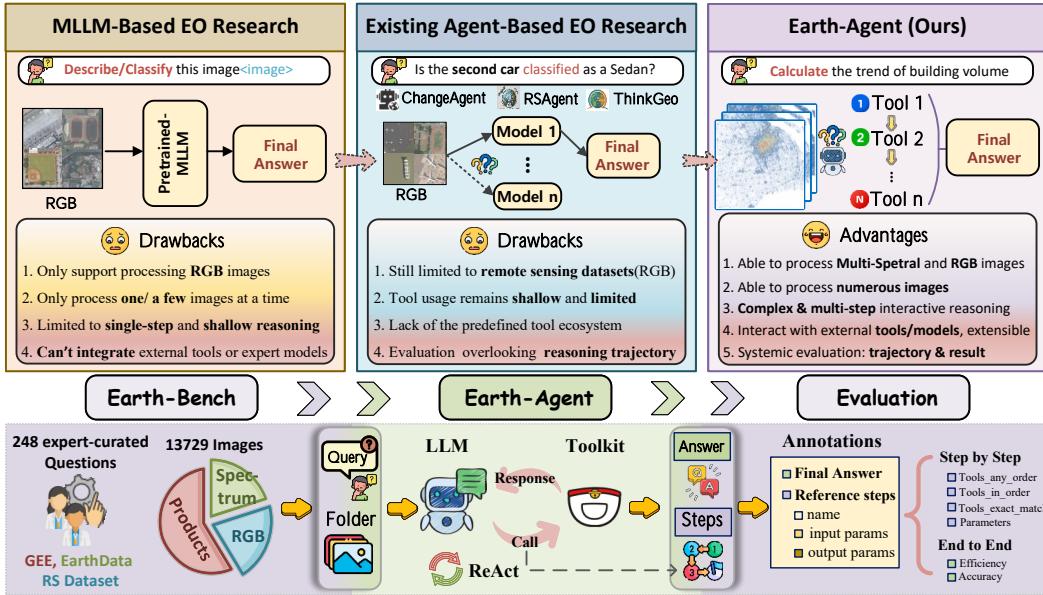


000 001 EARTH-AGENT: UNLOCKING THE FULL LAND- 002 SCAPE OF EARTH OBSERVATION WITH AGENTS 003 004

005 **Anonymous authors**

006 Paper under double-blind review



028 **Figure 1: Overview of our work:** The top panel contrasts prior paradigms: MLLM-based EO
029 research (left), Existing agent-based EO research (middle), and our Earth-Agent (right). The bottom
030 panel illustrates our contributions, including Earth-Bench construction, Earth-Agent ReAct with the
031 predefined toolkit, and dual-level evaluation of both reasoning trajectories and final results.

032 ABSTRACT

035 Earth observation (EO) is essential for understanding the evolving states of the
036 Earth system. Although recent MLLMs have advanced EO research, they still lack
037 the capability to tackle complex tasks that require multi-step reasoning and the
038 use of domain-specific tools. Agent-based methods offer a promising direction,
039 but current attempts remain in their infancy, confined to RGB perception, shallow
040 reasoning, and lacking systematic evaluation protocols. To overcome these lim-
041 itations, we introduce Earth-Agent, the first agentic framework that unifies RGB
042 and spectral EO data within an MCP-based tool ecosystem, enabling cross-modal,
043 multi-step, and quantitative spatiotemporal reasoning beyond pretrained MLLMs.
044 Earth-Agent supports complex scientific tasks such as geophysical parameter re-
045 trieval and quantitative spatiotemporal analysis by dynamically invoking expert
046 tools and models across modalities. To support comprehensive evaluation, we fur-
047 ther propose Earth-Bench, a benchmark of 248 expert-curated tasks with 13,729
048 images, spanning spectrum, products and RGB modalities, and equipped with
049 a dual-level evaluation protocol that assesses both reasoning trajectories and fi-
050 nal outcomes. We conduct comprehensive experiments varying different LLM
051 backbones, comparisons with general agent frameworks, and comparisons with
052 MLLMs on remote sensing benchmarks, demonstrating both the effectiveness and
053 potential of Earth-Agent. Earth-Agent establishes a new paradigm for EO analy-
054 sis, moving the field toward scientifically grounded, next-generation applications
055 of LLMs in Earth observation. Our code and dataset will be publicly released.

054 1 INTRODUCTION

055 Earth observation (EO) (Transon et al., 2018; Kokkoris et al., 2024; Li et al., 2023a) plays a critical role in understanding the evolving states of the Earth system in spatial and temporal dimensions (Anderson et al., 2017; Li et al., 2024a; Brown et al., 2025), and has been successfully applied to urban planning (Shaker et al., 2019), agriculture (Wójtowicz et al., 2016), resources management (Li et al., 2020), building extraction (Li et al., 2023b; 2024c), disaster monitoring (Joyce et al., 2009; Van Westen, 2000), etc. Typically, EO data is categorized into two types (Samadzadegan et al., 2025): **Perceptual data**, such as **RGB Imagery (RGB)** aligned with human vision, and **Raw Observational Data**, including **Raw Spectral Data (Spectrum)** and **Processed Earth Products (Products)** stored in geodatabases such as Google Earth Engine (GEE)* and NASA Earthdata†. Both types of data are indispensable for EO research: perceptual data provides intuitive and human-interpretable insights, while raw observational data offers rich spectral and spatiotemporal information that enables quantitative analysis (Valipour et al., 2025; Xiong et al., 2022).

067 In recent years, multimodal large language models (MLLMs) have achieved excellent performance
 068 on classical **remote sensing perceptual tasks** such as VQA (Kuckreja et al., 2024; Muhtar et al.,
 069 2024), scene classification (Kuckreja et al., 2024; Muhtar et al., 2024; Liu et al., 2024c; Wang et al.,
 070 2024e; Hu et al., 2025b; Zhan et al., 2025), object detection (Zhang et al., 2024b), and semantic
 071 segmentation (Mall et al., 2023; Guo et al., 2024a). However, despite their promising results, existing
 072 MLLM-based EO research still faces several fundamental drawbacks: **(1)** they cannot process
 073 diverse EO modalities beyond RGB, such as thermal infrared (TIR), synthetic aperture radar (SAR),
 074 or hyperspectral imagery (Zhang et al., 2024b); **(2)** they typically operate on only one or a few im-
 075 ages at a time (Li et al., 2024b), making it difficult to scale to large EO corpora; **(3)** they are limited
 076 to executing only single-step or shallow reasoning like VQA and classification, struggling with com-
 077 plex multi-hop analytical tasks; and **(4)** their reasoning is bounded by the static knowledge encoded
 078 in pretrained parameters, without the ability to integrate external scientific tools or expert models,
 079 making it difficult to extend beyond the generic capabilities of the foundation model; This naturally
 080 raises the question: *how can we move beyond basic RGB perception and single-step reasoning to de-
 sign models that integrate diverse EO modalities and support complex multi-step scientific analysis?*

082 Tool-augmented LLM agents represent a promising trajectory beyond MLLMs (Xi et al., 2025; Sun
 083 et al., 2025; Si et al., 2024; Tian et al., 2024; Tang et al., 2025). Unlike MLLMs that are restricted
 084 to RGB inputs, simple reasoning, and limited image contexts, agents are not inherently constrained
 085 by input modality or data volume (Xie et al., 2024; Gao et al., 2024). By leveraging the reasoning
 086 capabilities of LLMs and dynamically interacting with external tools (Xu et al., 2025), they can flex-
 087 ibly process diverse EO modalities, perform multi-step analytical reasoning, and integrate domain-
 088 specific tools and expert models that go beyond the scope of the pretrained MLLM model (Ding
 089 et al., 2025; Wang et al., 2024c). This mechanism directly tackles the core weaknesses of MLLMs,
 090 extending beyond RGB to diverse modalities, scaling from single-image inputs to tasks involving
 091 hundreds of images, advancing from shallow perception to multi-step reasoning, and bridging LLMs
 092 with external scientific tools for domain-specific analysis.

093 However, existing agent-based research in Earth science is still at an early stage (Pantiukhin et al.,
 094 2025), with existing attempts largely confined to perceptual tasks such as change detection (Liu
 095 et al., 2024b; 2025) and classification (Xu et al., 2024a; Hu et al., 2025a), often emphasizing caption
 096 ability rather than scientific analysis. Efforts on Raw Observational Data are even more limited. Uni-
 097 vEarth (Kao et al., 2025) considers EO data from GEE but operates essentially as a code generation
 098 agent, without implementing genuine tool calling, making it difficult to handle complex and realistic
 099 geoscientific analysis tasks that require professional tool use. These efforts reveal several key limita-
 100 tions: **(1)** current EO agents support only limited data modalities, with most efforts still centered on
 101 conventional remote sensing datasets dominated by RGB imagery (Xu et al., 2024a); **(2)** their tool
 102 usage remains shallow, limited to a few expert models and reasoning steps, even some agents lack
 103 a predefined tool ecosystem, making them insufficient for complex analytical workflows (Shabbir
 104 et al., 2025); and **(3)** their evaluation remains unsystematic, with emphasis only on final answers
 105 while overlooking reasoning trajectory. This raises another question: *how can we design an EO
 106 agent with a structured tool ecosystem and systematic evaluation, capable of bridging perceptual
 107 and spectral data like Earth scientists?*

*<https://earthengine.google.com>

†<https://search.earthdata.nasa.gov>

Figure 2: Earth-Agent solving tasks across Spectrum, Products, and RGB data through multi-step reasoning with expert tool calls.

To address these questions and unlock the full landscape of EO, we propose **Earth-Agent**, an agentic framework that unifies perceptual and spectral EO data within a single architecture in section 3. By coupling LLM reasoning with a structured toolkit in 3.2, Earth-Agent supports diverse modalities and complex multi-step analysis, enabling agents to tackle real-world geoscientific tasks beyond the limits of existing MLLMs and EO agents. Concretely, Earth-Agent integrates 104 specialized tools, built upon the **Model Context Protocol (MCP)** (Hou et al., 2025; Ray, 2025) for interoperability, and grouped into five domain-specific tool kits: **Index**, **Inversion**, **Perception**, **Analysis**, and **Statistics**. This structured design not only enables the agent to go beyond classical perceptual tasks toward quantitative analysis and spatiotemporal reasoning, but also makes the framework easily extensible with additional domain-specific tools. To systematically evaluate its effectiveness, we further introduce **Earth-Agent Benchmark (Earth-Bench)** in section 4, which reflects realistic EO workflows and supports both **Auto-Planning** and **Instruction-Following** query regimes, together with a **dual-level evaluation** protocol that measures reasoning trajectories as well as final outcomes. We comprehensively evaluate Earth-Agent by varying LLM backbones on Earth-Bench, comparing with general agents, and benchmarking against MLLMs on remote sensing datasets.

To sum up, our main contributions are summarized as follows:

- We propose Earth-Agent, the first agentic framework for EO, built upon the MCP and a ReAct (Yao et al., 2023) reasoning, integrating 104 specialized tools and expert models within predefined tool ecosystem, while remaining easily extensible with additional domain-specific tools and models.
- We construct Earth-Bench, a benchmark of 248 expert-curated questions with 13,729 images, spanning perceptual and spectral modalities beyond RGB. Each question requires multi-step reasoning with explicit tool use, and the benchmark supports a dual-level evaluation protocol that assesses both reasoning trajectories and final answers.
- Through comprehensive evaluation, we show that Earth-Agent substantially outperforms general agents such as Operator (OpenAI, 2025b) and Manus (Shen et al., 2025) on Earth-specific tasks in Earth-Bench, and also surpasses remote sensing MLLMs on remote sensing benchmarks, demonstrating both its effectiveness and potential for advancing EO research.

2 RELATED WORK

MLLM-based Earth Observation Research The rise of multimodal large language models (MLLMs) has stimulated growing interest in their use for Earth observation (EO) (Aleissaee et al., 2023; Lu et al., 2025; Li et al., 2024b). Early studies mainly explored captioning (Hu et al., 2025b) and question answering (Kuckreja et al., 2024) for single remote sensing images (Shi & Zou, 2017; Wang et al., 2020), aiming to align visual features with natural language. With the availability of larger datasets (Xiong et al., 2022; Zhou et al., 2025) and stronger backbones (Team, 2024; Liu et al., 2024d), subsequent works extended this paradigm to broader perception tasks: for instance, GeoChat (Kuckreja et al., 2024) enabled interactive scene understanding, while RS-GPT (Hu et al., 2025b) combined captioning with visual question answering. More recently, simple temporal reasoning has been introduced, with ChangeCLIP (Dong et al., 2024) addressing bi-temporal change captioning and SkyEye-GPT (Zhan et al., 2025) extending to video-based analysis. However, the

162 scope of MLLM-based EO research remains narrow: existing approaches are still centered on RGB
 163 imagery and struggle with complex multi-step reasoning without domain-specific tool integration.
 164

165 **Agent-based Earth Observation Research.** Tool-augmented agents have gained traction in general
 166 AI, achieving remarkable progress in domains such as code generation (Qian & Cong, 2023;
 167 Zhang et al., 2024a), web search (Xu et al., 2024b), and video understanding (Ren et al., 2025;
 168 Wang et al., 2024d), but their application to Earth observation (EO) is still at an early stage (Kao
 169 et al., 2025). Early systems such as Change-Agent (Liu et al., 2024b) focus on bi-temporal change
 170 detection, while RS-ChatGPT (Guo et al., 2024a) and RS-Agent (Xu et al., 2024a) combine LLMs
 171 with pretrained detectors or tool suites for scene classification, detection, and segmentation. More
 172 recently, ThinkGeo (Shabbir et al., 2025) introduces agentic workflows for simple geospatial calcu-
 173 lations on perceptual data, and UnivEarth (Kao et al., 2025) requires LLMs to generate GEE code
 174 for spectral analysis, with high execution failure rates. Despite these advances, existing EO agents
 175 remain constrained: they operate mainly on RGB perception tasks, rely on remote sensing models
 176 for simple reasoning that does not extend to multi-step analysis, and lack a predefined tool ecosys-
 177 tem, making them insufficient for complex real-world geoscientific workflows. Moreover, current
 178 benchmarks cover limited task types and annotations, lacking systematic evaluation protocols that
 179 assess both the correctness of outcomes and the quality of reasoning trajectories. As a result, current
 180 frameworks remain limited in modality coverage, constrained to shallow reasoning with remote
 181 sensing models, and hindered by the absence of a predefined tool ecosystem, highlighting the neces-
 182 sity for EO agents and benchmarks that support diverse data, multi-step analytical workflows, and
 183 systematic evaluation.

3 EARTH-AGENT FRAMEWORK

184 In this section, we detail the operation mechanisms of Earth-Agent. We first formulate its opera-
 185 tion pipeline as a ReAct-style (Yao et al., 2023) Partially Observable Markov Decision Processes
 186 (POMDP) formulation (Huang et al., 2024; Chala et al., 2025) in section 3.1, including the ob-
 187 servation process, policy reasoning and memory update, as shown in Figure 3. Then we introduce
 188 the functionality of the specialized tool kits that enable EO analysis across perceptual and spectral
 189 data in section 3.2. Finally, we define the dual-level evaluation protocol, which assesses EO agents
 190 in both end-to-end and step-by-step modes to evaluate not only final accuracy but also reasoning
 191 trajectories in section 3.3.

3.1 OPERATION MECHANISMS

192 Earth-Agent receives a task goal g , interprets user queries and intermediate tool outputs, and se-
 193 lects actions from a modular toolkit to progressively solve the task. This process is formulated as
 194 a POMDP, defined by the tuple $\langle g, \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T} \rangle$, where g is the task goal, \mathcal{S} is the state space (un-
 195 observable environment status such as geospatial data files or raster values), \mathcal{A} is the action space
 196 (tool calls in the kit), \mathcal{O} is the observation space (outputs returned by tools, including text, numerical
 197 values, and images), and $\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the state transition function.

198 At each time step t , given a policy π , the agent selects an action conditioned on the goal g and its
 199 interaction history, which records past observations and actions:

$$200 \quad m_t = (o_0, a_0, o_1, a_1, \dots, o_t),$$

201 The action distribution is modeled as:

$$202 \quad a_t \sim \pi(a_t | g, m_t).$$

203 The full agent trajectory $\tau = [s_0, o_0, a_0, s_1, o_1, a_1, \dots, s_T, o_T]$ is determined jointly by the policy
 204 π and the environment dynamics:

$$205 \quad p_\pi(\tau) = \underbrace{p(s_0)}_{\text{Initial state}} \underbrace{Z(o_0 | s_0)}_{\text{Tool calling}} \prod_{t=0}^{T-1} \underbrace{\pi(a_t | g, m_t)}_{\text{Think & Action}} \underbrace{Z(o_{t+1} | s_{t+1})}_{\text{Tool calling}} \underbrace{\mathcal{T}(s_{t+1} | s_t, a_t)}_{\text{Action}}.$$

206 where Z denotes the observation distribution induced by tool outputs.

207 In this formulation, the LLM controller functions as the policy π , reasoning over the history m_t
 208 and task goal g to decide the next tool calling, while the Toolkit provides executable atomic actions

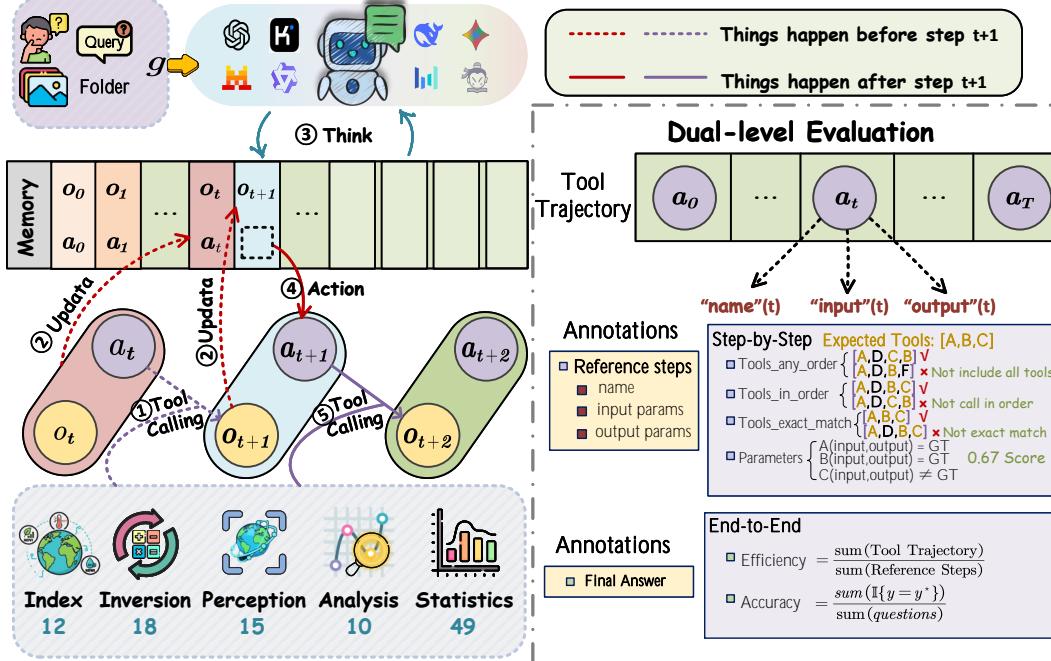


Figure 3: **Earth-Agent Framework:** The left part illustrates the ReAct-style workflow, where Earth-Agent iteratively performs tool calling, memory update, thinking, and action using domain-specific toolkits. The right panel presents the dual-level evaluation protocol, assessing both step-by-step reasoning trajectories and end-to-end outcomes.

categorized into **Index**, **Inversion**, **Perception**, **Analysis**, and **Statistics**. Concretely, as illustrated in Figure 3, each loop proceeds as follows: ① **Tool calling** At step t , the agent invokes the most suitable tool conditioned on the current memory m_t and task goal g , which yields the tool response for observation o_{t+1} . ② **Memory update** At step t , the agent appends the pair (o_t, a_t) together with the resulting observation o_{t+1} into the memory stack, ensuring that the complete interaction history is preserved for subsequent reasoning. ③ **Think** At step $t+1$, the LLM controller reasons over the updated memory m_t together with the task goal g to plan the next action, determining which tool to invoke and how to configure its inputs. ④ **Action** Selecting and executing the subsequent tool call a_{t+1} that produces o_{t+2} . The ReAct loop continues until the stopping condition is satisfied, yielding both the final answer and a reproducible sequence of tool calling trajectory.

3.2 TOOL KIT

To enable comprehensive EO analysis, Earth-Agent integrates 104 specialized tools organized into five functional kits. The **Index kit** provides implementations of widely used EO indices (e.g., NDVI, NDWI, NBR) (Montero et al., 2023) for rapid environmental characterization. The **Inversion kit** focuses on geophysical parameter retrieval, including land surface temperature (LST) (Li et al., 2013), precipitable water vapor (PWV) (He & Liu, 2020), vegetation water content (Ceccato et al., 2001), sea ice concentration (DiGirolamo et al., 2022), and others. The **Perception kit** supports vision-oriented tasks such as scene classification (Ma et al., 2025), object detection (Li et al., 2024e), and segmentation (Ravi et al., 2024). The **Analysis kit** targets spatiotemporal reasoning, offering trend detection, seasonality decomposition, change point analysis, and spatial autocorrelation. Finally, the **Statistics kit** provides large-scale data preprocessing and statistical computation (e.g., variance, skewness, batch operations, cloud masking). Together, these tool kits cover the diverse types of EO tasks from perceptual to spectral, and from descriptive to quantitative analysis. The detailed list and description of tools can be found in Appendix G.

270 3.3 EVALUATION PROTOCOL
271

272 Prior benchmarks have primarily emphasized final accuracy, overlooking the reasoning trajectory
273 that leads to the final output (Mialon et al., 2023; Jimenez et al., 2024; Chen et al., 2025). To
274 address this, we adopt a **dual-level evaluation protocol**: agents are assessed in a *step-by-step* mode
275 to capture the quality of their reasoning trajectories, and in an *end-to-end* mode to measure final
276 task performance. This dual perspective enables fine-grained diagnostics of both reasoning and
277 outcomes. The detailed calculation formulas can be found in Appendix B.2.

278 **End-to-End** evaluation measures task-level performance, including *Accuracy* of the final answer
279 and *Efficiency* of the trajectory relative to expert solutions.

280 **Step-by-Step** evaluation assesses the quality of intermediate reasoning. We consider four com-
281plementary aspects: *Tool-Any-Order*, which checks whether all necessary tools are used in LLM
282 planning; *Tool-In-Order*, which evaluates whether tools are invoked in the correct sequence; *Tool-
283Exact-Match*, which evaluates the exact prefix-level accuracy between the predicted and expert tra-
284jectories; and *Parameter Accuracy*, which verifies whether both tool identifiers and their arguments
285 are correctly matched.

286 4 EARTH-AGENT BENCHMARK

287 4.1 OVERVIEW OF EARTH-AGENT BENCHMARK

288 We introduce **Earth-Agent Benchmark (Earth-Bench)**, a dataset designed to evaluate tool-
289 augmented EO agents in realistic Earth science analysis scenarios. The benchmark integrates three
290 major types of Earth observation data: **RGB Imagery (RGB)**, **Raw Spectral Data (Spectrum)**, and
291 **Processed Earth Products (Products)**. It supports 14 representative tasks, including classification,
292 detection, temperature monitoring, weather forecasting, etc., with a particular emphasis on scientific
293 analysis that requires quantitative reasoning rather than qualitative description.

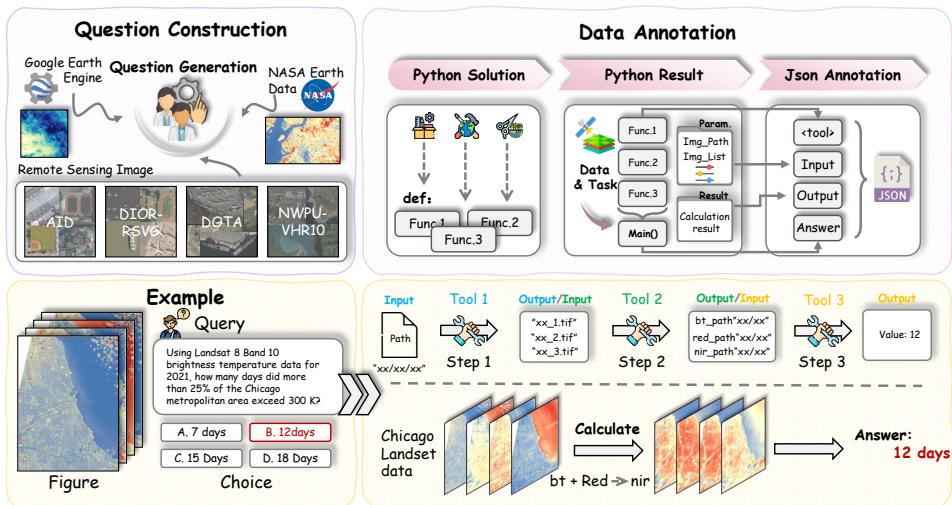
309 **Figure 4: Dataset Comparison and Overview:** The left panel compares Earth-Bench with prior
310 MLLM and agentbased EO benchmarks. The right panel presents the statistics of Earth-Bench and
311 its evaluation with SOTA LLMs using Earth-Agent, highlighting the difficulty of Earth-Bench.

