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ABSTRACT

Capturing geometric and material information from images remains a fundamen-
tal challenge in computer vision and graphics. Traditional optimization-based
methods often require hours of computational time to reconstruct geometry, ma-
terial properties, and environmental lighting from dense multi-view inputs, while
still struggling with inherent ambiguities between lighting and material. On the
other hand, learning-based approaches leverage rich material priors from existing
3D object datasets but face challenges with maintaining multi-view consistency.
In this paper, we introduce IDVI, a diffusion-based model designed to perform
intrinsic decomposition on an arbitrary number of images under varying illumi-
nations. Our method achieves highly accurate and multi-view consistent estima-
tion on surface normals and material properties. This is made possible through a
novel cross-view, cross-domain attention module and an illumination-augmented,
view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a
new dataset that provides large-scale multi-view intrinsic data and renderings un-
der diverse lighting conditions, supporting robust training. Extensive experiments
demonstrate that IDVI outperforms state-of-the-art methods both qualitatively and
quantitatively. Moreover, our approach facilitates a range of downstream tasks, in-
cluding single-image relighting, photometric stereo, and 3D reconstruction, high-
lighting its broad applicability in realistic 3D content creation.

1 INTRODUCTION

The color we perceive from objects results from a complex interaction between the incident light,
the material properties, and the surface geometry of those objects. Recovering these intrinsic prop-
erties from captured images is a fundamental challenge in computer vision, enabling a variety of
downstream applications, such as relighting (Wimbauer et al., 2022) and photo-realistic 3D content
generation (Zhang et al., 2024; Siddiqui et al., 2024). This decomposition process, commonly re-
ferred to as inverse rendering, is inherently ambiguous and severely under-constrained, particularly
when only one or a limited number of observation views are available. For instance, a black pixel
could indicate black base color or is the result of lacking incident light.

Existing inverse rendering research can be broadly categorized into two approaches: optimization-
based methods and learning-based methods. The former category (e.g. NeRFactor (Zhang et al.,
2021b), NVDiffRecMC (Hasselgren et al., 2022), TensoIR (Jin et al., 2023)) typically requires hun-
dreds of multi-view images as input and focuses on optimizing intrinsic properties for each case
independently. This approach involves time-consuming iterative optimization, often requiring sev-
eral hours. Moreover, without incorporating strong priors on material distribution or addressing
the inherent ambiguity between lighting and texture, these optimization-based methods frequently
converge to sub-optimal solutions. This can lead to unrealistic decompositions, such as embed-
ding lighting effects into intrinsic components, as shown in Fig. 1(b). To address these limitations,
learning-based methods aim to extract useful priors from large-scale training datasets and perform
fast inference in a feed-forward manner. While many of these approaches focus on single-image
decomposition, they tend to produce inconsistent intrinsic properties when applied across multiple
views, as demonstrated in Fig. 1(a). Additionally, single-image models struggle to leverage comple-
mentary information from multiple views, making it difficult to resolve material ambiguities, which
results in less accurate outcomes in more complex cases.
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Figure 1: IDVI tackles intrinsic decomposition for an arbitrary number of views under uncon-
strained illumination. Our approach (a) achieves multi-view consistency compared to learning-
based methods and (b) better disentangles intrinsic components from lighting effects via learnt priors
compared to optimization-based methods. Our method could enhance a wide range of applications
such as image relighting and material editing, photometric stereo, and 3D reconstruction.

To mitigate these challenges, we propose IDVI, a model capable of taking an arbitrary number
of images captured under unconstrained, varying lighting conditions and predicting corresponding
intrinsic components, including albedo, normal, metallic and roughness. Our key contributions are
three-fold. First, to effectively fuse information across different views and intrinsic components, we
introduce a cross-view, cross-component attention module. This module facilitates holistic under-
standing of the multi-view correspondence and joint distribution of intrinsic components, enabling
consistency across viewpoints and reducing decomposition uncertainty. Second, to improve perfor-
mance under complex lighting conditions, we create a custom dataset based on Objaverse (Deitke
et al., 2022), namely ARB-Objaverse, which contains 5.7M multi-view RGB images and intrinsic
components with varying illumination scenarios for effective training. Lastly, we devise a novel and
effective illumination-augmented and view-adapted training strategy to achieve robust performance
under varying lighting conditions and leverage both multi-view cues and general object material
prior for better multi-view and single-view inverse rendering.

