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Figure 1: Overview of our work: The top panel contrasts prior paradigms: MLLM-based EO
research (left), Existing agent-based EO research (middle), and our Earth-Agent (right). The bottom
panel illustrates our contributions, including Earth-Bench construction, Earth-Agent ReAct with the
predefined toolkit, and dual-level evaluation of both reasoning trajectories and final results.

ABSTRACT

Earth observation (EO) is essential for understanding the evolving states of the
Earth system. Although recent MLLMs have advanced EO research, they still lack
the capability to tackle complex tasks that require multi-step reasoning and the
use of domain-specific tools. Agent-based methods offer a promising direction,
but current attempts remain in their infancy, confined to RGB perception, shallow
reasoning, and lacking systematic evaluation protocols. To overcome these lim-
itations, we introduce Earth-Agent, the first agentic framework that unifies RGB
and spectral EO data within an MCP-based tool ecosystem, enabling cross-modal,
multi-step, and quantitative spatiotemporal reasoning beyond pretrained MLLMs.
Earth-Agent supports complex scientific tasks such as geophysical parameter re-
trieval and quantitative spatiotemporal analysis by dynamically invoking expert
tools and models across modalities. To support comprehensive evaluation, we fur-
ther propose Earth-Bench, a benchmark of 248 expert-curated tasks with 13,729
images, spanning spectrum, products and RGB modalities, and equipped with
a dual-level evaluation protocol that assesses both reasoning trajectories and fi-
nal outcomes. We conduct comprehensive experiments varying different LLM
backbones, comparisons with general agent frameworks, and comparisons with
MLLMs on remote sensing benchmarks, demonstrating both the effectiveness and
potential of Earth-Agent. Earth-Agent establishes a new paradigm for EO analy-
sis, moving the field toward scientifically grounded, next-generation applications
of LLMs in Earth observation. Our code and dataset will be publicly released.
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1 INTRODUCTION

Earth observation (EO) (Transon et al., 2018; |[Kokkoris et al.| 2024} L1 et al., | 2023a)) plays a crit-
ical role in understanding the evolving states of the Earth system in spatial and temporal dimen-
sions (Anderson et al., 2017} |Li et al.| |2024a; |Brown et al.| [2025), and has been successfully applied
to urban planning (Shaker et al., 2019), agriculture (Wojtowicz et al., [2016)), resources manage-
ment (Li et al.||2020), building extraction (L1 et al.,|2023b; |2024c), disaster monitoring (Joyce et al.,
2009; Van Westen,|[2000), etc. Typically, EO data is categorized into two types (Samadzadegan et al.,
20235)): Perceptual data, such as RGB Imagery (RGB) aligned with human vision, and Raw Obser-
vational Data, including Raw Spectral Data (Spectrum) and Processed Earth Products (Products)
stored in geodatabases such as Google Earth Engine (GEE and NASA Earthdataﬂ Both types of
data are indispensable for EO research: perceptual data provides intuitive and human-interpretable
insights, while raw observational data offers rich spectral and spatiotemporal information that en-
ables quantitative analysis (Valipour et al., 2025} [Xiong et al.| [2022).

In recent years, multimodal large language models (MLLMs) have achieved excellent performance
on classical remote sensing perceptual tasks such as VQA (Kuckreja et al., |2024; [Muhtar et al.,
2024]), scene classification (Kuckreja et al.||2024; [Muhtar et al., 2024} [Liu et al., 2024c; Wang et al.}
2024¢}; |[Hu et al.l [2025b; |[Zhan et al.l 2025)), object detection (Zhang et al., [2024b)), and semantic
segmentation (Mall et al.| 2023} |Guo et al., [2024a). However, despite their promising results, exist-
ing MLLM-based EO research still faces several fundamental drawbacks: (1) they cannot process
diverse EO modalities beyond RGB, such as thermal infrared (TIR), synthetic aperture radar (SAR),
or hyperspectral imagery (Zhang et al.l 2024b); (2) they typically operate on only one or a few im-
ages at a time (L1 et al., [2024b), making it difficult to scale to large EO corpora; (3) they are limited
to executing only single-step or shallow reasoning like VQA and classification, struggling with com-
plex multi-hop analytical tasks; and (4) their reasoning is bounded by the static knowledge encoded
in pretrained parameters, without the ability to integrate external scientific tools or expert models,
making it difficult to extend beyond the generic capabilities of the foundation model; This naturally
raises the question: how can we move beyond basic RGB perception and single-step reasoning to de-
sign models that integrate diverse EO modalities and support complex multi-step scientific analysis?

Tool-augmented LLM agents represent a promising trajectory beyond MLLMs (Xi et al.| [2025; Sun
et al 2025} |Si et al.l [2024; Tian et al.| [2024; Tang et al.,|2025). Unlike MLLMs that are restricted
to RGB inputs, simple reasoning, and limited image contexts, agents are not inherently constrained
by input modality or data volume (Xie et al., 2024; |Gao et al., 2024)). By leveraging the reasoning
capabilities of LLMs and dynamically interacting with external tools (Xu et al.|[2025)), they can flex-
ibly process diverse EO modalities, perform multi-step analytical reasoning, and integrate domain-
specific tools and expert models that go beyond the scope of the pretrained MLLM model (Ding
et al.| 2025 [Wang et al.l 2024c)). This mechanism directly tackles the core weaknesses of MLLMs,
extending beyond RGB to diverse modalities, scaling from single-image inputs to tasks involving
hundreds of images, advancing from shallow perception to multi-step reasoning, and bridging LLMs
with external scientific tools for domain-specific analysis.

However, existing agent-based research in Earth science is still at an early stage (Pantiukhin et al.,
2025)), with existing attempts largely confined to perceptual tasks such as change detection (Liu
et al., 2024b;2025) and classification (Xu et al.,2024a; |Hu et al., 2025a), often emphasizing caption
ability rather than scientific analysis. Efforts on Raw Observational Data are even more limited. Uni-
vEarth (Kao et al.,[2025) considers EO data from GEE but operates essentially as a code generation
agent, without implementing genuine tool calling, making it difficult to handle complex and realistic
geoscientific analysis tasks that require professional tool use. These efforts reveal several key limita-
tions: (1) current EO agents support only limited data modalities, with most efforts still centered on
conventional remote sensing datasets dominated by RGB imagery (Xu et al., [20244a)); (2) their tool
usage remains shallow, limited to a few expert models and reasoning steps, even some agents lack
a predefined tool ecosystem, making them insufficient for complex analytical workflows (Shabbir
et al.; 2025); and (3) their evaluation remains unsystematic, with emphasis only on final answers
while overlooking reasoning trajectory. This raises another question: how can we design an EO
agent with a structured tool ecosystem and systematic evaluation, capable of bridging perceptual
and spectral data like Earth scientists?

“https://earthengine.google.com
"https://search.earthdata.nasa.gov
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Figure 2: Earth-Agent solving tasks across Spectrum, Products, and RGB data through multi-step
reasoning with expert tool calls.

To address these questions and unlock the full landscape of EO, we propose Earth-Agent, an agen-
tic framework that unifies perceptual and spectral EO data within a single architecture in section [3]
By coupling LLM reasoning with a structured toolkit in Earth-Agent supports diverse modali-
ties and complex multi-step analysis, enabling agents to tackle real-world geoscientific tasks beyond
the limits of existing MLLMs and EO agents. Concretely, Earth-Agent integrates 104 specialized
tools, built upon the Model Context Protocol (MCP) (Hou et al., 2025} [Ray, 2025) for interop-
erability, and grouped into five domain-specific tool kits: Index, Inversion, Perception, Analysis,
and Statistics. This structured design not only enables the agent to go beyond classical percep-
tual tasks toward quantitative analysis and spatiotemporal reasoning, but also makes the framework
easily extensible with additional domain-specific tools. To systematically evaluate its effectiveness,
we further introduce Earth-Agent Benchmark (Earth-Bench) in section ] which reflects real-
istic EO workflows and supports both Auto-Planning and Instruction-Following query regimes,
together with a dual-level evaluation protocol that measures reasoning trajectories as well as final
outcomes. We comprehensively evaluate Earth-Agent by varying LLM backbones on Earth-Bench,
comparing with general agents, and benchmarking against MLLMs on remote sensing datasets.

To sum up, our main contributions are summarized as follows:

* We propose Earth-Agent, the first agentic framework for EO, built upon the MCP and
a ReAct (Yao et al, [2023) reasoning, integrating 104 specialized tools and expert mod-
els within predefined tool ecosystem, while remaining easily extensible with additional
domain-specific tools and models.

* We construct Earth-Bench, a benchmark of 248 expert-curated questions with 13,729 im-
ages, spanning perceptual and spectral modalities beyond RGB. Each question requires
multi-step reasoning with explicit tool use, and the benchmark supports a dual-level evalu-
ation protocol that assesses both reasoning trajectories and final answers.

* Through comprehensive evaluation, we show that Earth-Agent substantially outperforms
general agents such as Operator (OpenAlL |2025b) and Manus (Shen et al.,2025) on Earth-
specific tasks in Earth-Bench, and also surpasses remote sensing MLLMs on remote sens-
ing benchmarks, demonstrating both its effectiveness and potential for advancing EO re-
search.

2 RELETED WORK

MLLM-based Earth Observation Research The rise of multimodal large language models
(MLLMs) has stimulated growing interest in their use for Earth observation (EO) (Aleissaee et al.,
2023 [Lu et al., 2025} |Li et al., 2024b). Early studies mainly explored captioning (Hu et al.l 2025b)
and question answering (Kuckreja et al.,[2024) for single remote sensing images (Shi & Zou, |2017;
Wang et al.l [2020), aiming to align visual features with natural language. With the availability of
larger datasets (Xiong et al.l 2022} |Zhou et all [2025)) and stronger backbones (Team) 2024} |[Liu
et al., 2024d), subsequent works extended this paradigm to broader perception tasks: for instance,
GeoChat (Kuckreja et al., |2024) enabled interactive scene understanding, while RS-GPT (Hu et al.,
2025b) combined captioning with visual question answering. More recently, simple temporal rea-
soning has been introduced, with ChangeCLIP (Dong et al [2024) addressing bi-temporal change
captioning and SkyEye-GPT (Zhan et al., 2025) extending to video-based analysis. However, the
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scope of MLLM-based EO research remains narrow: existing approaches are still centered on RGB
imagery and struggle with complex multi-step reasoning without domain-specific tool integration.

Agent-based Earth Observation Research. Tool-augmented agents have gained traction in gen-
eral Al achieving remarkable progress in domains such as code generation (Qian & Cong, 2023
Zhang et all 2024al), web search (Xu et al., [2024b)), and video understanding (Ren et al. 2025}
Wang et al., |2024d), but their application to Earth observation (EO) is still at an early stage (Kao
et al, |2025). Early systems such as Change-Agent (Liu et al., 2024b)) focus on bi-temporal change
detection, while RS-ChatGPT (Guo et al.,|2024a) and RS-Agent (Xu et al., [2024a) combine LLMs
with pretrained detectors or tool suites for scene classification, detection, and segmentation. More
recently, ThinkGeo (Shabbir et al., 2025) introduces agentic workflows for simple geospatial calcu-
lations on perceptual data, and UnivEarth (Kao et al., 2025) requires LLMs to generate GEE code
for spectral analysis, with high execution failure rates. Despite these advances, existing EO agents
remain constrained: they operate mainly on RGB perception tasks, rely on remote sensing models
for simple reasoning that does not extend to multi-step analysis, and lack a predefined tool ecosys-
tem, making them insufficient for complex real-world geoscientific workflows. Moreover, current
benchmarks cover limited task types and annotations, lacking systematic evaluation protocols that
assess both the correctness of outcomes and the quality of reasoning trajectories. As a result, cur-
rent frameworks remain limited in modality coverage, constrained to shallow reasoning with remote
sensing models, and hindered by the absence of a predefined tool ecosystem, highlighting the neces-
sity for EO agents and benchmarks that support diverse data, multi-step analytical workflows, and
systematic evaluation.

3 EARTH-AGENT FRAMEWORK

In this section, we detail the operation mechanisms of Earth-Agent. We first formulate its opera-
tion pipeline as a ReAct-style (Yao et al., [2023) Partially Observable Markov Decision Processes
(POMDP) formulation (Huang et al.| 2024; (Chala et al.l [2025) in section , including the ob-
servation process, policy reasoning and memory update, as shown in Figure 3] Then we introduce
the functionality of the specialized tool kits that enable EO analysis across perceptual and spectral
data in section Finally, we define the dual-level evaluation protocol, which assesses EO agents
in both end-to-end and step-by-step modes to evaluate not only final accuracy but also reasoning
trajectories in section 3.3

3.1 OPERATION MECHANISMS

Earth-Agent receives a task goal g, interprets user queries and intermediate tool outputs, and se-
lects actions from a modular toolkit to progressively solve the task. This process is formulated as
a POMDP, defined by the tuple (g, S,.A, O, T), where g is the task goal, S is the state space (un-
observable environment status such as geospatial data files or raster values), A is the action space
(tool calls in the kit), O is the observation space (outputs returned by tools, including text, numerical
values, and images), and 7 : S x A — § is the state transition function.

At each time step ¢, given a policy m, the agent selects an action conditioned on the goal g and its
interaction history, which records past observations and actions:

my = (09, a0, 01,01, - .. ,0¢),
The action distribution is modeled as:

Qg ~ 7r(at | gamt)‘

The full agent trajectory 7 = [sq, 09, ao, $1, 01, a1, . ., ST, or| is determined jointly by the policy
7 and the environment dynamics:
_— @ Tool calling
px(7) = p(so) Z(oo | so) H m(a | g,me) Z(0e41 | s141) T(Se41 | Se,a4) -
Initial state =0 ® Think & ® Action

where Z denotes the observation distribution induced by tool outputs.

In this formulation, the LLM controller functions as the policy 7, reasoning over the history my
and task goal g to decide the next tool calling, while the Toolkit provides executable atomic actions
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Figure 3: Earth-Agent Framework: The left part illustrates the ReAct-style workflow, where
Earth-Agent iteratively performs tool calling, memory update, thinking, and action using domain-

specific toolkits. The right panel presents the dual-level evaluation protocol, assessing both step-by-
step reasoning trajectories and end-to-end outcomes.

categorized into Index, Inversion, Perception, Analysis, and Statistics. Concretely, as illustrated
in Figure |3 each loop proceeds as follows: @ Tool calling At step ¢, the agent invokes the most
suitable tool conditioned on the current memory m, and task goal g, which yields the tool response
for observation o;11. @ Memory update At step ¢, the agent appends the pair (o, a;) together with
the resulting observation o4 into the memory stack, ensuring that the complete interaction history
is preserved for subsequent reasoning. @ Think At step ¢t+1, the LLM controller reasons over the
updated memory m, together with the task goal g to plan the next action, determining which tool to
invoke and how to configure its inputs. @ Action Selecting and executing the subsequent tool call
a4 that produces o,2. The ReAct loop continues until the stopping condition is satisfied, yielding
both the final answer and a reproducible sequence of tool calling trajectory.

3.2 TooL KiIT

To enable comprehensive EO analysis, Earth-Agent integrates 104 specialized tools organized into
five functional kits. The Index kit provides implementations of widely used EO indices (e.g., NDVI,
NDWI, NBR) (Montero et al.,|2023) for rapid environmental characterization. The Inversion kit fo-
cuses on geophysical parameter retrieval, including land surface temperature (LST) (Li et al.,|2013)),
precipitable water vapor (PWV) (He & Liul 2020), vegetation water content (Ceccato et al., 2001},
sea ice concentration (DiGirolamo et al., [2022), and others. The Perception kit supports vision-
oriented tasks such as scene classification (Ma et al.| 2025)), object detection (Li et al.,|2024e), and
segmentation (Ravi et al.| 2024). The Analysis kit targets spatiotemporal reasoning, offering trend
detection, seasonality decomposition, change point analysis, and spatial autocorrelation. Finally,
the Statistics kit provides large-scale data preprocessing and statistical computation (e.g., variance,
skewness, batch operations, cloud masking). Together, these tool kits cover the diverse types of EO
tasks from perceptual to spectral, and from descriptive to quantitative analysis. The detailed list and
description of tools can be found in Appendix
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3.3 EVALUATION PROTOCOL

Prior benchmarks have primarily emphasized final accuracy, overlooking the reasoning trajectory
that leads to the final output (Mialon et al., |2023; Jimenez et al.| 2024} Chen et al.l [2025). To
address this, we adopt a dual-level evaluation protocol: agents are assessed in a step-by-step mode
to capture the quality of their reasoning trajectories, and in an end-to-end mode to measure final
task performance. This dual perspective enables fine-grained diagnostics of both reasoning and
outcomes. The detailed calculation formulas can be found in Appendix [B.2]

End-to-End evaluation measures task-level performance, including Accuracy of the final answer
and Efficiency of the trajectory relative to expert solutions.

Step-by-Step evaluation assesses the quality of intermediate reasoning. We consider four com-
plementary aspects: Tool-Any-Order, which checks whether all necessary tools are used in LLM
planning; Tool-In-Order, which evaluates whether tools are invoked in the correct sequence; Tool-
Exact-Match, which evaluates the exact prefix-level accuracy between the predicted and expert tra-
jectories; and Parameter Accuracy, which verifies whether both tool identifiers and their arguments
are correctly matched.

4 EARTH-AGENT BENCHMARK
4.1 OVERVIEW OF EARTH-AGENT BENCHMARK

We introduce Earth-Agent Benchmark (Earth-Bench), a dataset designed to evaluate tool-
augmented EO agents in realistic Earth science analysis scenarios. The benchmark integrates three
major types of Earth observation data: RGB Imagery (RGB), Raw Spectral Data (Spectrum), and
Processed Earth Products (Products). 1t supports 14 representative tasks, including classification,
detection, temperature monitoring, weather forecasting, etc., with a particular emphasis on scientific
analysis that requires quantitative reasoning rather than qualitative description.
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Figure 4: Dataset Comparison and Overview: The left panel compares Earth-Bench with prior
MLLM and agentbased EO benchmarks. The right panel presents the statistics of Earth-Bench and
its evaluation with SOTA LLMs using Earth-Agent, highlighting the difficulty of Earth-Bench.