312 As shown in Figure 4, **MLLM-based benchmarks** including RSVQA-HR (Lobry et al., 2020),
313 EarthVQA (Wang et al., 2024b), VRSBench (Li et al., 2024d) and Geo-Bench (Lacoste et al.,
314 2023) are mainly limited to single-step perceptual for RGB data using pretrained MLLMs (Liu
315 et al., 2024d; Team, 2024; OpenAI, 2024), without requiring external tool use for scientific quanti-
316 tative analysis (e.g., spatiotemporal trend estimation), not to mention reasoning trajectory evalua-
317 tion. On the other hand, **Earth-Bench** advances beyond prior **Agent-based EO benchmarks**, such as
318 PEACE (Huang et al., 2025), Thinkgeo (Shabbir et al., 2025) and UnivEarth (Kao et al., 2025), by
319 incorporating 13K+ images across spectrum, product and RGB modalities, while requiring inter-
320 action with 104 domain tools. It consists of 248 expert-curated questions, requiring an average of
321 5.4 reasoning steps of quantitative analysis. Even with the state-of-the-art (SOTA) LLM backbones,
322 performance remains limited, which underscores not only the benchmark’s difficulty and diagnostic
323 value but also the necessity of reasoning trajectory evaluation. Therefore, we need to annotate on
324 both trajectories and final answers in section 4.2.

324 4.2 DATA ANNOTATION PIPELINE
325

326 To construct Earth-Bench, we collected raw data from platforms such as Google Earth Engine,
327 NASA EarthData, and public remote sensing datasets (Xia et al., 2017; Zhan et al., 2023; Xia et al.,
328 2018; Su et al., 2019). From these data sources, a team of domain experts curated 248 problems that
329 require multi-step quantitative reasoning. **The annotation team was composed of 2 computer science
330 experts, 7 remote sensing specialists, and 3 Earth science specialists.** Each problem is accompanied
331 by a step-by-step Python solution and is designed to reflect the complexity of real-world Earth
332 science workflows, which demand the coordinated use of multiple tool kits.

333 In prior benchmarks, queries have been designed either as *step-implicit*, where no intermediate
334 step guidance is provided (Mialon et al., 2023; Wang et al., 2024a), or as *step-explicit*, where the
335 query itself contains step guidance (Guo et al., 2024b; Ma et al., 2024). Motivated by the com-
336 plexity of EO workflows, which often require multi-step processing, Earth-Bench incorporates both
337 regimes: **Auto-Planning** corresponds to the step-implicit setting and evaluates the agent’s ability
338 to autonomously plan its solution trajectory, while **Instruction-Following** corresponds to the step-
339 explicit setting and evaluates the agent’s ability to follow and translate human instructions into ex-
340 ecutable actions. **Both regimes contain 248 complete questions for evaluation.** Together, these two
341 regimes provide a comprehensive assessment of both autonomous reasoning and guided execution
342 in EO contexts. Details can refer to Appendix A.4.



353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Figure 5: **Construction and Annotation of Earth-Bench.** The left shows question generation from
EO data, the right illustrates the data annotation pipeline that simulates ReAct-style trajectories, and
the bottom provides an example explaining the multi-step annotation process.

To enable dual-level evaluation, we explicitly annotated both the final answers and the full reasoning trajectories. As illustrated in Fig. 5, the annotation process was designed to mimic the ReAct loop of agents: **Python Solution.** Annotators first identify the domain tools such as `compute_ndwi` and `split.window` required to solve a problem and then assemble them into a step-by-step `main()` program. Each tool is represented as a Python function, and the functions are planned in the correct order to form an executable workflow that mirrors the agent’s reasoning trajectory. **Python Result.** When executed, the program produces explicit input and output arguments for each function call, as well as the final output of the `main()` function. **JSON Annotation.** Each function call is then translated into a structured JSON record to align with the ReAct-style trajectory annotation. The function name corresponds to the action tool name, the function input arguments corresponds to the action passed by the agent, and the function output arguments corresponds to the tool responses returned to the agent. The final output of the `main()` function is recorded as the ground-truth answer for the problem. This provides a complete record of both the reasoning trajectory and the final answer.

378 5 EXPERIMENTS

379 5.1 EXPERIMENTAL SETUP

380 **Evaluated Models.** We evaluate 3 closed-source and 10 leading open-source LLMs. For *closed-source models*, we consider GPT-5 (OpenAI, 2025a), GPT-4o (OpenAI, 2024), and Gemini-2.5 (Comanici et al., 2025). For *open-source models*, including Deepseek-V3.1 (Liu et al., 2024a), Kimik2 (Team et al., 2025), Qwen3-max-Preview, Qwen3-32B (Yang et al., 2025), and InternVL3.5 (Wang et al., 2025), which represent the smartest open LLMs available to date.

387 5.2 EARTH-AGENT WITH DIFFERENT LLM BACKBONES

388 As shown in Table 1, we evaluate the impact of different LLM backbones on Earth-Bench. Results
 389 are reported under both *step-by-step* and *end-to-end* evaluation protocols, allowing us to jointly
 390 assess the quality of reasoning trajectories and final outcomes. The following observations can be
 391 made:

393 Table 1: Performance of different LLM backbones on Earth-Bench under both *Auto-Planning (AP)*
 394 and *Instruction-Following (IF)* regimes. Results are reported with dual-level evaluation, covering
 395 *Tool-Any-Order*, *Tool-In-Order*, *Tool-Exact-Match*, Parameters for trajectory quality and Efficiency,
 396 Accuracy for final outcomes. We **bold** the best results and underline the runner-ups.

398 Model	Tool-Any-Order		Tool-In-Order		Tool-Exact-Match		Parameters		Efficiency		Accuracy	
	399 AP	IF	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF
400 GPT-5	68.74	<u>71.41</u> ↑	<u>57.71</u>	61.06↑	44.97	46.01↑	26.11	<u>25.91</u> ↓	2.3560	2.9093	65.99	<u>62.35</u> ↓
401 Gemini-2.5	58.04	61.63↑	45.31	50.72↑	31.32	41.04↑	17.26	<u>23.43</u> ↑	2.9958	2.4595	52.23	53.04↑
402 GPT-4o	65.65	<u>67.02</u> ↑	50.76	53.04↑	<u>46.26</u>	47.41↑	<u>26.55</u>	27.92↑	2.1211	2.6007	43.72	44.94↑
403 Kimik2	<u>71.03</u>	78.86 ↑	57.57	68.83 ↑	42.11	51.15 ↑	25.90	<u>30.45</u> ↑	1.8542	2.1793	50.61	56.68↑
404 DeepSeek-V3.1	78.31	<u>78.66</u> ↑	62.73	64.50↑	48.54	<u>49.58</u> ↑	30.81	31.36	2.6116	2.6303	51.42	52.23↑
405 Qwen3-Max	69.56	70.14↑	53.28	56.02↑	37.02	42.74↑	21.83	26.27↑	1.8810	1.9511↓	50.20	47.37↓
406 Seed-1.6	55.43	59.44↑	40.67	46.79↑	28.39	35.47↑	18.32	23.13↑	1.3110	1.3408↓	<u>52.48</u>	<u>59.51</u> ↑
407 LLaMA-4	16.51	22.41↑	2.45	12.05↑	1.70	9.05↑	1.30	6.46↑	0.2886	0.3211↓	44.94	38.46↓
408 Qwen-Plus	52.04	55.96↑	30.75	39.77↑	11.69	25.51↑	9.12	16.95↑	1.5119	1.5854↓	42.51	38.46↓
409 GLM-4.5v	42.48	46.69↑	28.57	35.24↑	14.12	19.95↑	11.02	15.37↑	1.7123	2.0129↓	32.86	35.25↑
410 Mistral	27.73	29.64↑	11.78	20.90↑	9.13	18.13↑	7.24	11.66↑	0.9552	0.8802↑	29.96	22.67↓
411 Qwen3-32B	39.76	42.39↑	21.56	33.79↑	9.51	26.10↑	8.17	17.73↑	2.7274	1.9010↑	20.65	24.80↑
412 InternVL-3.5	8.83	16.62↑	3.87	10.59↑	2.02	9.32↑	1.46	5.32↑	0.1206	0.1750↓	26.72	26.72

413 **Obs.1.** LLM models pretrained with tool calling, such as GPT-5, Gemini-2.5, DeepSeek-V3.1,
 414 Kimik2, and Qwen3, demonstrate **strong** performance across both *step-by-step* and *end-to-end*
 415 evaluations. Further, closed-source models like GPT-5 typically achieve **higher final accuracy**, while
 416 open-source models, particularly DeepSeek-V3.1 and Kimik2, **outperform** GPT-5 in *tool-use accuracy*,
 417 demonstrating superior performance in reasoning trajectory alignment. We have provided
 418 a detailed analysis of the LLMs’ performance across the Spectrum, Products, and RGB modalities,
 419 which can be found in Appendix C.

420 **Obs.2.** Instruction-following regimes enhance tool calling by providing explicit step guidance in the
 421 query, leading to **improved tool calling accuracy** across nearly all models. Interestingly, despite the
 422 improved reasoning trajectories, this does **not necessarily** lead to **higher final accuracy**. In fact, for
 423 some advanced models, this added complexity may even result in a **decrease in final accuracy**. We
 424 have conducted a detailed *error analysis* of Earth-Agent’s performance in the Earth-Bench bench-
 425 mark, focusing on representative models such as GPT-5, DeepSeek-V3.1, Kimik2, and Qwen3-max.
 426 This can be found in Appendix D.

427 **Obs.3.** Across nearly all models, the ability to identify the correct set of tools, as reflected in
 428 *Tool-Any-Order* and *Tool-In-Order* metrics, remains **consistently strong**. However, models often
 429 introduce irrelevant steps during reasoning, which **undermines** their accuracy on *Tool-Exact-Match*
 430 and **parameter** execution. Crucially, these two fine-grained capabilities are indispensable in real EO
 431 analysis workflows. For example, if additional transformations are mistakenly applied to the EO
 data process, it becomes extremely difficult to obtain correct results in the subsequent steps. Their

432 weakness therefore exposes a **key bottleneck** that prevents EO Agents from achieving higher final
 433 **accuracy** in EO data processing.
 434

435 5.3 COMPARISON WITH GENERAL AGENTS

436 Since many Earth-Bench tasks involve processing hundreds of images, existing open-source agent
 437 frameworks cannot handle these questions due to input size constraints. To enable fair comparison,
 438 we construct **Earth-Bench-Lite**, a reduced yet representative subset that preserves modality diver-
 439 sity while remaining within the capacity of general-purpose agents. It consists of 60 questions evenly
 440 distributed across the three EO modalities: Spectrum, Products, and RGB. As shown in Table 2, we
 441 report results across three modalities: *Spectrum*, *Products*, and *RGB*.
 442

443 Table 2: Comparison with general agents on Earth-Bench-Lite. Results are reported across Spec-
 444 trum, Products, RGB modalities. We **bold** the best results and underline the runner-ups.
 445

Method	Spectrum	Products	RGB	Avg.	Latency
GPT-Agent	45.00	31.60	45.26	40.42	≈ 300 min
MGX	40.00	15.80	0.00	18.60	≈ 60 min
Manus	15.00	15.80	47.62	26.14	≈ 150 min
Coze	35.00	10.50	0.00	15.30	≈ 120 min
Earth-Agent(GPT5)	65.00	36.84	65.71	55.83	158 min
Earth-Agent(Deepseek-V3.1)	<u>50.00</u>	42.11	<u>51.43</u>	<u>47.84</u>	<u>79</u> min
Earth-Agent(Kimik2)	36.84	50.00	50.00	45.95	131 min

453 By comparison, general agents show limited modality coverage. They can handle relatively simple
 454 *Spectrum* tasks by writing ad-hoc code, but perform poorly on *Products* tasks due to the lack of
 455 domain-specific spatiotemporal analysis tools. For the *RGB* modality, MGX and Coze even fail to
 456 complete any tasks. In contrast, by interacting with 104 predefined geoscience tools, Earth-Agent
 457 consistently achieves superior performance across all three modalities, whether driven by the closed-
 458 source GPT-5 or the open-source DeepSeek-V3.1. We also compared the latency of our Earth-Agent
 459 framework with that of the baseline agents. The latency remains within a reasonable range when
 460 compared to existing general agents. The substantial performance improvements in task completion
 461 more than justify the additional computational cost. A detailed discussion can be found in the
 462 Appendix E.

463 5.4 COMPARISON WITH MLLM-BASED EO METHODS

464 We further compare Earth-Agent with remote sensing large models on classification, detection, and
 465 segmentation tasks. The results are summarized in Table 3.
 466

467 Table 3: Comparison with MLLMs on Remote sense benchmarks. Results are reported on classifi-
 468 cation, detection, and segmentation tasks. We **bold** the best results and underline the runner-ups.
 469

Model	Classification		Detection		Grounding
	AID	WHU-RS19	DOTA	HRSC2016	DIOR-RSVG
MiniGPT-v2 (Chen et al., 2023)	32.96	64.80	14.8	24.8	<u>29.892</u>
LLaVA-1.5 (Liu et al., 2024d)	51.00	<u>74.52</u>	<u>17.5</u>	22.1	12.085
Sphinx (Lin et al., 2023)	58.20	-	15.1	<u>25.7</u>	0.939
Geochat (Kuckreja et al., 2024)	72.03	86.47	16.5	24.0	10.024
VHM (Pang et al., 2025)	<u>91.70</u>	<u>95.80</u>	-	-	-
LHRS-Bot (Muhtar et al., 2024)	91.26	93.17	17.1	24.4	11.826
Earth-Agent (ours)	93.42	96.12	60.88	65.60	60.46

480 Earth-Agent demonstrates clear superiority over existing MLLMs across classification, detection,
 481 and segmentation benchmarks (Table 3). Prior MLLM-based approaches often lack generalization
 482 across diverse EO tasks: for example, LHRS-Bot achieves strong results in classification but strug-
 483 gles on detection and grounding, while VHM attains high classification accuracy but cannot even
 484 handle detection or segmentation tasks. In contrast, Earth-Agent interacts with a predefined toolkit
 485 of 104 geoscience functions and expert models, allowing it to adaptively invoke specialized tools or
 models for each task type. This modular design enables Earth-Agent to maintain robust performance
 across modalities, overcoming the limited extensibility of previous MLLM-based EO systems.

486 **6 CONCLUSION**

487
 488 Earth-Agent marks a significant advancement in applying (M)LLMs to EO analysis, extending RGB
 489 perception to Spectrum, Products and RGB modalities. By shifting from single-step inference with
 490 pretrained MLLMs to multi-step reasoning through external tool/model integration, it overcomes
 491 key limitations of prior MLLM-based approaches, such as handling numerous image inputs and
 492 quantitative spatiotemporal analysis. To support rigorous evaluation, we introduced Earth-Bench,
 493 which requires multi-step quantitative reasoning and dual-level evaluation, which evaluate both rea-
 494 soning trajectories and final outcomes. Our experiments further reveal the current bottlenecks of
 495 Earth-Agent in EO applications and provide detailed diagnostics. Finally, by comparing with both
 496 general agents and domain MLLMs, we highlight the transformative potential of Earth-Agent as a
 497 foundation for the revolution of LLM applications in Earth observation.

498 **REFERENCES**

500 **Abdulaziz Amer Aleissaee, Amandeep Kumar, Rao Muhammad Anwer, Salman Khan, Hisham**
 501 **Cholakkal, Gui-Song Xia, and Fahad Shahbaz Khan. Transformers in remote sensing: A survey.**
 502 ***Remote Sensing*, 15(7):1860, 2023.**

503 **Katherine Anderson, Barbara Ryan, William Sonntag, Argyro Kavvada, and Lawrence Friedl. Earth**
 504 **observation in service of the 2030 agenda for sustainable development. *Geo-spatial Information***
 505 ***Science*, 20(2):77–96, 2017.**

506 **Christopher F Brown, Michal R Kazmierski, Valerie J Pasquarella, William J Rucklidge,**
 507 **Masha Samsikova, Chenhui Zhang, Evan Shelhamer, Estefania Lahera, Olivia Wiles, Simon**
 508 **Ilyushchenko, et al. Alphaearth foundations: An embedding field model for accurate and effi-**
 509 **cient global mapping from sparse label data. *arXiv preprint arXiv:2507.22291*, 2025.**

510 **Pietro Ceccato, Stéphane Flasse, Stefano Tarantola, Stéphane Jacquemoud, and Jean-Marie**
 511 **Grégoire. Detecting vegetation leaf water content using reflectance in the optical domain. *Re-***
 512 ***mote Sensing of Environment*, 77(1):22–33, 2001. ISSN 0034-4257. doi: [https://doi.org/10.1016/S0034-4257\(01\)00191-2](https://doi.org/10.1016/S0034-4257(01)00191-2). URL <https://www.sciencedirect.com/science/article/pii/S0034425701001912>.**

513 **Olena Chala, Vladyslav Yevsieiev, Svitlana Maksymova, and Amer Abu-Jassar. Mathematical**
 514 **model based on multi-agent reinforcement learning (marl) and partially observable markov deci-**
 515 **sion process (pomdp) for modeling cargo movement for a mobile robots group. *Multidisciplinary***
 516 ***Journal of Science and Technology*, 5(4):480–489, 2025.**

517 **Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai**
 518 **Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool usage?**
 519 ***arXiv preprint arXiv:2501.12851*, 2025.**

520 **Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman**
 521 **Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large**
 522 **language model as a unified interface for vision-language multi-task learning. *arXiv preprint***
 523 ***arXiv:2310.09478*, 2023.**

524 **Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit**
 525 **Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the**
 526 **frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-**
 527 **bilities. *arXiv preprint arXiv:2507.06261*, 2025.**

528 **N. DiGirolamo, C. L. Parkinson, D. J. Cavalieri, P. Gloersen, and H. J. Zwally. Sea ice concentrations**
 529 **from nimbus-7 ssmr and dmsp ssm/i-ssmis passive microwave data, 2022. URL <https://doi.org/10.5067/MPYG15WAA4WX>. NSIDC-0051. [Data Set]. Accessed: 2025-09-23.**

530 **Keyan Ding, Jing Yu, Junjie Huang, Yuchen Yang, Qiang Zhang, and Huajun Chen. Scitoolagent: a**
 531 **knowledge-graph-driven scientific agent for multitool integration. *Nature Computational Science*,**
 532 **pp. 1–11, 2025.**

540 Sijun Dong, Libo Wang, Bo Du, and Xiaoliang Meng. Changeclip: Remote sensing change detection
 541 with multimodal vision-language representation learning. *ISPRS Journal of Photogrammetry and*
 542 *Remote Sensing*, 208:53–69, 2024.

543 Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong
 544 Li. Large language models empowered agent-based modeling and simulation: A survey and
 545 perspectives. *Humanities and Social Sciences Communications*, 11(1):1–24, 2024.

546 Haonan Guo, Xin Su, Chen Wu, Bo Du, Liangpei Zhang, and Deren Li. Remote sensing chat-
 547 gpt: Solving remote sensing tasks with chatgpt and visual models. In *IGARSS 2024-2024 IEEE*
 548 *International Geoscience and Remote Sensing Symposium*, pp. 11474–11478. IEEE, 2024a.

549 Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
 550 Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
 551 of large language models. *arXiv preprint arXiv:2403.07714*, 2024b.

552 Jia He and Zhizhao Liu. Water vapor retrieval from modis nir channels using ground-based gps data.
 553 *IEEE Transactions on Geoscience and Remote Sensing*, 58(5):3726–3737, 2020. doi: 10.1109/
 554 TGRS.2019.2962057.

555 Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Land-
 556 scape, security threats, and future research directions. *arXiv preprint arXiv:2503.23278*, 2025.

557 Huiyang Hu, Peijin Wang, Yingchao Feng, Kaiwen Wei, Wenxin Yin, Wenhui Diao, Mengyu Wang,
 558 Hanbo Bi, Kaiyue Kang, Tong Ling, et al. Ringmo-agent: A unified remote sensing foundation
 559 model for multi-platform and multi-modal reasoning. *arXiv preprint arXiv:2507.20776*, 2025a.

560 Yuan Hu, Jianlong Yuan, Congcong Wen, Xiaonan Lu, Yu Liu, and Xiang Li. Rsgpt: A remote
 561 sensing vision language model and benchmark. *ISPRS Journal of Photogrammetry and Remote*
 562 *Sensing*, 224:272–286, 2025b.

563 Yangyu Huang, Tianyi Gao, Haoran Xu, Qihao Zhao, Yang Song, Zhipeng Gui, Tengchao Lv, Hao
 564 Chen, Lei Cui, Scarlett Li, et al. Peace: Empowering geologic map holistic understanding with
 565 mllms. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3899–
 566 3908, 2025.

567 Zhiyu Huang, Chen Tang, Chen Lv, Masayoshi Tomizuka, and Wei Zhan. Learning online belief
 568 prediction for efficient pomdp planning in autonomous driving. *arXiv preprint arXiv:2401.15315*,
 569 2024.

570 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 571 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth*
 572 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.

573 Karen E Joyce, Kim C Wright, Sergey V Samsonov, and Vincent G Ambrosia. Remote sensing
 574 and the disaster management cycle. *Advances in geoscience and remote sensing*, 48(7):317–346,
 575 2009.

576 Chia Hsiang Kao, Wenting Zhao, Shreelekha Revankar, Samuel Speas, Snehal Bhagat, Rajeev Datta,
 577 Cheng Perng Phoo, Utkarsh Mall, Carl Vondrick, Kavita Bala, et al. Towards llm agents for earth
 578 observation. *arXiv preprint arXiv:2504.12110*, 2025.

579 Ioannis P. Kokkoris, Bruno Smets, Lars Hein, Giorgos Mallinis, Marcel Buchhorn, Stefano
 580 Balbi, Ján Černecký, Marc Paganini, and Panayotis Dimopoulos. The role of earth ob-
 581 servation in ecosystem accounting: A review of advances, challenges and future directions.
 582 *Ecosystem Services*, 70:101659, 2024. ISSN 2212-0416. doi: <https://doi.org/10.1016/j.ecoser.2024.101659>. URL <https://www.sciencedirect.com/science/article/pii/S2212041624000664>.

583 Kartik Kuckreja, Muhammad Sohail Danish, Muzammal Naseer, Abhijit Das, Salman Khan, and
 584 Fahad Shahbaz Khan. Geochat: Grounded large vision-language model for remote sensing.
 585 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 586 27831–27840, 2024.

594 Alexandre Lacoste, Nils Lehmann, Pau Rodriguez, Evan Sherwin, Hannah Kerner, Björn Lütjens,
 595 Jeremy Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, et al. Geo-bench: Toward
 596 foundation models for earth monitoring. *Advances in Neural Information Processing Systems*,
 597 36:51080–51093, 2023.

598 Jinpeng Li, Jun He, Weijia Li, Jiabin Chen, and Jinhua Yu. Roadcorrector: A structure-aware
 599 road extraction method for road connectivity and topology correction. *IEEE Transactions on*
 600 *Geoscience and Remote Sensing*, 62:1–18, 2024a.

602 Ming Li, Keyu Chen, Ziqian Bi, Ming Liu, Benji Peng, Qian Niu, Junyu Liu, Jinlang Wang, Sen
 603 Zhang, Xuanhe Pan, et al. Surveying the mllm landscape: A meta-review of current surveys.
 604 *arXiv preprint arXiv:2409.18991*, 2024b.

606 Weijia Li, Runmin Dong, Haohuan Fu, Jie Wang, Le Yu, and Peng Gong. Integrating google earth
 607 imagery with landsat data to improve 30-m resolution land cover mapping. *Remote Sensing of*
 608 *Environment*, 237:111563, 2020.

609 Weijia Li, Yawen Lai, Lining Xu, Yuanbo Xiangli, Jinhua Yu, Conghui He, Gui-Song Xia, and
 610 Dahua Lin. Omnicity: Omnipotent city understanding with multi-level and multi-view images.
 611 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 612 17397–17407, 2023a.

614 Weijia Li, Wenqian Zhao, Jinhua Yu, Juepeng Zheng, Conghui He, Haohuan Fu, and Dahua Lin.
 615 Joint semantic–geometric learning for polygonal building segmentation from high-resolution re-
 616 mote sensing images. *ISPRS Journal of Photogrammetry and Remote Sensing*, 201:26–37, 2023b.

617 Weijia Li, Haote Yang, Zhenghao Hu, Juepeng Zheng, Gui-Song Xia, and Conghui He. 3d building
 618 reconstruction from monocular remote sensing images with multi-level supervisions. In *Pro-
 619 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 27728–
 620 27737, 2024c.

622 Xiang Li, Jian Ding, and Mohamed Elhoseiny. Vrsbench: A versatile vision-language benchmark
 623 dataset for remote sensing image understanding. *Advances in Neural Information Processing*
 624 *Systems*, 37:3229–3242, 2024d.

625 Yuxuan Li, Xiang Li, Yunheng Li, Yicheng Zhang, Yimian Dai, Qibin Hou, Ming-Ming Cheng, and
 626 Jian Yang. Sm3det: A unified model for multi-modal remote sensing object detection. *arXiv*
 627 *preprint arXiv:2412.20665*, 2024e.