We evaluate our model extensively on both synthetic and real data. Our approach significantly out-
performs existing learning-based methods (Kocsis et al., 2024; Zeng et al., 2024; Chen et al., 2024)
by a large margin, both qualitatively and quantitatively, achieving state-of-the-art results in intrinsic
decomposition. Our model offers practical benefits for a range of downstream tasks, including ma-
terial editing, relighting, and photometric stereo, and it can also serve as a strong prior to improve
optimization-based methods by better disentangling lighting effects from intrinsic appearance. We
believe that IDVI provides a unified solution across different input regimes in inverse rendering,
advancing our ability to understand and model the physical world.

2 RELATED WORK

2.1 OPTIMIZATION-BASED INVERSE RENDERING

Optimization-based inverse rendering methods aim to jointly reconstruct shape, materials, and light-
ing from multi-view images. Volumetric representation methods (Boss et al., 2021a; Kuang et al.,
2022; Boss et al., 2021b; Zhang et al., 2021b) extend NeRF (Mildenhall et al., 2020) to model in-
trinsic appearance and lighting conditions, rendering images using volume rendering techniques.
Surface-based representation methods (Zhang et al., 2021a; 2022a;b; Sun et al., 2023) extract sur-
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faces as signed distance functions (SDFs) (Wang et al., 2021) or differentiable meshes (Munkberg
et al., 2022; Hasselgren et al., 2022), apply explicit material models such as Bidirectional Re-
flectance Distribution Functions (BRDFs) (Nicodemus, 1965), and render images through physics-
based procedures. Recent works explore 3D Gaussian representation Kerbl et al. (2023); Gao et al.
(2023) for this task, assigning intrinsic attributes to each Gaussian point.

While existing methods effectively simulate global illumination, they often require dense multi-view
inputs and can be computationally expensive, especially for complex scenes. Additionally, they face
the inherent ambiguity between lighting and materials, which can lead to suboptimal solutions, such
as lighting being incorrectly baked into textures. In contrast, our proposed method offers an efficient
solution for inverse rendering in a feed-forward manner. By leveraging well-learned priors from our
large-scale, multi-view, multi-lighting dataset, we can significantly mitigate the issue of ambiguity.

2.2 LEARNING-BASED INVERSE RENDERING

With advancements in deep neural networks, learning-based approaches (Barron & Malik, 2020; Li
et al., 2019; Zhu et al., 2022; Bi et al., 2020; Careaga & Aksoy, 2023; Shi et al., 2016) have demon-
strated impressive performance in intrinsic decomposition. They typically take a single image as
input and decompose intrinsic properties from the input view, such as albedo, specular, and surface
normal. Early learning-based methods (Li et al., 2018; Wu et al., 2021; Wimbauer et al., 2022; Sang
& Chandraker, 2020; Boss et al., 2020; Yi et al., 2023) handle intrinsic decomposition as a deter-
ministic problem, often leading to over-smoothed details at ambiguous pixels. Recent works (Kocsis
et al., 2024; Chen et al., 2024; Zeng et al., 2024) adopt probabilistic distribution modeling with diffu-
sion (Ho et al., 2020), estimating accurate intrinsic components with high-frequency details through
a generative formulation. Zeng et al. (2024) presents a unified diffusion framework that addresses
both RGB→X (estimating intrinsic properties) and X→RGB (generating realistic images) by train-
ing diffusion pipelines on multiple data sources.

These learning-based approaches typically handle inverse rendering in a single-view setting, leading
to inconsistent results when applied to multi-view data. Our work extends the feed-forward diffusion
pipeline to address the under-explored challenge of multi-view inverse rendering, providing a unified
solution for various input types and offering valuable intrinsic priors for downstream applications.