As shown in Figure E], MLLM-based benchmarks including RSVQA-HR (Lobry et al., [2020),
EarthVQA (Wang et al., [2024b), VRSBench (Li et al) 2024d) and Geo-Bench (Lacoste et al.
2023)) are mainly limited to single-step perceptual for RGB data using pretrained MLLMs (Liu
et al.,|2024d; Team| [2024} OpenAl, 2024), without requiring external tool use for scientific quantita-
tive analysis (e.g., spatiotemporal trend estimation), not to mention reasoning trajectory evaluation.
On the other hand, Earth-Bench advances beyond prior Agent-based EO benchmarks, such as
PEACE (Huang et al., [2025), Thinkgeo (Shabbir et al., 2025) and UnivEarth (Kao et al., [2025)), by
incorporating 13K+ images across spectrum, product and RGB modalities, while requiring inter-
action with 104 domain tools. It consists of 248 expert-curated questions, requiring an average of
5.4 reasoning steps of quantitative analysis. Even with the state-of-the-art (SOTA) LLM backbones,
performance remains limited, which underscores not only the benchmark’s difficulty and diagnostic
value but also the necessity of reasoning trajectory evaluation. Therefore, we need to annotate on
both trajectories and final answers in section
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4.2 DATA ANNOTATION PIPELINE

To construct Earth-Bench, we collected raw data from platforms such as Google Earth Engine,
NASA EarthData, and public remote sensing datasets (Xia et al,[2017; [Zhan et al, 2023} [Xia et al}
[2018};[Su et al., 2019). From these data sources, a team of domain experts curated 248 problems that
require multi-step quantitative reasoning. The annotation team was composed of 2 computer science
experts, 7 remote sensing specialists, and 3 Earth science specialists. Each problem is accompanied
by a step-by-step Python solution and is designed to reflect the complexity of real-world Earth
science workflows, which demand the coordinated use of multiple tool kits.

In prior benchmarks, queries have been designed either as step-implicit, where no intermediate
step guidance is provided (Mialon et al., [2023; Wang et al.l 2024a), or as step-explicit, where the
query itself contains step guidance (Guo et al. 2024b; |[Ma et al., 2024). Motivated by the com-
plexity of EO workflows, which often require multi-step processing, Earth-Bench incorporates both
regimes: Auto-Planning corresponds to the step-implicit setting and evaluates the agent’s ability
to autonomously plan its solution trajectory, while Instruction-Following corresponds to the step-
explicit setting and evaluates the agent’s ability to follow and translate human instructions into ex-
ecutable actions. Both regimes contain 248 complete questions for evaluation. Together, these two
regimes provide a comprehensive assessment of both autonomous reasoning and guided execution
in EO contexts. Details can refer to Appendix [A-4]
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Figure 5: Construction and Annotation of Earth-Bench. The left shows question generation from
EO data, the right illustrates the data annotation pipeline that simulates ReAct-style trajectories, and
the bottom provides an example explaining the multi-step annotation process.

To enable dual-level evaluation, we explicitly annotated both the final answers and the full reason-
ing trajectories. As illustrated in Fig.[3] the annotation process was designed to mimic the ReAct
loop of agents: Python Solution. Annotators first identify the domain tools such as compute_ndwi
and split_window) required to solve a problem and then assemble them into a step-by-step main()
program. Each tool is represented as a Python function, and the functions are planned in the correct
order to form an executable workflow that mirrors the agent’s reasoning trajectory. Python Result.
When executed, the program produces explicit input and output arguments for each function call, as
well as the final output of the main() function. JSON Annotation. Each function call is then trans-
lated into a structured JSON record to align with the ReAct-style trajectory annotation. The function
name corresponds to the action tool name, the function input arguments corresponds to the action
passed by the agent, and the function output arguments corresponds to the tool responses returned
to the agent. The final output of the main() function is recorded as the ground-truth answer for the
problem. This provides a complete record of both the reasoning trajectory and the final answer.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluated Models. We evaluate 3 closed-source and 10 leading open-source LLMs. For closed-
source models, we consider GPT-5 (OpenAl, 2025a), GPT-40 (OpenAl, [2024), and Gemini-
2.5 (Comanici et al., 2025). For open-source models, including Deepseek-V3.1 (Liu et al.,
2024a), Kimik2 (Team et al.l 2025), Qwen3-max-Preview, Qwen3-32B (Yang et al.l [2025), and
InternVL3.5 (Wang et al., 2025)), which represent the smartest open LLMs available to date.

5.2 EARTH-AGENT WITH DIFFERENT LLM BACKBONES

As shown in Table|l} we evaluate the impact of different LLM backbones on Earth-Bench. Results
are reported under both step-by-step and end-to-end evaluation protocols, allowing us to jointly
assess the quality of reasoning trajectories and final outcomes. The following observations can be
made:

Table 1: Performance of different LLM backbones on Earth-Bench under both Auto-Planning (AP)
and Instruction-Following (IF) regimes. Results are reported with dual-level evaluation, covering
Tool-Any-Order, Tool-In-Order, Tool-Exact-Match, Parameters for trajectory quality and Efficiency,
Accuracy for final outcomes. We bold the best results and underline the runner-ups.

Model Tool-Any-Order Tool-In-Order Tool-Exact-Match Parameters Efficiency Accuracy
AP IF AP IF AP IF AP IF ‘ AP IF AP IF
GPT-5 68.74  71.41 57.71 61.06; 44.97 46.01 26.11 2591, | 2.3560 2.9093 65.99 62.35,
Gemini-2.5 58.04 61.63 4531 50.72; 3132  41.04 17.26 23.43, | 2.9958 24595 5223 53.04
GPT-40 65.65 67.02 50.76 53.04; 46.26 4741 26.55 27.92; | 2.1211 2.6007 43.72 44.94
Kimik2 71.03 78.86 57.57 68.83; 42.11 51.15 2590 3045 | 1.8542 2.1793 50.61 56.68

DeepSeek-V3.1 7831 78.66: 62.73 64.50; 48.54  49.58 30.81 31.36; | 2.6116 2.6303 51.42 5223
Qwen3-Max 69.56  70.14; 5328 56.02; 37.02  42.74, 21.83 2627, | 1.8810 1.9511, 50.20 47.37,

Seed-1.6 5543 59.44. 4067 4679, 2839 3547, 1832 23.13; | 1.3110 13408, 5248 59.51
LLaMA-4 1651 2241, 245 1205. 170  9.05 130 6.46- | 0.2886 03211, 44.94 38.46,
Qwen-Plus 5204 5596 3075 3977, 11.69  25.51 9.12 16.95: | 1.5119 15854, 4251 38.46,
GLM-4.5v 4248  46.69: 2857 3524, 1412 1995,  11.02 15.37: | 1.7123 2.0129, 32.86 35.25
Mistral 2773 29.64- 1178 2090, 9.3  18.13 724 11.66; | 09552 0.8802; 29.96 22.67,
Qwen3-32B 3976 4239, 21.56 33.79; 951 2610,  8.17 1773, |2.7274 19010, 20.65 24.80
InternVL-35 883 1662 3.87 1059 202 932 146 532 |0.1206 0.1750, 2672 26.72

Obs.1. LLM models pretrained with tool calling, such as GPT-5, Gemini-2.5, DeepSeek-V3.1,
Kimik2, and Qwen3, demonstrate strong performance across both step-by-step and end-to-end eval-
uations. Further, closed-source models like GPT-5 typically achieve higher firal accuracy, while
open-source models, particularly DeepSeek-V3.1 and Kimik2, outperform GPT-5 in tool-use ac-
curacy, demonstrating superior performance in reasoning trajectory alignment. We have provided
a detailed analysis of the LLMs’ performance across the Spectrum, Products, and RGB modalities,
which can be found in Appendix [C|

Obs.2. Instruction-following regimes enhance tool calling by providing explicit step guidance in the
query, leading to improved fool calling accuracy across nearly all models. Interestingly, despite the
improved reasoning trajectories, this does not necessarily lead to higher final accuracy. In fact, for
some advanced models, this added complexity may even result in a decrease in final accuracy. We
have conducted a detailed error analysis of Earth-Agent’s performance in the Earth-Bench bench-
mark, focusing on representative models such as GPT-5, DeepSeek-V3.1, Kimik2, and Qwen3-max.
This can be found in Appendix D]

Obs.3. Across nearly all models, the ability to identify the correct set of tools, as reflected in
Tool-Any-Order and Tool-In-Order metrics, remains consistently strong. However, models often
introduce irrelevant steps during reasoning, which undermines their accuracy on Tool-Exact-Match
and parameter execution. Crucially, these two fine-grained capabilities are indispensable in real EO
analysis workflows. For example, if additional transformations are mistakenly applied to the EO
data process, it becomes extremely difficult to obtain correct results in the subsequent steps. Their
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weakness therefore exposes a key bottleneck that prevents EO Agents from achieving higher final
accuracy in EO data processing.

5.3 COMPARISON WITH GENERAL AGENTS

Since many Earth-Bench tasks involve processing hundreds of images, existing open-source agent
frameworks cannot handle these questions due to input size constraints. To enable fair comparison,
we construct Earth-Bench-Lite, a reduced yet representative subset that preserves modality diver-
sity while remaining within the capacity of general-purpose agents. It consists of 60 questions evenly
distributed across the three EO modalities: Spectrum, Products, and RGB. As shown in Table@ we
report results across three modalities: Spectrum, Products, and RGB.

Table 2: Comparison with general agents on Earth-Bench-Lite. Results are reported across Spec-
trum, Products, RGB modalities. We bold the best results and underline the runner-ups.

Method Spectrum  Products RGB Avg. Latency
GPT-Agent 45.00 31.60 45.26 40.42 ~ 300 min
MGX 40.00 15.80 0.00 18.60 ~ 60 min
Manus 15.00 15.80 47.62 26.14 =~ 150 min
Coze 35.00 10.50 0.00 15.30 =~ 120 min
Earth-Agent(GPTS) 65.00 36.84 65.71 55.83 158 min
Earth-Agent(Deepseek-V3.1) 50.00 42.11 51.43 47.84 79 min
Earth-Agent(Kimik?2) 36.84 50.00 50.00 45.95 131 min

By comparison, general agents show limited modality coverage. They can handle relatively simple
Spectrum tasks by writing ad-hoc code, but perform poorly on Products tasks due to the lack of
domain-specific spatiotemporal analysis tools. For the RGB modality, MGX and Coze even fail to
complete any tasks. In contrast, by interacting with 104 predefined geoscience tools, Earth-Agent
consistently achieves superior performance across all three modalities, whether driven by the closed-
source GPT-5 or the open-source DeepSeek-V3.1. We also compared the latency of our Earth-Agent
framework with that of the baseline agents. The latency remains within a reasonable range when
compared to existing general agents. The substantial performance improvements in task completion
more than justify the additional computational cost. A detailed discussion can be found in the

Appendix [E|
5.4 COMPARISON WITH MLLM-BASED EO METHODS

We further compare Earth-Agent with remote sensing large models on classification, detection, and
segmentation tasks. The results are summarized in Table[3]

Table 3: Comparison with MLLMs on Remote sense benchmarks. Results are reported on classifi-
cation, detection, and segmentation tasks. We bold the best results and underline the runner-ups.

Model Classification Detection Grounding
AID WHU-RS19 | DOTA HRSC2016 | DIOR-RSVG

MiniGPT-v2 (Chen et al.[[2023) | 32.96 64.80 14.8 24.8 29.892
LLaVA-1.5 (Liu et al.}2024d) 51.00 74.52 17.5 22.1 12.085
Sphinx (Lin et al., [2023) 58.20 - 15.1 25.7 0.939
Geochat (Kuckreja et al., 2024) 72.03 86.47 16.5 24.0 10.024
VHM (Pang et al.| |2025) 91.70 95.80 - - -
LHRS-Bot (Muhtar et al.,[2024) | 91.26 93.17 17.1 244 11.826
Earth-Agent (ours) 93.42 96.12 60.88 65.60 60.46

Earth-Agent demonstrates clear superiority over existing MLLMs across classification, detection,
and segmentation benchmarks (Table [3). Prior MLLM-based approaches often lack generalization
across diverse EO tasks: for example, LHRS-Bot achieves strong results in classification but strug-
gles on detection and grounding, while VHM attains high classification accuracy but cannot even
handle detection or segmentation tasks. In contrast, Earth-Agent interacts with a predefined toolkit
of 104 geoscience functions and expert models, allowing it to adaptively invoke specialized tools or
models for each task type. This modular design enables Earth-Agent to maintain robust performance
across modalities, overcoming the limited extensibility of previous MLLM-based EO systems.

9
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6 CONCLUSION

Earth-Agent marks a significant advancement in applying (M)LLMs to EO analysis, extending RGB
perception to Spectrum, Products and RGB modalities. By shifting from single-step inference with
pretrained MLLMs to multi-step reasoning through external tool/model integration, it overcomes
key limitations of prior MLLM-based approaches, such as handling numerous image inputs and
quantitative spatiotemporal analysis. To support rigorous evaluation, we introduced Earth-Bench,
which requires multi-step quantitative reasoning and dual-level evaluation, which evaluate both rea-
soning trajectories and final outcomes. Our experiments further reveal the current bottlenecks of
Earth-Agent in EO applications and provide detailed diagnostics. Finally, by comparing with both
general agents and domain MLLMs, we highlight the transformative potential of Earth-Agent as a
foundation for the revolutio of LLM applications in Earth observation.
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A DATASET ILLUSTRATION

A.1 DATASET COMPOSITION

The remote sensing imagery used in our dataset primarily comes from Landsat and MODIS, with
additional high-resolution imagery sourced from open datasets. All the remote sensing data prod-
ucts are obtained through Google Earth Engine (GEE). The following Table [4] is a more detailed

breakdown of the data sources, products, and their distribution:

Table 4: Sensor and Data Source Statistics

Category | Sensor/Data Source | Dataset Samples
Spectrum | Landsat Landsat 8 /9 1684
MODIS - 10273
ASTER - 110
Products | GEE LST 183
NDVI 369
GPM 160
VIIRS 164
GHSL 68
QA PIXEL 212
NDWI 69
fire MaxFRP 194
RGB Public Datasets AID 169
DIOR-RSVG 7
DOTA 22
NWPU-VHR-10 21
xBD 32
Total - - 13737

This table provides an overview of the data sources and the distribution of samples across three
categories (Spectrum, Product, RGB). It includes a diverse set of remote sensing products, such as
Landsat, MODIS, ASTER, and various other publicly available high-resolution datasets, ensuring
comprehensive coverage for a wide range of Earth observation tasks.

A.2 BENCHMARK STATISTICS

Table 5: Statistics of the benchmark dataset, including average verification code length, number of
images, query length, reasoning steps, and question counts for different task types.

Avg. Query Length

Type Avg. Code Lines  Avg. Images AP IF Avg. Steps | Question Count
Spectrum 361.19 96.82 331.54 497.94 4.38 100
Products 283.64 43.23 505.72 648.09 6.35 88

RGB 176.42 4.18 333.80 464.70 5.77 60

Avg. 288.97 55.39 393.89 543.18 542 -

Total 71664 13737 97685 134708 1343 248

As illustrated in Table [] Earth-Bench consists of 248 questions associated with approximately
13.7K images. We recruited a team of domain experts to annotate these questions. The annotation
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process was as follows: experts first designed solution steps based on their expertise, then selected
appropriate tools from the Agent Toolkit, implemented the steps by writing Python code to invoke
the selected tools for data processing, and finally generated the corresponding answers. In total, the
expert team annotated 1345 solution steps and produced 71,664 lines of verification code for the 248
benchmark questions.

A.3 QUESTION TYPES AND CATEGORY
As shown in Figure [5] Earth-Bench questions are categorized into three types based on their data

sources: Spectrum, Products, and RGB. The Table |§|below summarizes the number and proportion
of questions within each category:

Table 6: Distribution of Question Types and Their Proportions

Question Types Number Proportion (%)
Temperature Monitoring 44 17.74
Weather Forecasting 11 4.44
Climate Analysis 20 8.06
Water Management 22 8.87
Pollution Regulation 14 5.65
Vegetation Monitoring 28 11.29
Disaster Judgement 24 9.68
Urban Management 25 10.08
Classification 15 6.05
Detection 15 6.05
Grounding 7 2.82
Segmentation 3 1.21
Counting 7 2.82
Change Detection 13 5.24

This table provides a detailed distribution of question types within Earth-Bench, reflecting the vari-
ety of Earth observation tasks addressed by the dataset.

A.4 QUERY REGIMES

Earth-Bench categorizes each task into two regimes: Auto-Planning and Instruction-Following. The
key distinction is that in Instruction-Following, the query explicitly provides the Agent with a solu-
tion approach, while preserving the original intent of the task. As shown in Table [5] the statistics
of query length highlight this difference: on average, queries in the Instruction-Following regime
are about 150 characters longer than those in Auto-Planning, due to the inclusion of solution guid-
ance. For illustration, Appendix [H] presents examples of the same task under both regimes, along
with the performance of different LLMs. In summary, Instruction-Following emphasizes LLMs’
instruction-following and tool-use capabilities, whereas Auto-Planning additionally evaluates their
ability to decompose and plan Earth observation tasks.

A.5 DATASET QUALITY CONTROL

Our annotation team was composed of 2 computer science experts, 7 remote sensing specialists
(including one professor) and 3 Earth science specialists (including one professor).

Three core authors who served as senior reviewers led the pipeline of dataset construction. Each
senior reviewer was responsible for guiding the development of the question sets and templates for
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the Spectrum, Products, and RGB categories. They played a key role in providing strategic direction
for the overall question pool.

The remaining 7 team members, consisting of graduate students and senior undergraduates, con-
tributed in the following areas:

* Creation of initial questions (approximately 400 questions)
* Raw data collection

* Development of Python-based solution scripts

Once the questions were created, they were thoroughly reviewed by the 3 senior reviewers. The
review process focused on two key criteria:

1. Data Integrity: Ensuring that the raw data involved (e.g., Landsat or MODIS) has com-
plete band information within the task’s time range and does not contain anomalies. Any
questions and TIF files with missing or anomalous large values were discarded.

2. Task Difficulty Assessment: Senior reviewers assessed the difficulty of questions based
on the number and complexity of the functions defined in the Python solutions. For simpler
tasks (e.g., only calculating NDVI index to finish a task), these were removed to ensure an
appropriate challenge across questions.

This collaborative structure ensured that the dataset was curated by a diverse team with expertise
from the full landscape of Earth observation fields, enabling a well-rounded and comprehensive
dataset for evaluation.

A.6 BIAS ABLATION EXPERIMENT

To examine whether Earth-Bench exhibits bias toward specific models, i.e., whether certain models
inherently find its tasks easier and thus risk skewing conclusions, we conducted an ablation study.
Specifically, we removed all tools and allowed LLMs to directly answer questions given only the
Query and Folder, then compared the results with those of tool-augmented Agents that had access
to both Query and Data.
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Figure 6: Dataset Ablation Experiment

As shown in Fig. [6] without tool access, mainstream LLMs achieved comparable performance across
the three task types, with an overall Accuracy of about 37%. This indicates that the dataset is fair
in its raw form and that models cannot rely solely on parametric knowledge to solve all benchmark
questions. In contrast, with tool access, different models exhibited varying degrees of improvement:
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GPT-5 achieved the largest gain, whereas GPT-40 showed a more modest increase. These results
highlight differences in problem decomposition and tool-use capabilities among LLMs, and further
corroborate the conclusions presented in the main experiments.