629 Zhao-Liang Li, Bo-Hui Tang, Hua Wu, Huazhong Ren, Guangjian Yan, Zhengming Wan, Isabel F.
 630 Trigo, and José A. Sobrino. Satellite-derived land surface temperature: Current status and per-
 631 spectives. *Remote Sensing of Environment*, 131:14–37, 2013. ISSN 0034-4257. doi: <https://doi.org/10.1016/j.rse.2012.12.008>. URL <https://www.sciencedirect.com/science/article/pii/S0034425712004749>.

634 Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
 635 Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
 636 multi-modal large language models. *arXiv preprint arXiv:2311.07575*, 2023.

638 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 639 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 640 *arXiv:2412.19437*, 2024a.

641 Chenyang Liu, Keyan Chen, Haotian Zhang, Zipeng Qi, Zhengxia Zou, and Zhenwei Shi. Change-
 642 agent: Toward interactive comprehensive remote sensing change interpretation and analysis. *IEEE*
 643 *Transactions on Geoscience and Remote Sensing*, 62:1–16, 2024b. doi: 10.1109/TGRS.2024.
 644 3425815.

646 Fan Liu, Delong Chen, Zhangqingyun Guan, Xiaocong Zhou, Jiale Zhu, Qiaolin Ye, Liyong Fu,
 647 and Jun Zhou. Remoteclip: A vision language foundation model for remote sensing. *IEEE*
 648 *Transactions on Geoscience and Remote Sensing*, 2024c.

648 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 649 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 650 pp. 26296–26306, 2024d.

651

652 Zhuoran Liu, Danpei Zhao, Bo Yuan, and Zhiguo Jiang. Rescueadi: adaptive disaster interpretation
 653 in remote sensing images with autonomous agents. *IEEE Transactions on Geoscience and Remote
 654 Sensing*, 2025.

655 Sylvain Lobry, Diego Marcos, Jesse Murray, and Devis Tuia. Rsvqa: Visual question answering for
 656 remote sensing data. *IEEE Transactions on Geoscience and Remote Sensing*, 58(12):8555–8566,
 657 2020.

658

659 Siqi Lu, Junlin Guo, James R Zimmer-Dauphinee, Jordan M Nieusma, Xiao Wang, Steven A
 660 Wernke, Yuankai Huo, et al. Vision foundation models in remote sensing: A survey. *IEEE
 661 Geoscience and Remote Sensing Magazine*, 2025.

662 Jingjing Ma, Wei Jiang, Xu Tang, Xiangrong Zhang, Fang Liu, and Licheng Jiao. Multiscale sparse
 663 cross-attention network for remote sensing scene classification. *IEEE Transactions on Geoscience
 664 and Remote Sensing*, 2025.

665

666 Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. m & m's: A bench-
 667 mark to evaluate tool-use for multi-step multi-modal tasks. In *European Conference on Com-
 668 puter Vision*, pp. 18–34. Springer, 2024.

669 Utkarsh Mall, Cheng Perng Phoo, Meilin Kelsey Liu, Carl Vondrick, Bharath Hariharan, and Kavita
 670 Bala. Remote sensing vision-language foundation models without annotations via ground remote
 671 alignment. *arXiv preprint arXiv:2312.06960*, 2023.

672 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 673 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 674 Representations*, 2023.

675

676 David Montero, Cesar Aybar, Miguel D. Mahecha, Sebastian Wieneke, et al. A standardized cata-
 677 logue of spectral indices to advance the use of remote sensing in earth system research. *Scientific
 678 Data*, 10(1):197, 2023. doi: 10.1038/s41597-023-02096-0. URL <https://doi.org/10.1038/s41597-023-02096-0>.

679

680 Dilxat Muhtar, Zhenshi Li, Feng Gu, Xueliang Zhang, and Pengfeng Xiao. Lhrs-bot: Empowering
 681 remote sensing with vgi-enhanced large multimodal language model. In *European Conference on
 682 Computer Vision*, pp. 440–457. Springer, 2024.

683

684 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024.

685

686 OpenAI. Gpt-5 is here. <https://openai.com/gpt-5/>, 2025a.

687 OpenAI. Introducingoperator. <https://openai.com/index/introducing-operator/>, 2025b.

688

689 Chao Pang, Xingxing Weng, Jiang Wu, Jiayu Li, Yi Liu, Jiaxing Sun, Weijia Li, Shuai Wang, Litong
 690 Feng, Gui-Song Xia, et al. Vhm: Versatile and honest vision language model for remote sensing
 691 image analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
 692 6381–6388, 2025.

693

694 Dmitrii Pantiukhin, Boris Shapkin, Ivan Kuznetsov, Antonia Anna Jost, and Nikolay Koldunov. Ac-
 695 celerating earth science discovery via multi-agent llm systems. *arXiv preprint arXiv:2503.05854*,
 696 2025.

697

698 Chen Qian and Xin Cong. Communicative agents for software development. *arXiv preprint
 699 arXiv:2307.07924*, 6(3):1, 2023.

700

701 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

702 Partha Pratim Ray. A survey on model context protocol: Architecture, state-of-the-art, challenges
 703 and future directions. *Authorea Preprints*, 2025.

704

705 Xubin Ren, Lingrui Xu, Long Xia, Shuaiqiang Wang, Dawei Yin, and Chao Huang. Vide-
 706 orag: Retrieval-augmented generation with extreme long-context videos. *arXiv preprint*
 707 *arXiv:2502.01549*, 2025.

708

709 Farhad Samadzadegan, Ahmad Toosi, and Farzaneh Dadras Javan. A critical review on multi-
 710 sensor and multi-platform remote sensing data fusion approaches: current status and prospects.
 711 *International journal of remote sensing*, 46(3):1327–1402, 2025.

712

713 Akashah Shabbir, Muhammad Akhtar Munir, Akshay Dudhane, Muhammad Umer Sheikh, Muham-
 714 mad Haris Khan, Paolo Fraccaro, Juan Bernabe Moreno, Fahad Shahbaz Khan, and Salman
 715 Khan. Thinkgeo: Evaluating tool-augmented agents for remote sensing tasks. *arXiv preprint*
 716 *arXiv:2505.23752*, 2025.

717

718 Ahmed Shaker, Wai Yeung Yan, and Paul E LaRocque. Automatic land-water classification using
 719 multispectral airborne lidar data for near-shore and river environments. *ISPRS journal of pho-*
 720 *togrammetry and remote sensing*, 152:94–108, 2019.

721

722 Minjie Shen, Yanshu Li, Lulu Chen, and Qikai Yang. From mind to machine: The rise of manus ai
 723 as a fully autonomous digital agent. *arXiv preprint arXiv:2505.02024*, 2025.

724

725 Zhenwei Shi and Zhengxia Zou. Can a machine generate humanlike language descriptions for a
 726 remote sensing image? *IEEE Transactions on Geoscience and Remote Sensing*, 55(6):3623–
 727 3634, 2017.

728

729 Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a large-
 730 scale human study with 100+ nlp researchers. *arXiv preprint arXiv:2409.04109*, 2024.

731

732 Hao Su, Shunjun Wei, Min Yan, Chen Wang, Jun Shi, and Xiaoling Zhang. Object detection and
 733 instance segmentation in remote sensing imagery based on precise mask r-cnn. In *IGARSS 2019-
 734 2019 IEEE International Geoscience and Remote Sensing Symposium*, pp. 1454–1457. IEEE,
 735 2019.

736

737 Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
 738 Zhenyu Wu, Kanzhi Cheng, ZhaoYang Liu, et al. Scienceboard: Evaluating multimodal au-
 739 tonomous agents in realistic scientific workflows. *arXiv preprint arXiv:2505.19897*, 2025.

740

741 Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao Huang. Ai-researcher: Autonomous scientific
 742 innovation. *arXiv preprint arXiv:2505.18705*, 2025.

743

744 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 745 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*
 746 *preprint arXiv:2507.20534*, 2025.

747

748 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

749

750 Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas,
 751 Pan Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by
 752 scientists. *Advances in Neural Information Processing Systems*, 37:30624–30650, 2024.

753

754 Julie Transon, Raphaël D’Andrimont, Alexandre Maugnard, and Pierre Defourny. Survey of hy-
 755 perspectral earth observation applications from space in the sentinel-2 context. *Remote Sensing*,
 756 10(2), 2018. ISSN 2072-4292. doi: 10.3390/rs10020157. URL <https://www.mdpi.com/2072-4292/10/2/157>.

757

758 Mojtaba Valipour, Kelly Zheng, James Lowman, Spencer Szabados, Mike Gartner, and Bobby
 759 Braswell. Agi for the earth, the path, possibilities and how to evaluate intelligence of models
 760 that work with earth observation data? *arXiv preprint arXiv:2508.06057*, 2025.

761

762 CJ Van Westen. Remote sensing for natural disaster management. *International archives of pho-*
 763 *togrammetry and remote sensing*, 33(B7/4; PART 7):1609–1617, 2000.

756 Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. Gta:
 757 a benchmark for general tool agents. *Advances in Neural Information Processing Systems*, 37:
 758 75749–75790, 2024a.

759 Junjue Wang, Zhuo Zheng, Zihang Chen, Ailong Ma, and Yanfei Zhong. Earthvqa: Towards
 760 queryable earth via relational reasoning-based remote sensing visual question answering. In *Pro-
 ceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 5481–5489, 2024b.

761 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 762 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 763 *Frontiers of Computer Science*, 18(6):186345, 2024c.

764 Qi Wang, Wei Huang, Xuetong Zhang, and Xuelong Li. Word–sentence framework for remote
 765 sensing image captioning. *IEEE Transactions on Geoscience and Remote Sensing*, 59(12):10532–
 766 10543, 2020.

767 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 768 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 769 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

770 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
 771 understanding with large language model as agent. In *European Conference on Computer Vision*,
 772 pp. 58–76. Springer, 2024d.

773 Zhecheng Wang, Rajanie Prabha, Tianyuan Huang, Jiajun Wu, and Ram Rajagopal. Skyscript: A
 774 large and semantically diverse vision-language dataset for remote sensing. In *Proceedings of the
 775 AAAI Conference on Artificial Intelligence*, volume 38, pp. 5805–5813, 2024e.

776 Marek Wójtowicz, Andrzej Wójtowicz, Jan Piekarczyk, et al. Application of remote sensing meth-
 777 ods in agriculture. *Communications in biometry and crop science*, 11(1):31–50, 2016.

778 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 779 Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
 780 A survey. *Science China Information Sciences*, 68(2):121101, 2025.

781 Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong, Liangpei Zhang, and
 782 Xiaoqiang Lu. Aid: A benchmark data set for performance evaluation of aerial scene classifica-
 783 tion. *IEEE Transactions on Geoscience and Remote Sensing*, 55(7):3965–3981, 2017.

784 Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai Datcu, Marcello
 785 Pelillo, and Liangpei Zhang. Dota: A large-scale dataset for object detection in aerial images. In
 786 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3974–3983,
 787 2018.

788 Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A
 789 survey. *arXiv preprint arXiv:2402.15116*, 2024.

790 Zhitong Xiong, Fahong Zhang, Yi Wang, Yilei Shi, and Xiao Xiang Zhu. Earthnets: Empowering
 791 ai in earth observation. *arXiv preprint arXiv:2210.04936*, 2022.

792 Weikai Xu, Chengrui Huang, Shen Gao, and Shuo Shang. Llm-based agents for tool learning: A
 793 survey: W. xu et al. *Data Science and Engineering*, pp. 1–31, 2025.

794 Wenjia Xu, Zijian Yu, Boyang Mu, Zhiwei Wei, Yuanben Zhang, Guangzuo Li, and Mugen
 795 Peng. Rs-agent: Automating remote sensing tasks through intelligent agent. *arXiv preprint
 796 arXiv:2406.07089*, 2024a.

797 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
 798 and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. *arXiv
 799 preprint arXiv:2412.09605*, 2024b.

800 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 801 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 802 arXiv:2505.09388*, 2025.

810 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
811 React: Synergizing reasoning and acting in language models. In *International Conference on*
812 *Learning Representations (ICLR)*, 2023.

813

814 Yang Zhan, Zhitong Xiong, and Yuan Yuan. Rsvg: Exploring data and models for visual grounding
815 on remote sensing data. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–13, 2023.

816 Yang Zhan, Zhitong Xiong, and Yuan Yuan. Skyeyeegpt: Unifying remote sensing vision-language
817 tasks via instruction tuning with large language model. *ISPRS Journal of Photogrammetry and*
818 *Remote Sensing*, 221:64–77, 2025.

819

820 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
821 with tool-integrated agent systems for real-world repo-level coding challenges. *arXiv preprint*
822 *arXiv:2401.07339*, 2024a.

823 Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang, and Xuerui Mao. Earthgpt: A universal multi-
824 modal large language model for multi-sensor image comprehension in remote sensing domain.
825 *IEEE Transactions on Geoscience and Remote Sensing*, 2024b.

826 Baichuan Zhou, Haote Yang, Dairong Chen, Junyan Ye, Tianyi Bai, Jinhua Yu, Songyang Zhang,
827 Dahua Lin, Conghui He, and Weijia Li. Urbench: A comprehensive benchmark for evaluating
828 large multimodal models in multi-view urban scenarios. In *Proceedings of the AAAI Conference*
829 *on Artificial Intelligence*, volume 39, pp. 10707–10715, 2025.

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A DATASET ILLUSTRATION**
865866 **A.1 DATASET COMPOSITION**
867868 The remote sensing imagery used in our dataset primarily comes from Landsat and MODIS, with
869 additional high-resolution imagery sourced from open datasets. All the remote sensing data products
870 are obtained through Google Earth Engine (GEE). The following Table 4 is a more detailed
871 breakdown of the data sources, products, and their distribution:872 Table 4: Sensor and Data Source Statistics
873

874 Category	875 Sensor/Data Source	876 Dataset	877 Samples
878 Spectrum	Landsat	Landsat 8 / 9	1684
	MODIS	-	10273
	ASTER	-	110
879 Products	GEE	LST	183
		NDVI	369
		GPM	160
		VIIRS	164
		GHSL	68
		QA PIXEL	212
		NDWI	69
		fire MaxFRP	194
880 RGB	Public Datasets	AID	169
		DIOR-RSVG	7
		DOTA	22
		NWPU-VHR-10	21
		xBD	32
Total	-	-	13737

890 This table provides an overview of the data sources and the distribution of samples across three
891 categories (Spectrum, Product, RGB). It includes a diverse set of remote sensing products, such as
892 Landsat, MODIS, ASTER, and various other publicly available high-resolution datasets, ensuring
893 comprehensive coverage for a wide range of Earth observation tasks.903 **A.2 BENCHMARK STATISTICS**
904905 Table 5: Statistics of the benchmark dataset, including average verification code length, number of
906 images, query length, reasoning steps, and question counts for different task types.
907

908 Type	909 Avg. Code Lines	910 Avg. Images	911 Avg. Query Length AP	912 IF	913 Avg. Steps	914 Question Count
Spectrum	361.19	96.82	331.54	497.94	4.38	100
Products	283.64	43.23	505.72	648.09	6.35	88
RGB	176.42	4.18	333.80	464.70	5.77	60
Avg.	288.97	55.39	393.89	543.18	5.42	-
Total	71664	13737	97685	134708	1343	248

915 As illustrated in Table 5, Earth-Bench consists of 248 questions associated with approximately
916 13.7K images. We recruited a team of domain experts to annotate these questions. The annotation

process was as follows: experts first designed solution steps based on their expertise, then selected appropriate tools from the Agent Toolkit, implemented the steps by writing Python code to invoke the selected tools for data processing, and finally generated the corresponding answers. In total, the expert team annotated 1345 solution steps and produced 71,664 lines of verification code for the 248 benchmark questions.

A.3 QUESTION TYPES AND CATEGORY

As shown in Figure 5, Earth-Bench questions are categorized into three types based on their data sources: **Spectrum**, **Products**, and **RGB**. The Table 6 below summarizes the number and proportion of questions within each category:

Table 6: Distribution of Question Types and Their Proportions

Question Types	Number	Proportion (%)
Temperature Monitoring	44	17.74
Weather Forecasting	11	4.44
Climate Analysis	20	8.06
Water Management	22	8.87
Pollution Regulation	14	5.65
Vegetation Monitoring	28	11.29
Disaster Judgement	24	9.68
Urban Management	25	10.08
Classification	15	6.05
Detection	15	6.05
Grounding	7	2.82
Segmentation	3	1.21
Counting	7	2.82
Change Detection	13	5.24

This table provides a detailed distribution of question types within Earth-Bench, reflecting the variety of Earth observation tasks addressed by the dataset.

A.4 QUERY REGIMES

Earth-Bench categorizes each task into two regimes: Auto-Planning and Instruction-Following. The key distinction is that in Instruction-Following, the query explicitly provides the Agent with a solution approach, while preserving the original intent of the task. As shown in Table 5, the statistics of query length highlight this difference: on average, queries in the Instruction-Following regime are about 150 characters longer than those in Auto-Planning, due to the inclusion of solution guidance. For illustration, Appendix H presents examples of the same task under both regimes, along with the performance of different LLMs. In summary, Instruction-Following emphasizes LLMs' instruction-following and tool-use capabilities, whereas Auto-Planning additionally evaluates their ability to decompose and plan Earth observation tasks.

A.5 DATASET QUALITY CONTROL

Our annotation team was composed of 2 computer science experts, 7 remote sensing specialists (including one professor) and 3 Earth science specialists (including one professor).

Three core authors who served as senior reviewers led the pipeline of dataset construction. Each senior reviewer was responsible for guiding the development of the question sets and templates for

972 the **Spectrum**, **Products**, and **RGB** categories. They played a key role in providing strategic direction
 973 for the overall question pool.

974 The remaining 7 team members, consisting of graduate students and senior undergraduates, con-
 975 tributed in the following areas:

977

- 978 • Creation of initial questions (approximately 400 questions)
- 979 • Raw data collection
- 980 • Development of Python-based solution scripts

981

982 Once the questions were created, they were thoroughly reviewed by the 3 senior reviewers. The
 983 review process focused on two key criteria:

984

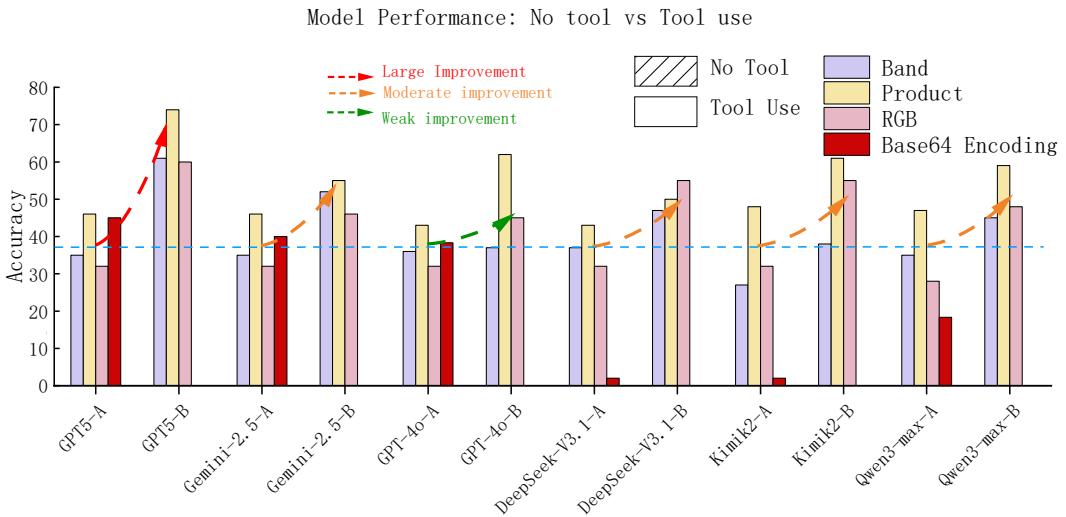
- 985 1. **Data Integrity:** Ensuring that the raw data involved (e.g., Landsat or MODIS) has com-
 986 plete band information within the task’s time range and does not contain anomalies. Any
 987 questions and TIF files with missing or anomalous large values were discarded.
- 988 2. **Task Difficulty Assessment:** Senior reviewers assessed the difficulty of questions based
 989 on the number and complexity of the functions defined in the Python solutions. For simpler
 990 tasks (e.g., only calculating NDVI index to finish a task), these were removed to ensure an
 991 appropriate challenge across questions.

992

993 This collaborative structure ensured that the dataset was curated by a diverse team with expertise
 994 from the full landscape of Earth observation fields, enabling a well-rounded and comprehensive
 995 dataset for evaluation.

996 A.6 BIAS ABLATION EXPERIMENT

997 To examine whether Earth-Bench exhibits bias toward specific models, i.e., whether certain models
 998 inherently find its tasks easier and thus risk skewing conclusions, we conducted an ablation study.
 999 Specifically, we removed all tools and allowed LLMs to directly answer questions given only the
 1000 Query and Folder, then compared the results with those of tool-augmented Agents that had access
 1001 to both Query and Data.



1020 Figure 6: Dataset Ablation Experiment

1021 As shown in Fig. 6, without tool access, mainstream LLMs achieved comparable performance across
 1022 the three task types, with an overall Accuracy of about 37%. This indicates that the dataset is fair
 1023 in its raw form and that models cannot rely solely on parametric knowledge to solve all benchmark
 1024 questions. In contrast, with tool access, different models exhibited varying degrees of improvement:

1026 GPT-5 achieved the largest gain, whereas GPT-4o showed a more modest increase. These results
 1027 highlight differences in problem decomposition and tool-use capabilities among LLMs, and further
 1028 corroborate the conclusions presented in the main experiments.

1029 In the *No Tool* setting, LLMs/MLLMs were restricted from using any tools, and base64 encoding
 1030 was not applied in RGB tasks specifically. To ensure integrity in the comparison, we added exper-
 1031 iments with base64 encoding for RGB tasks. We observed that while models like GPT-5 showed
 1032 some improvement in accuracy (compared with not applying base64 encoding), the performance
 1033 remained at relatively low levels. DeepSeek and Kimik2 were unable to handle RGB tasks yet. The
 1034 conclusions derived from the ablation study remain unchanged.

1036 B EVALUATION

1038 B.1 EVALUATION MODEL

1040 Our evaluation covers 13 recent LLMs, including both closed-source and open-source ones, to un-
 1041 derstand their capabilities across multiple Earth observation tasks. The baseline models are listed in
 1042 Table 7.

1043 Table 7: Models evaluated in our benchmark and their corresponding API references.

1046 Model	1047 Model Version	1048 API Links
1047 GPT5	1048 GPT-5	https://platform.openai.com/docs/models/gpt-5
1049 GPT4	1050 GPT-4o	https://platform.openai.com/docs/models/gpt-4o
1051 Gemini	1052 Gemini-2.5-Flash	https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash
1053 Mistral	1054 Mistral-Large	https://docs.mistral.ai/getting-started/models/
1055 Qwen	1056 Qwen3-Max-Previous 1057 Qwen3-32B Qwen-Plus	https://www.alibabacloud.com/help/en/model-studio/use-qwen-by-calling-api
1058 Kimi	1059 Kimi-K2	https://platform.moonshot.ai/docs/guide/start-using-kimi-api
1060 Deepseek	1061 Deepseek-V3.1	https://api-docs.deepseek.com
1062 Seed	1063 Seed-1.6	https://www.volcengine.com/docs/82379/1099455
1064 LLaMA	1065 LLaMA-4-Maverick	https://www.llama.com/products/llama-api/
1066 GLM	1067 GLM-4.5v	https://docs.z.ai/guides/vlm/glm-4.5v
1068 InternVL	1069 InternVL-3.5	https://internlm.intern-ai.org.cn/api/document

1070 B.2 EVALUATION METRIC

1071 Formally, for each task goal g , our geoscience experts provide (i) a ground-truth final answer y^* ,
 1072 and (ii) an expert-annotated reasoning trajectory.

$$1074 \tau^* = [(o_0^*, a_0^*), (o_1^*, a_1^*), \dots, (o_m^*, a_m^*)],$$

1075 where each action is defined as

$$1076 a_k^* = (t_k^*, in_k^*, out_k^*),$$

1077 with $t_k^* \in \mathcal{V}$ denoting the tool identifier (from the tool vocabulary), $in_k^* \in \mathcal{X}$ the input arguments,
 1078 and $out_k^* \in \mathcal{O}$ the corresponding output. In other words, each tool is characterized by its name in
 1079 the vocabulary, its input arguments, and its output results.