2.3 DIFFUSION MODELS FOR OTHER MODALITIES

Denoising Diffusion Probabilistic Models (DDPMs) and their variants (Ho et al., 2020; Rombach
et al., 2021; Zhang et al., 2023) have gained significant attention in text-to-image generation, yield-
ing promising results across various applications. Researchers have also explored adapting diffusion
models to different output modalities such as normal (Fu et al., 2024), depth (Ke et al., 2024) and
novel view images (Liu et al., 2023; Shi et al., 2023b; Li et al., 2023). To generate multiple modality
simultaneously, Wonder3D (Long et al., 2023) introduces additional cross-domain attention mod-
ules into diffusion model that generates multi-view normal maps and corresponding color images.
We extend this concept to intrinsic decomposition by splitting the intrinsic components into three
triplets and modeling their joint distribution. By leveraging pre-trained diffusion models, which cap-
ture rich structural, semantic, and material knowledge, we can overcome data limitations and ensure
generalization to real-world scenarios, even when the models are trained on synthetic data.

3 METHOD

IDVI is a diffusion-based model for intrinsic decomposition that can handle an arbitrary number
of input views and varying lighting conditions. We begin by outlining the problem statement in
Section 3.1. Then, in Section 3.2, we describe the construction of our custom dataset tailored to this
task. Finally, we discuss the model architecture and training strategy in Sec. 3.3. An overview of
IDVI is provided in Fig. 2.

3.1 PROBLEM STATEMENT

We frame intrinsic decomposition as a conditional generation problem:
X1:N ∼ p(X1:N |I1:N ). (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

specific text prompt
“albedo” / “normal” / “metallic&roughness”

ℰ

𝒟

…

… U-Net

…

…

…

…

…

…

…

… …… …

Ni views

N
v
illum

ination

Sample
 N images

Attention Block

cross attention

feed-forwardcross-component attention cross-view attention

specific 
text 

prompt

N

D

albedo normal metallic&

roughness

Latent

Concat

view1 view2 view3 view4

N

D

N

D

Attention Maps

D

N×H×W

N
×

H
×

W

KD

QD

VD

Attention Maps
N

D×H×W

D
×

H
×

W

KN

QN

VN

Latent Latent

Figure 2: Top: Overview of IDVI. Bottom: Illustration of the attention block within the UNet.
Our training batch consists of N input images, sampled from Nv viewpoints and Ni illuminations.
The latent vector for each image is concatenated with Gaussian noise for denoising. Intrinsic com-
ponents are divided into three triplets (D=3): Albedo, Normal and Metallic&Roughness. Specific
text prompts are used to guide the model toward different intrinsic components. For attention block
inside UNet, we introduce cross-component and cross-view attention module into it, where attention
is applied across components and views, facilitating global information exchange.

Here, N ∈ N denotes the number of input views; I1:N denotes input RGB images and X1:N repre-
sents the intrinsic components of each view. We model X using the simplified Disney BRDF param-
eterization (Burley & Studios, 2012; Karis & Games, 2013), which includes albedo A ∈ RH×W×3,
roughness R ∈ RH×W×1, metallic M ∈ RH×W×1 and surface normal N ∈ RH×W×3. The num-
ber of input images N can take on an arbitrary value from one to many, and the input images can be
rendered under arbitrary, unconstrained illuminations during both training and inference.

3.2 ARB-OBJAVERSE DATASET

Obtaining ground truth data for intrinsic decomposition in real-world settings is both time-
consuming and technically challenging. To overcome this, we rely on synthetic data for training.
Ideally, a suitable dataset should feature large-scale, diverse objects rendered under multiple light-
ing conditions. However, existing datasets have notable limitations. For example, G-Objaverse (Qiu
et al., 2024) employs a single, low-contrast lighting setup, while ABO (Collins et al., 2022) is re-
stricted to household items, suffering from a lack of diversity among the objects.

To address these shortcomings, we developed a custom dataset, Arb-Objaverse. We select 68k 3D
models from Objaverse Deitke et al. (2022), filtering out low-quality and texture-less ones. For
each object, we render 12 views, using Cycles render engine from Blender1. For each viewpoint,
we render 7 images under different lighting conditions. 6 images are illuminated by randomly
sampled high-dynamic range (HDR) environment maps from Poly Haven2, which offers a collection
of 718 varied environment maps. The last image is illuminated by two point light sources randomly
positioned on a surrounding shell. Our Arb-Objaverse dataset ends up with 5.7 million rendered
RGB images along with their intrinsic components. For training, we further enhanced variability
by combining this dataset with G-Objaverse and ABO. Fig. 3 offers a visualization and comparison
among these datasets.