In the No Tool setting, LLMs/MLLMs were restricted from using any tools, and base64 encoding
was not applied in RGB tasks specifically. To ensure integrity in the comparison, we added exper-
iments with base64 encoding for RGB tasks. We observed that while models like GPT-5 showed
some improvement in accuracy (compared with not applying base64 encoding), the performance
remained at relatively low levels. DeepSeek and Kimik2 were unable to handle RGB tasks yet. The
conclusions derived from the ablation study remain unchanged.

B EVALUATION

B.1 EVALUATION MODEL

Our evaluation covers 13 recent LLMs, including both closed-source and open-source ones, to un-
derstand their capabilities across multiple Earth observation tasks. The baseline models are listed in
Table[7l

Table 7: Models evaluated in our benchmark and their corresponding API references.

Model | Model Version | API Links

GPT5 GPT-5 https://platform.openai.com/docs/models/
gpt->5

GPT4 GPT-40 https://platform.openai.com/docs/models/
gpt—4o

Gemini Gemini-2.5-Flash https://ai.google.dev/gemini-api/docs/
models#gemini—-2.5-flash

Mistral Mistral-Large https://docs.mistral.ai/getting—-started/
models/

Qwen3-Max-Previous | https://www.alibabacloud.

Qwen Qwen3-32B com/help/en/model-studio/
Qwen-Plus use-gwen-by-calling-api
Kimi Kimi-K2 https://platform.moonshot.ai/docs/guide/
start-using-kimi-api
Deepseek | Deepseek-V3.1 | https://api-docs.deepseek.com
Seed Seed-1.6 https://www.volcengine.com/docs/82379/
1099455

LLaMA \ LLaMA-4-Maverick \ https://www.llama.com/products/llama—api/

GLM ‘ GLM-4.5v ‘ https://docs.z.ai/guides/vim/glm—4.5v
InternVL InternVL-3.5 https://internlm.intern-ai.org.cn/api/
document

B.2 EVALUATION METRIC

Formally, for each task goal g, our geoscience experts provide (i) a ground-truth final answer y*,
and (ii) an expert-annotated reasoning trajectory.

™ = [(05,a5), (01, a7), -, (0}, ar,)]

where each action is defined as
ay, = (t, iny, outy),
with ¢} € V denoting the tool identifier (from the tool vocabulary), inj, € X the input arguments,

and out;, € O the corresponding output. In other words, each tool is characterized by its name in
the vocabulary, its input arguments, and its output results.
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Given a policy 7, the agent generates an output trajectory

7 = [(00,a0), (01,a1), ..., (0n,an)],
together with a predicted final answer y.

To comprehensively evaluate the performance of the Agent on the Earth Benchmark, we assess
its execution process from two perspectives: End-to-End and Step-by-Step. The corresponding
evaluation metrics are defined as follows:

End-to-End protocol. End-to-end metrics evaluate the task-level performance of the agent, inde-
pendent of its intermediate reasoning. We consider two complementary measures:

(1) Accuracy. The correctness of the final answer is computed as
Acc = Egg [H{y = y*}], (D
where I{-} is the indicator function and G is the distribution of benchmark tasks.

(2) Efficiency. To penalize unnecessarily long trajectories, we measure the relative optimality of tool
usage:
Eff(7,7*) = il

= )
IT*

where |7| and |7*| denote the number of tool calls in the predicted and ground-truth trajectories,
respectively.

Step-by-Step protocol. In addition to outcome-based metrics, we also evaluate the fidelity of the
reasoning trajectory relative to expert annotations. Let t* = (¢3,...,t%) and t = (¢1,...,t,)
denote the tool sequences, and in* = (in},...,ink,), in = (iny,...,in,) the corresponding
parameter sequences. We define four metrics:

(1) Tools-Any-Order (TAO). Coverage of required tools, ignoring order and duplicates:

o | Set(t*) N Set(t) |
TAO(r, ") = | Set(6)] ,

3)

where Set(-) extracts the set of unique tools.

(2) Tools-In-Order(TIO). Fraction of ground-truth tools matched as a subsequence in the predicted
sequence:

k*

K = max{k:31<j1 < - <jp<n, tj, =t, Vi< k}, TIO(r,7") =
m

“4)

(3) Tool-Exact-Match(TEM). Length of the longest common prefix (LCP), normalized by the
ground-truth length:

glcp

by = max { £ <min(m,n):t; =t;, Vi <L}, TEM(r,7") = m

(&)

(4) Parameter Accuracy. Exact match of both tool identifiers and arguments under the prefix rule:

4
lparam = Max { £ <min(m,n) : t; =t; Nin; =in;, Vi < E}, Sparam = PR (6)
m

Here in; = in} denotes structural equality of arguments (e.g., dictionary match).

C BREAKDOWN RESULTS ON DIFFERENT MODALITIES

Table 8] Table 9] and Table[I0|present the detailed evaluation results on different subsets of Earth-
Bench. In the main analysis, we report only the overall performance across the entire benchmark to
ensure clarity and comparability. Nevertheless, the breakdown results of individual subsets provide
valuable insights into potential directions for improving LL.Ms in Earth Observation tasks.
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Table 8: Performance of different LLM-based agents on the Spectrum subset of Earth-Bench. We
bold the best results and underline the runner-ups.

Model Tool-Any-Order Tool-In-Order Tool-Exact-Match  Parameters Efficiency Accuracy
AP IF AP IF AP IF AP IF AP IF AP IF
GPT-5 72.67 18.37 65.80 7471, 49.64  52.07 21.74 2497, | 3.5510 4.6657, 61.00 64.00
Gemini-2.5 7135 7190, 65.14 64.84, 40.12  49.89 17.57 21.41, | 43584 4.5585. 52.00 52.00
GPT-40 69.55 72.83; 56.12 62.07, 4827  51.02 21.62 24.08; | 3.7736 4.5726, 37.00 42.00
Kimik2 7192  86.02; 62.27 7891, 43.04 54.81. 20.73 25.67, | 2.5758 3.1005, 38.00 50.00

DeepSeek-V3.1 7648 7597, 67.64 66.57, 50.22 50.52 26.32 26.13, | 3.9014 4.0685, 47.00 45.00,
Qwen3-Max 77.67 7427, 6647 6558, 3397 48.54 16.04 24.43, | 3.1981 3.2864, 45.00 40.00,

Seed-1.6 55.07 63.92 42.00 54.94; 24.53 34.37, 12.56 16.83; | 1.7525 1.9186, 40.00 57.00
LLaMA-4 16.89  25.20 3.57 1826, 2.69 13.58 202 8.17; |0.3648 04275, 36.00 37.00
Qwen-Plus 5595 57.38; 3627 48.89; 5.67 35.14 287 17.47, | 22833 24157, 33.00 36.00
GLM-4.5v 47.53 4987, 4193 45.63; 14.26 25.22; 9.13 1641, | 3.1121 3.0709; 33.33 28.28,
Mistral 2373 19.58, 458 16.13; 1.87 13.37 1.33  6.15 1.3825 0.8316; 24.00 18.00,

Qwen3-32B 45.02  65.25 26.60 57.17; 5.53 38.86 343 20.52; | 43328 3.4380; 12.00 29.00
InternVL-3.5 7.50  18.77 3.58 16.09; 0.58 13.02 033  5.65; | 0.1127 0.2411, 19.00 25.00

On the Spectrum subset, the accuracy of the Agent’s responses is generally below the average,
and the overall efficiency is also lower than the benchmark mean. This indicates that the Agent
encounters significant difficulties when addressing tasks in this subset. A likely reason is that the
LLMs involved in the evaluation have limited familiarity with processing raw Earth Observation
data. Furthermore, tasks in this subset often require analyzing a larger number of images, making
them inherently more challenging compared to tasks in other subsets.

In contrast, on the Product subset, the Agent’s responses are substantially above the average in
terms of accuracy, and its efficiency is comparable to that of expert annotations. This suggests that
LLMs are more adept at handling structured, product-level information, where tasks often align with
general reasoning and statistical capabilities rather than requiring specialized domain expertise.

Table 9: Performance of different LLM-based agents on the Products subset of Earth-Bench. We
bold the best results and underline the runner-ups.

Model Tool-Any-Order Tool-In-Order Tool-Exact-Match  Parameters Efficiency Accuracy
AP IF AP IF AP IF AP IF AP IF AP IF
GPT-5 60.04 6235 3843 4044, 3152  34.03 17.62 16.75, | 1.7154 1.6190. 75.00 71.59,
Gemini-2.5 4894  51.46 33.82 3526, 29.54  27.63, 16.33 17.11, | 3.0055 1.1600. 62.50 63.64
GPT-40 5727 60.11; 33.89 37.80; 31.31 35.02: 19.13 1871, | 1.1800 1.5270, 54.55 54.55
Kimik2 6691 69.83; 4299 49.96, 34.75 38.84. 20.23 21.32, | 1.2489 1.6481, 62.50 60.23,

DeepSeek-V3.1 7348 7275, 4335 46.16; 32.18 3332 20.50 19.92, | 1.8111 1.6449: 50.00 59.09
Qwen3-Max 63.24  66.80 4030 44.78; 3322  30.24, 20.23 16.52; | 1.0688 1.0859, 56.82 61.36

Seed-1.6 54.02  55.57 36.75 37.20; 28.84 31.27 16.79 19.82; | 0.8776 0.9359, 65.06 67.05
LLaMA-4 8.92 9.83 251 261 1.39 1.654 1.05 1.31; |0.1641 0.1614; 60.23 47.73,
Qwen-Plus 4771 51.57 2533 27.37; 10.16 4.14, 6.52 297, 109972 1.0016, 53.41 40091,
GLM-4.5v 35.06 4197, 19.36 24.68; 8.77 9.04, 6.60 7.77; | 09342 1.1979, 43.18 47.67
Mistral 26.61 3036, 12.80 13.43, 8.83 10.40+ 542 440, |0.6263 1.0206, 3636 22.73,
Qwen3-32B 29.66  6.97, 11.81 193, 270 1.14, 2.07 1.14; | 22108 0.6987; 27.27 18.39,
InternVL-3.5 491 5.27 1.94 232 0.52 2.264 052 0.55; |0.0495 0.0424; 3636 2841,

For the RGB subset, the Agent demonstrates above-average performance in tool utilization and
achieves efficiency close to that of expert annotations. However, its response accuracy remains
substantially below the average. This limitation is closely tied to the capabilities of the tools within
the Perception Toolkit. In certain cases, even when the Agent selects the same tools as those used
in expert annotations, the outputs still diverge from the ground-truth answers due to the constraints
of the underlying expert models. As the first attempt to develop an Agent framework for Earth
Observation, our work highlights this challenge and encourages future EO Agent research to adopt
more advanced expert models in order to overcome these limitations.
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Table 10: Performance of different LLM-based agents on the RGB subset of Earth-Bench. We bold
the best results and underline the runner-ups.

Model Tool-Any-Order Tool-In-Order Tool-Exact-Match  Parameters Efficiency Accuracy
AP IF AP IF AP IF AP IF AP IF AP IF
GPT-5 76.61 72.09, 75.04 67.08, 59.60 52.71, 46.15 40.73, | 1.5312 1.5784, 59.32 49.15,
Gemini-2.5 4870 60.11; 29.38 50.11; 21.33 4554 19.07 36.75; | 0.7926 0.8878, 47.46 47.46
GPT-40 71.86 66.89, 66.60 61.13; 64.76  60.00, 46.65 47.54, | 0.8779 0.8939, 45.76 35.59,
Kimik2 75.65 80.62; 71.37 79.90, 5148  63.32. 43,12 52.19: | 1.5341 1.4104. 54.24 62.71

DeepSeek-V3.1 88.98  89.21 8549 87.64, 71.54 74.05 53.57 5722 | 1.6895 1.7966, 55.93 54.24,
Qwen3-Max 6525 68.14 50.28 56.58; 47.88 51.55 34.04 4393, | 0.8601 0.9785, 49.15 38.98,

Seed-1.6 57.99 57.59, 44.00 4730, 34.11 43.74 29.93 39.02; | 1.1948 0.9589; 55.93 52.54,
LLaMA-4 2720  36.52 0.47 15.61; 0.47 12.43 0.47 11.25: | 0.3464 0.3790, 37.29 27.12,
Qwen-Plus 51.89  60.11; 29.51 42.80; 24.18 41.07 23.62 36.89; | 0.9721 1.0488, 42.37 38.98,
GLM-4.5v 4791 4842, 2736 33.54; 2193 27.38: 19.73 2498, | 1.3070 1.4535, 16.95 28.81

Mistral 36.16  45.59 22.46 40.11; 21.89 37.71 19.97 31.84, | 0.7215 0.7531, 30.51 30.51

Qwen3-32B 4593  56.47 27.54 41.69; 2641 41.69 2528 37.74, | 0.7767 1.0891, 2542 27.12
InternVL-3.5 16.95  29.92 723 1358; 6.67 13.58 475 11.88; | 0.2398 0.2606, 2542 27.12

Overall, the comparative analysis across subsets highlights both the strengths and limitations of
LLM-based Agents in Earth Observation. While LLMs achieve relatively strong performance on
Product tasks, where success relies more on general reasoning and statistical skills, they remain less
effective on tasks that demand specialized knowledge, such as those in the Spectrum subset, which
involve interpreting raw spectral data. Moreover, Earth-Agent incorporates expert models within the
Perception Toolkit for tasks such as segmentation and object detection, which significantly improves
performance in the corresponding scenarios. However, the generalization ability of these expert
models remains limited, as their outputs do not always align with ground-truth answers, even when
the correct tools are selected. These findings suggest that future progress in EO Agents will depend
not only on enhancing LLMs with domain-specific knowledge, but also on developing more robust
and versatile expert models to ensure reliable performance across the diverse spectrum of Earth
Observation tasks.

D ERROR ANALYSIS

To analyze the errors made by Agents with different LLM backbones on Earth-Bench tasks, we
selected GPT-5 as a representative closed-source model, and Kimi-K2, Qwen3-Max, and Deepseek-
V3.1 as representative open-source models. We counted the number of errors and categorized them
into five types:

* Unaware of Termination Conditions: failure to recognize the task’s termination condition,
leading to repeated tool calls until reaching the maximum step limit;

* Tool Hallucination: attempts to invoke non-existent tools;

* File Hallucination: attempts to process non-existent files, i.e., providing invalid file or
folder paths as tool inputs;

* Invalid Parameters: inputs that do not conform to the expected parameter format or are
otherwise invalid;

* System Error: system-level failures caused by the runtime environment or external depen-
dencies.

Figure [/| presents the frequency and distribution of these error types. Results show that GPT-5
produced the largest number of errors, while Kimi-K?2 had the fewest. Except for GPT-5, the other
models exhibited similar error counts across different regimes, and their error distributions did not
vary significantly, suggesting that providing more detailed execution steps does not substantially
improve tool-use proficiency.

In terms of error types, GPT-5 errors were dominated by Invalid Parameters, with occasional Sys-
tem Errors and File Hallucinations, but no Tool Hallucinations. In contrast, the three open-source
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models demonstrated different error patterns: while Invalid Parameters remained a notable factor,
it was not the primary source of errors. Instead, nearly 60% of their errors stemmed from Halluci-
nations and Unaware of Termination Conditions. We hypothesize that this difference is related to
training strategies. Open-source models are often trained with reinforcement learning, which may
encourage more exploratory outputs, thereby increasing the likelihood of hallucinations. Moreover,
their reward functions are typically designed to shape behavioral style and output preferences rather
than enhance factual knowledge, which could make models more prone to generating divergent or
repetitive outputs and to overlooking termination conditions.

Error Count Analysis Across Models
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Figure 7: Error analysis.

E LATENCY EXPERIMENT

E.1 BREAKDOWN RESULTS ON LATENCY

We further break down the latency into LLM Latency and Tool Latency. 1t is evident that the
majority of the latency is spent on model calls (LLM Latency), rather than on external tool calls
(Tool Latency). This suggests that reducing the frequency of model calls could further improve
latency. The results are shown in Table[TT]

We observe that the majority of the latency is attributed to LLM Latency, while the impact of Tool
Latency is relatively minimal. Therefore, reducing the frequency of model calls could significantly
improve overall latency. This suggests that optimizing the model call frequency would further en-
hance system performance.
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Table 11: Latency Breakdown for Different Models on Earth-Bench-Lite

Model | Latency Tool Call Number LLM Latency Tool Latency
Earth-Agent (GPT) 9494.92s 669 6969.26s 2525.66s
Earth-Agent (DeepSeek-V3.1) | 4716.99s 540 3066.76s 1650.23s
Earth-Agent (Kimik2) 7903.07s 502 6306.59s 1596.47s

E.2 OUR PROPOSED STRATEGY

We addressed this issue in the design of the Earth-Agent architecture. Specifically, we optimized the
tool design to minimize unnecessary interactions with the model. For instance, by leveraging batch
calculations for Earth indices, such as the NDVI calculation, we significantly reduce the frequency
of model interactions, thereby lowering the overall latency. Below is an example of our approach:

Batch Computing Strategy

1

def calculate_ndvi (input_nir_path,

input_red_path,

output_path) :

2 with rasterio.open(input_nir_path) as nir_src:
3 nir_band = nir_src.read (1) # Read the first band (assuming single-band ra
)
4 nir_profile = nir_src.profile # Get the metadata profile
5 with rasterio.open(input_red_path) as red_src:
6 red_band = red_src.read(1l) # Read the first band (assuming single-band ra
)
7 nir_band = np.array(nir_band, dtype=np.float32)
8 red_band = np.array(red_band, dtype=np.float32)
9 nir_band = np.clip(nir_band, 0, 10000)
10 red_band = np.clip(red_band, 0, 10000)
11 valid_mask = (nir_band >= 0) & (nir_band <= 10000) & (red_band >= 0) & (red_band <=
10000)
12 denominator = nir_band + red_band + le-6
13 ndvi = (nir_band - red_band) / denominator
14 # Set invalid pixels to -9999
15 ndvi[~valid_mask] = —-9999
16 ndvi_profile = nir_profile.copy ()
17 ndvi_profile.update (
18 dtype=rasterio.float32, # NDVI values are floating-point numbers
19 nodata=-9999, # Se a NoData value
20 compress='1lzw’ # Optional: compress the output file
21 )
22 # Save the NDVI result to the specified output path
23 os.makedirs ((TEMP_DIR / output_path) .parent, exist_ok=True)
24 with rasterio.open(TEMP_DIR / output_path, 'w’, *xndvi_profile) as dst:
25 dst.write (ndvi.astype (rasterio.float32), 1)
26
27 return f’Result save at {TEMP_DIR / output_path}’
28 @mcp.tool (description="""
29 Batch-calculate NDVI from multiple pairs of NIR/Red raster files and save results.
30
31 Parameters:
32 input_nir_paths (list[str]): Paths to Near-Infrared (NIR) band raster files.
33 input_red_paths (list[str]): Paths to Red band raster files.
34 output_paths (list[str]): Relative output paths (e.g., "questionl7/ndvi_2022-01-16.
tif") for each pair.
35
36 Returns:
37 list[str]: A list of result messages (one per output), as returned by ‘
calculate_ndvi‘.
38 nnm)
39 def calculate_batch_ndvi (
40 input_nir_paths: list[str],
41 input_red_paths: list([str],
42 output_paths: list[str]
43 ) -> list[str]:
44 return [
45 calculate_ndvi (nir_path, red_path, out_path)
46 for nir_path, red_path, out_path in zip(input_nir_paths, input_red_paths,
output_paths)
47 ]
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F SCALABILITY DISCUSSION

Understanding the performance trends as the number of tool calls increases is crucial for evalu-
ating the system’s behavior, particularly in terms of latency and scalability under increasing task
complexity.