1080 Given a policy π , the agent generates an output trajectory
 1081

$$1082 \tau = [(o_0, a_0), (o_1, a_1), \dots, (o_n, a_n)],$$

1083 together with a predicted final answer y .
 1084

1085 To comprehensively evaluate the performance of the Agent on the Earth Benchmark, we assess
 1086 its execution process from two perspectives: End-to-End and Step-by-Step. The corresponding
 1087 evaluation metrics are defined as follows:

1088 **End-to-End protocol.** End-to-end metrics evaluate the task-level performance of the agent, inde-
 1089 pendent of its intermediate reasoning. We consider two complementary measures:

1090 (1) *Accuracy*. The correctness of the final answer is computed as
 1091

$$1092 \text{Acc} = \mathbb{E}_{g \sim \mathcal{G}} [\mathbb{I}\{y = y^*\}], \quad (1)$$

1093 where $\mathbb{I}\{\cdot\}$ is the indicator function and \mathcal{G} is the distribution of benchmark tasks.
 1094

1095 (2) *Efficiency*. To penalize unnecessarily long trajectories, we measure the relative optimality of tool
 1096 usage:

$$1097 \text{Eff}(\tau, \tau^*) = \frac{|\tau|}{|\tau^*|}, \quad (2)$$

1099 where $|\tau|$ and $|\tau^*|$ denote the number of tool calls in the predicted and ground-truth trajectories,
 1100 respectively.
 1101

1102 **Step-by-Step protocol.** In addition to outcome-based metrics, we also evaluate the fidelity of the
 1103 reasoning trajectory relative to expert annotations. Let $\mathbf{t}^* = (t_1^*, \dots, t_m^*)$ and $\mathbf{t} = (t_1, \dots, t_n)$
 1104 denote the tool sequences, and $\mathbf{in}^* = (in_1^*, \dots, in_m^*)$, $\mathbf{in} = (in_1, \dots, in_n)$ the corresponding
 1105 parameter sequences. We define four metrics:

1106 (1) *Tools-Any-Order (TAO)*. Coverage of required tools, ignoring order and duplicates:
 1107

$$1108 \text{TAO}(\tau, \tau^*) = \frac{|\text{Set}(\mathbf{t}^*) \cap \text{Set}(\mathbf{t})|}{|\text{Set}(\mathbf{t}^*)|}, \quad (3)$$

1110 where $\text{Set}(\cdot)$ extracts the set of unique tools.
 1111

1112 (2) *Tools-In-Order (TIO)*. Fraction of ground-truth tools matched as a subsequence in the predicted
 1113 sequence:
 1114

$$1115 k^* = \max \{ k : \exists 1 \leq j_1 < \dots < j_k \leq n, t_{j_i} = t_i^*, \forall i \leq k \}, \quad \text{TIO}(\tau, \tau^*) = \frac{k^*}{m}. \quad (4)$$

1117 (3) *Tool-Exact-Match (TEM)*. Length of the longest common prefix (LCP), normalized by the
 1118 ground-truth length:
 1119

$$1120 \ell_{\text{lcp}} = \max \{ \ell \leq \min(m, n) : t_i = t_i^*, \forall i \leq \ell \}, \quad \text{TEM}(\tau, \tau^*) = \frac{\ell_{\text{lcp}}}{m}. \quad (5)$$

1122 (4) *Parameter Accuracy*. Exact match of both tool identifiers and arguments under the prefix rule:
 1123

$$1124 \ell_{\text{param}} = \max \{ \ell \leq \min(m, n) : t_i = t_i^* \wedge in_i \equiv in_i^*, \forall i \leq \ell \}, \quad S_{\text{param}} = \frac{\ell_{\text{param}}}{m}. \quad (6)$$

1126 Here $in_i \equiv in_i^*$ denotes structural equality of arguments (e.g., dictionary match).
 1127

1128 C BREAKDOWN RESULTS ON DIFFERENT MODALITIES

1131 Table 8, Table 9, and Table 10 present the detailed evaluation results on different subsets of Earth-
 1132 Bench. In the main analysis, we report only the overall performance across the entire benchmark to
 1133 ensure clarity and comparability. Nevertheless, the breakdown results of individual subsets provide
 valuable insights into potential directions for improving LLMs in Earth Observation tasks.

1134 Table 8: Performance of different LLM-based agents on the **Spectrum** subset of Earth-Bench. We
 1135 **bold** the best results and underline the runner-ups.

1136

Model	Tool-Any-Order		Tool-In-Order		Tool-Exact-Match		Parameters		Efficiency		Accuracy	
	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF
GPT-5	72.67	<u>78.37</u> ↑	65.80	<u>74.71</u> ↑	49.64	<u>52.07</u> ↑	<u>21.74</u>	<u>24.97</u> ↑	3.5510	4.6657↓	61.00	64.00 ↑
Gemini-2.5	71.35	71.90↑	65.14	64.84↓	40.12	49.89↑	17.57	21.41↑	4.3584	4.5585↑	<u>52.00</u>	52.00
GPT-4o	69.55	72.83↑	56.12	62.07↑	48.27	51.02↑	21.62	24.08↑	3.7736	4.5726↓	37.00	42.00↑
Kimik2	71.92	86.02 ↑	62.27	78.91 ↑	43.04	54.81 ↑	20.73	<u>25.67</u> ↑	2.5758	3.1005↓	38.00	50.00↑
DeepSeek-V3.1	76.48	75.97↓	67.64	66.57↓	50.22	50.52↑	26.32	26.13 ↓	3.9014	4.0685↓	47.00	45.00↓
Qwen3-Max	77.67	74.27↓	<u>66.47</u>	65.58↓	33.97	48.54↑	16.04	24.43↑	3.1981	3.2864↓	45.00	40.00↓
Seed-1.6	55.07	63.92↑	42.00	54.94↑	24.53	34.37↓	12.56	16.83↑	1.7525	1.9186↓	40.00	<u>57.00</u> ↑
LLaMA-4	16.89	25.20↑	3.57	18.26↑	2.69	13.58↑	2.02	8.17↑	0.3648	<u>0.4275</u> ↓	36.00	37.00↑
Qwen-Plus	55.95	57.38↑	36.27	48.89↑	5.67	35.14↑	2.87	17.47↑	2.2833	2.4157↓	33.00	36.00↑
GLM-4.5v	47.53	49.87↑	41.93	45.63↑	14.26	25.22↑	9.13	16.41↑	3.1121	3.0709↑	33.33	28.28↓
Mistral	23.73	19.58↓	4.58	16.13↑	1.87	13.37↑	1.33	6.15↑	1.3825	0.8316↑	24.00	18.00↓
Qwen3-32B	45.02	65.25↑	26.60	57.17↑	5.53	38.86↑	3.43	20.52↑	4.3328	3.4380↑	12.00	29.00↑
InternVL-3.5	7.50	18.77↑	3.58	16.09↑	0.58	13.02↑	0.33	5.65↑	0.1127	0.2411 ↓	19.00	25.00↑

1151

1152

1153 On the Spectrum subset, the accuracy of the Agent’s responses is generally below the average,
 1154 and the overall efficiency is also lower than the benchmark mean. This indicates that the Agent
 1155 encounters significant difficulties when addressing tasks in this subset. A likely reason is that the
 1156 LLMs involved in the evaluation have limited familiarity with processing raw Earth Observation
 1157 data. Furthermore, tasks in this subset often require analyzing a larger number of images, making
 1158 them inherently more challenging compared to tasks in other subsets.

1159

1160

1161 In contrast, on the Product subset, the Agent’s responses are substantially above the average in
 1162 terms of accuracy, and its efficiency is comparable to that of expert annotations. This suggests that
 1163 LLMs are more adept at handling structured, product-level information, where tasks often align with
 1164 general reasoning and statistical capabilities rather than requiring specialized domain expertise.

1165

1166 Table 9: Performance of different LLM-based agents on the **Products** subset of Earth-Bench. We
 1167 **bold** the best results and underline the runner-ups.

1168

Model	Tool-Any-Order		Tool-In-Order		Tool-Exact-Match		Parameters		Efficiency		Accuracy	
	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF
GPT-5	60.04	<u>62.35</u> ↑	38.43	40.44↑	31.52	34.03↑	17.62	<u>16.75</u> ↓	1.7154	1.6190↑	75.00	71.59 ↓
Gemini-2.5	48.94	51.46 ↑	33.82	<u>35.26</u> ↑	29.54	<u>27.63</u> ↓	16.33	<u>17.11</u> ↑	3.0055	1.1600↑	62.50	63.64↑
GPT-4o	57.27	60.11↑	33.89	37.80↑	31.31	<u>35.02</u> ↑	19.13	<u>18.71</u> ↓	1.1800	1.5270↓	54.55	54.55
Kimik2	66.91	<u>69.83</u> ↑	42.99	49.96 ↑	34.75	38.84 ↑	<u>20.23</u>	21.32 ↑	1.2489	1.6481↓	62.50	60.23↓
DeepSeek-V3.1	73.48	72.75 ↓	43.35	<u>46.16</u> ↑	32.18	33.32↑	20.50	<u>19.92</u> ↓	1.8111	1.6449↑	50.00	59.09↑
Qwen3-Max	63.24	66.80↑	40.30	44.78↑	<u>33.22</u>	30.24↓	<u>20.23</u>	16.52↓	1.0688	1.0859↓	56.82	61.36↑
Seed-1.6	54.02	55.57↑	36.75	37.20↑	28.84	31.27↑	16.79	19.82↑	0.8776	0.9359↓	<u>65.06</u>	<u>67.05</u> ↑
LLaMA-4	8.92	9.83↑	2.51	2.61↑	1.39	1.65↑	1.05	1.31↑	0.1641	0.1614↑	60.23	47.73↓
Qwen-Plus	47.71	51.57↑	25.33	27.37↑	10.16	4.14↓	6.52	2.97↓	0.9972	1.0016↓	53.41	40.91↓
GLM-4.5v	35.06	41.97↑	19.36	24.68↑	8.77	9.04↑	6.60	7.77↑	0.9342	1.1979↓	43.18	47.67↑
Mistral	26.61	30.36↑	12.80	13.43↑	8.83	10.40↑	5.42	4.40↓	0.6263	1.0206↓	36.36	22.73↓
Qwen3-32B	29.66	6.97↓	11.81	1.93↓	2.70	1.14↓	2.07	1.14↓	2.2108	0.6987↑	27.27	18.39↓
InternVL-3.5	4.91	5.27↑	1.94	2.32↑	0.52	2.26↑	0.52	0.55↑	0.0495	0.0424 ↑	36.36	28.41↓

1180

1181

1182 For the RGB subset, the Agent demonstrates above-average performance in tool utilization and
 1183 achieves efficiency close to that of expert annotations. However, its response accuracy remains
 1184 substantially below the average. This limitation is closely tied to the capabilities of the tools within
 1185 the Perception Toolkit. In certain cases, even when the Agent selects the same tools as those used
 1186 in expert annotations, the outputs still diverge from the ground-truth answers due to the constraints
 1187 of the underlying expert models. As the first attempt to develop an Agent framework for Earth
 1188 Observation, our work highlights this challenge and encourages future EO Agent research to adopt
 1189 more advanced expert models in order to overcome these limitations.

1188
1189 Table 10: Performance of different LLM-based agents on the **RGB** subset of Earth-Bench. We **bold**
1190 the best results and underline the runner-ups.
1191

Model	Tool-Any-Order		Tool-In-Order		Tool-Exact-Match		Parameters		Efficiency		Accuracy	
	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF	AP	IF
GPT-5	<u>76.61</u>	72.09 _↓	<u>75.04</u>	67.08 _↓	59.60	52.71 _↓	46.15	40.73 _↓	1.5312	1.5784 _↓	59.32	49.15 _↓
Gemini-2.5	48.70	60.11 _↑	29.38	50.11 _↑	21.33	45.54 _↑	19.07	36.75 _↑	0.7926	0.8878 _↓	47.46	47.46
GPT-4o	71.86	66.89 _↓	66.60	61.13 _↓	64.76	60.00 _↓	<u>46.65</u>	47.54 _↑	0.8779	0.8939 _↓	45.76	35.59 _↓
Kimik2	75.65	80.62 _↑	71.37	79.90 _↑	51.48	63.32 _↑	43.12	52.19 _↑	1.5341	1.4104 _↑	54.24	62.71 _↑
DeepSeek-V3.1	88.98	<u>89.21</u> _↑	85.49	87.64 _↑	71.54	74.05 _↑	53.57	<u>57.22</u> _↑	1.6895	1.7966 _↓	<u>55.93</u>	54.24 _↓
Qwen3-Max	65.25	68.14 _↑	50.28	56.58 _↑	47.88	51.55 _↑	34.04	43.93 _↑	0.8601	0.9785 _↓	49.15	38.98 _↓
Seed-1.6	57.99	57.59 _↓	44.00	47.30 _↑	34.11	43.74 _↑	29.93	39.02 _↑	1.1948	0.9589 _↑	<u>55.93</u>	52.54 _↓
LLaMA-4	27.20	36.52 _↑	0.47	15.61 _↑	0.47	12.43 _↑	0.47	11.25 _↑	<u>0.3464</u>	<u>0.3790</u> _↑	37.29	27.12 _↓
Qwen-Plus	51.89	60.11 _↑	29.51	42.80 _↑	24.18	41.07 _↑	23.62	36.89 _↑	0.9721	1.0488 _↓	42.37	38.98 _↓
GLM-4.5v	47.91	48.42 _↑	27.36	33.54 _↑	21.93	27.38 _↑	19.73	24.98 _↑	1.3070	1.4535 _↓	16.95	28.81 _↑
Mistral	36.16	45.59 _↑	22.46	40.11 _↑	21.89	37.71 _↑	19.97	31.84 _↑	0.7215	0.7531 _↓	30.51	30.51
Qwen3-32B	45.93	<u>56.47</u> _↑	27.54	41.69 _↑	26.41	41.69 _↑	25.28	37.74 _↑	0.7767	1.0891 _↓	25.42	27.12 _↑
InternVL-3.5	16.95	29.92 _↑	7.23	13.58 _↑	6.67	13.58 _↑	4.75	11.88 _↑	0.2398	0.2606 _↓	25.42	27.12 _↑

1205
1206 Overall, the comparative analysis across subsets highlights both the strengths and limitations of
1207 LLM-based Agents in Earth Observation. While LLMs achieve relatively strong performance on
1208 Product tasks, where success relies more on general reasoning and statistical skills, they remain less
1209 effective on tasks that demand specialized knowledge, such as those in the Spectrum subset, which
1210 involve interpreting raw spectral data. Moreover, Earth-Agent incorporates expert models within the
1211 Perception Toolkit for tasks such as segmentation and object detection, which significantly improves
1212 performance in the corresponding scenarios. However, the generalization ability of these expert
1213 models remains limited, as their outputs do not always align with ground-truth answers, even when
1214 the correct tools are selected. These findings suggest that future progress in EO Agents will depend
1215 not only on enhancing LLMs with domain-specific knowledge, but also on developing more robust
1216 and versatile expert models to ensure reliable performance across the diverse spectrum of Earth
1217 Observation tasks.

D ERROR ANALYSIS

1218
1219 To analyze the errors made by Agents with different LLM backbones on Earth-Bench tasks, we
1220 selected GPT-5 as a representative closed-source model, and Kimi-K2, Qwen3-Max, and Deepseek-
1221 V3.1 as representative open-source models. We counted the number of errors and categorized them
1222 into five types:

- 1223 • Unaware of Termination Conditions: failure to recognize the task’s termination condition,
1224 leading to repeated tool calls until reaching the maximum step limit;
- 1225 • Tool Hallucination: attempts to invoke non-existent tools;
- 1226 • File Hallucination: attempts to process non-existent files, i.e., providing invalid file or
1227 folder paths as tool inputs;
- 1228 • Invalid Parameters: inputs that do not conform to the expected parameter format or are
1229 otherwise invalid;
- 1230 • System Error: system-level failures caused by the runtime environment or external depen-
1231 dencies.

1232
1233 Figure 7 presents the frequency and distribution of these error types. Results show that GPT-5
1234 produced the largest number of errors, while Kimi-K2 had the fewest. Except for GPT-5, the other
1235 models exhibited similar error counts across different regimes, and their error distributions did not
1236 vary significantly, suggesting that providing more detailed execution steps does not substantially
1237 improve tool-use proficiency.

1238
1239 In terms of error types, GPT-5 errors were dominated by Invalid Parameters, with occasional Sys-
1240 tem Errors and File Hallucinations, but no Tool Hallucinations. In contrast, the three open-source

models demonstrated different error patterns: while Invalid Parameters remained a notable factor, it was not the primary source of errors. Instead, nearly 60% of their errors stemmed from Hallucinations and Unaware of Termination Conditions. We hypothesize that this difference is related to training strategies. Open-source models are often trained with reinforcement learning, which may encourage more exploratory outputs, thereby increasing the likelihood of hallucinations. Moreover, their reward functions are typically designed to shape behavioral style and output preferences rather than enhance factual knowledge, which could make models more prone to generating divergent or repetitive outputs and to overlooking termination conditions.

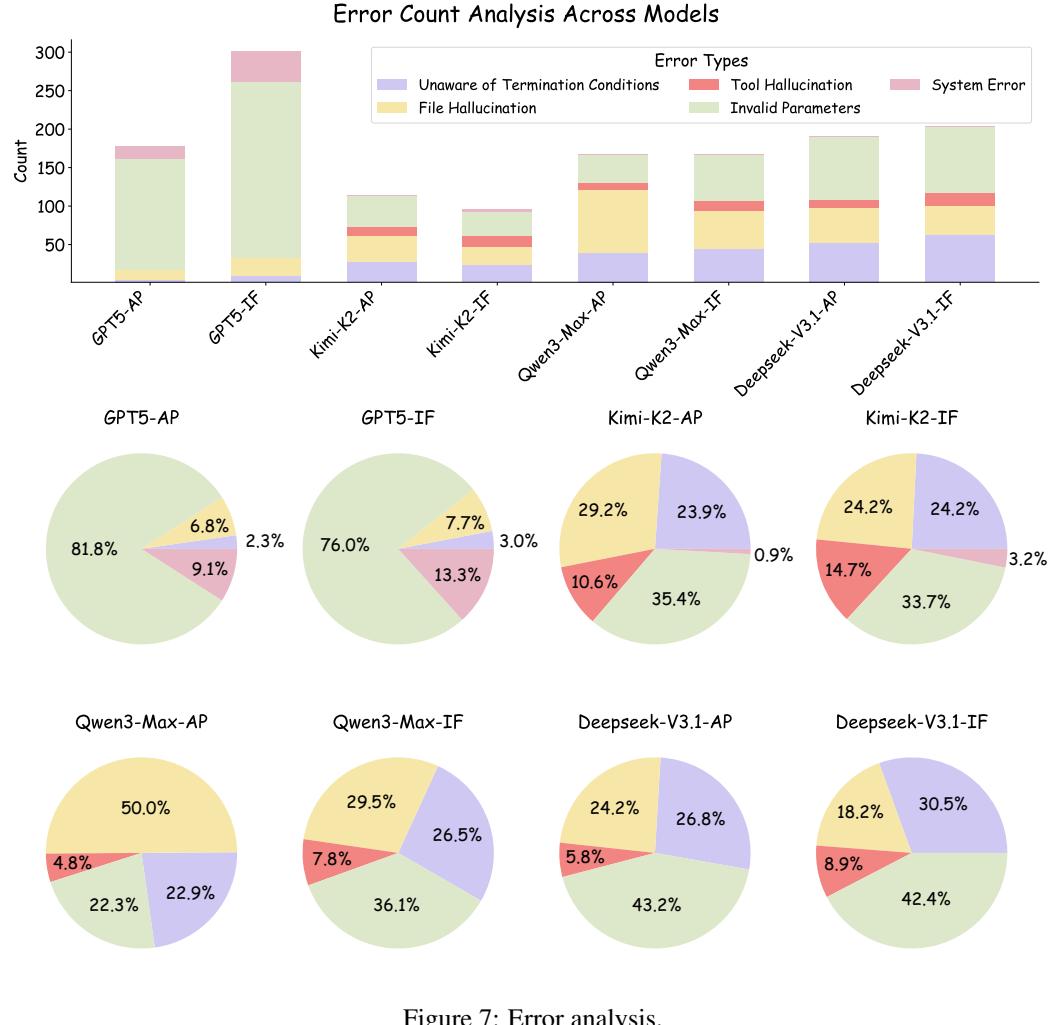


Figure 7: Error analysis.

E LATENCY EXPERIMENT

E.1 BREAKDOWN RESULTS ON LATENCY

We further break down the latency into **LLM Latency** and **Tool Latency**. It is evident that the majority of the latency is spent on model calls (LLM Latency), rather than on external tool calls (Tool Latency). This suggests that reducing the frequency of model calls could further improve latency. The results are shown in Table 11.

We observe that the majority of the latency is attributed to **LLM Latency**, while the impact of **Tool Latency** is relatively minimal. Therefore, reducing the frequency of model calls could significantly improve overall latency. This suggests that optimizing the model call frequency would further enhance system performance.

1296

Table 11: Latency Breakdown for Different Models on Earth-Bench-Lite

1297

1298

1299

1300

1301

1302

1303

1304

1305

E.2 OUR PROPOSED STRATEGY

1306

We addressed this issue in the design of the Earth-Agent architecture. Specifically, we optimized the tool design to minimize unnecessary interactions with the model. For instance, by leveraging batch calculations for Earth indices, such as the NDVI calculation, we significantly reduce the frequency of model interactions, thereby lowering the overall latency. Below is an example of our approach:

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Batch Computing Strategy

```

1 def calculate_ndvi(input_nir_path, input_red_path, output_path):
2     with rasterio.open(input_nir_path) as nir_src:
3         nir_band = nir_src.read(1) # Read the first band (assuming single-band rasters
4         )
5         nir_profile = nir_src.profile # Get the metadata profile
6         with rasterio.open(input_red_path) as red_src:
7             red_band = red_src.read(1) # Read the first band (assuming single-band rasters
8             )
9             nir_band = np.array(nir_band, dtype=np.float32)
10            red_band = np.array(red_band, dtype=np.float32)
11            nir_band = np.clip(nir_band, 0, 10000)
12            red_band = np.clip(red_band, 0, 10000)
13            valid_mask = (nir_band >= 0) & (nir_band <= 10000) & (red_band >= 0) & (red_band <=
14            10000)
15            denominator = nir_band + red_band + 1e-6
16            ndvi = (nir_band - red_band) / denominator
17            # Set invalid pixels to -9999
18            ndvi[~valid_mask] = -9999
19            ndvi_profile = nir_profile.copy()
20            ndvi_profile.update(
21                dtype=rasterio.float32, # NDVI values are floating-point numbers
22                nodata=-9999, # Set a NoData value
23                compress='lzw' # Optional: compress the output file
24            )
25            # Save the NDVI result to the specified output path
26            os.makedirs((TEMP_DIR / output_path).parent, exist_ok=True)
27            with rasterio.open(TEMP_DIR / output_path, 'w', **ndvi_profile) as dst:
28                dst.write(ndvi.astype(rasterio.float32), 1)
29
30            return f'Result save at {TEMP_DIR / output_path}'
31 @mcplib.tool(description="")
32 Batch-calculate NDVI from multiple pairs of NIR/Red raster files and save results.
33
34 Parameters:
35     input_nir_paths (list[str]): Paths to Near-Infrared (NIR) band raster files.
36     input_red_paths (list[str]): Paths to Red band raster files.
37     output_paths (list[str]): Relative output paths (e.g., "question17/ndvi_2022-01-16.
38         tif") for each pair.
39
40 Returns:
41     list[str]: A list of result messages (one per output), as returned by `calculate_ndvi`.
42     """
43     def calculate_batch_ndvi(
44         input_nir_paths: list[str],
45         input_red_paths: list[str],
46         output_paths: list[str]
47     ) -> list[str]:
48         return [
49             calculate_ndvi(nir_path, red_path, out_path)
50             for nir_path, red_path, out_path in zip(input_nir_paths, input_red_paths,
51             output_paths)
52         ]

```

1350 F SCALABILITY DISCUSSION

1352 Understanding the performance trends as the number of tool calls increases is crucial for evaluating
 1353 the system’s behavior, particularly in terms of latency and scalability under increasing task
 1354 complexity.