1https://www.blender.org/
2https://polyhaven.com/

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025
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Figure 3: Overview of the Arb-Objaverse dataset. Our custom dataset features a diverse collection
of objects rendered under various lighting conditions, accompanied by their intrinsic components.

3.3 ARCHITECTURE AND TRAINING

Given an arbitrary number of views from single to multi-view images, IDVI generates multi-view
consistent intrinsic maps under unconstrained illumination using a text-guided diffusion model. We
base our model on the pre-trained Stable Diffusion (SD) (Rombach et al., 2021) model to capitalize
on its robust prior knowledge from RGB domain. Different from the 3-channel RGB images, intrin-
sic components possess higher channel dimensions and cannot be directly processed by original SD
model. To repurpose the VAE in original SD for new intrinsic modalities, we divide intrinsic com-
ponents X into three triplets: albedo A, normal N and B = [M,R,0], where M is metallic, R is
roughness and 0 is left unused. Each triplet latent is channel-concatenated with the Gaussian noise
for denoising. Specific text prompts for each triplet, i.e., ‘albedo’, ‘normal’, ‘metallic&roughness’,
are devised to indicate denoising targets.

Cross-view Cross-component Attention. In real-world scenarios, users may capture multiple im-
ages of an object, making it essential for the model to handle an arbitrary number of input views
and ensure consistent results across all views. It is also crucial for 3D reconstruction to have these
consistent decomposition results as material guidance. To address this, we propose cross-view at-
tention module within the original attention block of UNet. As shown in Fig. 2, we concatenate
input features from each view, enabling the attention operation to be performed across views. This
allows the model to leverage multi-view information to reduce ambiguity and enforce consistency
across different viewpoints.

The reflected color results from the interplay between incident light, material properties, and the
surface shape. For instance, a convex shape with a dark color increases the likelihood of a dark
albedo. To better capture these relationships, we propose to model the joint distribution of intrinsic
components rather than predicting them separately. Inspired by Wonder3D (Long et al., 2023) and
GeoWizard (Fu et al., 2024), we introduce cross-component attention via repurposing the vanilla
self-attention module to fuse global interactions between different intrinsic components. Unlike
Wonder3D and GeoWizard, which employ a domain switcher to control generation across domains,
we guide the process using specific text prompts via cross-attention modules. As demonstrated in
Sec. 4.3, exchanging information between components effectively reduces decomposition uncer-
tainty, especially for roughness and metallic.

Illumination-Augmented and View-Adapted Training. Multi-view images captured in uncon-
trolled environments often experience varying lighting conditions, making it essential for algorithms
to handle such differences effectively. To address this, we propose an illumination-robust data aug-
mentation strategy, where multi-view images are sampled from various lighting conditions during
training. These conditions include a range of setups, such as uniform ambient light, HDR envi-
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ronment maps, and point light sources. At each training step, given Nv views and Ni illumination
variations for each instance in the dataset, we randomly sample N images as input. This allows us to
simulate complex input scenarios, including same-view-different-illumination, different-view-same-
illumination, and different-view-different-illumination, thus enhancing the diversity of the training
data. As a result, our model learns to distinguish different lighting conditions without the need
for manually crafted modules, effectively leveraging photometric cues from multi-light captures to
achieve robust intrinsic decomposition. It also shows superior generalization capability to handle
unseen lighting conditions at inference time.

However, training with fixed N input images leads to downgraded performance when only one view
is given (as shown in Sec. 4.3). We suppose that this may be because multi-view training guides
the model to focus more on cross-view information to infer intrinsic information, while single-
image decomposition requires the learning of general object material priors. To overcome this,
we introduce a view-adapted training strategy, that swaps between multi-input and single-image
settings. By incorporating this approach, our model gains robust generalization capability with an
arbitrary number of input views.

Noise Scheduler. The original SD model uses the scaled linear noise scheduler, which prioritizes
generating high-frequency details and allocates fewer steps to low-frequency structures. However,
this approach limits model’s performance in intrinsic decomposition task, as the structure of intrinsic
components, particularly metallic M and roughness R, differs significantly from input RGB images.
Inspired by Shi et al. (2023a), we shift the noise scheduler toward higher noise levels. As shown in
Sec. 4.3, increasing the number of high-noise steps significantly improves the prediction of metallic
and roughness components.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We finetune the UNet from the pretrained Stable Diffusion with the zero
terminal SNR schedule (Lin et al., 2024). We utilize the v-prediction as training objective and the
AdamW optimizer with a learning rate of 1×10−4. The model is trained on downsampled 256×256
resolution over 80, 000 steps. During training, the number of input images N is randomly set to 3
or 1 per object. The entire training procedure takes approximately 4 days on a cluster of 16 Nvidia
Tesla A100 GPUs.