F.1 PERFORMANCE WITH RESPECT TO TOOL NUMBER

To address this, we conducted an ablation study examining the relationship between the number of
tools used and the system’s performance across three SOTA models: GPTS5, DeepSeek-V3.1, and
Kimik2. The following Table [I2] presents the results, highlighting the high performance range for
each model:

Table 12: Performance of Earth-Agent Models with respect to Tool Numbers. The high perfor-
mance range is highlighted.

Tool Numbers GPT5 DeepSeek-V3.1 Kimik2

Questions Accuracy (%) Questions Accuracy (%) Questions Accuracy (%)

0 25 8.00 - - 25 4.00
1 3 66.67 2 0.00 1 0.00
2 8 75.00 - - 5 40.00
3 42 80.95 23 73.91 17 76.47
4 29 89.66 23 86.96 21 66.67
5 30 60.00 19 68.42 21 71.43
6 7 85.71 15 60.00 27 70.37
7 10 90.00 15 40.00 16 56.25
8 10 80.00 8 87.50 20 65.00
9 4 75.00 10 60.00 4 25.00
10 10 70.00 11 54.55 5 40.00
11 4 50.00 8 75.00 11 54.55
12 3 33.33 8 75.00 9 66.67
13 6 100.00 17 70.59 20 80.00
14 4 75.00 4 50.00 3 33.33
15 2 0.00 5 100.00 4 50.00
16 2 100.00 3 66.67 1 0.00
17 4 50.00 4 25.00 3 66.67
18 4 50.00 4 25.00 2 50.00
19 3 0.00 3 0.00 1 0.00
20 3 33.33 3 33.33 1 100.00
159 1 100.00 - - - -

From the results, we observe distinct performance trends for each model:

 For Earth-Agent driven by GPTS5, high accuracy is primarily concentrated within the tool
number range of 1 to 14.

* For Earth-Agent driven by DeepSeek-V3.1, the high-performance range is within the tool
number range of 3 to 15.

* For Earth-Agent driven by Kimik?2, the high-performance range falls within the tool num-
ber range of 3 to 13.

These high performance ranges align with expectations and indicate that task complexity plays a
key role in system performance. Using too few tools (with the extreme case being zero tools) results
in low accuracy, as the agent is unable to solve the task effectively, often leading to early errors.
Conversely, performance tends to degrade when too many tools are employed, suggesting that the
current capabilities of the base LLMs may not be sufficient to handle long chains of reasoning
efficiently.
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F.2 PERFORMANCE WITH RESPECT TO UNIQUE TOOL NUMBER

We also investigated the relationship between the unique number of tools used and performance
trends. Below is a visual representation using a bubble chart, where the size of each bubble is
proportional to the number of questions.
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Figure 9: DeepSeek-V3.1: Performance with respect to Unique Tool Number
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Figure 10: Kimik2: Performance with respect to Unique Tool Number

Based on Figures 8] [0] and[T0] we observed the following trends in the Earth-Agent system: When
driven by GPTS5, high accuracy is primarily observed within the range of 2 to 5 unique tool calls.
For DeepSeek, the optimal accuracy is concentrated in the range of 2 to 6 unique tool calls, while
for Kimik?2, high accuracy is predominantly found in the range of 1 to 6 unique tool calls. We also
observed a performance decline when the number of tool calls becomes excessive. These findings
align with our expectations, highlighting the current limitations of LLMs in handling tasks that
involve long chains of reasoning or excessive tool interactions.

This analysis provides valuable insights into the scalability of the system as task complexity in-
creases. It also offers important directions for future agent training, including (1) optimizing the
agent’s startup phase and (2) developing datasets for long-chain reasoning to enhance the agent’s
ability to handle multiple tool calls effectively.

G TooL KIT LIST

The Index Toolkit offers a comprehensive suite of automated functions for computing a wide range
of remote sensing indices directly from raster data. It supports efficient batch processing and covers
commonly used indices related to vegetation, water, soil, snow, and burn severity, such as NDVI,
NDWTI, and NDBI. A detailed list of the implemented indices is provided in Table T3]

Table 13: List of detailed information of Index Toolkit.

Tool Name | Category | Description Summary

calculate_batch_ndvi Index Batch-calculate NDVI from multiple pairs of
NIR/Red raster files and save results.

calculate_batch_ndwi Index Batch-calculate NDWI from multiple pairs of
NIR/SWIR raster files and save results.

calculate_batch_ndbi Index Batch-calculate NDBI from multiple pairs of
SWIR/NIR raster files and save results.

28



Under review as a conference paper at ICLR 2026

calculate_batch_evi Index Batch-calculate EVI from multiple sets of
NIR/Red/Blue raster files and save results.
calculate_batch_nbr Index Batch-calculate NBR from multiple pairs of
NIR/SWIR raster files and save results.
calculate_batch_fvc Index Batch-calculate FVC from multiple pairs of
NIR/Red raster files and save results.
calculate_batch_wri Index Batch-calculate WRI from multiple sets of
Green/Red/NIR/SWIR raster files and save re-
sults.
calculate_batch_ndti Index Batch-calculate NDTI from multiple pairs of
Red/Green raster files and save results.
calculate_batch_frp Index Batch-calculate Fire Radiative Power (FRP)
masks from multiple raster files and save re-
sults.
calculate_batch_ndsi Index Calculate NDSI for multiple pairs of Green
and SWIR band images.
calc_extreme_snow_loss Index Calculate the percentage of extreme snow and
_percentage_from_binary_map ice loss areas from a binary map.
compute_tvdi Index Compute TVDI (Temperature Vegetation Dry-

ness Index) using NDVI and LST from local
raster files.

The Inversion Toolkit integrates a collection of algorithms for retrieving key geophysical and envi-
ronmental parameters from optical, thermal infrared, and microwave remote sensing data. It sup-
ports multiple retrieval methods for parameters such as land surface temperature (LST), land surface
emissivity, and precipitable water vapor (PWYV), including single-channel, multi-channel, and split-
window approaches. By enabling flexible, efficient, and reproducible parameter estimation across
multi-source Earth Observation data, the toolkit provides a versatile foundation for quantitative re-
mote sensing applications. A detailed list of the implemented algorithms is provided in Table [T4]

Table 14: List of detailed information of Inversion Toolkit.

Tool Name

| Category | Description Summary

band_ratio

Inversion

Compute Precipitable Water Vapor (PWV) im-
age from local MODIS surface reflectance
band files using the band ratio method.

Ist_single_channel

Inversion

Estimate Land Surface Temperature (LST) us-
ing the Single-Channel method, with NDVI-
based emissivity estimation from RED and
NIR bands.

Ist_multi_channel

Inversion

Estimate Land Surface Temperature (LST) us-
ing the multi-channel algorithm.

split_window

Inversion

Estimate Land Surface Temperature (LST) or
Precipitable Water Vapor (PWV) using the
split-window algorithm.

temperature_emissivity_separation

Inversion

Estimate Land Surface Temperature (LST) us-
ing an enhanced Temperature Emissivity Sep-
aration (TES) algorithm with empirical emis-
sivity estimation.

29



Under review as a conference paper at ICLR 2026

modis_day_night_Ist

Inversion

Estimate land surface temperature (LST) from
local MODIS Day and Night brightness tem-
peratures using a single-channel correction
method.

ttm_lst

Inversion

Estimate land surface temperature (LST) and
emissivity using improved Three-Temperature
Method (TTM) from three local thermal band
GeoTIFF files. Uses all three bands to form a
system of equations and solves per-pixel with
physical constraints.

calculate_mean_Ist_by_ndvi

Inversion

Calculate the average Land Surface Temper-
ature (LST) across multiple images where
NDVI is either above or below a given thresh-
old.

calculate_max_Ist_by_ndvi

Inversion

Calculate the maximum Land Surface Temper-
ature (LST) in areas where NDVI is above or
below a given threshold.

ATI

Inversion

Estimate Apparent Thermal Inertia (ATI) us-
ing the Thermal Inertia Method. This method
calculates ATT as (1 — albedo)/(day-temp —
night_temp), which serves as a proxy for land
surface temperature stability over diurnal cy-
cles.

dual_polarization_differential

Inversion

Dual-Polarization Differential Method
(DPDM) for microwave remote sensing pa-
rameter inversion. Supports soil moisture and
vegetation index estimation with improved
data handling and flexible parameters.

dual_frequency _diff

Inversion

Dual-frequency Differential Method (DDM)
for parameter inversion using local raster data.
Supports inversion of multiple parameters via
empirical linear models: Soil Moisture (SM):
param = alpha*(bandl - band2) + beta; Veg-
etation Index (VI): param = alpha*(bandl -
band2) + beta; Leaf Area Index (LAI): param
= alpha*(bandl - band2) + beta

multi_freq_bt

Inversion

Multi-frequency  Brightness  Temperature
Method for parameter inversion using local
raster data.

chang_single_param_inversion

Inversion

Chang algorithm for inversion of a single pa-
rameter using multi-frequency dual-polarized
microwave brightness temperatures from local
raster files.

nasa_team_sea_ice_concentration

Inversion

Estimate Sea Ice Concentration using NASA
Team Algorithm from local passive microwave
brightness temperature GeoTIFF files.

dual_polarization_ratio

Inversion

Estimate Vegetation Water Content (VWC) or
Soil Moisture (SM) using Dual-Polarization
Ratio Method (PRM) from local passive
microwave brightness temperature GeoTIFF
files. The polarization ratio is computed as: (V
-H) / (V + H), where V and H are brightness
temperatures of vertical and horizontal polar-
izations.
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calculate_water_turbidity _ntu

Inversion

Calculate water turbidity in NTU (Nephelo-
metric Turbidity Units) from red band raster
file and save the result to a specified output
path.

The Perception Toolkit provides a comprehensive set of remote sensing perception tools, covering a
wide range of tasks such as scene classification, object detection, and change detection. In addition,
it supports threshold-based segmentation and offers a series of post-processing utilities for bounding
box and contour refinement. Overall, the toolkit enables diverse perception tasks on RGB remote
sensing imagery, including scene recognition, semantic segmentation, and spatiotemporal change
detection. A detailed list of the implemented tools is provided in Table[T5]

Table 15: List of detailed information of Perception Toolkit.

Tool Name

| Category

Description Summary

MSCN

Perception

MSCN is a scene and land-use image classi-
fier, effective for categories such as Airport,
BareLand, BaseballField, Beach, Bridge, Cen-
ter, Church, Commercial, DenseResidential,
Desert, Farmland, Forest, Industrial, Meadow,
MediumResidential, Mountain, Park, Parking,
Playground, Pond, Port, RailwayStation, Re-
sort, River, School, SparseResidential, Square,
Stadium, StorageTanks, and Viaduct.

RemoteCLIP

Perception

RemoteCLIP is a scene and land-use image
classifier, specialized for categories such as
Airport, Beach, Bridge, Commercial, Desert,
Farmland, FootballField, Forest, Industrial,
Meadow, Mountain, Park, Parking, Pond,
Port, RailwayStation, Residential, River, and
Viaduct.

Strip_.R_CNN

Perception

Strip_R_CNN is a remote sensing object de-
tection model with a strong focus on mar-
itime and ship-related targets. Compared to
SM3Det, it is particularly specialized in de-
tecting and localizing different types of ships
and naval vessels. This model is highly effec-
tive at detecting the following categories: L3
ship, L3 warcraft, L3 merchant ship, L3 air-
craft carrier, Arleigh Burke, Container, Ticon-
deroga, Perry, Tarawa, WhidbeyIsland, Com-
manderA, Austen, Nimitz, Sanantonio, Con-
tainer, Car carrierB, Enterprise, Car carrierA,
Medical
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SM3Det

Perception

SM3Det is a remote sensing object detection
model. Given an input image and a natu-
ral language prompt specifying the target ob-
ject (e.g., “plane”, “ship”, “storage tank™),
it detects all instances of that object and re-
turns their bounding boxes. This model is
particularly strong at detecting and localizing
the following categories:plane, ship, storage
tank, baseball diamond, tennis court, basket-
ball court, ground track field, harbor, bridge,
large vehicle, small vehicle, helicopter, round-
about, soccer ball field, swimming pool.

RemoteSAM

Perception

RemoteSAM is a remote sensing visual
grounding model. Given an input image and
a text prompt describing a region of interest
(e.g., “the football field located on the west-
ernmost side”), it outputs the corresponding
bounding box coordinates.

InstructSAM

Perception

InstructSAM is an instruction-guided counting
model for remote sensing images. Given an in-
put image and a natural language prompt spec-
ifying the target object (e.g., “storage tank”,
“football field”), it detects and counts the num-
ber of instances matching the description.

SAM2

Perception

Use SAM?2 to segment the input image and re-
turn the path of the segmented image.

ChangeOS

Perception

Use ChangeOS to detect the change between
two images and return the change mask. Can
also be used to segment building by provid-
ing same image path in pre_image_path and
post_image_path.

threshold_segmentation

Perception

Perform threshold-based segmentation on a
single-band raster image. The function reads a
raster image from the specified path, converts
it to a binary mask by applying a fixed thresh-
old, and writes the resulting binary image to a
new file. Pixel values greater than the thresh-
old are set to 255 (white), and values less than
or equal to the threshold are set to O (black).

bbox_expansion

Perception

Expands bounding boxes by a given radius and
returns the expanded bounding boxes.

count_above_threshold

Perception

Count the number of pixels in an image whose
values are greater than the specified threshold.

count_connected_components

Perception

Read a binary image and return the count of
connected components.

bboxes2centroids

Perception

Convert bounding boxes from [x_min, y_min,
x_max, y_max] format to centroid coordinates

X, y).

centroid_distance_extremes

Perception

Compute pairwise distances between centroids
and return both the closest and farthest pairs
with their indices and distances.

calculate_bbox_area

Perception

Calculate the total area of a list of bounding
boxes in [X, y, w, h] format.
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The Analysis Toolkit provides a suite of statistical and spatiotemporal analysis methods tailored for
remote sensing and geoscience data. Its functionalities include classical time-series trend detection
and decomposition techniques such as linear regression, the Mann—Kendall test, Sen’s slope estima-
tion, and STL decomposition. It also supports change-point detection and seasonal analysis based
on autocorrelation. In addition, the toolkit integrates spatial statistical approaches, including hotspot
direction analysis, as well as methods for spike detection in numerical sequences. A detailed list of
the implemented tools is provided in Table[T6

Table 16: List of detailed information of Analysis Toolkit.

Tool Name

Category \ Description Summary

compute_linear_trend Analysis Computes the linear trend (slope and intercept)
of a time series by fitting a line of the form:
y = a - x + b using the least squares method.

mann_kendall_test Analysis Perform the non-parametric Mann-Kendall
trend test on a univariate time series. The test
evaluates whether there is a monotonic upward
or downward trend without requiring the data
to conform to any particular distribution.

sens_slope Analysis Compute Sen’s Slope estimator for a univari-
ate time series. Sen’s Slope is a robust non-
parametric method for estimating the median
rate of change over time, often used with the
Mann-Kendall test to assess both trend and
magnitude.

stl_decompose Analysis Apply Seasonal-Trend decomposition using
LOESS (STL) to a univariate time series. De-
composes the series into trend, seasonal, and
residual components.

detect_change_points Analysis Detect structural change points in a univariate
time series using the ruptures library with the
PELT algorithm. A change point marks a loca-
tion where the statistical properties of the sig-
nal shift (e.g., mean or variance).

autocorrelation_function Analysis Compute the Autocorrelation Function (ACF)
for a univariate time series. The ACF measures
the correlation of the series with its own lags,
which is useful for detecting seasonality, per-
sistence, and lag dependence.

detect_seasonality_acf Analysis Detect the dominant seasonality (period) in a
univariate time series using the Autocorrela-
tion Function (ACF). The method searches for
significant peaks in the ACF beyond lag=1 to
identify repeating cycles.

getis_ord_gi_star Analysis Compute the Getis-Ord Gi* statistic for local
spatial autocorrelation on a raster image. This
method identifies statistically significant spa-
tial clusters of high (hot spots) or low (cold
spots) values using a user-specified spatial
weight kernel.

33



Under review as a conference paper at ICLR 2026

analyze_hotspot_direction Analysis Analyze the main directional concentration of
hotspots in a binary hotspot map. The function
counts the number of hotspot pixels (value=1)
in each cardinal direction relative to the map
center, and returns the dominant direction.

count_spikes_from_values Analysis Count the number of upward spikes in a se-
quence of numerical values. A spike is defined
as a positive difference between consecutive
valid values greater than the given threshold.

The Statistics Toolkit offers a comprehensive set of functions for descriptive statistics, image-based
statistical analysis, and geospatial data processing. Its capabilities cover the calculation of classical
statistical measures such as mean, variance, and skewness, as well as the extraction of statistical
information from imagery and intersection-based threshold analysis. In addition, the toolkit provides
fundamental arithmetic operations, temperature unit conversions, and image differencing functions.
It also supports essential preprocessing tasks, including radiometric correction and cloud masking.
Overall, the toolkit enables flexible and efficient extraction and analysis of statistical features from
geoscience and remote sensing data. A detailed list of the implemented tools is provided in Table[I7}

Table 17: List of detailed information of Statistics Toolkit.