1356 F.1 PERFORMANCE WITH RESPECT TO TOOL NUMBER

1358 To address this, we conducted an ablation study examining the relationship between the **number of**
 1359 **tools** used and the **system’s performance** across three SOTA models: GPT5, DeepSeek-V3.1, and
 1360 Kimik2. The following Table 12 presents the results, highlighting the high performance range for
 1361 each model:

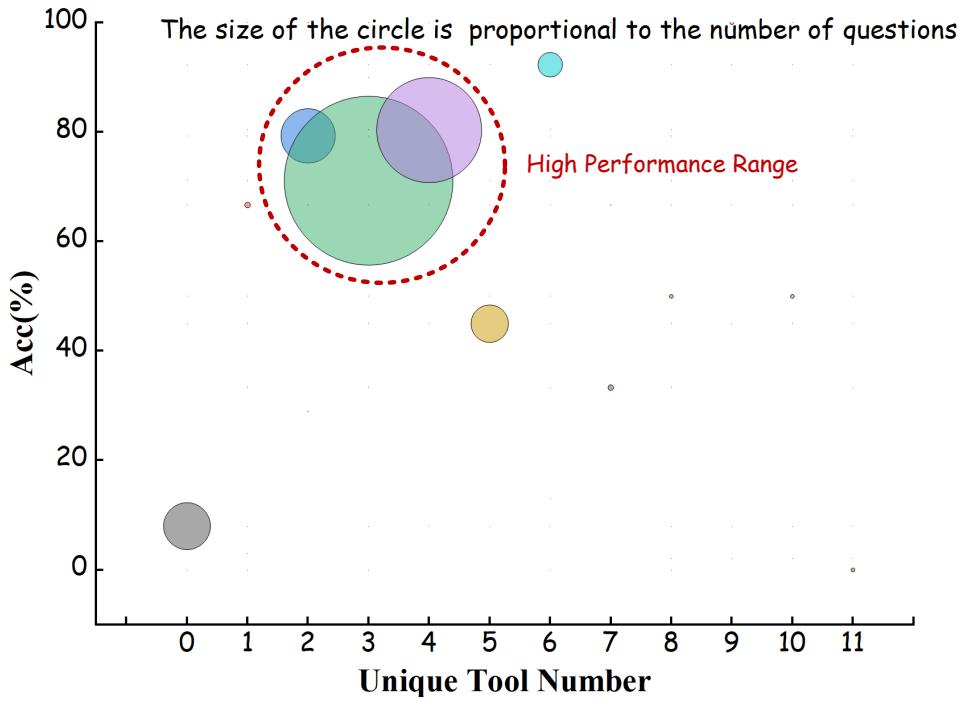
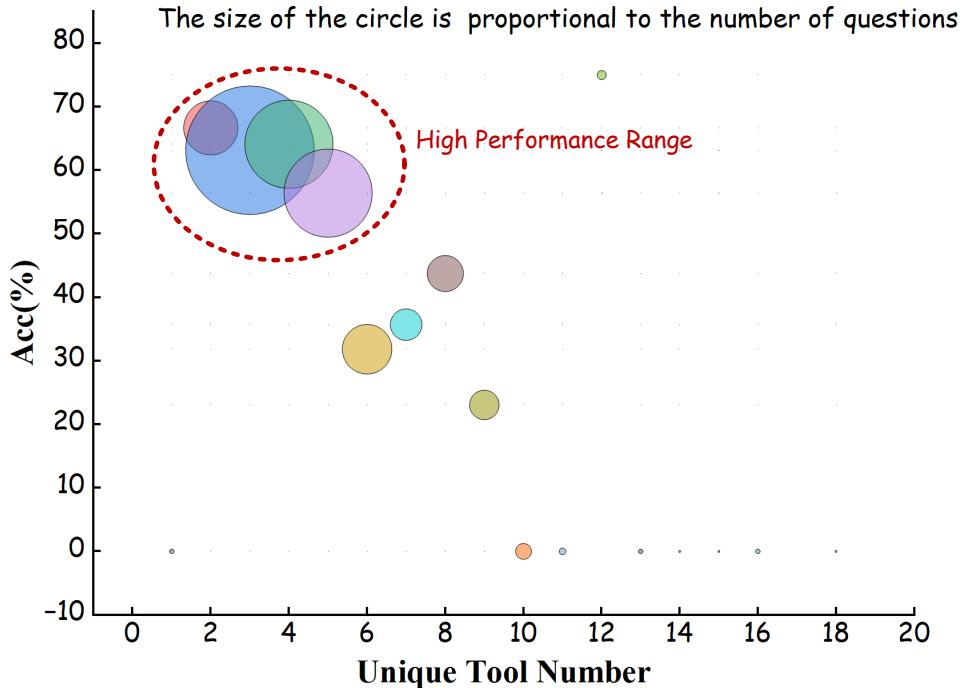
1363 Table 12: Performance of Earth-Agent Models with respect to Tool Numbers. The **high performance**
 1364 **range** is highlighted.

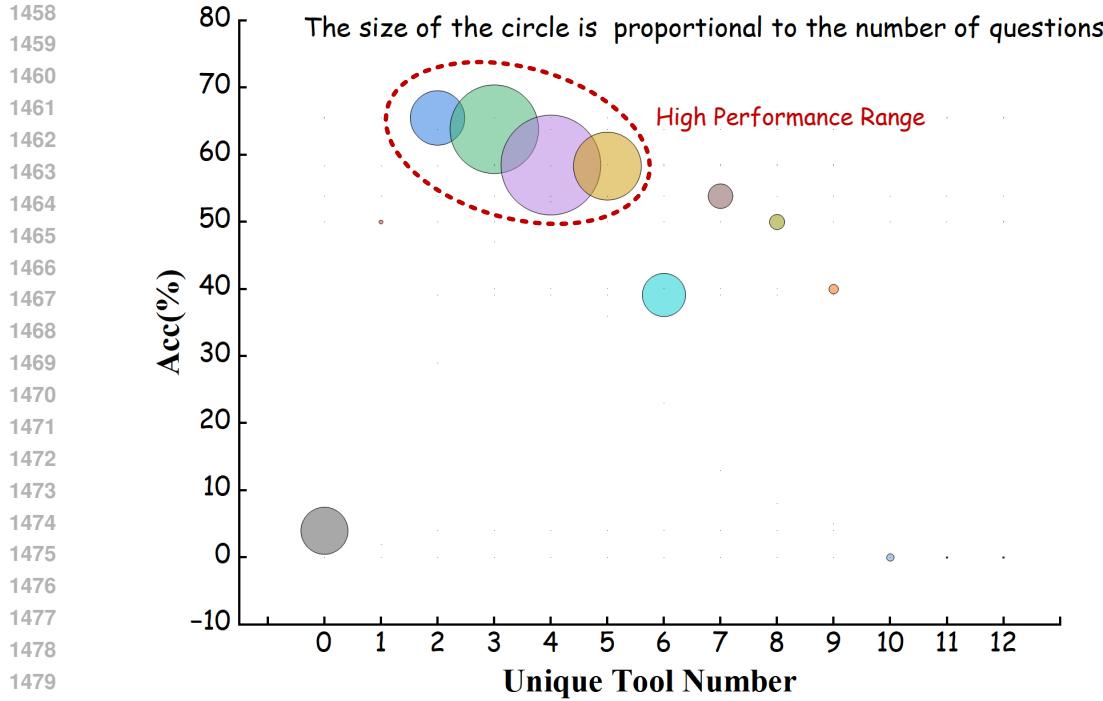
1366 Tool Numbers	1367 GPT5		1368 DeepSeek-V3.1		1369 Kimik2	
	1370 Questions	1371 Accuracy (%)	1372 Questions	1373 Accuracy (%)	1374 Questions	1375 Accuracy (%)
1376 0	1377 25	1378 8.00	1379 -	1380 -	1381 25	1382 4.00
1383 1	1384 3	1385 66.67	1386 2	1387 0.00	1388 1	1389 0.00
1389 2	1390 8	1391 75.00	1392 -	1393 -	1394 5	1395 40.00
1395 3	1396 42	1397 80.95	1398 23	1399 73.91	1400 17	1401 76.47
1401 4	1402 29	1403 89.66	1404 23	1405 86.96	1406 21	1407 66.67
1407 5	1408 30	1409 60.00	1410 19	1411 68.42	1412 21	1413 71.43
1413 6	1414 7	1415 85.71	1416 15	1417 60.00	1418 27	1419 70.37
1419 7	1420 10	1421 90.00	1422 15	1423 40.00	1424 16	1425 56.25
1425 8	1426 10	1427 80.00	1428 8	1429 87.50	1430 20	1431 65.00
1431 9	1432 4	1433 75.00	1434 10	1435 60.00	1436 4	1437 25.00
1437 10	1438 10	1439 70.00	1440 11	1441 54.55	1442 5	1443 40.00
1443 11	1444 4	1445 50.00	1446 8	1447 75.00	1448 11	1449 54.55
1449 12	1450 3	1451 33.33	1452 8	1453 75.00	1454 9	1455 66.67
1455 13	1456 6	1457 100.00	1458 17	1459 70.59	1460 20	1461 80.00
1461 14	1462 4	1463 75.00	1464 4	1465 50.00	1466 3	1467 33.33
1467 15	1468 2	1469 0.00	1470 5	1471 100.00	1472 4	1473 50.00
1473 16	1474 2	1475 100.00	1476 3	1477 66.67	1478 1	1479 0.00
1479 17	1480 4	1481 50.00	1482 4	1483 25.00	1484 3	1485 66.67
1485 18	1486 4	1487 50.00	1488 4	1489 25.00	1490 2	1491 50.00
1491 19	1492 3	1493 0.00	1494 3	1495 0.00	1496 1	1497 0.00
1497 20	1498 3	1499 33.33	1500 3	1501 33.33	1502 1	1503 100.00
1503 ...	1504 ...	1505 ...	1506 ...	1507 ...	1508 ...	1509 ...
1509 159	1510 1	1511 100.00	1512 -	1513 -	1514 -	1515 -

1389 From the results, we observe distinct performance trends for each model:

- 1391 • For Earth-Agent driven by GPT5, high accuracy is primarily concentrated within **the tool**
 1392 **number range of 1 to 14**.
- 1393 • For Earth-Agent driven by DeepSeek-V3.1, the high-performance range is within **the tool**
 1394 **number range of 3 to 15**.
- 1395 • For Earth-Agent driven by Kimik2, the high-performance range falls within **the tool num-**
 1396 **ber range of 3 to 13**.

1398 These high performance ranges align with expectations and indicate that task complexity plays a
 1399 key role in system performance. Using too few tools (with the extreme case being zero tools) results
 1400 in low accuracy, as the agent is unable to solve the task effectively, often leading to early errors.
 1401 Conversely, performance tends to degrade when too many tools are employed, suggesting that the
 1402 current capabilities of the base LLMs may not be sufficient to handle long chains of reasoning
 1403 efficiently.

1404
1405 F.2 PERFORMANCE WITH RESPECT TO UNIQUE TOOL NUMBER1406
1407 We also investigated the relationship between the **unique number of tools** used and **performance**
1408 **trends**. Below is a visual representation using a bubble chart, where the size of each bubble is
1409 proportional to the number of questions.1432 Figure 8: **GPT5: Performance with respect to Unique Tool Number**1457 Figure 9: **DeepSeek-V3.1: Performance with respect to Unique Tool Number**

Figure 10: **Kimik2: Performance with respect to Unique Tool Number**

Based on Figures 8, 9, and 10, we observed the following trends in the Earth-Agent system: When driven by GPT5, high accuracy is primarily observed within the range of 2 to 5 unique tool calls. For DeepSeek, the optimal accuracy is concentrated in the range of 2 to 6 unique tool calls, while for Kimik2, high accuracy is predominantly found in the range of 1 to 6 unique tool calls. We also observed a performance decline when the number of tool calls becomes excessive. These findings align with our expectations, highlighting the current limitations of LLMs in handling tasks that involve long chains of reasoning or excessive tool interactions.

This analysis provides valuable insights into the scalability of the system as task complexity increases. It also offers important directions for future agent training, including (1) optimizing the agent's startup phase and (2) developing datasets for long-chain reasoning to enhance the agent's ability to handle multiple tool calls effectively.

G TOOL KIT LIST

The Index Toolkit offers a comprehensive suite of automated functions for computing a wide range of remote sensing indices directly from raster data. It supports efficient batch processing and covers commonly used indices related to vegetation, water, soil, snow, and burn severity, such as NDVI, NDWI, and NDBI. A detailed list of the implemented indices is provided in Table 13.

Table 13: List of detailed information of Index Toolkit.

Tool Name	Category	Description Summary
calculate_batch_ndvi	Index	Batch-calculate NDVI from multiple pairs of NIR/Red raster files and save results.
calculate_batch_ndwi	Index	Batch-calculate NDWI from multiple pairs of NIR/SWIR raster files and save results.
calculate_batch_ndbi	Index	Batch-calculate NDBI from multiple pairs of SWIR/NIR raster files and save results.

1512	calculate_batch_evi	Index	Batch-calculate EVI from multiple sets of NIR/Red/Blue raster files and save results.
1513			
1514	calculate_batch_nbr	Index	Batch-calculate NBR from multiple pairs of NIR/SWIR raster files and save results.
1515			
1516	calculate_batch_fvc	Index	Batch-calculate FVC from multiple pairs of NIR/Red raster files and save results.
1517			
1518	calculate_batch_wri	Index	Batch-calculate WRI from multiple sets of Green/Red/NIR/SWIR raster files and save results.
1519			
1520	calculate_batch_ndti	Index	Batch-calculate NDTI from multiple pairs of Red/Green raster files and save results.
1521			
1522	calculate_batch_frp	Index	Batch-calculate Fire Radiative Power (FRP) masks from multiple raster files and save results.
1523			
1524	calculate_batch_ndsi	Index	Calculate NDSI for multiple pairs of Green and SWIR band images.
1525			
1526	calc_extreme_snow_loss_percentage_from_binary_map	Index	Calculate the percentage of extreme snow and ice loss areas from a binary map.
1527			
1528	compute_tvdi	Index	Compute TVDI (Temperature Vegetation Dryness Index) using NDVI and LST from local raster files.
1529			
1530			
1531			
1532			
1533			
1534			
1535			
1536			

The Inversion Toolkit integrates a collection of algorithms for retrieving key geophysical and environmental parameters from optical, thermal infrared, and microwave remote sensing data. It supports multiple retrieval methods for parameters such as land surface temperature (LST), land surface emissivity, and precipitable water vapor (PWV), including single-channel, multi-channel, and split-window approaches. By enabling flexible, efficient, and reproducible parameter estimation across multi-source Earth Observation data, the toolkit provides a versatile foundation for quantitative remote sensing applications. A detailed list of the implemented algorithms is provided in Table 14.

Table 14: List of detailed information of Inversion Toolkit.

Tool Name	Category	Description Summary
band_ratio	Inversion	Compute Precipitable Water Vapor (PWV) image from local MODIS surface reflectance band files using the band ratio method.
lst_single_channel	Inversion	Estimate Land Surface Temperature (LST) using the Single-Channel method, with NDVI-based emissivity estimation from RED and NIR bands.
lst_multi_channel	Inversion	Estimate Land Surface Temperature (LST) using the multi-channel algorithm.
split_window	Inversion	Estimate Land Surface Temperature (LST) or Precipitable Water Vapor (PWV) using the split-window algorithm.
temperature_emissivity_separation	Inversion	Estimate Land Surface Temperature (LST) using an enhanced Temperature Emissivity Separation (TES) algorithm with empirical emissivity estimation.

1566	modis_day_night_lst	Inversion	Estimate land surface temperature (LST) from local MODIS Day and Night brightness temperatures using a single-channel correction method.
1567			
1568			
1569			
1570	ttm_lst	Inversion	Estimate land surface temperature (LST) and emissivity using improved Three-Temperature Method (TTM) from three local thermal band GeoTIFF files. Uses all three bands to form a system of equations and solves per-pixel with physical constraints.
1571			
1572			
1573			
1574			
1575			
1576	calculate_mean_lst_by_ndvi	Inversion	Calculate the average Land Surface Temperature (LST) across multiple images where NDVI is either above or below a given threshold.
1577			
1578			
1579			
1580	calculate_max_lst_by_ndvi	Inversion	Calculate the maximum Land Surface Temperature (LST) in areas where NDVI is above or below a given threshold.
1581			
1582			
1583	ATI	Inversion	Estimate Apparent Thermal Inertia (ATI) using the Thermal Inertia Method. This method calculates ATI as $(1 - \text{albedo}) / (\text{day_temp} - \text{night_temp})$, which serves as a proxy for land surface temperature stability over diurnal cycles.
1584			
1585			
1586			
1587			
1588			
1589	dual_polarization_differential	Inversion	Dual-Polarization Differential Method (DPDM) for microwave remote sensing parameter inversion. Supports soil moisture and vegetation index estimation with improved data handling and flexible parameters.
1590			
1591			
1592			
1593			
1594	dual_frequency_diff	Inversion	Dual-frequency Differential Method (DDM) for parameter inversion using local raster data. Supports inversion of multiple parameters via empirical linear models: Soil Moisture (SM): param = alpha*(band1 - band2) + beta; Vegetation Index (VI): param = alpha*(band1 - band2) + beta; Leaf Area Index (LAI): param = alpha*(band1 - band2) + beta
1595			
1596			
1597			
1598			
1599			
1600			
1601			
1602	multi_freq_bt	Inversion	Multi-frequency Brightness Temperature Method for parameter inversion using local raster data.
1603			
1604			
1605	chang_single_param_inversion	Inversion	Chang algorithm for inversion of a single parameter using multi-frequency dual-polarized microwave brightness temperatures from local raster files.
1606			
1607			
1608			
1609	nasa_team_sea_ice_concentration	Inversion	Estimate Sea Ice Concentration using NASA Team Algorithm from local passive microwave brightness temperature GeoTIFF files.
1610			
1611			
1612			
1613	dual_polarization_ratio	Inversion	Estimate Vegetation Water Content (VWC) or Soil Moisture (SM) using Dual-Polarization Ratio Method (PRM) from local passive microwave brightness temperature GeoTIFF files. The polarization ratio is computed as: $(V - H) / (V + H)$, where V and H are brightness temperatures of vertical and horizontal polarizations.
1614			
1615			
1616			
1617			
1618			
1619			

1620	calculate_water_turbidity_ntu	Inversion	Calculate water turbidity in NTU (Nephelometric Turbidity Units) from red band raster file and save the result to a specified output path.
1621			
1622			
1623			
1624			
1625			

The Perception Toolkit provides a comprehensive set of remote sensing perception tools, covering a wide range of tasks such as scene classification, object detection, and change detection. In addition, it supports threshold-based segmentation and offers a series of post-processing utilities for bounding box and contour refinement. Overall, the toolkit enables diverse perception tasks on RGB remote sensing imagery, including scene recognition, semantic segmentation, and spatiotemporal change detection. A detailed list of the implemented tools is provided in Table 15.

Table 15: List of detailed information of Perception Toolkit.

Tool Name	Category	Description Summary
MSCN	Perception	MSCN is a scene and land-use image classifier, effective for categories such as Airport, BareLand, BaseballField, Beach, Bridge, Center, Church, Commercial, DenseResidential, Desert, Farmland, Forest, Industrial, Meadow, MediumResidential, Mountain, Park, Parking, Playground, Pond, Port, RailwayStation, Resort, River, School, SparseResidential, Square, Stadium, StorageTanks, and Viaduct.
RemoteCLIP	Perception	RemoteCLIP is a scene and land-use image classifier, specialized for categories such as Airport, Beach, Bridge, Commercial, Desert, Farmland, FootballField, Forest, Industrial, Meadow, Mountain, Park, Parking, Pond, Port, RailwayStation, Residential, River, and Viaduct.
Strip_R_CNN	Perception	Strip_R_CNN is a remote sensing object detection model with a strong focus on maritime and ship-related targets. Compared to SM3Det, it is particularly specialized in detecting and localizing different types of ships and naval vessels. This model is highly effective at detecting the following categories: L3 ship, L3 warcraft, L3 merchant ship, L3 aircraft carrier, Arleigh Burke, Container, Ticonderoga, Perry, Tarawa, WhidbeyIsland, CommanderA, Austen, Nimitz, Sanantonio, Container, Car carrierB, Enterprise, Car carrierA, Medical

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674	SM3Det	Perception	SM3Det is a remote sensing object detection model. Given an input image and a natural language prompt specifying the target object (e.g., “plane”, “ship”, “storage tank”), it detects all instances of that object and returns their bounding boxes. This model is particularly strong at detecting and localizing the following categories: plane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, round-about, soccer ball field, swimming pool.
1675			
1676			
1677			
1678			
1679			
1680			
1681			
1682			
1683			
1684			
1685			
1686	RemoteSAM	Perception	RemoteSAM is a remote sensing visual grounding model. Given an input image and a text prompt describing a region of interest (e.g., “the football field located on the westernmost side”), it outputs the corresponding bounding box coordinates.
1687			
1688			
1689			
1690			
1691			
1692	InstructSAM	Perception	InstructSAM is an instruction-guided counting model for remote sensing images. Given an input image and a natural language prompt specifying the target object (e.g., “storage tank”, “football field”), it detects and counts the number of instances matching the description.
1693			
1694			
1695			
1696			
1697			
1698	SAM2	Perception	Use SAM2 to segment the input image and return the path of the segmented image.
1699			
1700	ChangeOS	Perception	Use ChangeOS to detect the change between two images and return the change mask. Can also be used to segment building by providing same image path in pre_image_path and post_image_path.
1701			
1702			
1703			
1704			
1705	threshold_segmentation	Perception	Perform threshold-based segmentation on a single-band raster image. The function reads a raster image from the specified path, converts it to a binary mask by applying a fixed threshold, and writes the resulting binary image to a new file. Pixel values greater than the threshold are set to 255 (white), and values less than or equal to the threshold are set to 0 (black).
1706			
1707			
1708			
1709			
1710			
1711			
1712			
1713	bbox_expansion	Perception	Expands bounding boxes by a given radius and returns the expanded bounding boxes.
1714			
1715	count_above_threshold	Perception	Count the number of pixels in an image whose values are greater than the specified threshold.
1716			
1717	count_connected_components	Perception	Read a binary image and return the count of connected components.
1718			
1719	bboxes2centroids	Perception	Convert bounding boxes from [x_min, y_min, x_max, y_max] format to centroid coordinates (x, y).
1720			
1721			
1722	centroid_distance_extremes	Perception	Compute pairwise distances between centroids and return both the closest and farthest pairs with their indices and distances.
1723			
1724			
1725			
1726	calculate_bbox_area	Perception	Calculate the total area of a list of bounding boxes in [x, y, w, h] format.
1727			

The Analysis Toolkit provides a suite of statistical and spatiotemporal analysis methods tailored for remote sensing and geoscience data. Its functionalities include classical time-series trend detection and decomposition techniques such as linear regression, the Mann–Kendall test, Sen’s slope estimation, and STL decomposition. It also supports change-point detection and seasonal analysis based on autocorrelation. In addition, the toolkit integrates spatial statistical approaches, including hotspot direction analysis, as well as methods for spike detection in numerical sequences. A detailed list of the implemented tools is provided in Table 16.

Table 16: List of detailed information of Analysis Toolkit.

Tool Name	Category	Description Summary
compute_linear_trend	Analysis	Computes the linear trend (slope and intercept) of a time series by fitting a line of the form: $y = a \cdot x + b$ using the least squares method.
mann_kendall_test	Analysis	Perform the non-parametric Mann-Kendall trend test on a univariate time series. The test evaluates whether there is a monotonic upward or downward trend without requiring the data to conform to any particular distribution.
sens_slope	Analysis	Compute Sen’s Slope estimator for a univariate time series. Sen’s Slope is a robust non-parametric method for estimating the median rate of change over time, often used with the Mann-Kendall test to assess both trend and magnitude.
stl_decompose	Analysis	Apply Seasonal-Trend decomposition using LOESS (STL) to a univariate time series. Decomposes the series into trend, seasonal, and residual components.
detect_change_points	Analysis	Detect structural change points in a univariate time series using the ruptures library with the PELT algorithm. A change point marks a location where the statistical properties of the signal shift (e.g., mean or variance).
autocorrelation_function	Analysis	Compute the Autocorrelation Function (ACF) for a univariate time series. The ACF measures the correlation of the series with its own lags, which is useful for detecting seasonality, persistence, and lag dependence.
detect_seasonality_acf	Analysis	Detect the dominant seasonality (period) in a univariate time series using the Autocorrelation Function (ACF). The method searches for significant peaks in the ACF beyond lag=1 to identify repeating cycles.
getis_ord_gi_star	Analysis	Compute the Getis-Ord Gi^* statistic for local spatial autocorrelation on a raster image. This method identifies statistically significant spatial clusters of high (hot spots) or low (cold spots) values using a user-specified spatial weight kernel.

1782	analyze_hotspot_direction	Analysis	Analyze the main directional concentration of hotspots in a binary hotspot map. The function counts the number of hotspot pixels (value=1) in each cardinal direction relative to the map center, and returns the dominant direction.
1787	count_spikes_from_values	Analysis	Count the number of upward spikes in a sequence of numerical values. A spike is defined as a positive difference between consecutive valid values greater than the given threshold.

The Statistics Toolkit offers a comprehensive set of functions for descriptive statistics, image-based statistical analysis, and geospatial data processing. Its capabilities cover the calculation of classical statistical measures such as mean, variance, and skewness, as well as the extraction of statistical information from imagery and intersection-based threshold analysis. In addition, the toolkit provides fundamental arithmetic operations, temperature unit conversions, and image differencing functions. It also supports essential preprocessing tasks, including radiometric correction and cloud masking. Overall, the toolkit enables flexible and efficient extraction and analysis of statistical features from geoscience and remote sensing data. A detailed list of the implemented tools is provided in Table 17.

Table 17: List of detailed information of Statistics Toolkit.

Tool Name	Category	Description Summary
coefficient_of_variation	Statistics	Compute the Coefficient of Variation (CV) for a dataset. The CV is defined as the ratio of the standard deviation to the mean and is commonly used as a normalized measure of dispersion.
skewness	Statistics	Compute the skewness of a dataset, which measures the asymmetry of the probability distribution.
kurtosis	Statistics	Compute the kurtosis of a dataset, which measures the tailedness of the distribution.
calc_batch_image_mean	Statistics	Compute mean value of an batch of images.
calc_batch_image_std	Statistics	Compute the standard deviation (spread of pixel values) for a batch of images.
calc_batch_image_median	Statistics	Compute the median pixel value for a batch of images.
calc_batch_image_min	Statistics	Compute the minimum pixel value for a batch of images.
calc_batch_image_max	Statistics	Compute the maximum pixel value for a batch of images.
calc_batch_image_skewness	Statistics	Compute the skewness of pixel value distributions for a batch of images. Skewness quantifies the asymmetry of the distribution:1. Positive skew → longer right tail; 2. Negative skew → longer left tail; 3. Zero skew → symmetric distribution.
calc_batch_image_kurtosis	Statistics	Compute the kurtosis of pixel value distributions for a batch of images. Kurtosis measures the tailedness of the distribution relative to a normal distribution.