Baselines. We compare our method with two recent diffusion-based approaches: IID (Kocsis
et al., 2024) and RGB↔X (Zeng et al., 2024). Since RGB↔X is not yet publicly available, we
re-implemented it and trained the model on our training dataset. Additionally, we include Intrinsi-
cAnything (Chen et al., 2024) for albedo comparison and GeoWizard (Fu et al., 2024) for normal
comparison. We evaluate our model in two settings: (1) single-view setting, where each input im-
age is processed independently, and (2) multi-view setting, where intrinsic components are jointly
estimated from multiple views of each object.

Metrics. For albedo evaluation, we use Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index Measure (SSIM) (Wang et al., 2004). Since albedo is defined up to a scale factor, we apply
a scale-invariant PSNR metric by rescaling the predicted albedo as A′ = argminα||A − αÂ||2Â.
For surface normals, we measure Cosine Similarity. Mean Squared Error (MSE) is used to evaluate
metallic and roughness components.

Evaluation Dataset. We evaluate the effectiveness and generalization capability of our model
on both synthetic and real-world datasets. For synthetic data, we sample 441 objects from Arb-
Objaverse and G-Objaverse, selecting four viewpoints for each object. For real-world data, we
collect a set of images from Pixabay3. All evaluations are conducted at a resolution of 512× 512.

4.2 EXPERIMENTAL RESULTS

Results on Synthetic Data. We present quantitative results in Tab. 1, where our method consistently
achieves the highest accuracy across all metrics. Fig. 4 displays a visual comparison of our method
in single-view setting against baseline methods.

3https://pixabay.com/

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

IID Ours GTIntrinsicAnythingInput

GeoWizard Ours GTRGB X

RGB X

Input

Input RGB XIID Ours GT

Input RGB XIID Ours GT

(a) Albedo estimation. Our method effectively removes highlights and shadows.
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(b) Normal estimation. Our method gives shape geometry while correctly predicting flat surface.

IID Ours GTIntrinsicAnythingInput

GeoWizard Ours GTRGB X

RGB X

Input

Input RGB XIID Ours GT

Input RGB XIID Ours GT
(c) Metallic estimation. Our method outperforms IID and RGB↔X with plausible results free of inter-
ference from texture patterns and lighting.

IID Ours GTIntrinsicAnythingInput

GeoWizard Ours GTRGB X

RGB X

Input

Input RGB XIID Ours GT

Input RGB XIID Ours GT

(d) Roughness estimation. Our method outperforms IID and RGB↔X with plausible results free of
interference from texture patterns and lighting.

Figure 4: Qualitative comparison on synthetic data. IDVI demonstrates superior intrinsic esti-
mation compared to all other methods.

Table 1: Quantitative evaluation of IDVI against baselines. IDVI consistently achieves the best
results among all albedo, normal, metallic and roughness metrics.

Albedo Normal Metallic Roughness
SSIM↑ PSNR↑ Cosine Similarity ↑ MSE ↓ MSE ↓

IID 0.901 27.35 - 0.192 0.131
RGB↔X 0.902 28.09 0.834 0.162 0.347
IntrinsicAnything 0.901 28.17 - - -
GeoWizard - - 0.871 - -
Ours(single) 0.935 32.79 0.928 0.037 0.058
Ours(multi) 0.937 33.62 0.941 0.016 0.033

For albedo estimation (Fig. 4a), our method effectively removes highlights and shadows, whereas
IID and RGB↔X tend to retain lighting effects in the albedo, and IntrinsicAnything produces un-
realistic results for metallic surfaces. In normal estimation (Fig. 4b), our method provides sharp
and accurate geometry, while RGB↔X suffers from interference of object textures, and GeoWizard
shows blurred details since it evaluates a number of samples and takes their mean. For metallic and
roughness estimation (Fig. 4c and Fig. 4d), our method delivers more plausible results, eliminating
interference from texture patterns and lighting. Additionally, we observe that incorporating multi-
view inputs significantly enhances metallic and roughness predictions, as they provide additional
information to resolve material ambiguities.

