress decoding entropy and vendor/model choice.
Each configuration fixes decoding knobs and the normal/enforced/noise mix, while paraphrasing a
canonical gold to reduce aliasing of surface forms.

Shared knobs: alias-normalization for Together; n_per_call=5; rate-limit ~ 0.8s; severity mix weight
logged; seeds: C1=42, C2=7, C3=11, C4=23, C5=23, C6=8.

We use minimal, auditable prompts. For paraphrasing the canonical gold: System. “You rewrite text. Output
a succinct standalone paraphrase.” User: “Paraphrase the following answer in different wording, preserving
the exact meaning and factual content. Keep it concise and standalone. Avoid hedging, qualifiers, or extra
details. Answer: {gold}.” For normal answers: System: “Answer the question with the canonical short answer
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ID Provider

Model

Temp Top-p MaxTok

Embed

BERTScore

Cl Together Llama-3.3-70B-Instr. Turbo 1.3 1.0 256 MiniLM-L6-v2 RoBERTa-large
C2 OpenAl gpt-40-mini 0.1 1.0 96 MiniLM-L6-v2 RoBERTa-large
C3 Together Mixtral-8x7B-Instr. v0.3 1.2 1.0 256 MiniLM-L6-v2 RoBERTa-large
C4 Together Llama-3.1-8B-Instr. Turbo 0.7 0.9 256 MiniLM-L6-v2 RoBERTa-large
C5 Together Llama-3.1-8B-Instr. Turbo 1.3 1.0 256 MiniLM-L6-v2 RoBERTa-large
C6 Together Llama-3.1-8B-Instr. Turbo 0.1 1.0 96 MiniLM-L6-v2 RoBERTa-large

Table 2: Provider/decoding and measurement settings, linked by ID to Table 1.

first; then add at most one brief justification. Be concise.” User: {question}. For enforced canonical answers:
System: “Answer with the canonical short answer first; then a single, concrete supporting detail. Avoid aliasing,
avoid hedging, avoid contradictory statements.” User: {question}. (Noise/outlier strings are programmatically
injected: gibberish, off-topic, fabricated citations, prompt-injection strings, contradictions, emoji floods, and
multilingual snippets.)

Embeddings: sentence-transformers/all-MiniLM-L6-v2 with unit-norm rows; semantic-entropy
uses a soft neighbor kernel above 7 (exponent k=4) and a normalized — log mapping to [0, 1]. Severity-F1
uses bert—score with roberta—-large (baseline-rescaled) on “answer heads” (first <16 tokens) to limit
verbosity bias. All artifacts are timestamped and saved as {dataset}_{model}_{stamp}--ns{N} for direct
reuse in downstream risk control. This mirrors the same compute-aware calibration-to-deployment recipe we
use for LLM-as-Judge.

C.2 MORE RESULTS

Table 3: Benchmark mapping used in the six-panel comparisons for plotting. Short codes are
the compact labels used in figure titles. For JudgeQ CSVs, the same names appear with the suffix
__judged.

Panel Short code CSV dataset_name
1 AMBIGQA-ENT ambigga--1lama8b__hiT__ablation_entropy--ns40_responses
2 AMBIGQA ambigga--1lama8b_midT_ns60_responses
3 ASQA asga--l1lama70b__hiT_ns60_responses
4 HOTPOTQA hotpot_mixtral8x7b__hiT noise40_ns60_responses
5 NQ-OPEN ng--gpt4omini__loT_-light_ns60_responses
6 NQ-OPEN-VEND ng__llama8b__loT__ablation_vendor_ns60_responses

Across Experiment 1, our methods perform strongly on the majority of benchmarks: on ASQA, HOTPOTQA,
and both AMBIGQA panels (standard and entropy-ablation), Split-UCP consistently achieves nominal cov-
erage while BB-UCP further tightens the coverage range and reduces variability—demonstrating the intended
stability benefit of within-batch bagging under heterogeneous answer clouds with heavier tails. These re-
sults highlight two key strengths of our approach: (i) distribution-free coverage remains intact across diverse
datasets, providers, and decoding knobs, and (ii) practical efficiency improves in harder settings, where boot-
strapping stabilizes tail quantiles and yields shorter, more reliable acceptance regions at a fixed risk level.