1836	calc_batch_image_sum	Statistics	Compute the sum of pixel values for a batch of images.
1837			
1838	calc_batch_image_hotspot_percentage	Statistics	Compute the hotspot percentage (fraction of pixels above a threshold) for a batch of images.
1839			
1840			
1841	calc_batch_image_hotspot_tif	Statistics	Create binary hotspot maps for a batch of images, where pixels below a specified threshold are set to 1 (hotspot) and others set to 0. The output is saved as GeoTIFF files, preserving georeference metadata from the input images.
1842			
1843			
1844			
1845			
1846	difference	Statistics	Compute the absolute difference between two numbers.
1847			
1848	division	Statistics	Perform division between two numbers.
1849			
1850	percentage_change	Statistics	Calculate the percentage change between two numbers, useful for comparing relative growth or decline.
1851			
1852			
1853	kelvin_to_celsius	Statistics	Convert temperature from Kelvin to Celsius.
1854	celsius_to_kelvin	Statistics	Convert temperature from Celsius to Kelvin.
1855	max_value_and_index	Statistics	Find the maximum value in a list and return both the maximum value and its index.
1856			
1857			
1858	min_value_and_index	Statistics	Find the minimum value in a list and return both the minimum value and its index.
1859			
1860	ceil_number	Statistics	Return the ceiling (rounded up integer) of a given number.
1861			
1862	multiply	Statistics	Multiply two numbers and return their product.
1863			
1864	get_list_object_via_indexes	Statistics	Retrieve elements from a list using a list or tuple of indices.
1865			
1866			
1867	mean	Statistics	Compute the arithmetic mean (average) of a dataset.
1868			
1869	calculate_threshold_ratio	Statistics	Calculate the average percentage of pixels above a given threshold for one or more images and a specified band.
1870			
1871			
1872	calc_batch_fire_pixels	Statistics	Compute the number of fire pixels (FRP i threshold) for a batch of images.
1873			
1874	create_fire_increase_map	Statistics	Create a binary map highlighting areas where fire increase exceeds a specified threshold.
1875			
1876	identify_fire_prone_areas	Statistics	Identify fire-prone areas from a hotspot map based on a given percentile threshold.
1877			
1878			
1879	get_percentile_value_from_image	Statistics	Calculate the N-th percentile value of pixel values in a raster image, and return it as a native Python type matching the image's data type.
1880			
1881			
1882			
1883	image_division_mean	Statistics	Calculate the mean of pixel-wise division between two images or between two bands of the same image.
1884			
1885			
1886	calculate_intersection_percentage	Statistics	Calculate the percentage of pixels that simultaneously satisfy threshold conditions in two raster images.
1887			
1888			
1889			

1890	calc_batch_image_mean_mean	Statistics	Compute the average of mean pixel values across a batch of images.
1891			
1892	calc_batch_image_mean_max	Statistics	Compute the mean pixel values of a batch of images and return the maximum mean.
1893			
1894			
1895	calc_batch_image_mean_max_min	Statistics	Compute the batch-wise statistics across multiple images, including: Mean of mean values, Maximum of maximum values, Minimum of minimum values.
1896			
1897			
1898			
1899	calc_batch_image_mean_threshold	Statistics	Calculate the percentage or count of images whose mean pixel values (in a specified band) are above or below a given threshold.
1900			
1901			
1902	calculate_multi_band_threshold_ratio	Statistics	Calculate the percentage of pixels that simultaneously satisfy multiple band threshold conditions.
1903			
1904			
1905	count_pixels_satisfying_conditions	Statistics	Count the number of pixels that simultaneously satisfy multiple band threshold conditions.
1906			
1907			
1908	count_images_exceeding_threshold_ratio	Statistics	Count how many images have a percentage of pixels above or below a threshold that exceeds a specified ratio.
1909			
1910			
1911	average_ratio_exceeding_threshold	Statistics	Calculate the average percentage of pixels exceeding a value threshold, considering only images where the ratio is greater than a specified ratio threshold.
1912			
1913			
1914			
1915	count_images_exceeding_mean_multiplier	Statistics	Count how many images have a mean pixel value above or below a multiple of the overall mean pixel value across all images.
1916			
1917			
1918			
1919	calculate_band_mean_by_condition	Statistics	Calculate the mean value of a target band over pixels where a condition band satisfies a threshold.
1920			
1921			
1922	calc_threshold_value_mean	Statistics	Calculate the mean value of corresponding raster pixels in path2 where the raster values in path1 exceed the given threshold.
1923			
1924			
1925	calculate_tif_difference	Statistics	Calculate difference between two tif files (image_b - image_a) and save result.
1926			
1927	subtract	Statistics	Subtract two images and save result.
1928			
1929	calculate_area	Statistics	This function calculates the area of non-zero pixels in the input image and returns the result.
1930			
1931	grayscale_to_colormap	Statistics	Apply a colormap to a grayscale image and save as a color image.
1932			
1933	get_filelist	Statistics	Returns a list of files in the specified directory.
1934			
1935	radiometric_correction_sr	Statistics	Apply Landsat 8 surface reflectance (SR_B*) radiometric correction.
1936			
1937	apply_cloud_mask	Statistics	Apply cloud / shadow mask to a single Landsat 8 surface reflectance band using QA_PIXEL band.
1938			
1939			
1940			
1941			
1942			
1943			

1944
1945

G.1 TOOL PROMPT

1946 To better illustrate the functionality of the toolkits, we provide a representative example. Speci-
1947 cally, we focus on the `lst_multi_channel` tool, which estimates LST using a multi-channel
1948 algorithm. This method leverages multiple thermal infrared bands from remote sensing imagery
1949 and applies empirical formulas to derive accurate LST values. The corresponding implementation
1950 is provided below:1951
1952

Tool Example

```

1  @mcp.tool(description='''  
2  Estimate Land Surface Temperature (LST) using the multi-channel algorithm.  
3  Requires local input files:  
4  - Two thermal infrared bands (e.g., Band 31 and Band 32) as GeoTIFF files.  
5  
6  Parameters:  
7      band31_path (str): Path to local GeoTIFF file for thermal band 31 (~11 \mu m).  
8      band32_path (str): Path to local GeoTIFF file for thermal band 32 (~12 \mu m).  
9      output_path (str): Relative path for the output raster file, e.g. "question17/  
10     lst_2022-01-16.tif"  
11 Returns:  
12     str: Local file path of the exported LST image.  
13 ''')  
14 def lst_multi_channel(band31_path: str, band32_path: str, output_path: str) -> str:  
15     """  
16         Description:  
17             Estimate Land Surface Temperature (LST) using the multi-channel algorithm.  
18             This method combines two thermal infrared bands to reduce atmospheric effects.  
19  
20     Parameters:  
21         band31_path (str): Path to GeoTIFF file for thermal band 31 (~11 \mu m)  
22         band32_path (str): Path to GeoTIFF file for thermal band 32 (~12 \mu m)  
23         output_path (str): Relative path for the output LST GeoTIFF  
24  
25     Returns:  
26         str: Full path to the saved LST GeoTIFF  
27     """  
28     import os, rasterio  
29     import numpy as np  
30  
31     with rasterio.open(band31_path) as src31:  
32         band31 = src31.read(1).astype(np.float32)  
33         profile = src31.profile  
34  
35     with rasterio.open(band32_path) as src32:  
36         band32 = src32.read(1).astype(np.float32)  
37  
38     a = 1.022  
39     b = 0.47  
40     c = 0.43  
41  
42     lst = a * band31 + b * (band31 - band32) + c  
43  
44     profile.update(dtype=rasterio.float32, count=1, compress='lzw')  
45  
46     os.makedirs((TEMP_DIR / output_path).parent, exist_ok=True)  
47  
48     with rasterio.open(TEMP_DIR / output_path, 'w', **profile) as dst:  
49         dst.write(lst.astype(np.float32), 1)  
50  
51     return f'Result saved at {TEMP_DIR / output_path}'
```

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

1998 H EARTH-AGENT WITH DIFFERENT LLM BACKBONES

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

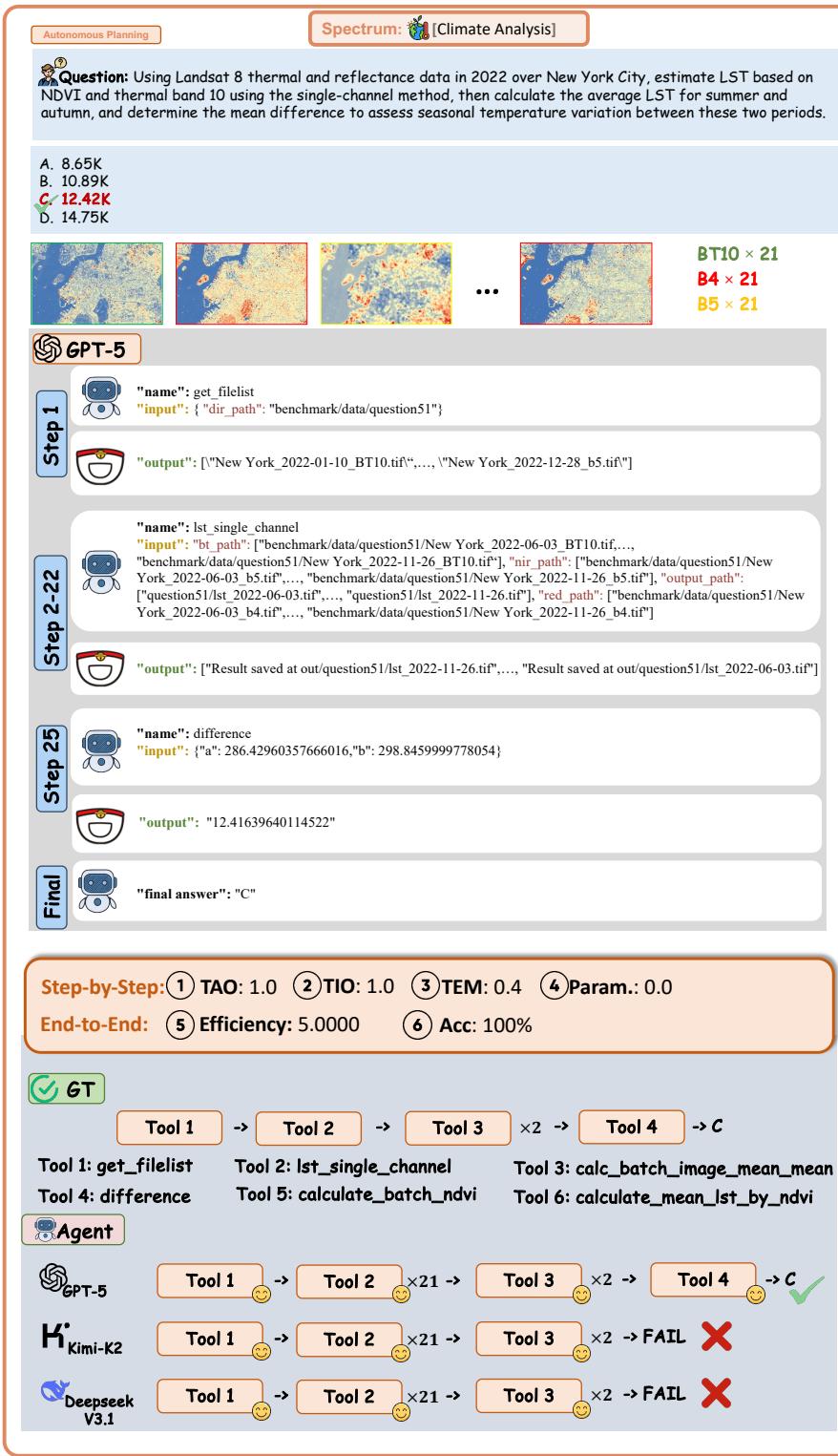


Figure 11: Example of Climate Analysis with Spectrum Data under the Auto-Planning Regime.

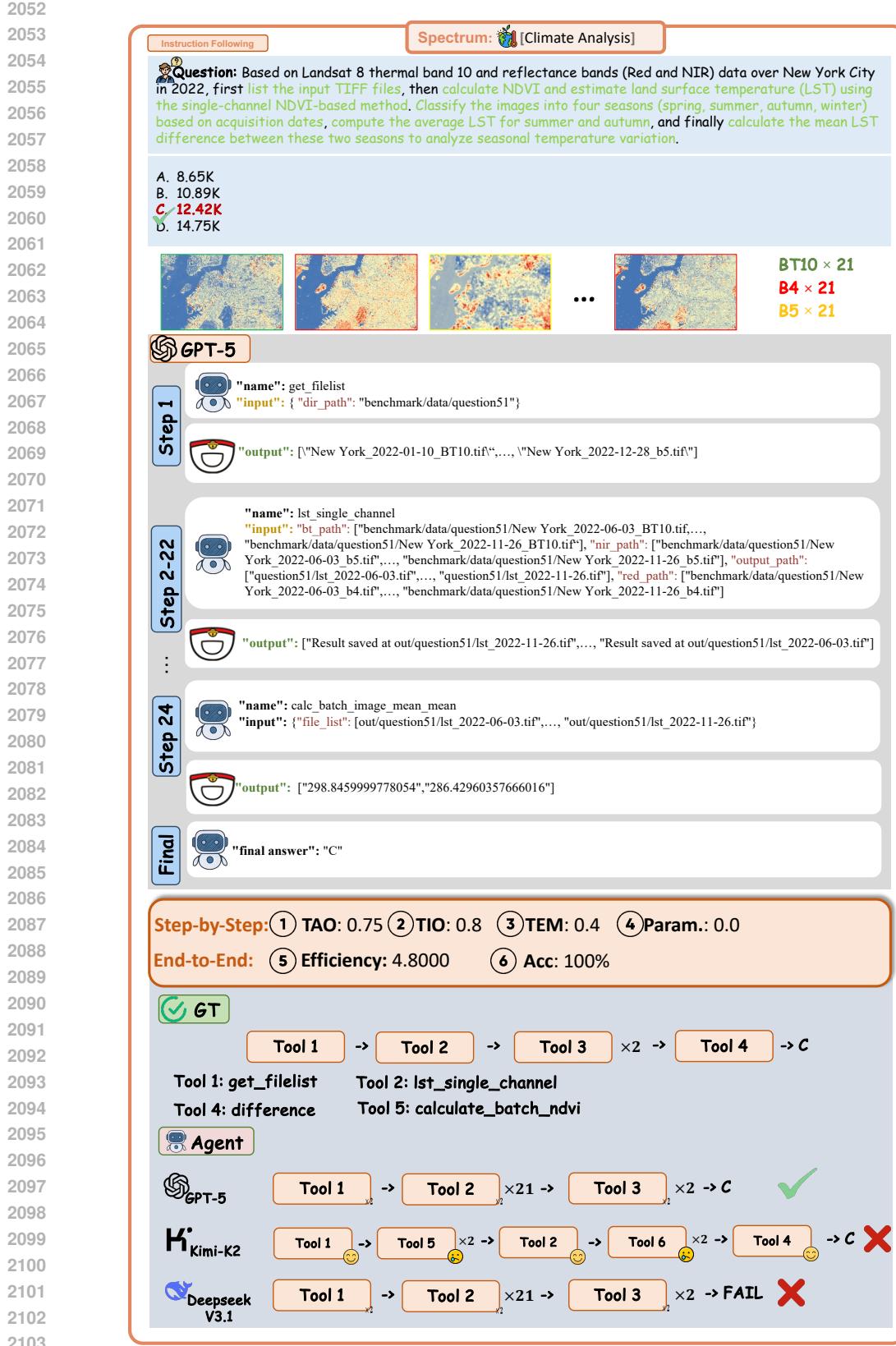
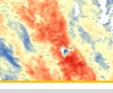
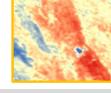


Figure 12: Example of Climate Analysis with Spectrum Data under the Instruction-Following Regime.

Autonomous Planning Spectrum: 🧑 [Disaster Judgement]

Question: Based on temperature and vegetation indices (NDVI and LST) in the Central Valley of California, U.S., from May to October 2021, calculate the number of times when more than 40% of the area exhibited a drought index value exceeding 0.7, indicating widespread extreme drought.

A. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 10 times
 B. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 8 times
 C. **The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 4 times**
 D. The proportion of pixels with TVDI values exceeding 0.7 surpassed 40% occurred 2 times

  **NDVI × 11**
LST × 11

GPT-5

Step 1

```

  "name": "get_filelist"
  "input": {
    "dir_path": "benchmark/data/question5"
  }
  "output": [
    "Central Valley_2021-05-09_LST.tif",
    "Central Valley_2021-05-09_NDVI.tif",
    "Central Valley_2021-05-25_NDVI.tif",
    "Central Valley_2021-10-16_NDVI.tif"
  ]

```

Step 2-12

```

  "name": "compute_tvdi"
  "input": {
    "ndvi_path": [
      "Central Valley_2021-05-09_NDVI.tif",
      "Central Valley_2021-10-16_NDVI.tif"
    ],
    "lst_path": [
      "Central Valley_2021-05-09_LST.tif",
      "Central Valley_2021-05-09_LST.tif"
    ],
    "output_path": [
      "question5/tvdi_2021-05-09.tif",
      "question5/tvdi_2021-05-09.tif"
    ]
  }
  "output": [
    "Result saved at out/question5/tvdi_2021-05-09.tif",
    "Result saved at out/question5/tvdi_2021-10-16.tif"
  ]

```

Step 13

```

  "name": "count_images_exceeding_threshold_ratio"
  "input": {
    "image_paths": [
      "out/question5/tvdi_2021-05-09.tif",
      "out/question5/tvdi_2021-10-16.tif"
    ],
    "mode": "above",
    "ratio_threshold": 40,
    "value_threshold": 0.7
  }
  "output": "4"

```

Final

```

  "final answer": "C"

```

Step-by-Step: TAO: 1.0 TIO: 1.0 TEM: 0.67 Param.: 0.33
End-to-End: Efficiency: 4.33 Acc: 100%

GT

Tool 1 → Tool 2 → Tool 3 → C

Tool 1: **get_filelist** Tool 3: **count_images_exceeding_threshold_ratio**
 Tool 2: **compute_tvdi** Tool 4: **calculate_threshold_ratio**

Agent

GPT-5	Tool 1	→	Tool 2	→	Tool 3	→ C	✓	
Kimi-K2	Tool 1	→	Tool 2	×11	→	Tool 3	→ C	✓
Deepseek V3.1	Tool 1	→	Tool 2	×11	→	Tool 4	× 12 → C	✓

Figure 13: Example of Disaster Judgement with Spectrum Data under the Auto-Planning Regime.

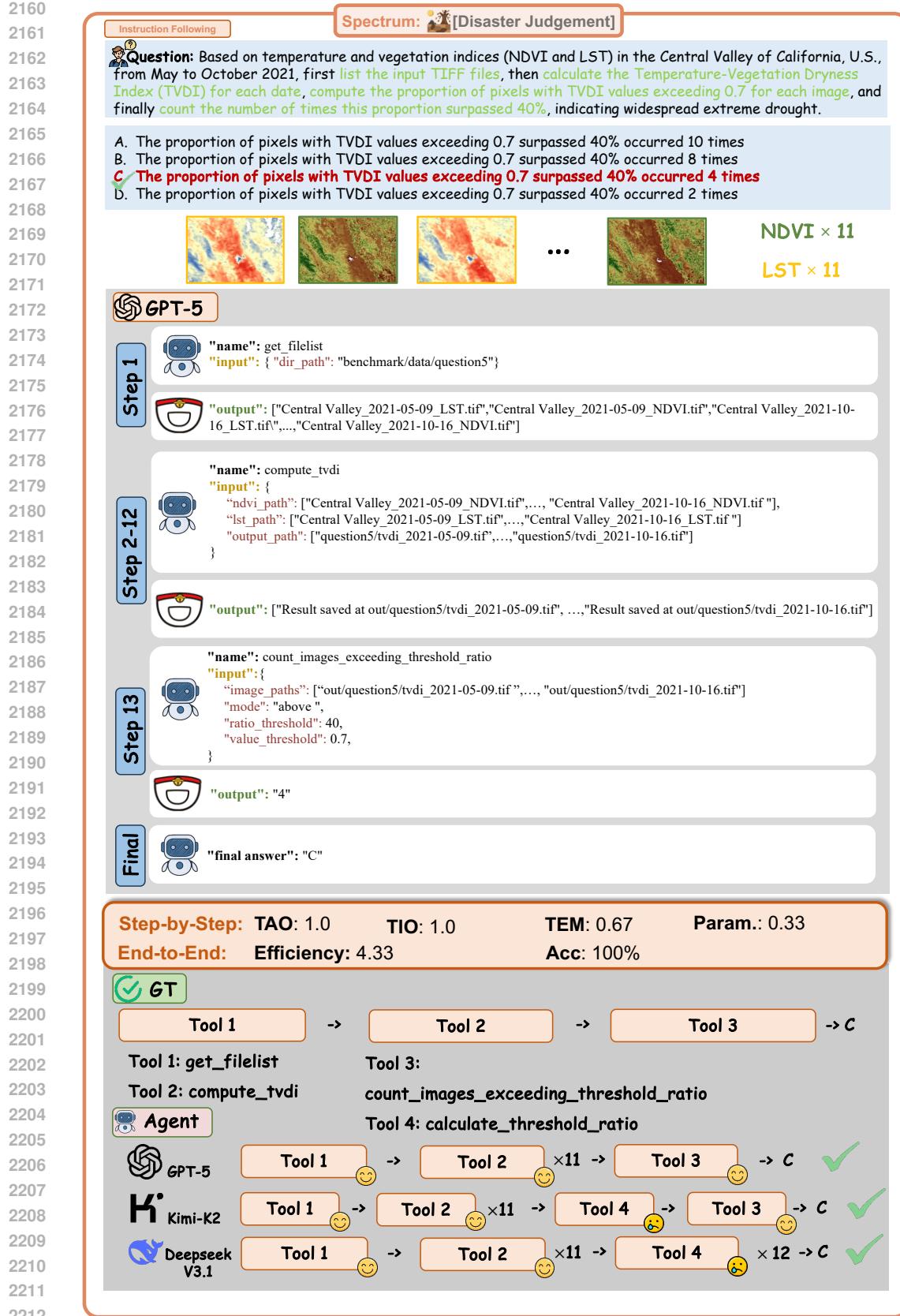


Figure 14: Example of Disaster Judgement with Spectrum Data under the Instruction-Following Regime.

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

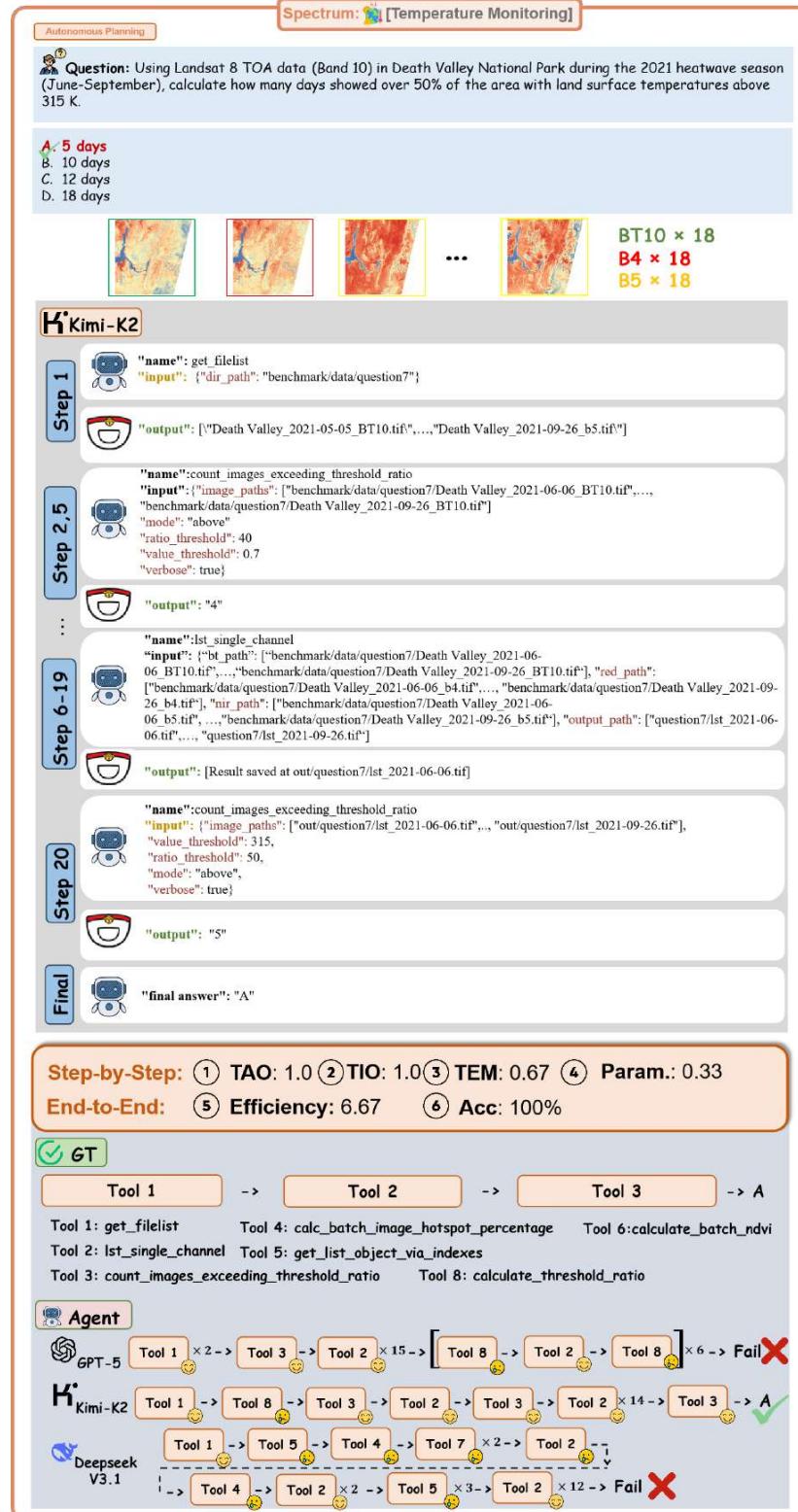


Figure 15: Example of Temperature Monitoring with Spectrum Data under the Auto-Planning Regime.