Tool Name | Category | Description Summary

coefficient_of_variation Statistics Compute the Coefficient of Variation (CV) for
a dataset. The CV is defined as the ratio of
the standard deviation to the mean and is com-
monly used as a normalized measure of disper-

sion.

skewness Statistics Compute the skewness of a dataset, which
measures the asymmetry of the probability dis-
tribution.

kurtosis Statistics Compute the kurtosis of a dataset, which mea-

sures the tailednessof the distribution.

calc_batch_image_mean Statistics

Compute mean value of an batch of images.

calc_batch_image_std Statistics Compute the standard deviation (spread of
pixel values) for a batch of images.

calc_batch_image_median Statistics Compute the median pixel value for a batch of
images.

calc_batch_image_min Statistics Compute the minimum pixel value for a batch
of images.

calc_batch_image_max Statistics Compute the maximum pixel value for a batch
of images.

calc_batch_image_skewness Statistics Compute the skewness of pixel value distribu-
tions for a batch of images. Skewness quanti-
fies the asymmetry of the distribution:1. Posi-
tive skew — longer right tail; 2. Negative skew
— longer left tail; 3. Zero skew — symmetric
distribution.

calc_batch_image_kurtosis Statistics Compute the kurtosis of pixel value distribu-
tions for a batch of images. Kurtosis measures
the tailednessof the distribution relative to a
normal distribution.
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calc_batch_image_sum Statistics Compute the sum of pixel values for a batch of
images.

calc_batch_image_hotspot Statistics Compute the hotspot percentage (fraction of

_percentage pixels above a threshold) for a batch of images.

calc_batch_image_hotspot_tif Statistics Create binary hotspot maps for a batch of im-
ages, where pixels below a specified threshold
are set to 1 (hotspot) and others set to 0. The
output is saved as GeoTIFF files, preserving
georeference metadata from the input images.

difference Statistics Compute the absolute difference between two
numbers.

division | Statistics | Perform division between two numbers.

percentage_change Statistics Calculate the percentage change between two
numbers, useful for comparing relative growth
or decline.

kelvin_to_celsius | Statistics | Convert temperature from Kelvin to Celsius.

celsius_to_kelvin | Statistics | Convert temperature from Celsius to Kelvin.

max_value_and_index Statistics Find the maximum value in a list and return
both the maximum value and its index.

min_value_and_index Statistics Find the minimum value in a list and return
both the minimum value and its index.

ceil_number Statistics Return the ceiling (rounded up integer) of a
given number.

multiply Statistics Multiply two numbers and return their prod-
uct.

get_list_object_via_indexes Statistics Retrieve elements from a list using a list or tu-
ple of indices.

mean Statistics Compute the arithmetic mean (average) of a
dataset.

calculate_threshold_ratio Statistics Calculate the average percentage of pixels
above a given threshold for one or more im-
ages and a specified band.

calc_batch_fire_pixels Statistics Compute the number of fire pixels (FRP
threshold) for a batch of images.

create_fire_increase_map Statistics Create a binary map highlighting areas where
fire increase exceeds a specified threshold.

identify_fire_prone_areas Statistics Identify fire-prone areas from a hotspot map
based on a given percentile threshold.

get_percentile_value_from_image | Statistics Calculate the N-th percentile value of pixel
values in a raster image, and return it as a
native Python type matching the image’s data
type.

image_division_mean Statistics Calculate the mean of pixel-wise division be-
tween two images or between two bands of the
same image.

calculate_intersection_percentage | Statistics Calculate the percentage of pixels that simul-
taneously satisfy threshold conditions in two
raster images.

35



Under review as a conference paper at ICLR 2026

calc_batch_image_mean_mean

Statistics

Compute the average of mean pixel values
across a batch of images.

calc_batch_image_mean_max

Statistics

Compute the mean pixel values of a batch of
images and return the maximum mean.

calc_batch_image_mean_max_min

Statistics

Compute the batch-wise statistics across mul-
tiple images, including: Mean of mean values,
Maximum of maximum values, Minimum of
minimum values.

calc_batch_image_mean_threshold

Statistics

Calculate the percentage or count of images
whose mean pixel values (in a specified band)
are above or below a given threshold.

calculate_multi_band_threshold
_ratio

Statistics

Calculate the percentage of pixels that simul-
taneously satisfy multiple band threshold con-
ditions.

count_pixels_satisfying_conditions

Statistics

Count the number of pixels that simultane-
ously satisfy multiple band threshold condi-
tions.

count_images_exceeding_threshold
_ratio

Statistics

Count how many images have a percentage of
pixels above or below a threshold that exceeds
a specified ratio.

average_ratio_exceeding_threshold

Statistics

Calculate the average percentage of pixels ex-
ceeding a value threshold, considering only
images where the ratio is greater than a speci-
fied ratio threshold.

count_images_exceeding_mean
_multiplier

Statistics

Count how many images have a mean pixel
value above or below a multiple of the over-
all mean pixel value across all images.

calculate_band_mean _by_condition

Statistics

Calculate the mean value of a target band
over pixels where a condition band satisfies a
threshold.

calc_threshold_value_mean

Statistics

Calculate the mean value of corresponding
raster pixels in path2 where the raster values
in pathl exceed the given threshold.

calculate_tif_difference

Statistics

Calculate difference between two tif files (im-
age_b - image_a) and save result.

subtract Statistics | Subtract two images and save result.

calculate_area Statistics This function calculates the area of non-zero
pixels in the input image and returns the result.

grayscale_to_colormap Statistics Apply a colormap to a grayscale image and

save as a color image.

get_filelist

Statistics

Returns a list of files in the specified directory.

radiometric_correction_sr Statistics Apply Landsat 8 surface reflectance (SR_B*)
radiometric correction.
apply_cloud_mask Statistics Apply cloud / shadow mask to a single Landsat

8 surface reflectance band using QA_PIXEL
band.
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G.1 TooL PROMPT

To better illustrate the functionality of the toolkits, we provide a representative example. Specif-
ically, we focus on the 1st multi_channel tool, which estimates LST using a multi-channel
algorithm. This method leverages multiple thermal infrared bands from remote sensing imagery
and applies empirical formulas to derive accurate LST values. The corresponding implementation
is provided below:

Tool Example

1 @mcp.tool (description="""

2 Estimate Land Surface Temperature (LST) using the multi-channel algorithm.

3 Requires local input files:

4 - Two thermal infrared bands (e.g., Band 31 and Band 32) as GeoTIFF files.

5

6 Parameters:

7 band31_path (str): Path to local GeoTIFF file for thermal band 31 (11 \mu m}).

8 band32_path (str): Path to local GeoTIFF file for thermal band 32 (712 \mu m).

9 output_path (str): Relative path for the output raster file, e.g. "questionl7/
1st_2022-01-16.tif"

10

11 Returns:

12 str: Local file path of the exported LST image.

13 777)

14 def 1lst_multi_channel (band31_path: str, band32_path: str, output_path: str) -> str:

15 win

16 Description:

17 Estimate Land Surface Temperature (LST) using the multi-channel algorithm.

18 This method combines two thermal infrared bands to reduce atmospheric effects.

19

20 Parameters:

21 band31l_path (str): Path to GeoTIFF file for thermal band 31 (711 \mu m)

22 band32_path (str): Path to GeoTIFF file for thermal band 32 (712 \mu m)

23 output_path (str): Relative path for the output LST GeoTIFF

24

25 Returns:

26 str: Full path to the saved LST GeoTIFF

27 mn

28 import os, rasterio

29 import numpy as np

30

31 with rasterio.open(band31l_path) as src3l:

32 band31l = src3l.read(l) .astype(np.float32)

33 profile = src3l.profile

34

35 with rasterio.open(band32_path) as src32:

36 band32 = src32.read(l) .astype (np.float32)

37

38 a = 1.022

39 b = 0.47

40 c = 0.43

41

4?2 lst = a » band31 + b * (band31l - band32) + c

43

44 profile.update (dtype=rasterio.float32, count=1l, compress='lzw’)

45

46 os.makedirs ((TEMP_DIR / output_path) .parent, exist_ok=True)

47

48 with rasterio.open (TEMP_DIR / output_path, 'w’, *xprofile) as dst:

49 dst.write(lst.astype (np.float32), 1)

50

51 return f’Result saved at {TEMP_DIR / output_path}’
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H EARTH-AGENT WITH DIFFERENT LLM BACKBONES

(CAutonomous Pianning ) {ﬂ [Climate Analysis]

©)]
gQuesﬁon: Using Landsat 8 thermal and reflectance data in 2022 over New York City, estimate LST based on
NDVT and thermal band 10 using the single-channel method, then calculate the average LST for summer and
autumn, and determine the mean difference to assess seasonal temperature variation between these two periods.

A. 8.65K

B. 10.89K

Co 12.42K

D. 14.75K
BT10 x 21
B4 x 21

E

@ "name": get_filelist
A @R input": { "dir_path": "benchmark/data/question51"}

"output": [\"New York_2022-01-10_BT10.tif\",..., \"New York_2022-12-28_b5.tif\"]

"name": Ist_single_channel

"input": "bt_path": ["benchmark/data/question51/New York_2022-06-03_BT10.if,...,
"benchmark/data/question51/New York_2022-11-26_BT10.tif*], "nir_path": ["benchmark/data/question51/New
York_2022-06-03_b5.tif",..., "benchmark/data/question51/New York 2022-11-26_bS5.tif"], "output_path":
["question51/Ist_2022-06-03.tif",..., "question51/Ist_2022-11-26.tif"], "red_path": ["benchmark/data/question51/New
York_2022-06-03_b4.tif",..., "benchmark/data/question51/New York_2022-11-26_b4.tif"]

(]

é
b

Step 2-22

"output'": ["Result saved at out/question51/Ist_2022-11-26.tif",..., "Result saved at out/question51/Ist_2022-06-03.tif"]

"name"': difference
Uinput": {"a": 286.42960357666016,"b": 298.8459999778054}

o q

(step 25
0

0 @

"output": "12.41639640114522"

"final answer": "C"

é
b

 Final |

Step-by-Step:(1) TAO: 1.0 (2)TI0: 1.0 (3)TEM: 0.4 (4)Param.: 0.0
End-to-End: @ Efficiency: 5.0000 @ Acc: 100%

| Toolt |- Toolz | o [ Tool3 |xz o[ Tool4 |-c

Tool 1: get_filelist Tool 2: Ist_single_channel
Tool 4: difference Tool 5: calculate_batch_ndvi

[ BAgent |
Gy [ Toot L[ Tz it [ Tois Lz [ Tois Loc
Migmee [ Toolt Lo Towiz Laio [ Teols Lxa >Fan X
&D¢¢ps¢¢k [ Tool 1 &-’[ Tool 2 /\%le -> ><2 -> FAIL x

V3.1 & S

Tool 3: calc_batch_image_mean_mean
Tool 6: calculate_mean_lIst_by_ndvi

Figure 11: Example of Climate Analysis with Spectrum Data under the Auto-Planning Regime.
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Instruction Following

l Spectrum: %[Climate Analysis] J

3%uesﬂon: Based on Landsat 8 thermal band 10 and reflectance bands (Red and NIR) data over New York City
in 2022, first , then

, and finally

A. 8.65K
B. 10.89K
C.-12.42K
L. 14.75K

BT10 x 21
B4 x 21

@ "name": get_filelist

A

0\ "input": { "dir_path": "benchmark/data/question51"}
"output": [\"New York_2022-01-10_BT10.tif\*,..., \"New York_2022-12-28 b5.tif\"]

"name": Ist_single_ channel

"input": "bt_path": ["benchmark/data/question51/New York_2022-06-03_BT10.tif;...,
@ "benchmark/data/question51/New York_2022-11-26_BT10.tif*], "nir_path": ["benchmark/data/question51/New
O York_2022-06-03_b5.tif",..., "benchmark/data/question51/New York_2022-11-26_b5.tif"], "output_path":

["question51/Ist_2022-06-03.tif",..., "question51/Ist_2022-11-26.tif"], "red_path": ["benchmark/data/question51/New
York_2022-06-03_bA4.tif",..., "benchmark/data/question51/New York_2022-11-26_b4.tif"]

(step 2-22 |

"output': ["Result saved at out/question51/Ist_2022-11-26.tif",..., "Result saved at out/question51/Ist_2022-06-03.tif"]

@ "name": calc_batch_image _mean_mean
A}

VO, "input": {"file_list": [out/question51/Ist_2022-06-03.tif",..., "out/question51/Ist_2022-11-26.tif"}

”0utput”: ["298.8459999778054","286.42960357666016"]

@ "final answer": "C"
O

(Step 24|

( Final |

Step-by-Step:(1) TAO: 0.75(2)TI0: 0.8 (3)TEM: 0.4 (4)Param.: 0.0

End-to-End: (5) Efficiency: 4.8000  (6) Acc: 100%

m o))

Tool 1: get_filelist
Tool 4: difference

@GPT-5

v

Kimi-K2

| Tooll || Toolz | [ Tool3 |x2 > Toold |-c

Tool 2: Ist_single_channel
Tool 5: calculate_batch_ndvi

[ Tool 1 l—>[ Tool 2 lx21->[ Tool 3 lxz ->C

[ Tool 1 é»[ Tool 5 f]J_xz —>[ Tool 2 %»[ Tool 6 g)xz ->[ Tool 4 5]3->C x

.

ecpseek | Tooll | = Tool2 |xz1-> [ Tool3 |xz »FAIL 3
V31

Figure 12: Example of Climate Analysis with Spectrum Data under the Instruction-Following
Regime.

J
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( lSpectrum: &[Disaster Judgement]]

0]
RQuesﬁon: Based on temperature and vegetation indices (NDVI and LST) in the Central Valley of California, U.S.,

from May to October 2021, calculate the number of times when more than 40% of the area exhibited a drought
index value exceeding 0.7, indicating widespread extreme drought.

A. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 10 times
B. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 8 times
C.~The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 4 times
D. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 2 times

NDVT x 11

(YY)

"name": get_filelist
AON "input': { "dir_path": "benchmark/data/question5"}

Step 1

@ "output': ["Central Valley 2021-05-09_LST.tif","Central Valley_2021-05-09_NDVLtif","Central Valley 2021-05-
25_LST.tif","Central Valley_2021-05-25_NDVLtif",...,"Central Valley_2021-10-16_NDVLtif"]

"name': compute_tvdi
"input": {

@ “ndvi_path™: ["Central Valley_2021-05-09_NDVLLtif",..., "Central Valley_2021-10-16_NDVL.tif "],
o QX  ‘lstpaih:['Central Valley 2021-05-09_LST.Gf"...."Central Valley_2021-05-09_LST.1if"]
(\|.I "output_path": ["question5/tvdi_2021-05-09.tif”,...,"question5/tvdi_2021-05-09.tif"]
al }
Q
+—
V| =
“output': ["Result saved at out/question5/tvdi_2021-05-09.tif", ...,"Result saved at out/question5/tvdi_2021-10-16.tif"]
"name"': count_images_exceeding_threshold_ratio
"input":{
— @ “image_paths”™ [“out/questions/tvdi_2021-05-09.tif ”,..., "out/question5/tvdi_2021-10-16.tif"]
2 ,o\ "mode": "above ",
a "ratio_threshold": 40,
) "y § "
s value_threshold": 0.7,
() }

"output': "4"

o

hE- g "final answer": "C"

Step-by-Step: TAO: 1.0 TIO: 1.0 TEM: 0.67 Param.: 0.33
End-to-End:  Efficiency: 4.33 Acc: 100%

[ Tool 1 ] -> [ Tool 2

Tool 1: get_filelist Tool 3:
Tool 2: compute_tvdi

-
1
A4
—

Tool 3 ] ->C

count_images_exceeding_threshold_ratio
Tool 4: calculate_threshold_ratio

@ rrs - Tool2 Jxi1 | Tool3 > C
[ )

\,

&Deepseek -> Tool 2 x11 -> Tool 4
V3.1 ©

x12 ->C

J/

Figure 13: Example of Disaster Judgement with Spectrum Data under the Auto-Planning
Regime.
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( [Spectrum: é[Disaster Judgement]] A
@
3ues1’ion: Based on temperature and vegetation indices (NDVI and LST) in the Central Valley of California, U.S.,
from May to October 2021, first , then
. ,and
finally , indicating widespread extreme drought.

A. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 10 times
B. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 8 times
C.~The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 4 times
D. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 2 times

NDVTI x 11

A
© 6PT-5
@ "name": get_filelist
AON "input': { "dir_path": "benchmark/data/question5"}

"output': ["Central Valley 2021-05-09_LST.tif","Central Valley_2021-05-09_ NDVLtif","Central Valley 2021-10-
16_LST.tif\",...,"Central Valley_2021-10-16_NDVL.tif"]

Step 1

"name": compute_tvdi

"input": {
“ndvi_path™: ["Central Valley 2021-05-09_NDVL.if",..., "Central Valley 2021-10-16_NDVLtif "],
“Ist_path”: ["Central Valley 2021-05-09_LST.tif",. "Central Valley 2021-10-16_LST.tif "]
"output_path": ["question5/tvdi_2021-05-09.tif”,. ,"questionS/tVdi_2021-10-16.tit"]

Step 2-12

"output': ["Result saved at out/question5/tvdi_2021-05-09.tif", ...,"Result saved at out/question5/tvdi_2021-10-16.tif"]

"name"': count_images_exceeding_threshold_ratio
"input":{
“image_paths”: [“out/question5/tvdi_2021-05-09.tif ”,..., "out/question5/tvdi_2021-10-16.tif"]
J N "mode": "above ",
© "ratio_threshold": 40,
"value_threshold": 0.7,

}

"output': "4"

(step 13]

h—csj g "final answer": "C"

Step-by-Step: TAO: 1.0 TIO: 1.0 TEM: 0.67 Param.: 0.33
End-to-End:  Efficiency: 4.33 Acc: 100%
[ Tool 1 ] -> [ Tool 2 ] -> [ Tool 3 ] ->C
Tool 1: get_filelist Tool 3:

Tool 2: compute_tvdi count_images_exceeding_threshold_ratio

Tool 4: calculate_threshold_ratio

@m it Lo [ iz -»
[
H cimixz | Tool 1 5> Tool 2 Axll > | Tool4 > | Tool3 j@»c

\, J

Figure 14: Example of Disaster Judgement with Spectrum Data under the Instruction-
Following Regime.
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'8 iSpecrrum. Wl [Temperature Monitoring] ] )

mabis Planning

fQuzsﬂon: Using Landsat 8 TOA data (Band 10) in Death Valley National Park during the 2021 heatwave season
(June-September), calculate how many days showed over 50% of the area with land surface temperatures above

315K
A:b days
8. 10 days
€. 12 days
D. 18 days
sy BT10 x 18
hae? oo B4 x 18

) "name"': gel_filelist
YOS Minput": {"dir_path": "benchmark/data/question7"}

(Step 1 |

"output’": ["Death Valley 2021-05-05 BTI0.tif)",...,"Death Valley 2021-09-26 b3.tif\"]

"mame":count_images_exceeding_threshold_ratio
"input": {"image paths": ["benchmark/data’question?/Death Valley 2021-06-06 BT10.tf",...,
@ “benchmark/data/questionT/Death Valley 2021-09-26 BT10.uf"]
"mode": "above"
"ratio_threshold": 40
"value_threshold": 0.7
"verbese": true}