Results on Real-world Data. We present qualitative results on real-world data in Fig. 5 and compare
our method with IntrinsicAnything for albedo estimation. IntrinsicAnything predicts overly dark
albedo for metallic objects and produces blurry details (such as the toy’s mouth in the third row),

7
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Input image IntrinsicAnything Ours (Albedo, Normal, Metallic, Roughness)                

Figure 5: Qualitative comparison on real-world data. IDVI generalizes well to real data, with
accurate, convincing decompositions and high-frequency details.

Input

w/o cross-component attention

w/ cross-component attention

Ground truth

Albedo Normal Metallic Roughness

(a) Ablation on cross-component attention.

Input

w/o single view training

w/o shift scheduler

Ours

Albedo Normal Metallic Roughness

(b) Ablation on training strategy

Figure 6: Ablative studies on (a) cross-component attention and (b) training strategy.

leading to a loss of fidelity. In contrast, our model generates accurate and convincing decompositions
with preserved details. Despite being trained on synthetic data, IDVI generalizes well to real-world
images. Additional results are shown in Appendix. D.

4.3 ANALYSIS AND ABLATIVE STUDY

Ablation on Cross-component Attention. To assess the effect of cross-component attention, we
also trained our model without cross-component attention mechanism for comparison. As shown
in Fig. 6a, exchanging information between different intrinsic components helps reduce material
ambiguity, particularly for metallic and roughness, which are prone to uncertainty.

Ablation on Training Strategy. Fig. 6b shows ablative studies on multi-single view interleaved
training strategy and the noise scheduler. Training exclusively on multi-view inputs leads to perfor-
mance degradation for single-image inputs, as these two settings emphasize different capabilities of
the model, as discussed in Sec. 3.3. Additionally, shifting noise scheduler towards high noise level
helps the model better adapt to intrinsic domains.

Analysis of Viewpoints and Lighting Effects. We analysis the effects of the number of viewpoints
and lighting conditions on our custom dataset. We evaluate our model with 1, 2, 4, 8, and 12 view-
points under 1, 2 and 3 lighting conditions. As shown in Fig. 7, increasing the number of viewpoints

8
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Figure 7: Effects of number of viewpoints and lighting conditions. We find increasing the number
of viewpoints and the lighting conditions generally improves decomposition performance.
Table 2: Quantitative results for photometric stereo on NeRFactor. We evaluate performance using 2, 4,
and 8 OLAT images, and achieve the best performance among all compared methods.

# OLAT Images 2 4 8
Methods Albedo↑ Normal↑ Albedo↑ Normal↑ Albedo↑ Normal↑
IID 22.23 - 22.40 - 22.86 -
RGB ↔X 21.29 0.71 22.08 0.77 23.29 0.81
SDM-UniPS 22.95 0.74 23.20 0.76 23.37 0.81
Ours 23.50 0.83 23.64 0.84 25.15 0.85

or lights generally improves prediction accuracy. For metallic and roughness predictions, multi-light
captures are particularly effective in disentangling these components from lighting effects. Empiri-
cally, performance gains from adding more viewpoints diminish beyond eight viewpoints. Further
details are provided in Appendix. B.

More Results. Additional multi-view input results are provided in Appendix. E and supplementary
video. For more real-world data results, please refer to Appendix. D.

4.4 APPLICATIONS

IDVI offers valuable intrinsic priors for various downstream applications. Here, we demonstrate
the model’s ability in handling single-image relighting and material editing, and photometric stereo
problems. Additionally, we show that our generated intrinsic decompositions enhance the results of
optimization-based inverse rendering.

Single-image Relighting and Material Editing. Once high-quality intrinsic components are ob-
tained, our method enables relighting of captured images under novel illumination. Additionally,
we can optimize the lighting in the original scene and perform material editing. Specifically, we
represent environment lighting as a cube map and adopt a differentiable split-sum approximation in
NVDiffRec (Munkberg et al., 2022) to optimize its parameters. Fig. 8 showcases our relighting and
material editing results.

(a) Captured real data (b) Relighting (c) Material editing

Figure 8: Relighting and material editing results. From in-the-wild captures (a), our model allows
for relighting under novel illumination (b) and material property modifications (c).