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

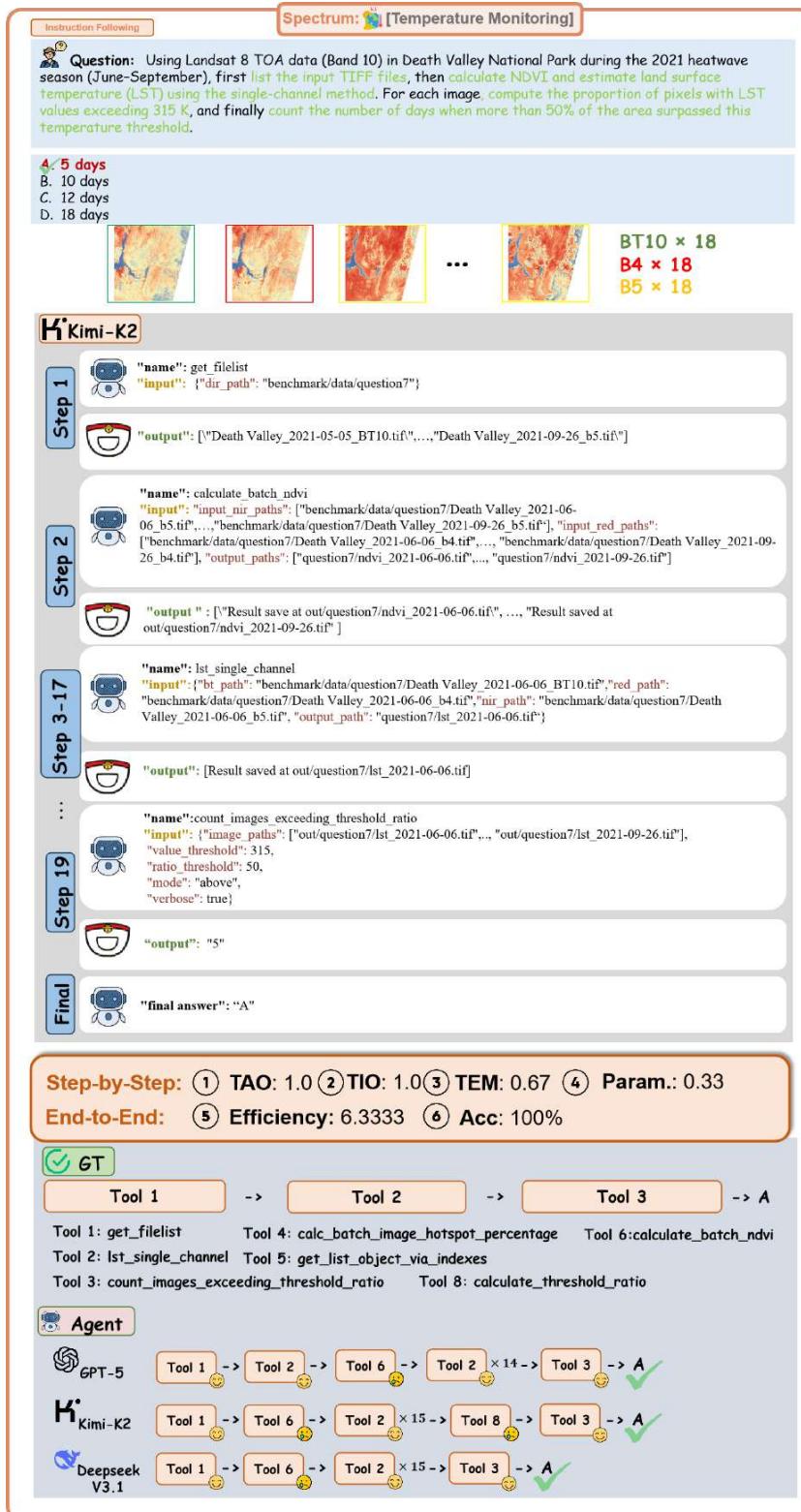


Figure 16: Example of Temperature Monitoring with Spectrum Data under the Instruction-Following Regime.

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

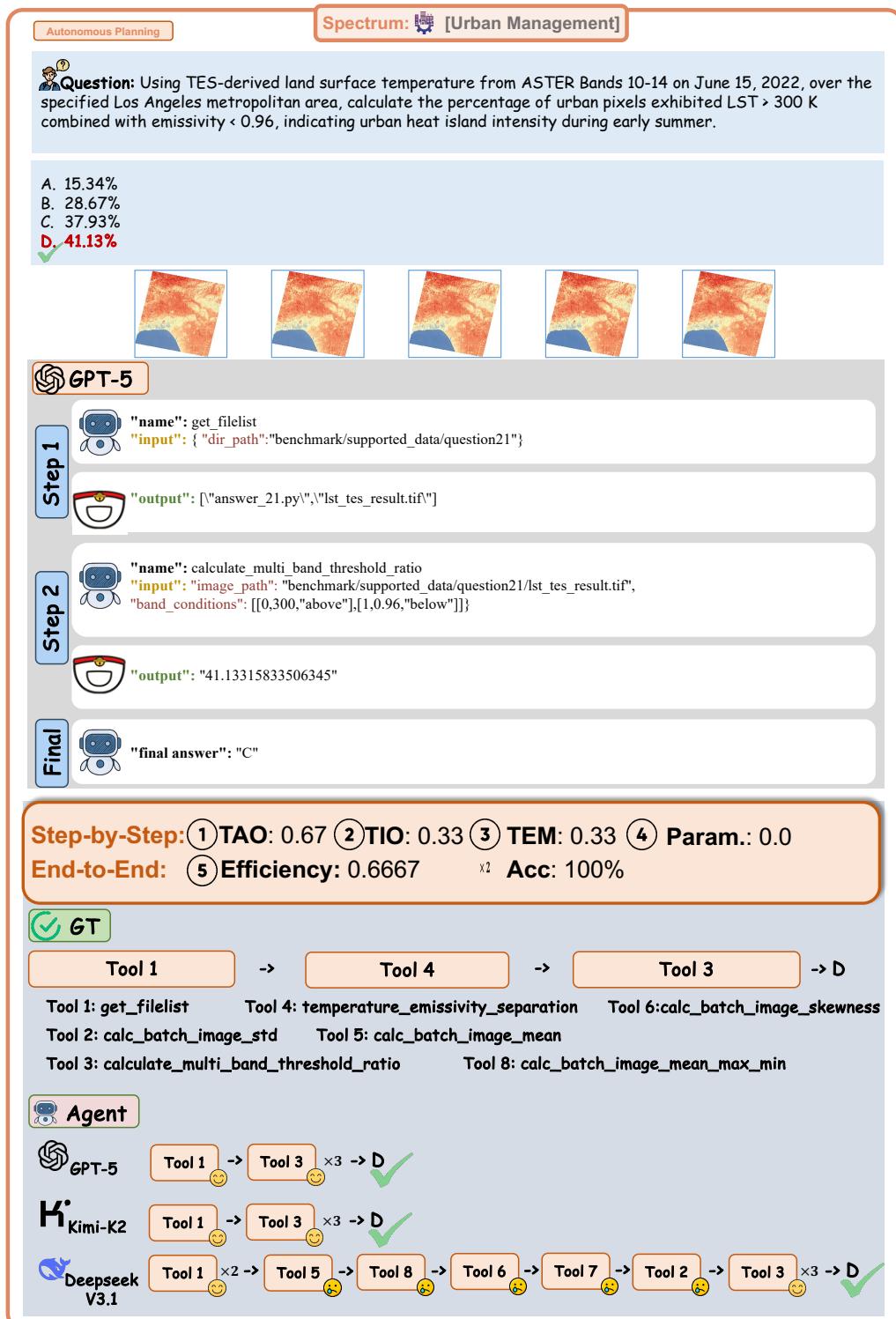


Figure 17: Example of Urban Management with Spectrum Data under the Auto-Planning Regime.

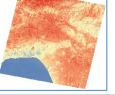
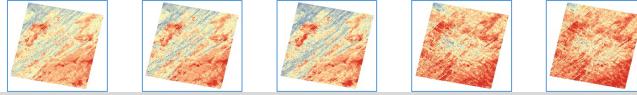
2376
 2377
 2378 **Instruction Following** **Spectrum: 🏙️ [Urban Management]**
 2379 **Question:** Using TES-derived land surface temperature from ASTER Bands 10-14 on June 15, 2022, over the Los Angeles metropolitan area, first list the input TIFF files, then apply the Temperature and Emissivity Separation (TES) algorithm to estimate land surface temperature. Finally, calculate the percentage of urban pixels where LST exceeds 300 K and emissivity is below 0.96, indicating the intensity of the urban heat island during early summer.
 2380
 2381
 2382
 2383
 2384 A. 15.34%
 2385 B. 28.67%
 2386 C. 37.93%
 2387 D. 41.13%
 2388
 2389 
 2390
 2391 **GPT-5**
 2392
 2393 Step 1 "name": get_filelist
 2394 "input": { "dir_path": "benchmark/supported_data/question21"}
 2395
 2396 Step 2 "output": ["answer_21.py", "lst_tes_result.tif"]
 2397
 2398 Step 2 "name": calculate_multi_band_threshold_ratio
 2399 "input": "image_path": "benchmark/supported_data/question21/lst_tes_result.tif",
 2400 "band_conditions": [[0,300,"above"],[1,0.96,"below"]]}
 2401
 2402 Step 3 "output": "41.1315833506345"
 2403
 2404 Final "final answer": "C"
 2405
 2406
 2407 **Step-by-Step:** ① TAO: 0.67 ② TIO: 0.33 ③ TEM: 0.33 ④ Param.: 0.0
 2408 **End-to-End:** ⑤ Efficiency: 0.6667 ⑥ Acc: 100%
 2409
 2410
 2411 **GT**
 2412
 2413 Tool 1 → Tool 4 → Tool 3 → D
 2414 Tool 1: get_filelist Tool 4: temperature_emissivity_separation Tool 6: calc_batch_image_skewness
 2415 Tool 2: calc_batch_image_std Tool 5: calc_batch_image_mean
 2416 Tool 3: calculate_multi_band_threshold_ratio Tool 8: calc_batch_image_mean_max_min
 2417
 2418 **Agent**
 2419
 2420 GPT-5 → → D
 2421
 2422 Kimi-K2 → → D
 2423
 2424 Deepseek V3.1 ×3 → → D
 2425
 2426
 2427
 2428
 2429

Figure 18: Example of Urban Management with Spectrum Data under the Instruction-Following Regime.

2430
2431
2432 **Question:** Based on TES output from ASTER thermal bands on March 24, 2020 in the Sahara Desert region
2433 near Tamanrasset, Algeria, calculate the proportion of the area where emissivity variation ($\Delta\epsilon$) exceeds 0.05,
2434 indicating possible land cover heterogeneity.

2435 A. 7.63%
2436 **B. 11.13%**
2437 C. 21.85%
2438 D. 29.39%

2439 

2440 **Deepseek V3.1**

2441 Step 1 "name": get_filelist
"input": {"dir_path": "benchmark/data/question23"}

2442 Step 2 "output": ["2020_03_24_BT_10.tif", ..., "2020_03_24_BT_14.tif"]

2443 Step 3 "name": temperature_emissivity_separation
"input": {"tir_band_paths": ["benchmark/data/question23/2020_03_24_BT_10.tif", ...,
"benchmark/data/question23/2020_03_24_BT_14.tif"],
"representative_band_index": 3,
"output_path": "question23/tes_output.tif"}

2444 Step 4 "output": ["Result saved at out/question23/tes_output.tif"]

2445 ...

2446 Step 10 "name": calculate_area
"input": {"input_image_path": "out/question23/tes_output.tif",
"gsd": 1}

2447 Step 11 "output": "2351880.0"

2448 Step 12 "final answer": "C"

2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460

2461 **Step-by-Step:** ① TAO: 1.0 ② TIO: 1.0 ③ TEM: 0.67 ④ Param.: 0.33
2462 **End-to-End:** ⑤ Efficiency: 3.3333 ⑥ Acc: 0%

2463 **GT**

2464 Tool 1 → Tool 7 → Tool 4 → B

2465 Tool 1: get_filelist Tool 2: calc_batch_image_hotspot_percentage Tool 3: threshold_segmentation
2466 Tool 4: calculate_threshold_ratio Tool 5: identify_fire_prone_areas
2467 Tool 7: temperature_emissivity_separation Tool 8: calc_batch_image_hotspot_tif
2468 Tool 10: calc_batch_image_sum Tool 11: calc_extreme_snow_loss_percentage_from_binary_map
2469 Tool 12: count_pixels_satisfying_conditions Tool 13: calculate_multi_band_threshold_ratio
2470 Tool 14: get_percentile_value_from_image

2471 **Agent**

2472 GPT-5 → Tool 1 → Tool 7 → Tool 4 → Tool 13 → Tool 4 → Tool 13 → C

2473 Kimi-K2 → Fail

2474 Deepseek V3.1 → Tool 1 → Tool 7 → Tool 5 → Tool 3 → Tool 8 → Tool 4 → Tool 6 → Tool 10 → Tool 9 → C

2475
2476
2477
2478
2479
2480
2481
2482
2483

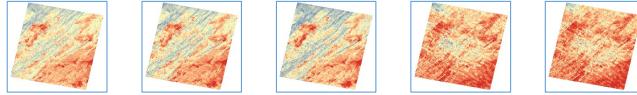
Figure 19: Example of Vegetation Monitoring with Spectrum Data under the Auto-Planning Regime.

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Instruction Following **Spectrum: 📈 [Vegetation Monitoring]**

Question: Based on TES output from ASTER thermal bands on March 24, 2020, in the Sahara Desert region near Tamanrasset, Algeria, first list the input TIFF files, then apply the Temperature and Emissivity Separation (TES) algorithm to estimate land surface temperature and emissivity. Finally, calculate the proportion of the area where emissivity variation ($\Delta\epsilon$) exceeds 0.05, indicating potential land cover heterogeneity.

A. 7.63%
B. 11.13%
C. 21.85%
D. 29.39%



Deepseek V3.1

```

Step 1 "name": get_filelist
"input": {"dir_path": "benchmark/data/question23"}
"output": ["2020_03_24_BT_10.tif", ..., "2020_03_24_BT_14.tif"]

Step 2 "name": temperature_emissivity_separation
"input": {"ir_band_paths": ["benchmark/data/question23/2020_03_24_BT_10.tif", ...,
"benchmark/data/question23/2020_03_24_BT_14.tif"], "representative_band_index": 3,
"output_path": "question23/tes_output.tif"}

"output": ["Result saved at out/question23/tes_output.tif"]
...
```

Step 9 "name": calculate_area
"input": {"input_image_path": "out/question23/tes_output.tif", "gsd": 1}
"output": "2351880.0"

Final "final answer": "C"

Step-by-Step: ① TAO: 1.0 ② TIO: 1.0 ③ TEM: 0.67 ④ Param.: 0.33
End-to-End: ⑤ Efficiency: 3.3333 ⑥ Acc: 0%

GT

Tool 1 → Tool 7 → Tool 4 → B

Tool 1: get_filelist Tool 2: calc_batch_image_hotspot_percentage Tool 3: threshold_segmentation
Tool 4: calculate_threshold_ratio Tool 5: identify_fire_prone_areas
Tool 7: temperature_emissivity_separation Tool 8: calc_batch_image_hotspot_tif
Tool 10: calc_batch_image_sum Tool 11: calc_extreme_snow_loss_percentage_from_binary_map
Tool 12: count_pixels_satisfying_conditions Tool 13: calculate_multi_band_threshold_ratio
Tool 14: get_percentile_value_from_image

Agent

GPT-5 Kimi-K2 Deepseek V3.1

```

GPT-5: Tool 1 → Tool 7 → Tool 4 → Tool 13 → Tool 4 → Tool 12 → Tool 4 → B (Green Checkmark)
Kimi-K2: Tool 1 → Tool 7 → Tool 4 → Tool 14 → Tool 12 → Tool 13 → B (Green Checkmark)
Deepseek V3.1: Tool 1 → Tool 7 → Tool 11 → Tool 4 → Tool 2 → Tool 8 → Tool 3 → Tool 6 → Tool 10 → Tool 9 → C (Red X)

```

Figure 20: Example of Vegetation Monitoring with Spectrum Data under the Instruction-Following Regime.

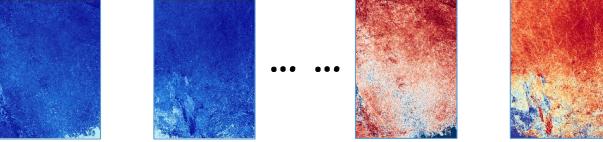
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Autonomous Planning

Products: 🌊 [Pollution Regulation]

Question: Based on the sur_refl_b01 and sur_refl_b04 data of the Arctic Ocean, calculate the NDTI. Determine whether ocean turbidity in the Arctic Ocean increased or decreased over this period, and report the magnitude of the change.

A. The average NDTI decreased slightly from about -0.0472 in July 2012 to about -0.0502 in July 2022, meaning turbidity weakened and the magnitude of change was roughly 0.0030.
B. The average NDTI increased from about -0.050162 in July 2012 to about -0.047156 in July 2022, so ocean turbidity increased (less negative NDTI) with a magnitude of about 0.003006.
C. The average NDTI increased from about -0.0472 to -0.0502, indicating much clearer water, with a magnitude near 0.0030.
D. Average NDTI values of roughly -0.0502 and -0.0472 show no detectable change in turbidity between 2012 and 2022.
E. Average NDTI stayed at about -0.05 for both years, so there was virtually zero change.



GPT-5

Step 1

"name": get_filelist
"input": {"dir_path": "benchmark/data/question182"}

"output": ["Arctic_Ocean_sur_refl_b01_2012-07-01.tif", ..., "Arctic_Ocean_sur_refl_b04_2022-07-29.tif"]

Step 2-3

"name": calculate_batch_ndti
"input": "input_red_paths": ["benchmark/data/question182/Arctic_Ocean_sur_refl_b04_2012-07-01.tif", ..., "benchmark/data/question182/Arctic_Ocean_sur_refl_b04_2022-07-29.tif"], "input_green_paths": ["benchmark/data/question182/Arctic_Ocean_sur_refl_b01_2012-07-01.tif", ..., "benchmark/data/question182/Arctic_Ocean_sur_refl_b01_2022-07-29.tif"], "output_paths": ["question182/ndti_2012-07-01.tif", ..., "question182/ndti_2022-07-29.tif"]

"output": ["Result save at out/question182/ndti_2012-07-01.tif", ..., "Result save at out/question182/ndti_2022-07-29.tif"]

Step 7

"name": mean
"input": [-13.095973014831543, ... -5.5260844230651855]

"output": -15.605616776148478

Final

"final answer": "B"

Step-by-Step: ① TAO: 0.5 ② TIO: 0.03 ③ TEM: 0.03 ④ Param.: 0.03
End-to-End: ⑤ Efficiency: 0.2258 ⑥ Acc: 100%

GT

Tool 1 → Tool 2 ×2 → Tool 3 ×2 → Tool 4 → B

Tool 1: get_filelist Tool 2: calculate_ndti Tool 3: calc_batch_image_mean
Tool 4: difference Tool 5: calculate_batch_ndti
Tool 7: calc_batch_image_mean_mean

Agent

GPT-5 Tool 1 → Tool 5 → Tool 7 → B ✓
Kimi-K2 Tool 1 → Tool 5 → Tool 7 → A ✗
Deepseek V3.1 Tool 1 → Tool 5 → Tool 7 → A ✗

Figure 21: **Example of Pollution Regulation with Products Data under the Auto-Planning Regime.**

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Instruction Following

Products: 📈 [Pollution Regulation]

Question: Based on the sur_refl_b01 and sur_refl_b04 data of the Arctic Ocean, calculate the NDTI and compute the average NDTI values for July 2012 and July 2022. Determine whether ocean turbidity in the Arctic Ocean increased or decreased over this period, and report the magnitude of the change.

A. The average NDTI decreased slightly from about -0.0472 in July 2012 to about -0.0502 in July 2022, meaning turbidity weakened and the magnitude of change was roughly 0.0030.
✓ B. The average NDTI increased from about -0.050162 in July 2012 to about -0.047156 in July 2022, so ocean turbidity increased (less negative NDTI) with a magnitude of about 0.003006.
C. The average NDTI increased from about -0.0472 to -0.0502, indicating much clearer water, with a magnitude near 0.0030.
D. Average NDTI values of roughly -0.0502 and -0.0472 show no detectable change in turbidity between 2012 and 2022.
E. Average NDTI stayed at about -0.05 for both years, so there was virtually zero change.

GPT-5

Step 1
 "name": get_filelist
"input": { "dir_path": "benchmark/data/question182" }
 "output": ["Arctic_Ocean_sur_refl_b01_2012-07-01.tif", ..., "Arctic_Ocean_sur_refl_b04_2022-07-29.tif"]

Step 2-3
 "name": calculate_batch_ndti
"input": "input_red_paths": ["benchmark/data/question182/Arctic_Ocean_sur_refl_b04_2012-07-01.tif", ..., "benchmark/data/question182/Arctic_Ocean_sur_refl_b04_2022-07-29.tif"], "input_green_paths": ["benchmark/data/question182/Arctic_Ocean_sur_refl_b01_2012-07-01.tif", ..., "benchmark/data/question182/Arctic_Ocean_sur_refl_b01_2022-07-29.tif"], "output_paths": ["question182/ndti_2012-07-01.tif", ..., "question182/ndti_2022-07-29.tif"]
 "output": ["Result save at out/question182/ndti_2012-07-01.tif", ..., "Result save at out/question182/ndti_2022-07-29.tif"]

Step 11
 "name": mean
"input": [-13.095973014831543, ..., -5.5260844230651855]
 "output": "-15.605616776148478"

Final
 "final answer": "B"

Step-by-Step: ① TAO: 0.5 ② TIO: 0.03 ③ TEM: 0.03 ④ Param.: 0.03
End-to-End: ⑤ Efficiency: 0.3548 ⑥ Acc: 100%

GT

Tool 1 → Tool 2 ×2 → Tool 3 ×2 → Tool 4 → B
Tool 1: get_filelist Tool 2: calculate_ndti Tool 3: calc_batch_image_mean
Tool 4: difference Tool 5: calculate_batch_ndti
Tool 7: calc_batch_image_mean_mean Tool 6: get_list_object_via_indexes

Agent

GPT-5
 Tool 1 → Tool 5 ×2 → Tool 7 ×2 → B ✓
 Tool 1 → Tool 3 → A ✗

Kimi-K2
 Tool 1 → Tool 3 → A ✗

Deepseek V3.1
 Tool 1 → Tool 6 ×4 → Tool 5 ×3 → Tool 7 ×3 → Tool 4 → A ✗

Figure 22: Example of Pollution Regulation with Products Data under the Instruction-Following Regime.