"output': "4"

"name':lst_single channel

“inpuf”: {*bt_path”: [*henchmark/data/question/Death Valley 2021-06-

06 BTI0.6if", ... “benchmark/data/question?/Death Valley 2021-09-26 BT10.tif], "red_path":
["benchmark/data/question?/Death Valley 2021-06-06_b4.tif"..... "benchmark/data/question7/Death Valley 2021-09-
26_b4.HE, "nir_path"; ["benchmark/data/question?/Teath Valley_2021-06-

06_b5 4if", ..., "benchmark/data‘question?/Death Valley 2021-09-26_b5.tif*], "output_path": ["question7/1st_2021-06-
06.4if"..... "question/lst_2021-09-26 tif"]

@ Q

=
L
e

Step 6-19 | ... [ Step 2,5 |

"outpur'': [Result saved at out/question7/lst_2021-06-06 tif]

unt_images exceeding threshold ratio
input": {"image paths": ["out/question7/Ist 2021-06-06.tif",.., "out/question?/lst 2021-09-26.1if"],
"value_threshold": 315,
®%  'matio_threshold": 50.
"mode": "above",
"verbose": true}

@ q

Step 20

"outpui": "3"

nal
@ @

o
=

i

Step-by-Step: (1) TAO: 1.0 2)TIO: 1.0(3) TEM: 0.67 (&) Param.: 0.33
End-to-End: @ Efficiency: 6.67 @ Acc: 100%

Tool 1 - | Tool 2 | - [ Tool 3 >4

Tool 1: get filelist Tool 4: calc_batch_image_hotspot_percentage  Tool 6:calculate_batch_ndvi
Tool 2: Ist_single_channel Tool 5: get_list_object_via_indexes
Tool 3: count_images_exceeding_threshold_ratio Tool 8: calculate_threshold_ratio

@GPT-E [Tonl Ié’(z—-’[ TWISVJ\)-—’[ Tool 2515->HT00| ﬂé—){TMﬂ 2%—5 Tool BJt;-lXé-) Fd"x

H.Kimi-"z [ Tool 15—» [ Tool 8 £—>[ Tool 3%-»[ o Z\J;-)_ >[ Taol 3%—:[ Tool 2 g 14- >LTool 3%)- >A ,,

. 7

Figure 15: Example of Temperature Monitoring with Spectrum Data under the Auto-Planning
Regime.
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lSpestrum: ﬁm [Temperature Monitoring] ] N

instruction Following

fQuzshon Using Landsat 8 TOA data (Bund 10) in Death Valley Nn‘huml Par'k durmg the 2021 heatwave
season (J une—Sepfcmber‘) first | , then
I For each i image. compute th

ding 3 und fmully
475 days
B. 10 days
C. 12 days
D. 18 days

{3,

worney BT10 x 18
e B4 x 18

@ "name": get filelist
Fok impuls {'die path': "benchmark/dataiquestion")
“output": [WDeath Valley_2021-05-05_BTI0.6if\",..,"Death Valley_2021-09-26_b3 1if\"]

"mame": calculate batch ndvi
Minput": "input_nir_paths”: ["benchmark/data/question?/Death Valley 2021-06-
g 06_b5.tif",.. . "henchmark/data/question7/Death Valley_2021-09-26_b5.tif]. "input_red_paths"
["benchmark/data/question7/Death Valley 2021-06-06_b4.tif",..., "benchmark/data‘question7/Death Valley 2021-09-
26 b4.tif"], "output_paths": [question7/ndvi 2021-06-06.1if",.... "question7/ndvi_2021-09-26.1if"]

“output " : [\'"Result save at cut/question?/ndvi_2021-06-06.4f\", ..., "Result saved at
@ out/question7/ndvi_2021-09-26.tif" |

"name': Ist_single_channel

Yinput'':{"bt_path": "benchmark/data‘question?/Death Valley_2021-06-06_BT10.tif","red_path™

D "benchmark/data/question7/Death Valley 2021-06-06_b4.tif","nir_path": "benchmark/data/question7/Death
Valley_2021-06-06_b5 tif", "output_path": "question7/Ist_2021-06-06tif*}

! "output": [Result saved at out/question7/Ist_2021-06-06.41]

"name":count images exceeding threshold ratio
"inpul": {"image paths": ["out/question?/Ist 2021-06-06.uf"..., "out’question?/st 2021-09-26.tif""],
D "\‘n!ue_lhza:.hnld"‘ 315,
e "ratio_threshold™: 50,
"mode"; "above",
"verbose”: true}

“fimal answer"': “A"
DS

Step-by-Step: (1) TAO: 1.0(2)TIO: 1.0(3) TEM: 0.67 (4) Param.: 0.33
End-to-End: (8) Efficiency: 6.3333 (&) Acc: 100%

{ Tool 1 I Tool 2 L Tool 3 |->a

Tool 1: get_filelist Tool 4: calc_batch_image_hotspot_percentage  Tool 6:calculate_batch_ndvi
Tool 2: Ist_single_channel Tool 5: get_list_object_via_indexes
Tool 3: count_images_exceeding_threshold_ratio Tool 8: calculate_threshold_ratio

@m-s [mné [Too|z$»['ruonagj [Tuurz(};u_,[raolai]j-gﬁ/

H.Kimi-KZ [TunF z@[a [Toal 6(1\ > | Tool z;ljx 15— > Tool sf]j [Tanl 3%-4 ;:A./'
&Dz;gf:ek { Tool 161‘)- [Tool 61}\ > | Tool 215’“5 > T°°' 3%",‘6/‘

Figure 16: Example of Temperature Monitoring with Spectrum Data under the Instruction-
Following Regime.
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7

lSpectrum: % [Urban Management]l )

]
RQuesﬁon: Using TES-derived land surface temperature from ASTER Bands 10-14 on June 15, 2022, over the
specified Los Angeles metropolitan area, calculate the percentage of urban pixels exhibited LST > 300 K
combined with emissivity < 0.96, indicating urban heat island intensity during early summer.

A. 15.34%
B. 28.67%
C. 37.93%
D. 41.13%

@ "name": get_filelist

O "input': { "dir_path":"benchmark/supported_data/question21"}

SN

"output': [\"answer_21.py\",\"Ist_tes_result.tif\"]

"name": calculate_multi_band_threshold_ratio

@ Q

o "input': "image path": "benchmark/supported_data/question21/lst_tes_result.tif",
a ZO)N "band_conditions": [[0,300,"above"],[1,0.96,"below"]]}

Q

+—

(V9]

"output": "41.13315833506345"

"final answer": "C"

@ @

( Final |

Step-by-Step:(1)TAO: 0.67 (2)TIO: 0.33 (3) TEM: 0.33 (4) Param.: 0.0
End-to-End: (5)Efficiency: 0.6667 2 Acc: 100%

[ Tool 1 | - Tool 4 ] > | Tool 3 B

Tool 1: get_filelist Tool 4: temperature_emissivity_separation  Tool 6:calc_batch_image_skewness
Tool 2: calc_batch_image_std Tool 5: calc_batch_image_mean
Tool 3: calculate_multi_band_threshold_ratio Tool 8: calc_batch_image_mean_max_min

® Agent
s [0 7o 520
.
HKimi-KZ ->| Tool3 | x3 ->D
g o1 51 o o o o i o o o o s o
V3.1

\, 7

@)

X2 =>

—

O_a

Figure 17: Example of Urban Management with Spectrum Data under the Auto-Planning
Regime.
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( | Spectrum: & [urban Management] | )
C7%:luesﬁon: Using TES-derived land surface temperature from ASTER Bands 10-14 on June 15, 2022, over the
os Angeles metropolitan area, first , then
. Finally,
, indicating the intensity of the urban heat island
during early summer.
A. 15.34%
B. 28.67%
C. 37.93%
D. 41.13%
G
— @ "name": get_filelist
SN O "input": { "dir_path":"benchmark/supported data/question21"}
o
Q
tT) tput": [\ 21.py\",\"Ist_t 1t.6if\"]
v "output': [\"answer_21.py\",\"Ist_tes_result.tif\"
— @ "name": calculate_multi_band_threshold_ratio
o~ "input": "image_path": "benchmark/supported_data/question21/Ist_tes_result.tif",
a 2O "band_conditions": [[0,300,"above"],[1,0.96,"below"]]}
£
w -
"output": "41.13315833506345"
=
£ @ "final answer": "C"
| AOR
Step-by-Step:(1) TAO: 0.67 (2)TI0: 0.33 (3)TEM: 0.33 (4) Param.: 0.0
End-to-End: (5) Efficiency: 0.6667  (6) Acc: 100%
v 6T
[ Tool 1 ] -> [ Tool 4 ] -> [ Tool 3 ] ->D
Tool 1: get_filelist Tool 4: temperature_emissivity_separation Tool 6:calc_batch_image_skewness
Tool 2: calc_batch_image_std Tool 5: calc_batch_image_mean
Tool 3: calculate_multi_band_threshold_ratio Tool 8: calc_batch_image_mean_max_min
Agent
© ©
i (1) o
T Tooll | => ->
Kimi-K2 ©
&Deepseek [ Tool 1 953 ->[ Tool 3 $-> D
V3.1 < &
\ J

Figure 18: Example of Urban Management with Spectrum Data under the Instruction-

Following Regime.
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T 5tz [Vegetation Monitoring]

0]
3Quesﬁon: Based on TES output from ASTER thermal bands on March 24, 2020 in the Sahara Desert region
near Tamanrasset, Algeria, calculate the proportion of the area where emissivity variation (Ac) exceeds 0.05,
indicating possible land cover heterogeneity.

A. 7.63%

B. 11.13%

¢ 21.85%

D. 29.39%
i
=
5o

Q Deepseek

V3.1

"name": get_filelist
0\ "input': { "dir_path": "benchmark/data/question23"}

Toutput”: [\“2020_03_24 BT _10.if\”,...,\"2020_03_24 BT 14.tif\"]

Step 1
@ 8

"name": temperature_emissivity_separation

"input": "tir_band_paths": ["benchmark/data/question23/2020_03_24 BT _10.tif",...
@ "benchmark/data/question23/2020_03_24 BT 14.tif],
0\ representative_band_index": 3,

"

‘output_path":"question23/tes_output.tif"

Step 2

e

"output": ["Result saved at out/question23/tes_output.tif*]

"name": calculate_area
"input': "input_image_path'
"gsd": 1

out/question23/tes_output.tif",

S\

[Fmal] [s-rep 10]
@ g

g

4 “output': "2351880.0"

"final answer"': "C"

Step-by-Step:(1)TA0: 1.0 (2)TI0: 1.0 (3)TEM: 0.67 (4) Param.: 0.33
End-to-End: @Efficiency:3.3333 @ Acc: 0%

m o)

6T

MK

Tool 1 J -> [ Tool 7 } -> [ Tool 4 J->B

Tool 1: get_filelist  Tool 2: calc_batch_image_hotspot_percentage  Tool 3: threshold_segmentation
Tool 4: calculate_threshold_ratio  Tool 5: identify_fire_prone_areas

Tool 7: temperature_emissivity_separation Tool 8: calc_batch_image_hotspot_tif

Tool 10: calc_batch_image_sum Tool 11: calc_extreme_snow_loss_percentage_from_binary_map
Tool 12: count_pixels_satisfying_conditions Tool 13: calculate_multi_band_threshold_ratio

Tool 14: get_percentile_value_from_image

= Agent

@GPT-5 [ et 23" [ Tool 7 23"[ Tool 4 gaxz -> [ Tool 13 gjxs -> [ Tool 4%» { Tool 13 gxs ->C x
il - Fail €
A - [ Tool 1 @L» [ Tool 7 $> [ Tool 5 %> [ Tool 3 (']D-> [ Tool 8 ;\ "\',

Va1 b [T°°|4£>x2 - Tooléga"[ Tool loﬁl"{nmé e X

Figure 19: Example of Vegetation Monitoring with Spectrum Data under the Auto-Planning
Regime.

46



Under review as a conference paper at ICLR 2026

(Cinstrustion Following ) 5tz [Vegetation Monitoring]
(©)]
3Quesﬁon: Based on TES output from ASTER thermal bands on March 24, 2020, in the Sahara Desert region
near Tamanrasset, Algeria, first , then
. Finally,
, indicating potential land cover
heterogeneity.
A. 7.63%
B.11.13%
C. 21.85%
D. 29.39%
> G =
) : o 3 “
L o e ¢
g e e < g
Q Deepseek
V3.1
@ "name"': get_filelist
i | A@N "input": { "dir_path": "benchmark/data/question23"}
a
Ol
" @ "output": [\“2020_03_24 BT _10.tif\",...,\"2020_03_24 BT 14.tif\"]
"name'': temperature_emissivity_separation
"input': "tir_band_paths": ["benchmark/data/question23/2020_03_24_BT_10.tif",...,
— @ "benchmark/data/question23/2020_03_24 BT_14.tif*],
N IO\ "representative_band_index": 3,
3. "output_path":"question23/tes_output.tif"
+—
v

"output': ["Result saved at out/question23/tes_output.tif]

"name"': calculate_area

M@

"input": "input_image_path": "out/question23/tes_output.tif",
KON ngsd: 1
s "output'": "2351880.0"

"final answer": "C"

[Fmal] [S'rep9]
@ q

Step-by-Step:(1)TA0: 1.0 (2)TI0: 1.0 (3)TEM: 0.67 (4) Param.: 0.33
End-to-End: @Efﬁciency: 3.3333 @Acc: 0%

Tool 1 ] - [ Tool 7 ] > [ Tool 4 ]->B

Tool 1: get_filelist  Tool 2: calc_batch_image_hotspot_percentage Tool 3: threshold_segmentation
Tool 4: calculate_threshold_ratio  Tool 5: identify_fire_prone_areas

Tool 7: temperature_emissivity_separation Tool 8: calc_batch_image_hotspot_tif

Tool 10: calc_batch_image_sum Tool 11: calc_extreme_snow_loss_percentage_from_binary_map
Tool 12: count_pixels_satisfying_conditions Tool 13: calculate_multi_band_threshold_ratio

Tool 14: get_percentile_value_from_image

@GPT-5 [ Tool 1 %—>[ Tool7%->[ Tool 4 <]sz ->[ Tool 13 g»[ Tool4g>->[ Tool 12 23“ - [ Tool 4 %xs >B

.Kimi-KZ [ mu%—> [ Tool7ga'> [ Tool 4 é—>[ Tool 14 £>> [ Tool 12 %xz > [ Tool 13 J@» B
A . [Tooll%—{ Tool7g>—>[ Tool 12 %_{ T°°"‘§5’ [ 1—,,,,.2;3__\.'

V31 N [ Toul 89@_, [ —_ 3$_> [ S j\ - [ Tool 10 Jj’[ Tool 9(]3 »c ¥

Figure 20: Example of Vegetation Monitoring with Spectrum Data under the Instruction-
Following Regime.
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( l Products:ﬁ[Pollution Regulation] J )

©)
& Question: Based on the sur_refl_bO1 and sur_refl_b04 data of the Arctic Ocean, calculate the NDTI.
Determine whether ocean turbidity in the Arctic Ocean increased or decreased over this period, and report the
magnitude of the change.

A. The average NDTT decreased slightly from about -0.0472 in July 2012 to about -0.0502 in July 2022,
meaning turbidity weakened and the magnitude of change was roughly 0.0030.

B The average NDTT increased from about -0.050162 in July 2012 to about -0.047156 in July 2022, so
ocean turbidity increased (less negative NDTI) with a magnitude of about 0.003006.

C. The average NDTT increased from about -0.0472 to -0.0502, indicating much clearer water, with a magnitude
near 0.0030.

D. Average NDTI values of roughly -0.0502 and -0.0472 show no detectable change in turbidity between 2012
and 2022.

E. Average NDTT stayed at about -0.05 for both years, so there was virtually zero change.

G
@ "name": get_filelist

O "input": { "dir_path": "benchmark/data/question182"}

"output": [\"Arctic_Ocean_sur_refl_b01_2012-07-01.tif\",..., \"Arctic_Ocean_sur_refl_b04_2022-07-29.tif\"]

(Step1 ]

"name": calculate_batch_ndti

"input":"input_red_paths": ["benchmark/data/question182/Arctic_Ocean_sur_refl_b04_2012-07-
01.tif",...,"benchmark/data/question182/Arctic_Ocean_sur_refl b04_2022-07-29.tif"], "input_green_paths":
["benchmark/data/question182/Arctic_Ocean_sur_refl b01_2012-07-01.tif",...,
"benchmark/data/question182/Arctic_Ocean_sur_refl_b01_2022-07-29.tif"], "output_paths": ["question182/ndti_2012-
07-01.tif",..., "question182/ndti_2022-07-29.tif"]

C )

- "output": [\"Result save at out/question182/ndti_2012-07-01.tif\",..., \"Result save at
out/question182/ndti_2022-07-29.tif\"]

Step 2-3

"name": mean
Uinput': ["-13.095973014831543",..."-5.5260844230651855"]

0 Q

SN

O,

by

"output': "-15.605616776148478"

"final answer": "B"

@] Step 7
® @

Step-by-Step:(1) TAO: 0.5 (2)TI0: 0.03 (3)TEM: 0.03 (4)Param.: 0.03
End-to-End: @ Efficiency:0.2258 @ Acc: 100%

| Tool 1 ]>[ Tool2 |x2->| Tool3 ]xz->[ Tool4 |8

Tool 1: get_filelist Tool 2: calculate_ndti Tool 3: calc_batch_image_mean
Tool 4: difference Tool 5: calculate_batch_ndti

Tool 7: calc_batch_image_mean_mean

@GPT-S [ Tool 1 ], -> [ Tool 5 1x2 —>[ Tool 7 1x2 ->B

H.Kimi-Kz [ Tool 1 l —>[ Tool 5 1x2 ->[ Tool7 Ix2 ->A x
S

esgs;ek [ Tool 1 l->[ Tool 5 “><2->[ Tool 7 X3 ->[ Tool 4 ]z->A x

. J

Figure 21: Example of Pollution Regulation with Products Data under the Auto-Planning
Regime.
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) ﬁ [Pollution Regulation]
@
3Quesﬂon:Based on the sur_refl_b01 and sur_refl_b04 data of the Arctic Ocean,

, and )

A. The average NDTT decreased slightly from about -0.0472 in July 2012 to about -0.0502 in July 2022,
meaning turbidity weakened and the magnitude of change was roughly 0.0030.

B. The average NDTT increased from about -0.050162 in July 2012 to about -0.047156 in July 2022, so
ocean turbidity increased (less negative NDTT) with a magnitude of about 0.003006.

C. The average NDTI increased from about -0.0472 to -0.0502, indicating much clearer water, with a magnitude
near 0.0030.