Photometric stereo. Photometric stereo is a long-standing challenge in computer vision, aiming
to deducing the surface normal and albedo from images captured under varying lighting conditions
with a fixed camera. We evaluate our method under the harsh One-Light-At-a-Time (OLAT) condi-
tion, where each image is illuminated by a single point light source without ambient illumination,
leading to hard cast shadows. We additionally include SDM-UniPS (Ikehata, 2023) for compari-
son, which is specifically designed and trained for this task. We conduct experiments on the real-
world OpenIllumination dataset (Liu et al., 2024) and the synthetic NeRFactor dataset (Zhang et al.,
2021b). Quantitative results on NeRFactor are summarized in Tab. 2, and qualitative results are

9
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Figure 9: Optimization-based inverse rendering results. Our method guides NVDiffecMC gen-
erate more plausible material results.

Table 3: Ablation on IDVI pseudo labels for optimization-based inverse rendering on NeRFactor and
Synthetic4Relight datasets.

Nerfactor Synthetic4Relight

Albedo (raw) Albedo (scaled) Relighting Albedo (raw) Albedo (scaled) Relighting Roughness

NVDiffRecMC 17.89 25.88 22.65 17.03 29.64 24.05 0.046
NVDiffRecMC w/ Ours 20.90 26.61 27.20 26.42 30.73 31.01 0.014

present in Appendix. C. Although our model is not explicitly trained for this setting, it still delivers
reasonable estimates, particularly when the number of input images is limited.

Optimization-based Inverse Rendering. Our method can be used as a prior to enhance
optimization-based inverse rendering techniques. Specifically, we decompose each training image
into its corresponding intrinsic components and treat these components as pseudo-material labels.
We adopt NVDiffRecMC (Hasselgren et al., 2022) as the codebase for our experiments, as it em-
ploys the same PBR material model as our method. During each iteration, we introduce an addi-
tional L2 regularization term between the intrinsic components predicted by NVDiffRecMC and
those predicted by our method to ensure physical plausibility. Tab. 3 presents material estimation
and relighting results on these dataset. As illustrated in Fig. 9, our method significantly mitigates the
color-shifting issue in the reconstructed albedo from NVDiffRecMC, leading to improved results in
relighting tasks.

5 CONCLUSION

In this paper, we present IDVI, that solves intrinsic decomposition via a feed-forward diffusion
pipeline. Our method can process arbitrary images captured under unknown and varying illumina-
tions and estimate consistent intrinsic components, including albedo, normal, metallic and rough-
ness. The cross-component attention and training under varying illuminations further enhances our
model’s ability to reduce ambiguity, fostering more robust inverse rendering under complex, high-
contrast lighting conditions.

Limitations and Discussions. While our method demonstrates strong generalization capabilities on
real-world data, it faces challenges in accurately predicting material maps for intricate objects, such
as corroded bronze statues with spatially varying metallic and roughness properties due to corrosion
levels. Given that most synthetic data employ global metallic and roughness values, our method may
oversimplify estimations for complex real-world objects. Future research directions could involve
incorporating real data through unsupervised techniques. Moreover, the current implementation of
cross-view attention concatenates all input views, leading to a complexity of O(N2) and posing
difficulties in handling dense input views with high resolutions. Future investigations could explore
more efficient cross-view attention mechanism.

10
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A PRELIMINARY

A.1 IMAGE DIFFUSION MODEL

In Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), a forward diffusion process
is defined, gradually introducing small amounts of Gaussian noise to the sample at each timestep,
represented by q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where t represents the timestep and β acts

as the variance scheduler. To recover samples from the random noise, DDPM learns to model the
reverse diffusion process as pθ(xt−1|xt) = N (xt−1;µθ(x, t),Σθ(xt, t)) and construct x0 through
iterative denoising.

Stable Diffusion (SD) (Rombach et al., 2021) employ an encoder E to compress the input image
x ∈ RH×W×3 into a latent vector z ∈ RH/8×W/8×4 before performing the diffusion process in the
latent space. Following denoising, the latent representation is then converted back to pixel space
through a decoder x̂ = D(z0).