NQ-OPEN and its variant NQ-OPEN-VEND show weakness due to small query pools and low-diversity
factoids, leading to compressed Gram-space dispersion. This results in nearly tied residual ranks, reducing
the visibility of BB-UCP’s advantage over Split-UCP.This behavior is an artifact of the small-/N/low-entropy
regime rather than a failure of validity, and is readily mitigated in practice by slightly increasing the pool size
or calibration-only diversity (or by modest geometry smoothing), after which these panels recover the same
qualitative gains observed on ASQA, HOTPOTQA, and AMBIGQA.

Experiment 2 Experiment 2 shows that the factuality lift is not only consistent but strongest on the hardest
panels. Aggregating the raw bars across all v values, the median AFS is strictly positive for every dataset (all
panels, all ), confirming that the ()-gate reliably reduces factuality severity on the kept set. Moreover, the
largest median gains occur on NQ-OPEN and NQ-OPEN-VEND (aka EnqueueOpen/EnqueueOpenVend):
NQ-OPEN achieves the top median improvement (AFS ~ 0.209), with NQ-OPEN-VEND second (AFS ~
0.112), while the remaining benchmarks (ASQA, HOTPOTQA, AMBIGQA, AMBIGQA-ENT) are all
positive as well. This “worst-case best” pattern indicates our gate concentrates probability mass on the most
reliable answers precisely where the answer cloud is small and low-diversity. Coverage is slightly under nom-
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Table 4: Experiment 2 aggregated results across miscoverage levels. AFS is the median-factuality
reduction (excluded — kept); positive is better. Avg Cov. is empirical coverage averaged over «,
Target Cov. is the average nominal 1 — «, and Avg Gap is the mean (coverage — target) in percentage
points (pp).

Benchmark #a  Median AFS  Mean AFS  Avg Cov. (%) Target Cov. (%) Avg Gap (pp)
NQ-OPEN 5 0.209 0.189 88.98 95.00 -6.02
NQ-OPEN-VEND 5 0.112 0.101 92.88 95.00 -2.12
ASQA 5 0.091 0.089 95.53 95.00 0.53
AMBIGQA 5 0.072 0.073 95.55 95.00 0.55
HOTPOTQA 5 0.067 0.067 95.11 95.00 0.11
AMBIGQA-ENT 5 0.051 0.052 95.79 87.50 0.79

inal on average in those two hardest panels (mean gap ~ —6.0 pp on NQ-OPEN; range of mean gaps across
benchmarks ~ [—6.0, 4-0.8] pp), which is expected from small-N discretization and near-tied ranks; it is also
actionable—increasing the per-query pool or adding calibration-only diversity closes the shortfall without al-
tering the factuality lift. Net: Experiment 2 provides a strong, data-backed claim of robustness (positive lift
everywhere), effectiveness (largest gains on the hardest datasets), and practical tunability (coverage can be
tightened by modest, standard knobs).

Table 5: Experiment 3 aggregated factuality reductions across miscoverage levels. AFS is the reduc-
tion in factuality severity (excluded — kept); positive is better. Columns summarize the distribution
of per-a improvements and the average number of CV folds used.

Benchmark #a Median AFS  Mean AFS  Min AFS  Max AFS  #Folds
NQ-OPEN 5 0.206 0.192 0.151 0.253 40
NQ-OPEN-VEND 5 0.112 0.107 0.086 0.144 40
ASQA 5 0.092 0.089 0.071 0.109 40
AMBIGQA 5 0.075 0.074 0.056 0.094 40
HOTPOTQA 5 0.068 0.068 0.052 0.086 40
AMBIGQA-ENT 5 0.051 0.052 0.039 0.067 40

Experiment 3 Conformal Alignment Across benchmarks, the largest median and mean AFS arise on
NQ-OPEN and NQ-OPEN-VEND, indicating that the gate is most effective precisely in the hardest, low-
diversity factoid regimes. Moreover, all panels maintain positive min—max ranges over «, so factuality severity
consistently drops on the kept set with no reversals. The proximity of median and mean within each benchmark
suggests conformal alignment’s stability across tolerance levels, i.e., the effect is not sensitive to a.
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