D. Average NDTT values of roughly -0.0502 and -0.0472 show no detectable change in turbidity between 2012
and 2022.

E. Average NDTI stayed at about -0.05 for both years, so there was virtually zero change.

B4 x 72

@ "name": get_filelist
o ,o\ "input': { "dir_path": "benchmark/data/question182"}
S|
.'ll_) "output": [\"Arctic_Ocean_sur_refl_b01_2012-07-01.tif\",..., \"Arctic_Ocean_sur_refl_b04_2022-07-29.tif\"]
"name": calculate_batch_ndti
"input":"input_red paths": ["benchmark/data/question182/Arctic_Ocean_sur_refl b04 2012-07-
@ 01.tif",...,"benchmark/data/question182/Arctic_Ocean_sur_refl b04_2022-07-29.tif"], "input_green_paths":
O ["benchmark/data/question182/Arctic_Ocean_sur_refl b01_2012-07-01.tif",...,
".’ "benchmark/data/question182/Arctic_Ocean_sur_refl_b01_2022-07-29.tif"], "output_paths": ["question182/ndti_2012-
[\ 07-01.tif",..., "question182/ndti_2022-07-29.tif"]
£
0 "output': [\"Result save at out/question182/ndti_2012-07-01.tif\",..., \"Result save at
@ out/question]82/ndti_2022-07-29.tif\"]
"name': mean
= dorn Minput": ["-13.095973014831543",..."-5.5260844230651855"]
o
Q
() output”: "-15.605616776148478"
S @ "final answer": "B"
| aoxn

Step-by-Step:(1) TAO: 0.5 (2)TI0: 0.03 (3)TEM: 0.03 (4)Param.: 0.03
End-to-End: @ Efficiency: 0.3548 @ Acc: 100%

| Toolt | Tool2 |x2 Tool3 |x2> | Tool4 |8

Tool 1: get_filelist Tool 2: calculate_ndti Tool 3: calc_batch_image_mean
Tool 4: difference Tool 5: calculate_batch_ndti
Tool 7: calc_batch_image_mean_mean Tool 6: get_list_object_via_indexes

s | Tool1 é"[ Tool5 1x2-| Tool7 Lx2 -8
’Kimi-KZ [ Tool 1 é»[ Tool 3 é_,A x

&De\e/%sleek [ Tool 1 5»[ Tool 6 éle ->[ Tool & “><2 ->[ Tool 7 1x3 —>[ Tool 4 M'>A

Figure 22: Example of Pollution Regulation with Products Data under the Instruction-

Following Regime.
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( l Products: §% [Urban Management] J )

Autonomous Planning

©)
3 Question: Based on the built_volume_total data of Shanghai from 1980 to 2025, calculate the total change in
building volume for Shanghai between 1985 and 2020 and compute the percentage change.

- The total change is 10,392.58 and the percentage change is 179.96%
. The total change is 5,777.68 and the percentage change is 100.34%
. The total change is 16,170.27 and the percentage change is 279.96%
. The total change is 8,392.58 and the percentage change is 159.96%
. The total change is 13,459.37 and the percentage change is 233.00%

moOw>»

» Build volume x 46

Q Deepseek

"name": get_filelist
"input": { "dir_path":"benchmark/data/question186"}

@

- AON

o =6;

_?_’ "output": [\"Shanghai_built_volume_total _1980-01-01.tif\",..., \"Shanghai_built_volume_total 2025-01-01.tif\"]
(V]

@ "name"': calc_batch_image sum

) "input': "file_list": ["benchmark/data/question186/Shanghai_built_volume_total 1985-01-01.tif*,
N 2O "benchmark/data/question186/Shanghai_built_volume_total 2020-01-01.tif"]

o

Q

= -

L) "output"': [5034765847.0, 14091027671.0]
) @ "name"': percentage change

< "input': {"a": 5034765847.0, "b": 14091027671.0}

a| XN

Q

+—
0 output': "179.87453834414634"

©

= @ "final answer": “A"

w( aexn

step-by-step:(1) TAO: 0.75 (2)TI0: 0.25 (3)TEM: 0.25 (4) Param.: 0.25
End-to-End: (5) Efficiency: 1.0 (&) Acc: 100%

X

| Toolt | Toolz | [ Tool3 || Tool4 |-a

Tool 1: get_filelist Tool 2: calc_batch_image_mean Tool 3: difference
Tool 4: percentage_change Tool 5: calc_batch_image_sum

@GPT-5 [ Tool 1 é» [ Tool 5 Q]) -> [ Tool 3 (35_> [ Tool 4 é—’ A
H.Kimi-KZ [ Tool 1 é» [ Tool 2 A—’ A
&Deepseek [ Tool 1 é» [ Tool 5 é» [ Tool 3 é” [ Tool 4 éﬂ A

V3.1
L J

Figure 23: Example of Urban Management with Products Data under the Auto-Planning
Regime.
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f_(i [ Products: +&. [Water Mangement] ]
anning { S |

~\
©)]

aQuesﬁon: Process Lake Geneva's NDVI data (August 2022) to determine peak vegetation coverage and NDVI

extremes.

A.2022-08-01 (NDVI: 0.5636)
8. 2022-08-03 (NDVI: 0.5443)
€. 2022-08-12 (NDVI: 0.4755)
D. 2022-08-29 (NDVT: 0.4958)

-

D "name"': get_filelist

"input': { "dir_path": "benchmark/data/question125"}

[STepl ]
C

o g

"output": [\"Geneva-Lake_sur_refl_b01_2022-08-01.tif\",..., \"Geneva-Lake_sur_refl_b01_2022-08-30.tif\",
\"Geneva-Lake_sur_refl_b02_2022-08-01.tif\",\"Geneva-Lake_sur_refl_b02_2022-08-30.tif\" ]

"name": calculate_ndvi

"input": "red_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-01.tif",...,
’: VO "benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-30.tif"]
al "nir_band_file": ["benchmark/data/question]125/Geneva-Lake_sur_refl_b02_2022-08-
}_) 01.tif",...,"benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-30.tif"]
(7p]

"output": ["geneva_ndvi_2022-08-01.tif",...,"geneva_ndvi_2022-08-30.tif"]

"name"': calc_batch_image_mean

"input': {"file_list": ["geneva_ndvi_2022-08-01.tif",..., "geneva_ndvi_2022-08-30.tif"]}

0 O

é
7

(Steps | -

"output": [0.5636, 0.4441,0.5443,..., 0.0733]

0 Q

"final answer': “A"

SN

b

 Final |

Step-by-Step:(1) TAO: 0.67 (2)TI0: 0.5 (3)TEM: 0.25 (4) Param.: 0.0
End-to-End: (5) Efficiency: 1.2500 (&) Acc: 100%

[ Toolt |- [ Tool2 | x3 - Tool3 | x4 [ Tool4 | x2 >4
Tool 1: get_filelist

Tool 2: calculate_ndvi Tool 3: calc_batch_image_mean
Tool 4: max_value_and_index Tool 5: calc_batch_image_max Tool 6: calc_batch_image_median

Tool 7: get_percentile_value_from_image Tool 8: calc_batch_image_hotspot_percentage

@GPT-E

[ Tool1 L [ Tool zé» [ Tool 6é->c %

H.Kimi-KZ Tooll [ -> 00 -> | Tool3 |- ool -> ool > A

o ( %[Tmé[ K 629[T 9é
De;gslleek[ Tool 1 %o[ Tool z%—{ Tool 3ﬁl->[ Tool 5%» [ Tool 5 %—{ Tool 6%—{ Tool 7):)—» A

.

J

Figure 24: Example of Water Management with Products Data under the Auto-Planning
Regime.
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( l Products: +&, [Water Mangement] J )

g?uesﬁon: Define the area where NDVT is greater than 0.3 as vegetation cover. Based on the multispectral
ote sensing data of Lake Geneva in August 2022,

A,2022-08-01 (NDVI: 0.5636)
3. 2022-08-03 (NDVI: 0.5443)
C. 2022-08-12 (NDVI: 0.4755)
D. 2022-08-29 (NDVI: 0.4958)

B4 x 31

@ "name": get_filelist

- 10\ "input": { "dir_path": "benchmark/data/question125"}

o

Q

:5 "output'": [\"Geneva-Lake_sur_refl_b01_2022-08-01.tif\",..., \"Geneva-Lake_sur_refl_b01_2022-08-30.tif\",

@ \"Geneva-Lake_sur_refl_b02_2022-08-01.tif\",\"Geneva-Lake_sur_refl b02_ 2022-08-30.tif\" ]
"name": calculate_ndvi
"input": "red_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl b01_2022-08-01.tif",...,
@ "benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-30.tif"]

I".’ O "nir_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-

N 01.tif",...,"benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-30.tif"]

f=1

Q

:,') "output": ["geneva_ndvi_2022-08-01.tif",...,"geneva_ndvi_2022-08-30.tif"]

"name": calc_batch_image_max
"input": {"file_list": ["benchmark/data/question125/geneva_ndwi_2022-08-01.tif",...,
O "benchmark/data/question125/geneva_ndwi_2022-08-04.tif"]}

"output': ["43.874401612496854","22.91341227849164"]

@ "final answer"': “A"
O

Step-by-Step:(1) TAO: 0.33 (2)TIO: 0.25 (3)TEM: 0.25 (4 )Param.: 0.0
End-to-End: (5) Efficiency: 3.7500 (&) Acc: 100%

v 6T
[ Tool 1 ]—>[Too|z ]xa ->[ Tool 3 ]><4 > Tool4 |x2 >A

Tool 1: get_filelist Tool 2: calculate_ndvi Tool 3: calc_batch_image_mean
Tool 4: max_value_and_index Tool 5: calc_batch_image_max Tool 6: calc_batch_image_median
Tool 7: get_percentile_value_from_image Tool 8: calc_batch_image_hotspot_percentage

[Fi“‘ll] [ Step 14]

Agent

©,,.. | Tool 1 5> | Tool 3 (l)> | Tool 6 )J’C X

I;:Kimi-l(z | Tool 1 (v])>[ Tool 12 )@m ->{ Tool 6 &»[ Tool 12 %@M - ><4 >A
Desgfleek [ Tool 1 6]5_>[ Tool z%»[ Tool BJQ->[ Tool 3%»[ Too|4’il.> >B x

. J

Figure 25: Example of Water Management with Products Data under the Instruction-
Following Regime.
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(TAutonomous Planning ) [Weather Forecasting]

)
3Ques1'ion: Based on the precipitation index of the Congo Rainforest from May 1 to May 31, 2025. Calculate

the daily average rainfall of the region during this period, and use a linear trend to determine the rainfall trend
over these 31 days.

.- The daily average rainfall is 6.18 mm, and the rainfall shows a slightly increasing trend.
. The daily average rainfall is 6.18 mm, and the rainfall shows a slightly decreasing frend.
. The daily average rainfall is 8.25 mm, and the rainfall shows a slightly increasing trend.
. The daily average rainfall is 8.25 mm, and the rainfall shows a slightly decreasing trend.
. The daily average rainfall is 5.03 mm, and the rainfall shows a slightly decreasing trend.

5 v“ :

Mo OT>»

precipitation x 30

"name'": get_filelist

of

- A @R "input": { "dir_path": "benchmark/data/question145"}

o

Q

+

(2} ”uutput": [\"Congo_precipitation_2025-05-01.tif\",..., \"Congo_precipitation_2025-05-30.tif"]
— @ "name"': calc_batch_image_mean

(\] "input": "file_list": ["benchmark/data/question145/Congo_precipitation_2025-05-01.tif",...,

s. WON "benchmark/data/question145/Congo_precipitation_2025-05-30.tif"]

-
)

@ "name'': mean
Minput":"x": [16.150558471679688,..., 12.77880573272705
O inpu x" [ 1

"output': "6.546580737829208"

@ "final answer'": “A"
O

Step-by-Step:(1) TAO: 1.0 (2)TI0: 0.75 (3)TEM: 0.5 (4)Param.: 0.5
End-to-End: @ Efficiency: 1.0 @ Acc: 100%

(Final| [ Step4 | -

| Toolt |- Toolz | [ Teol3 || Tool4 |c

Tool 1: get_filelist Tool 2: calc_batch_image_mean Tool 3: mean
Tool 4: compute_linear_trend Tool 5: calc_batch_image_mean_mean

@GPT-5 ><2 ->[ Tool B é—) [ Tool 2 é» [ Tool 4 é—) A
H.Kimi_Kz [ Tool 1 é» [ Tool 2 g")» [ Tool 4 é» [ Tool 3 éo A

Soeepseek | Tool 1 g){ Tool5 o[ Toolz o[ Tool4 5>[ Tool 35 4
v3.i < & &)

&>

Figure 26: Example of Weather Management with Products Data under the Auto-Planning
Regime.
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([instruction Following ] [Weather Forecasting]

0]
3Quesﬁon: Analyze the precipitation index of the Congo Rainforest from May 1 to May 31, 2025.
,and

~ The daily average rainfall is 6.18 mm, and the rainfall shows a slightly increasing trend.
. The daily average rainfall is 6.18 mm, and the rainfall shows a slightly decreasing trend.

. The daily average rainfall is 8.25 mm, and the rainfall shows a slightly increasing trend.

. The daily average rainfall is 8.25 mm, and the rainfall shows a slightly decreasing trend.

. The daily average rainfall is 5.03 mm, and the rainfall shows a slightly decreasing trend.

Pl

Mo O x>

precipitation x 30

"name": get_filelist
O "input": { "dir_path": "benchmark/data/question145"}

SN

4 "output': [\"Congo_precipitation_2025-05-01.tif\",..., \"Congo_precipitation_2025-05-30.tif"]

Step 1-2

"name": calc_batch_image mean
"input": "file_list": ["benchmark/data/question145/Congo_precipitation_2025-05-01.tif"
"benchmark/data/question145/Congo_precipitation_2025-05-30.tif"]

"output': [16.150558471679688,..., 12.77880573272705]

"name": compute_linear_trend
"input":"y": [16.150558471679688,..., 12.77880573272705]

@ Q @ g

g

“output": [0.02519952430077995,6.181187635467897]

"final answer"': “A"
O

(Final| ( Step4 | [Step3 ]

Step-by-Step:(1) TA0: 1.0 (2)TIO: 1.0 (3)TEM: 0.25 (4)Param.: 0.25
End-to-End: @ Efficiency: 1.2500 @ Acc: 100%

[ Toolt | Tool2 | o [ Teol3 || Tool4 |oc

Tool 1: get_filelist Tool 2: calc_batch_image_mean Tool 3: mean
Tool 4: compute_linear_trend Tool 5: calc_batch_image_mean_mean

@GPT-E méxz _,[ Tool 2 gj,[ Tool 3 ED»[ Tool 4 %o[ Tool 5 é>A
L P [ JEEE éxz "[ Tool 2 %Q [ Tool 3 (“5_)[ Tool # é—m

&Dzzpszzk [ Tool 1 é»[ Tool 5 é—{ Tool 2 %f[ Tool 4 5->A
V3.1 Y & = &

Figure 27: Example of Weather Management with Products Data under the Instruction-
Following Regime.
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l RGB:#ii§ [change detection] ]

(2]
P-4 Question: Based on safellite imagery before and after the natural disaster, determine how many buildings
were completely destroyed using pre- and post-disaster satellite images.

A.*None building was completely destroyed."
£:°1 building was completely destroyed. "
€."2 building was completely destroyed. "
D."3 building was completely destroyed.

"name'': get_filelist
Yinput': { "dir path":"benchmark/data‘question225"}

[Stzp 1 J

0 Qe Q@ e

- "output”: [\"ume_post.png"”,\"time_pre.png\"]

"name": ChangeOS
"input":

re_image path": "time_pre.png”,
"post_image path": "time_post.png",
"output_path": "question225/buildings_pre.tif "

[S'rep 2 ]

"output™: "Failed to call model”

"name":
"input":

unt_connected_components
"image path”: "destroyed buildings.tif”

"output": "1"

"final answer": "A"

(Final | [ Step 5 |

step-by-step:(1)TA0:  (2)TI0: 1.0 (3TEM: 1.0 (4) Param.. 1.0
End-to-End: @ Efficiency: 1.67 @ Acc: 0%

| Tool 1 |->[ Tool 2 |->| Tool 3 |-> B

Tool 2: ChangeOS

Tool 1: get_filelist

Tool 3: count_connected_components
Tool 4: threshold_segmentation Tool 5: SM3Det Tool 6: RemoteSAM
Tool 7: InstructSAM Tool 8: MSCN Tool 9: RemoteCLIP
Tool 10: calculate_area

Tool 11: grayscale_to_colormap Tool 12: subtract
Tool 13: get percentile_value_from_image

Tool 14: calculate_tif_difference
[ Tool l%—){ Tool 7 A= [ Tool 2 é—{ Tool TJD_->[ Tool Z\JD-,
-5

-)[ Toolll (“‘]h- ’[ Tool 4 {_].;)[ Tool 1035}[ Tool 13&5’[ Tool 35—) B
H'Kimi_gz [ Tool 1 M-;[ Tool 2@]5-: [ Tool 7&]5)[ Tool 5&_)—3[ Tool 3 Le> A x

&Deepseek l Tool 1 L-> [ Tool 2 FIT' Tool 4 i-, Tool 3 J:_ ->B
V3.1 =

Figure 28: Example of Change Detection with RGB Data under the Auto-Planning Regime.
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RGB r@ [change detection] l 5

[ ing_)

Question: Based on satellite imagery before and after the natural disaster, the
f 1, you are e im Wker 1
s hay . and

A."None building was completely destroyed.”
2.1 building was completely destroyed. "
C."2 building was completely destroyed. "
D.*3 building was completely destroyed."