For conditional generation, the training objective of Stable Diffusion (SD) is formulated as:

L := EE(x),y,ϵ∼N (0,1),t[||ϵ− ϵθ(zt, t, τθ(y))||22], (2)

where t is uniformly sampled from {1, ..., T}, τθ(y) represents the encoding of the condition y and
ϵθ is implemented as a UNet.

A.2 INTRINSIC COMPONENTS FORMATION

Our image formation is based on the classic rendering equation (Kajiya, 1986) to ensure physical
correctness. For a point x with surface normal n, the incident light intensity at this point is denoted
as Li(ωi;x), where ωi represents the incident light direction. The Bidirectional Reflectance Dis-
tribution Function (BRDF) (Nicodemus, 1965), denoted as fr(ωo, ωi;x), describes the reflectance
properties of the material when viewed from direction ωo. The observed light intensity Lo(ω0;x) is
calculated over the hemisphere Ω = {ωi : ωi · n > 0} as follows:

Lo(ωo;x) =

∫
Ω

Li(ωi;x)fr(ωo, ωi;x)(ωi · n)dωi. (3)

In our approach, we aim to recover the object’s surface normal and BRDF material from the ob-
served color on the left-hand side of Eq. 3, which are independent of illumination and view direction.
We adopt the Disney Basecolor-Metallic model(Burley & Studios, 2012) for BRDF parametrization,
which comprises the following components: albedo, representing the base color; roughness, con-
trolling the diffuse and specular response; and metallic, governing the specular reflection.

Specifically, given a single RGB image I ∈ RH×W×3, we aim to jointly estimate the surface normal
N ∈ RH×W×3, albedo A ∈ RH×W×3, roughness R ∈ RH×W×1 and metallic M ∈ RH×W×1.

B DETAILS ABOUT THE EFFECTS OF VIEWPOINTS AND LIGHTING

We present the numerical performance results across varying numbers of viewpoints (# V) and
lighting conditions (# L), as shown in Tab. 4 to 7.
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Table 4: Albedo Performance ↑ across different
numbers of viewpoints (# V) and lightings (# L).

# L
# V 1 2 4 8 12

1 29.16 28.72 30.12 30.49 30.77
2 29.96 30.26 30.96 31.13 31.26
3 30.25 30.73 31.16 31.33 31.40

Table 5: Normal Performance ↑ across different
numbers of viewpoints (# V) and lightings (# L).

# L
# V 1 2 4 8 12

1 0.909 0.910 0.925 0.930 0.932
2 0.922 0.927 0.930 0.933 0.934
3 0.926 0.931 0.931 0.934 0.935

Table 6: Metallic Performance ↓ across different
numbers of viewpoints (# V) and lightings (# L).

# L
# V 1 2 4 8 12

1 0.105 0.116 0.068 0.059 0.050
2 0.061 0.068 0.047 0.044 0.042
3 0.061 0.056 0.048 0.045 0.040

Table 7: Roughness Performance ↓ across different
numbers of viewpoints (# V) and lightings (# L).

# L
# V 1 2 4 8 12

1 0.049 0.050 0.024 0.019 0.021
2 0.043 0.026 0.019 0.016 0.015
3 0.031 0.022 0.016 0.014 0.013

C ADDITIONAL RESULTS ON PHOTOMETRIC STEREO
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Figure 10: Photometric stereo results using 4 OLAT images in OpenIllumination and NeRFactor.

D ADDITIONAL RESULTS ON REAL-WORLD DATA

We present additional results on real-world data in Fig. 11.

E ADDITIONAL RESULTS ON MULTI-VIEW INPUTS

We present additional results on multi-view input in Fig. 12.
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Input Albedo Normal Metallic Roughness

Figure 11: More results on real-world data.
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Input Albedo Normal Metallic Roughness

Figure 12: More results on multi-view data.

17


	Introduction
	Related Work
	Optimization-based inverse rendering
	Learning-based inverse rendering
	Diffusion models for other modalities

	Method
	Problem Statement
	Arb-Objaverse Dataset
	Architecture and Training

	Experiments
	Experimental setup
	Experimental results
	Analysis and Ablative Study
	Applications

	Conclusion
	Preliminary
	Image Diffusion Model
	Intrinsic Components Formation

	Details about the Effects of viewpoints and lighting
	Additional Results on Photometric Stereo
	Additional Results on Real-world Data
	Additional Results on Multi-view Inputs