HFi'kimi-k2

(_* "mame": get_filelist
{% Sinput”: | “dic_path**benchmark/data/question225"}

@‘ "output”: [\"time_post.png\".\"time pre.png\"]

[Step 1 ]

"name": ChangeOS

"input': "pre image path™ "time pre.png",
"post_image path": "time_post.png",
"output path: "question225/buildings pre.if "

!g‘@
@ “output”: "Failed to call model”
! L] %

[Step 2 ]

"mame"': count_connected_components
Minput": "image path™: "destroyed buildings.tif"

@ "output": 1"
g “final anssrer™ B"

Step—by—Step:@ TAO: @TID: 1.0 @TEM: 1.0 @ Param.: 1.0
End-to-End: () Efficiency: 2.0 (&) Acc: 100%

(Final | [Step 6 |

[Tooli ]-»[ Tool 2 ]-»{ToalS]-»B

Tool 1: get_filelist Tool 2: ChangeOS Tool 3: count_connected_components
Tool 4: threshold_segmentation Tool 5: SM3Det Tool 6: RemateSAM

Tool 7: InstructSAM Tool B: MSCN Tool 9: RemoteCLIP

Tool 10: calculate_area Tool 11: grayscale_to_colormap Tool 12: subtract

Tool 13: get_percentile_value_from_image Tool 14: calculate_tif_difference

@ s (Tnnl 1%-:[ Tool 7}:2»[ Toal z%xza[ Tool 12(1;» Toal4\‘><2->--:
N v

L Tool s 23 Too 14 Jo5f Tool4 Lo Tool3 Lo Tools x| Teors Lo> FAIL 3
B | ool 1é—>[ ool z\bg-s | Tool 5 L->| Teol zé—»[ Tool 4@1}.)-»{ Tool 35—» B
{Tanl 1%_)—:[ Tool Eé-> [ Tool ﬁéxz-av[ Tool 66]__)—5{ Tool 7':]5> —-‘:’

.4 k ! e
V31 '-> Tool 8 g-» Tool 9 ->[Tuul 1oé—> Tool 5 |-> Tool 10 1-* Tool4 | -> D X
J

Figure 29: Example of Change Detection with RGB Data under the Instruction-Following
Regime.
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~
l RGB:U@% [classification] ]

3@ Question: Based on the following images, every image belongs to Airport, BareLand, BaseballField,
Beach, Bridge, Center, Church, Commercial, DenseResidential, Desert, Fartland, Forest, Industrial,
Meadow, MediumResidential, Mountain, Park, Parking, Playground, Pond, Port, RailwayStation, Resort,
River, School, SparseResidential, Square, Stadium, StorageTanks, Viaduct, determine the number of
images captured in bareland areas.

A3
grg"
c'"0"
D."6"

RGB x 12

@ "name": get_filelist
— t "input"': { "dir_path":"benchmark/data/question191"}

_-| e

a.
® R
§ i
@ "name'': MSCN
‘: D "input'': "input_image_path": "benchmark/data‘question191/A jpg"
&

af! "output”: "{'predicted_class"; 'School, 'confidence’; 0.7664684057235718, top5_predictions': [('School’,

- 0.7664684057235718), ('Airport, 0.020224187523126602), ('BareLand', 0.016257213428616524), (Desert’,
0.01598002389073372). ('Beach', 0.015011915005743504)]}"

— "mame'': MSCN

om @ Vinput": "input_image path"; "benchmark/data/question191/L.jpg"

| A8

5

= - "output": "{'predicted_class" 'SparseResidential', 'confidence’: 0.8119516372680664, 'top5_predictions':
n ('SparseResidential’, 0.8119516372680664), ('StorageTanks', 0.01562942937016487). ("Meadow',
=

0.013852346688508987), ('Pond’, 0.011197652667760849), ('River, 0.010070916265249252)]} "}"
‘g @ "final answer": "A"
) €

step-by-Step:(1) TAO: 1.0 (2)TI0:1.0 (3)TEM: 1.0 (&) Param.: 1.0
End-to-End: (5) Efficiency: 1.00 (&) Acc: 100%

| Tool1 |- Tool2z x12->A

Tool 1: get_filelist Tool 2: MSCN
= Agent
&, . | Tool 1 éﬂ[ Tool 2 /&]5124 A
Kimi-K2 [ Tool 1 ”->[ Tool 2 6]5<12 > A
&,
Deepseek
Vg.l [ Tool 1 é"[ Tool 2 giz-& A

Figure 30: Example of Classification with RGB Data under the Auto-Planning Regime.
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= ~\
RGB Clﬁﬁ [classification] ]
B&%uesﬁon: Based on the following images, every image belongs to {Airport, BarelLand, BaseballField,
each, Bridge, Center, Church, Ci cial, D« Residential, Desert, Farmland, Forest, Industrial,

Meadow, MediumResidential, Mountain, Park, Parking, Playground, Pond, Port, RallwuyS‘raﬂon ResorT River,
School SparseResidential, Square S'rndlum. 51orageTanks deu:'r} the
. then t je, nnd fmally ¢

Actal
8."8"
CH0Y
b."e"

RGB x 12

S
%
(& ]

@ "name": get_filelist
— t "input"': { "dir_path":"benchmark/data/question191"}
_-| e
a.
® R T .
5 &) i
@ "name'': MSCN

"input'': "input_image_path": "benchmark/data‘question191/A jpg"

=
L]

[Step 2 ]

"output": "{'predicted_class": 'School', ‘confidence': 0.7664684057235718, 'top5_predictions": [('School',
0.7664684057235718), ('Airport’, 0.020224187523126602), ('BareLand', 0.016257213428616524), ('Desert',
0.01598002389073372), ('‘Beach', 0.015011915005743504)]}"

"name'": MSCN
Uinput'': “input_image_path": "benchmark/data/question191/L.jpg"

8

=
&

"output": "{'predicted class': 'SparseResidential’, 'confidence": 0.8119516372680664, 'topS_predictions':
(" Sp'u'seRe,sldemxal 0.8119516372680664), ('StorageTanks', 0.01562942937016487), ('Meadow',
0.013852346688508987), ('Pond’, 0.011197652667760849), ('River, 0.010070916265249252)]}"

"final answer": "A"

(Final | [Step 13] -
@ @

ae)

step-by-Step:(1) TAO: 1.0 (2)TI0:1.0 (3)TEM: 1.0 (&) Param.: 1.0
End-to-End: (5) Efficiency: 1.00 (&) Acc: 100%

| Tool1 |- Tool2z x12->A

Tool 1: get_filelist Tool 2: MSCN
® Agent
&, . | Tool 1 éﬂ[ Tool 2 /&]5124 A
HKimi—KZ [ Tool 1 ”->[ Tool 2 6]5<12 > A
&,
Deepseek
Vgl [ Tool 1 é"[ Tool 2 €B<12~>A

Figure 31: Example of Classification with RGB Data under the Instruction-Following Regime.
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RGB: ¥ [detection] ]

)
a Question: As part of a regional sports infrastructure audit, you are tasked with
estimating the total area occupied by baseball diamonds using bounding boxes(GSD = 0.13 m/px).

A About 500 m*2"

B "About 1500 m~2"
C."About 3500 m~2 "
D."About 80119 m~2 "

"name": get_filelist

“input': { "dir_path":"benchmark/data/question210"}

Z . "output”: [\"P0382.png\"]

Step 1

"name": InstructSAM

"input': "input_image path”: "benchmark/data/question210/P0382.png",
"text_prompt": "baseball diamond"

Step 2

@ @ @ @

"output": Failed to call model

"name": calculate_bbox_area

"input': "bboxes": [[324.6867656820466, 226.69173840553316, 533.4624042308284, 413.52994128196684],
[820.7124196099571, 522.3619154304535, 1027.0236643744179, 721.6341783135463]]

"output'': "961738 0548508337"

"final angwer'': “C"

[Fiml] [S‘I’ep 4 ]

Step-by-Step:(1) TAO: 1.0 (2)TI0: 1.0 (3)TEM: 0.0 (&) Param.: 0.0
End-to-End: (5)Efficiency: 1.33 (&) Acc: 0%

[ Toolt |->[ Toolz |->[ Tool3 |-»8
Tool 1: get_filelist Tool 2: SM3Det Tool 3: calculate_bbox_area Tool 4: InstructSAM

@ngj [ Tool 1 éo[ Tool 2 é—»[ Teol 3 g;\,n,_,g

&Dggpseek [_ Tool 1 Q]ﬁ-, Tool 2 éd[ Tool 4 éxz ->B

V3.1

\

J
Figure 32: Example of Detection with RGB Data under the Auto-Planning Regime.
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( . q N\
| RoB: @ [detection) |

@
aQuesﬂon: As part of a regional sports infrastructure audit, you are
(6SD = 0.13 m/px).

A."About 500 m~2"
B."About 1500 m~2"
C."About 3500 m"2 "
D."About 80119 m"2 "

@ "name': get_filelist
"input": { "dir_path":"benchmark/data/question210"}
VO

‘: “output"': [\"P0382.png\"]

Step 1

"name'": InstructSAM

O "input": "input_image path": "benchmark/data/question210/P0382.png",
"text_prompt": "baseball diamond"

"output": Failed to call model

[S'I'ep 2 ]

@ "name': calculate_bbox_area

"input": "bboxes": [[324.6867656820466, 226.69173840553316, 533.4624042398284, 413.52994128196684],
AON [820.7124196099571, 522.3619154364535, 1027.0236643744179, 721.6341783135465]]

Youtput": "961738.0548508337"

"final answer"': “B"

(Final | [step4 |

step-by-Step:(1) TA0: 1.0 (2)TI0: 1.0 3)TEM: 0.0 (&) Param.: 0.0
End-to-End: (5) Efficiency: 1.33 (6) Acc: 100%

6T

| Toolt |- Toolz || Teol3 |-B

Tool 1: get_filelist  Tool 2: SM3Det  Tool 3: calculate_bbox_area Tool 4: InstructSAM

@GPT-s [ Tool 1 é» [ Tool 4 éxz -> [m» B
I-‘.I(irni—Kz [ Tool 1 é"[ Tool 4 éo [ Tool 2 éo{ Tool 3 é_,B
&Desgs;ek [m" { Tool 4 é» { Tool 2 é'>[ Tool3 x2->C x

.

J

Figure 33: Example of Detection with RGB Data under the Instruction-Following Regime.
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I RGB;& [Visual Grounding] ] h

Autoriomous Pianning

9.® Question: Based on the following images, what is the centroid-to-centroid distance between the two
farthest plane in the image? (65D = 0.14 m/px)

A About 265 m."
B."About 270 m, "
C"About 275 m."
D."About 280 m."

(€

?

"name™: get_filelist
Uinput'': | "dir_path":"benchmark/data/question236"}

— ) "output”: "[\"P1492.png!"]"

"mame': SM3Det
“input": "input_image path": "benchmark/data/question236/P1492.png",
"text_prompt”: "plane"

[S'I'cpl]
@ @ ce

o

=

"output": "[[542.4612103378632, 243.69258468503642, 856.2730425918243, 464.7275202954323],...,
[962.8087501342129, 263.6454855923522, 1093.688808459537, 344.62923364592905]]"

[step 2|

"name": centroid_distance_extremes
@ Uinput': "centroids": [699.3671264648438, 354.2100524902344]....[1028.248779296875, 304.1373596191406]

=

[_Final }-'-[Snp 4 }
S

"output": "Error: ToolException(\"Error calling tool 'centroid_distance_extremes':
name ‘np’ is not defined\")n Please fix your mistakes."

""final answer": A"

a8

=

Step-by-Step:@TAO: 0.8 @Tlo: 0.8 @TEM:O.S @Param.:D.S
End-to-End: (8) Efficiency: 1.0 (&) Acc: 100%

| Tool1 |->[ Tool2 -3 Teol3 |->| Tool4 |-»[ Tool5 |->A

Tool 1: get_filelist Tool 2: SM3Det
Tool 4: centroid_distance_extremes  Tool 5: multiply Tool 6: difference
Tool 7: add Tool 8: division Tool 9: calculate_bbox_area

@GPT—E {
H.Kimi—ltz[ Tool 2 gz-{ Tool 1 4)—»{ Tool 2 ”:]5_,[ Tool 3 %»[ Tool 4 é.;[ Tool 9 /‘]‘)o/A
N capseek [Tool 1%—,[ Tool zé» [Tcul 3@1@-» [ Tool4%xz->[ Tool 6};2»[ Tool 5%2-:-1

Va1

Tool 1 M_,{ Tool 2 (,J:\"[ Tool 3 é)—{ Tool 4 __—>[ Tool 5 éﬂA

Figure 34: Example of Visual Grounding with RGB Data under the Auto-Planning Regime.
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( l RGB: & [Visual Grounding] ] i

Instruction Following

gﬁQutsﬁnn: Based on the following images, '/

Al"About 265 m."
B.*About 270 m. "
C*About 275 m. "
D."About 280 m."

@ "name": get filelist
“imput': | "dir_path":"benchmark/data/question236"}

2]
‘: Toutput”: "[V'P1492.png\"]"

@ "name': SM3Det
7o) “input': "input_image path": "benchmark/data/question236/P1492.png",
"text_prompt": "plane"

"output': "[[542.4612103378632, 243.69258468503642, 856.2730425918243, 464.7275202054323].....
[962.8087501342129, 263.6454855923522, 1093.688808459537, 344.62923364592905]]"

name": centroid distance extremes
Uinput’': "centroids":  [699.3671264648438, 354.2100524902344)....[1028.248779296875, 304.1373596191406]
¢ R
=y "guiput'': "Error: ToolException(\"Error calling tool 'centroid_distance_extremes':
@ name 'np' is not defined\")\n Please fix your mistakes."

@ ""final answer": "C"
A8 N

[Final ] &tep 4-5]

Step-by-Step:(1) TAO: 0.8 (2)TI0: 0.8 (3)TEM:0.8 (&) Param.:0.8
End-to-End: @ Efficiency: 1.0 @ Acc: 0%

& 6T

| Toolt |->[ Toolz |->[ Tool3 |->| Tool4 |->| Teol5 |->4

Tool 1: get_filelist Tool 2: SM3Det
Tool 4: centroid_distance_extremes  Tool 5: multiply Tool 6: difference
Tool 7: add Tool 8: division Tool 9: calculate_bbox_area

@m_ [ Tool 1 $>[ Tool 2 5»[ Tool 3 6» Tool 4 (__xz-,cx
e R ’5’ Toel 261")—)[ Tool 3%{ Tool 452-’[ Toal eéxz_»[ Tool 5%2-{ Tool?é—>§
&r ' [mu(}j, Twlzgvaw[rools%)[ Tool4ﬁ]§2~7{ Tmlﬁkz-s[TaolﬂgZ—{ -rmqa%).,)c‘

\ J

Figure 35: Example of Visual Grounding with RGB Data under the Instruction-Following
Regime.
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I CASE STUDY: COMPARE WITH OTHER AGENTS

@ [Urban Management] [@ Ground Truth c ]

R‘DQuesﬁon: Analyze the nighttime light intensity trend in Leon (2013-2024)
@ Operator A

using linear regression.

A."Slope: 0.10; Intercept: 1.85",

C."Slope: 0.14; Intercept: 2.05",

B."Slope: 0.12; Intercept: 1.96", ® MGX B
D."Slope: 0.16; Intercept: 2.12" \

% Manus {FAIL
g Coze B
Earth-Agent(GPT5) B
O

= : @) Earth-Agent(DeepSeek-V3.1 :B
avg_radx12 gent(Deep )

Figure 36: A Question Case of the Urban Management Task using Products Data with Re-
sponses from Different Agent.

@ [Urban Management] [@ Ground Truth

3@ Question: Compare the nighttime light intensity between Mtwara and Santiago
de Chile from January to March 2015, and calculate their average intensity

difference. @ Operator i
@ M6X i
A."4.87",

B."5.02",

U
c.'"5.21", Manus iC
D."5.36" &

EEEr

Figure 37: A Question Case of the Urban Management Task using Products Data with Re-
sponses from Different Agent.

w
—

Earth-Agent(GPT5) iC
O

Earth-Agent(DeepSeek-V3.1) :C
VO

f“‘?[change detection] [@ Ground Truth B ]

W)
2 Question:Based on satellite imagery before and after the natural disaster,
determine how many buildings were completely destroyed using pre- and post-
disaster satellite images.

@ Operator iC
A."None building was completely destroyed.",
B."1 building was completely destroyed. ",
C."2 building was completely destroyed. ", ® mex :FAIL
D."3 building was completely destroyed."

> o

% Manus B v
g Coze {FAIL

Earth-Agent(6PT5) A
aon

Earth-Agent(DeepSeek-V3.1)  :FAIL
a \)

Figure 38: A Question Case of the Change Detection Task using RGB Data with Responses
from Different Agent.
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[ RGB: ﬂﬁg [classification] ]

fbuesﬁon: Based on the following images, every image belongs to Airport, BarelLand, [ /) Ground Truth A ]
BaseballField, Beach, Bridge, Center, Church, Commercial, DenseResidential, Desert,

Farmland, Forest, Industrial, Meadow, MediumResidential, Mountain, Park, Parking, =~ - — - - - - - - - - oo oo
Playground, Pond, Port, RailwayStation, Resort, River, School, SparseResidential,

Square, Stadium, StorageTanks, Viaduct, determine the number of images captured in @ Operator B x J
bareland areas.

A3, ;

S C& MEX FAIL X J

chon, "

D"6 % Manus B x
= g Coze iFAIL x

Earth-Agent(GPT5) A v

O )

Earth-Agent(DeepSeek-v3.1) :A v
aon

RBGX12

L J

Figure 39: A Question Case of the Classification Task using RGB Data with Responses from
Different Agent.

[ RGB: 1¢§ [classification] ]

fQuesﬂon:Based on the following images, every image belongs to {Airport, [ /) Ground Truth B ]
Bareland, BaseballField, Beach, Bridge, Center, Church, Commercial,

DenseResidential, Desert, Farmland, Forest, Industrial, Meadow, . ______.
MediumResidential, Mountain, Park, Parking, Playground, Pond, Port, RailwayStation,

Resort, River, School, SparseResidential, Square, Stadium, StorageTanks, Viaduct}, @ Operator B VJ

determine the number of images captured in mountain areas.

ALY, :
B."3", ‘8’ Mex FATL x J
cre", W

7" ) ‘ QY Manus B v
b4 ; m Coze :FAIL x J
Earth-Agent(GPT5) :B v
O J

Earth-Agent(DeepSeek-V3.1) :B v
O )

R6BX 11

\ J

Figure 40: A Question Case of the Classification Task using RGB Data with Responses from
Different Agent.
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[ RGB: ! < [detection] ]

f Ques'_ion:AAs part of a regional s?orj?s infrnszn:::t:{re nufi?, Yyou are le_xsked [@ Gr‘ound Tr‘UTh :B ]
boxes(e3D = G 13 o e o @ Operator:B (¥ 4
e Dmex AL X
D."About 80119 m"2 * e
Yy Manus A X |
Coze :FAIL X J
Earth-Agent(GPTH) : FAIL x
Earth-Agent(DeepSeek-V3.1) :B v J

Figure 41: A Question Case of the Detection Task using RGB Data with Responses from Dif-
ferent Agent.

[ RGB: & [Visual Grounding] ]

©)
2 Question: Based on the following images, calculate the centroid-to-centroid
distance between the two farthest plane in the image? (6SD = 0.14 m/px).

[@ Operator D x ]
A."About 265 m.",
B."About 270 m. ",
CAbout 275 m. ", [ MEX {FAIL X ]
D."About 280 m."
U

E Manus i€ x

Coze :FAIL x J
Earth-Agent(GPT5) A v J
O

Earth-Agent(DeepSeek-V3.1)  :B XJ

Figure 42: A Question Case of the Visual Grounding Task using RGB Data with Responses
from Different Agent.
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