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

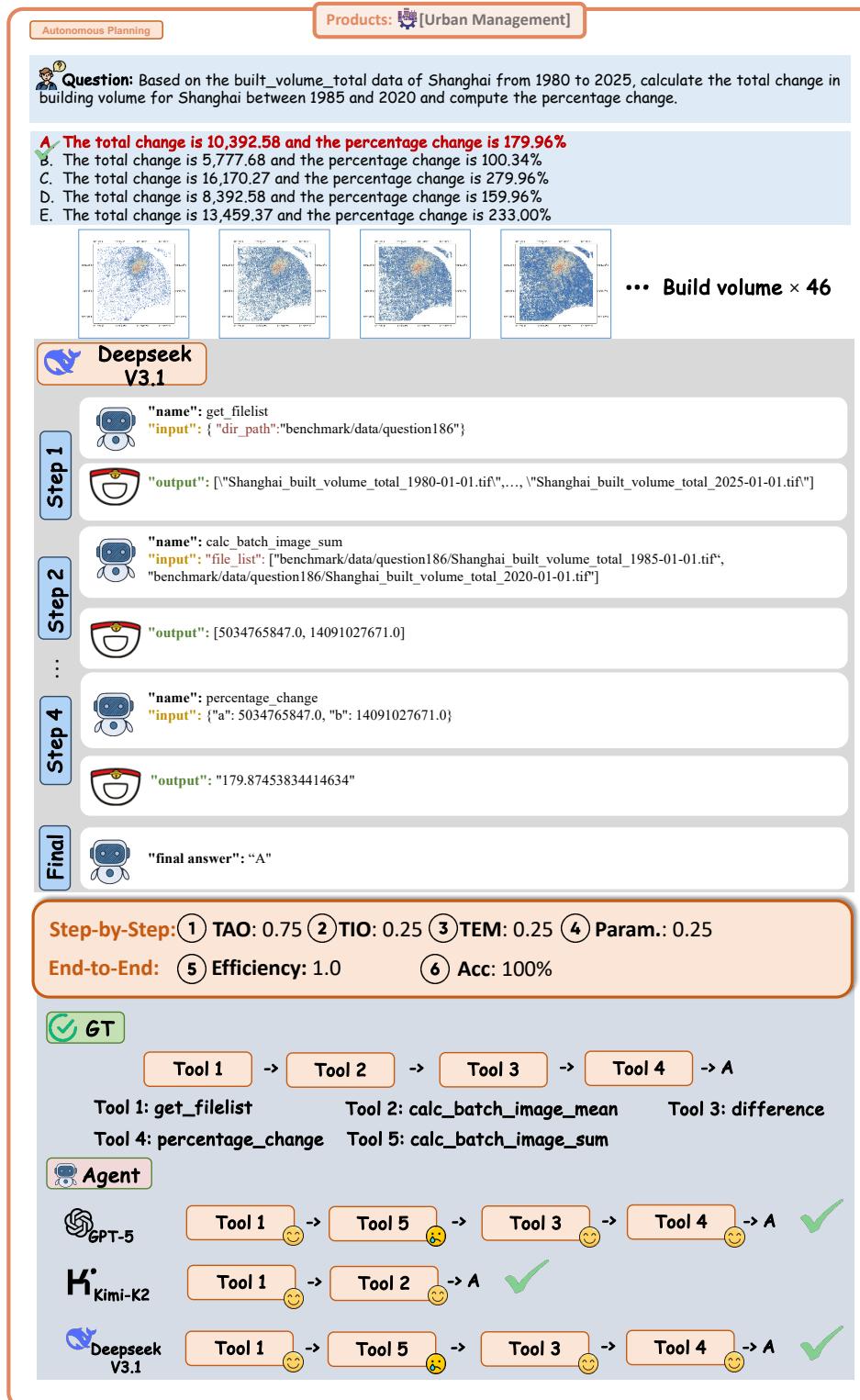


Figure 23: Example of Urban Management with Products Data under the Auto-Planning Regime.

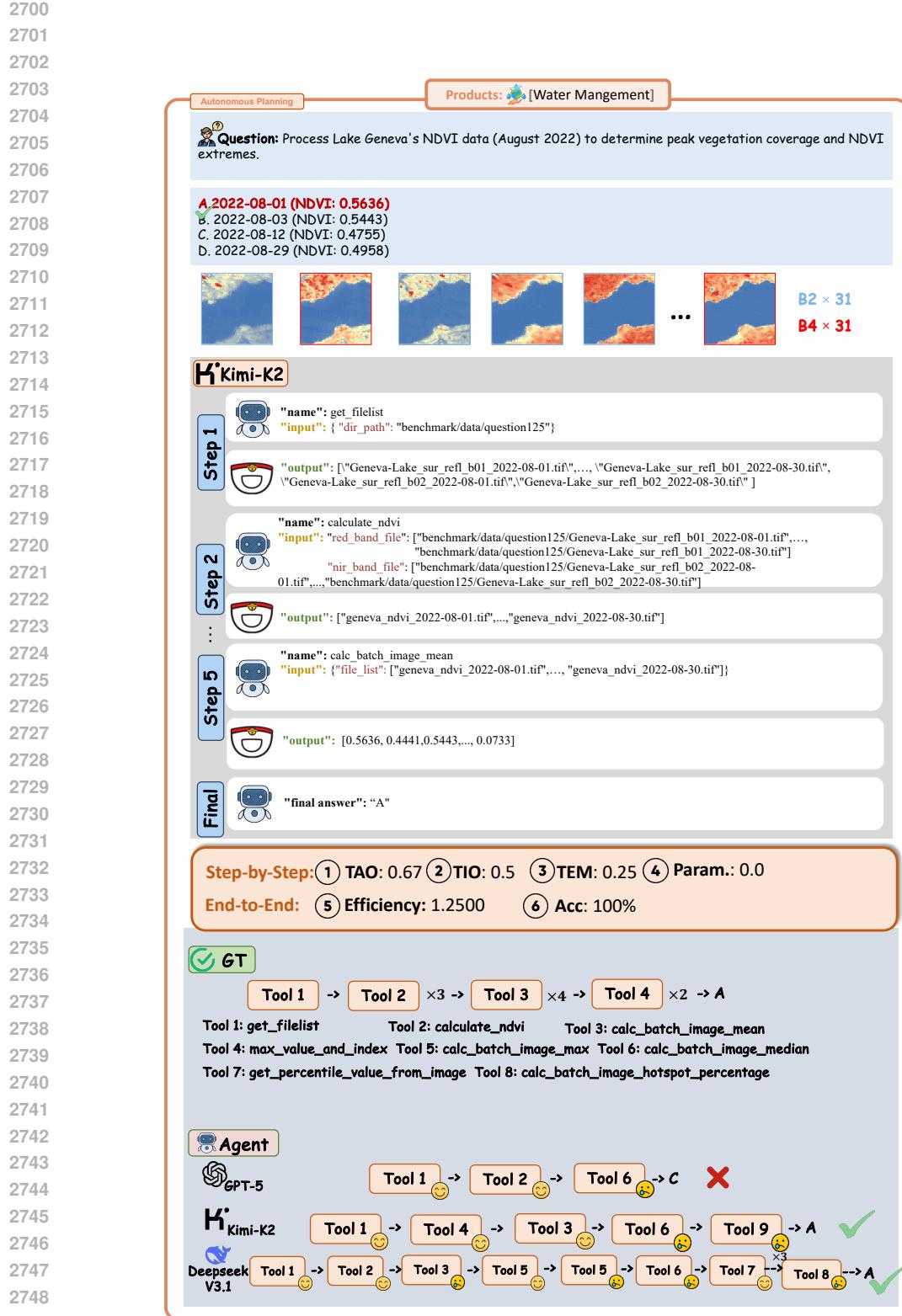


Figure 24: Example of Water Management with Products Data under the Auto-Planning Regime.

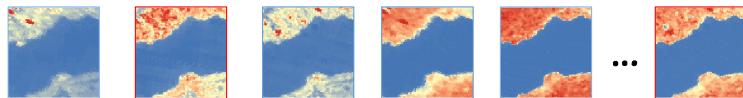
2754

2755

2756

2757 **Question:** Define the area where NDVI is greater than 0.3 as vegetation cover. Based on the multispectral
 2758 remote sensing data of Lake Geneva in August 2022, calculate the NDVI vegetation index, determine the daily
 2759 vegetation coverage proportion of the lake area, and identify the date with the highest NDVI value during this
 2760 month.

2761 **A.2022-08-01 (NDVI: 0.5636)**
 2762 ✓ 2022-08-03 (NDVI: 0.5443)
 2763 C. 2022-08-12 (NDVI: 0.4755)
 2764 D. 2022-08-29 (NDVI: 0.4958)



B2 x 31

B4 x 31

K'Kimi-K2

2765 **Step 1** "name": get_filelist
 2766 "input": { "dir_path": "benchmark/data/question125" }
 2767
 2768 **Step 2-5** "name": calculate_ndvi
 2769 "input": { "red_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-01.tif", ..., "benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-30.tif"],
 2770 "nir_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-01.tif", ..., "benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-30.tif"] }
 2771
 2772 **Step 2-5** "name": calculate_ndvi
 2773 "input": { "red_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-01.tif", ..., "benchmark/data/question125/Geneva-Lake_sur_refl_b01_2022-08-30.tif"],
 2774 "nir_band_file": ["benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-01.tif", ..., "benchmark/data/question125/Geneva-Lake_sur_refl_b02_2022-08-30.tif"] }
 2775
 2776 **Step 14** "name": calc_batch_image_max
 2777 "input": { "file_list": ["benchmark/data/question125/geneva_ndwi_2022-08-01.tif", ..., "benchmark/data/question125/geneva_ndwi_2022-08-04.tif"] }
 2778
 2779 **Step 14** "name": calc_batch_image_max
 2780 "input": { "file_list": ["benchmark/data/question125/geneva_ndwi_2022-08-01.tif", ..., "benchmark/data/question125/geneva_ndwi_2022-08-04.tif"] }
 2781
 2782 **Final** "name": final_answer
 2783 "input": { "answer": "A" }
 2784
 2785

2786 **Step-by-Step:** ① TAO: 0.33 ② TIO: 0.25 ③ TEM: 0.25 ④ Param.: 0.0

2787 **End-to-End:** ⑤ Efficiency: 3.7500 ⑥ Acc: 100%

GT

2788 Tool 1 → Tool 2 × 3 → Tool 3 × 4 → Tool 4 × 2 → A

2789 Tool 1: get_filelist Tool 2: calculate_ndvi Tool 3: calc_batch_image_mean
 2790 Tool 4: max_value_and_index Tool 5: calc_batch_image_max Tool 6: calc_batch_image_median
 2791 Tool 7: get_percentile_value_from_image Tool 8: calc_batch_image_hotspot_percentage

Agent

2792 GPT-5 Tool 1 → Tool 3 → Tool 6 → C X

2793 Kimi-K2 Tool 1 → Tool 12 × 4 → Tool 6 → Tool 12 × 4 → Tool 6 × 4 → A

2794 Deepseek V3.1 Tool 1 → Tool 2 → Tool 8 → Tool 3 → Tool 4 → B X

2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 Figure 25: Example of Water Management with Products Data under the Instruction-Following Regime.

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

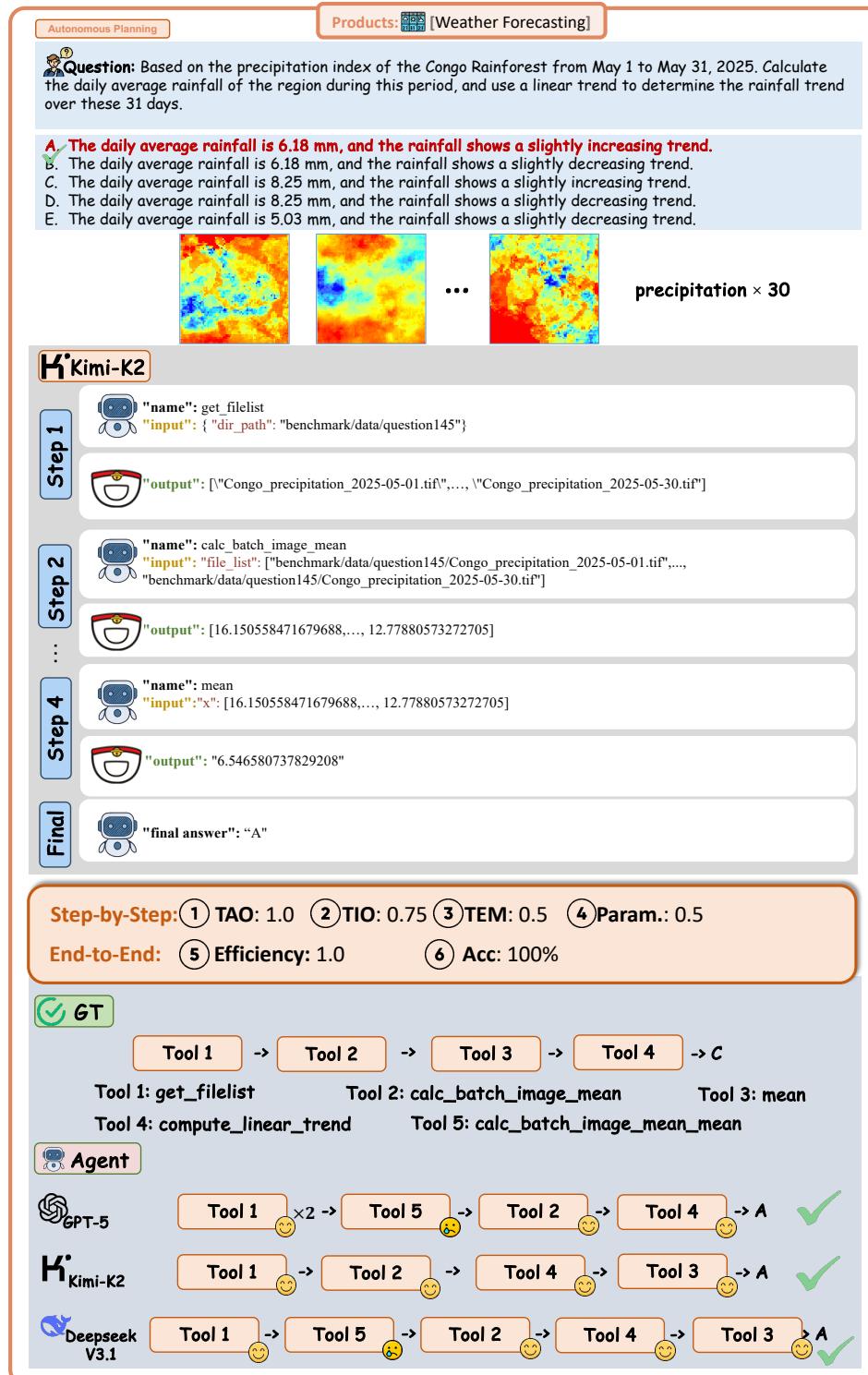


Figure 26: Example of Weather Management with Products Data under the Auto-Planning Regime.

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

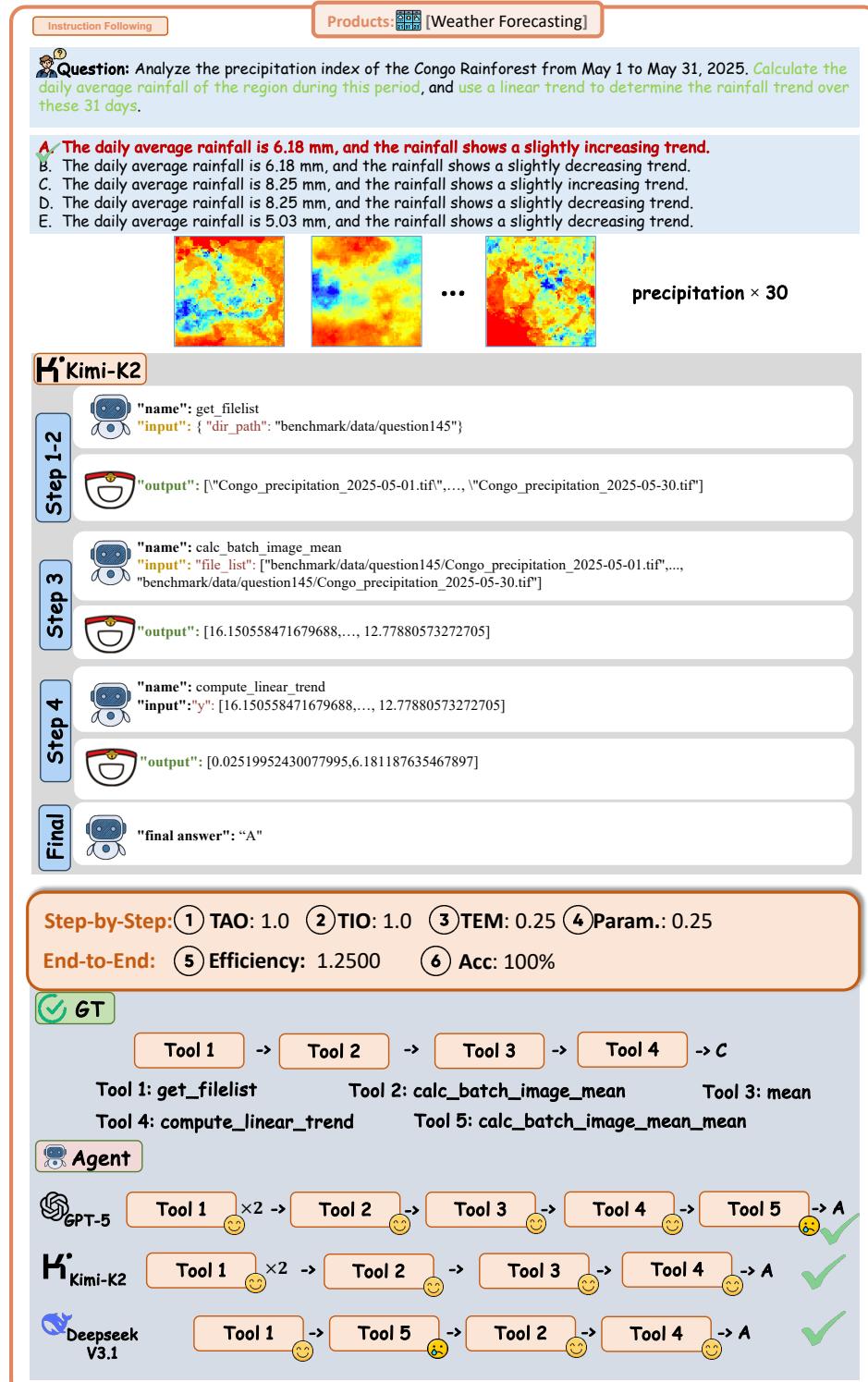


Figure 27: Example of Weather Management with Products Data under the Instruction-Following Regime.

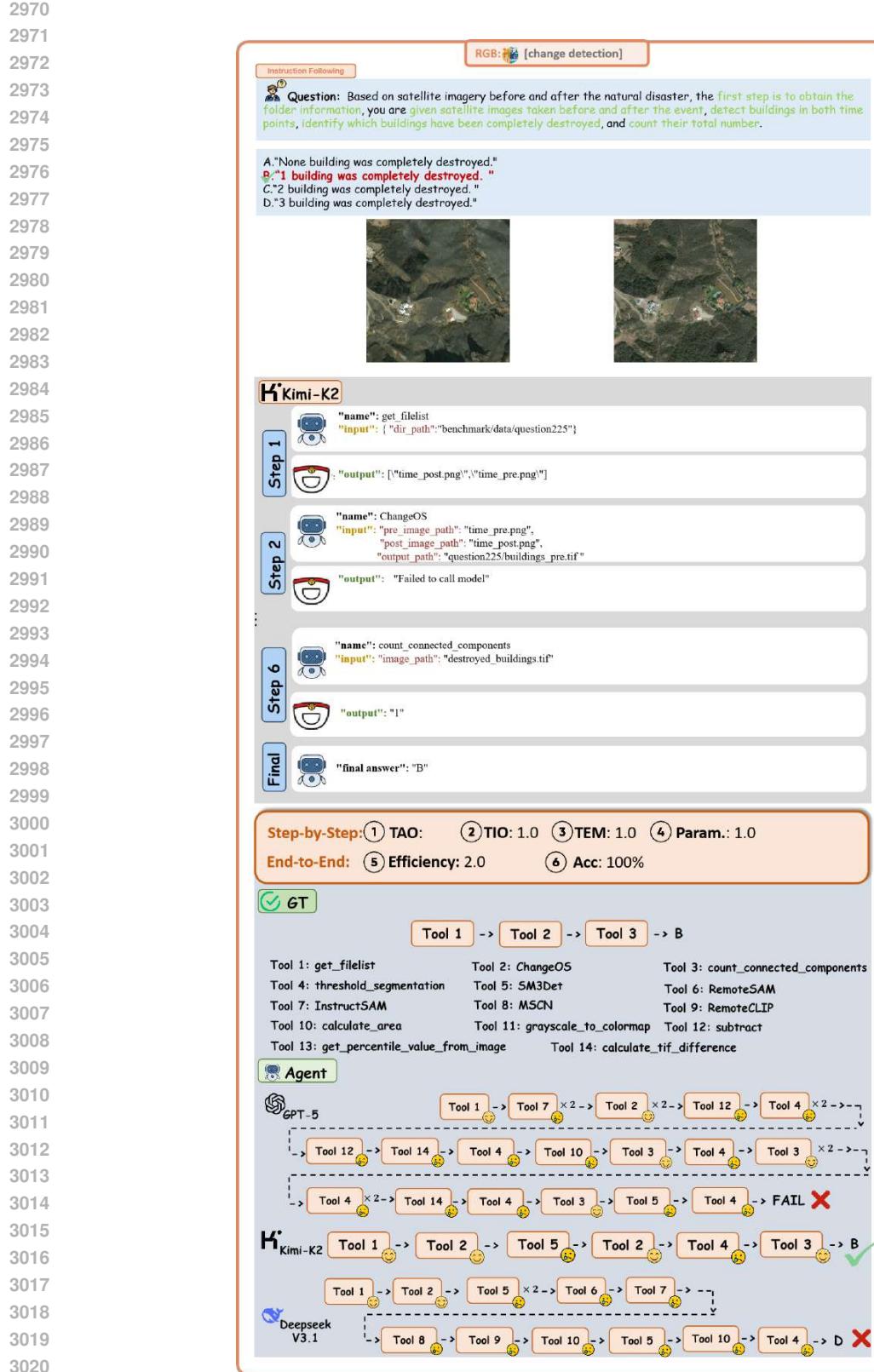


Figure 29: Example of Change Detection with RGB Data under the Instruction-Following Regime.

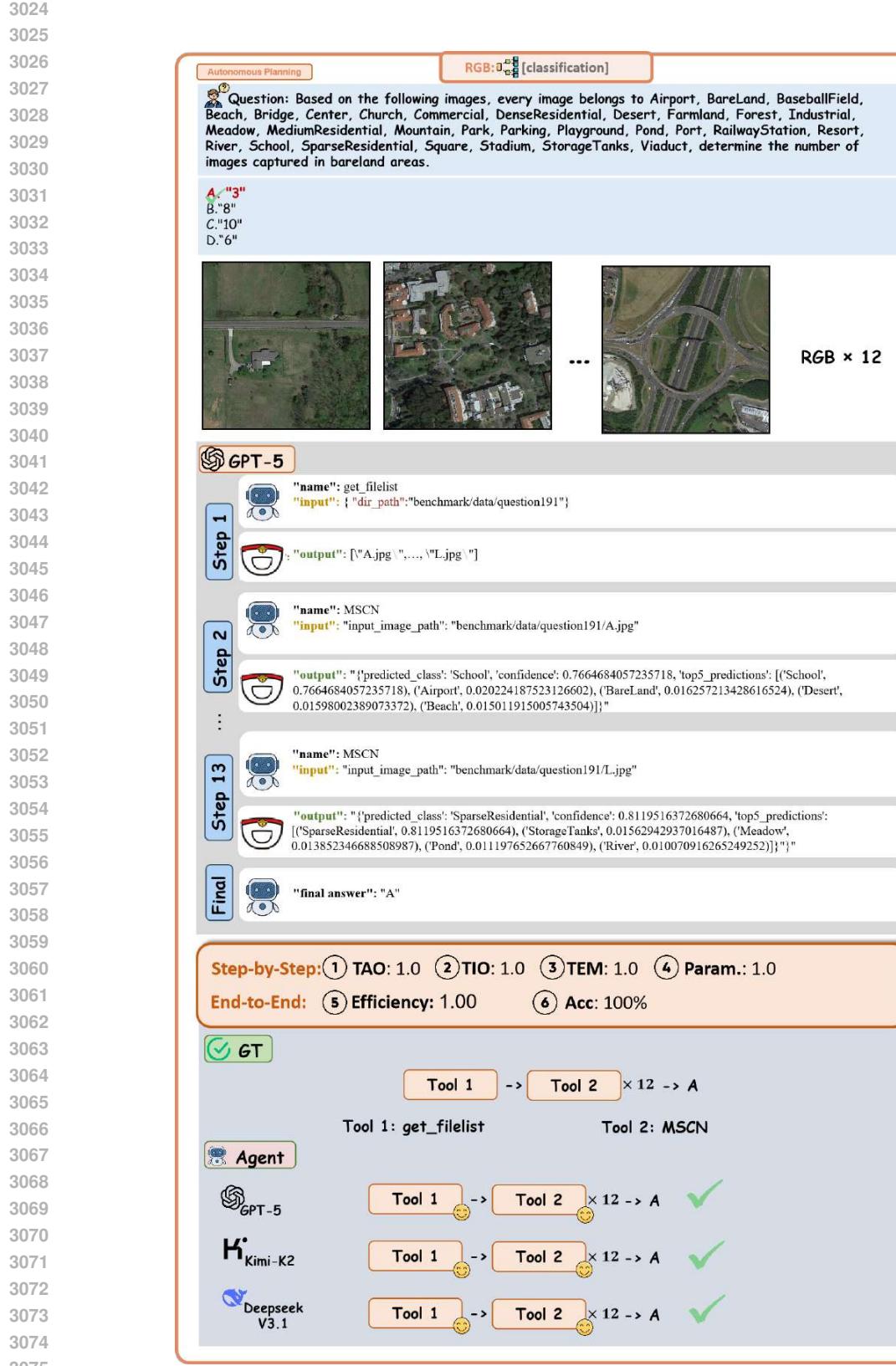


Figure 30: Example of Classification with RGB Data under the Auto-Planning Regime.

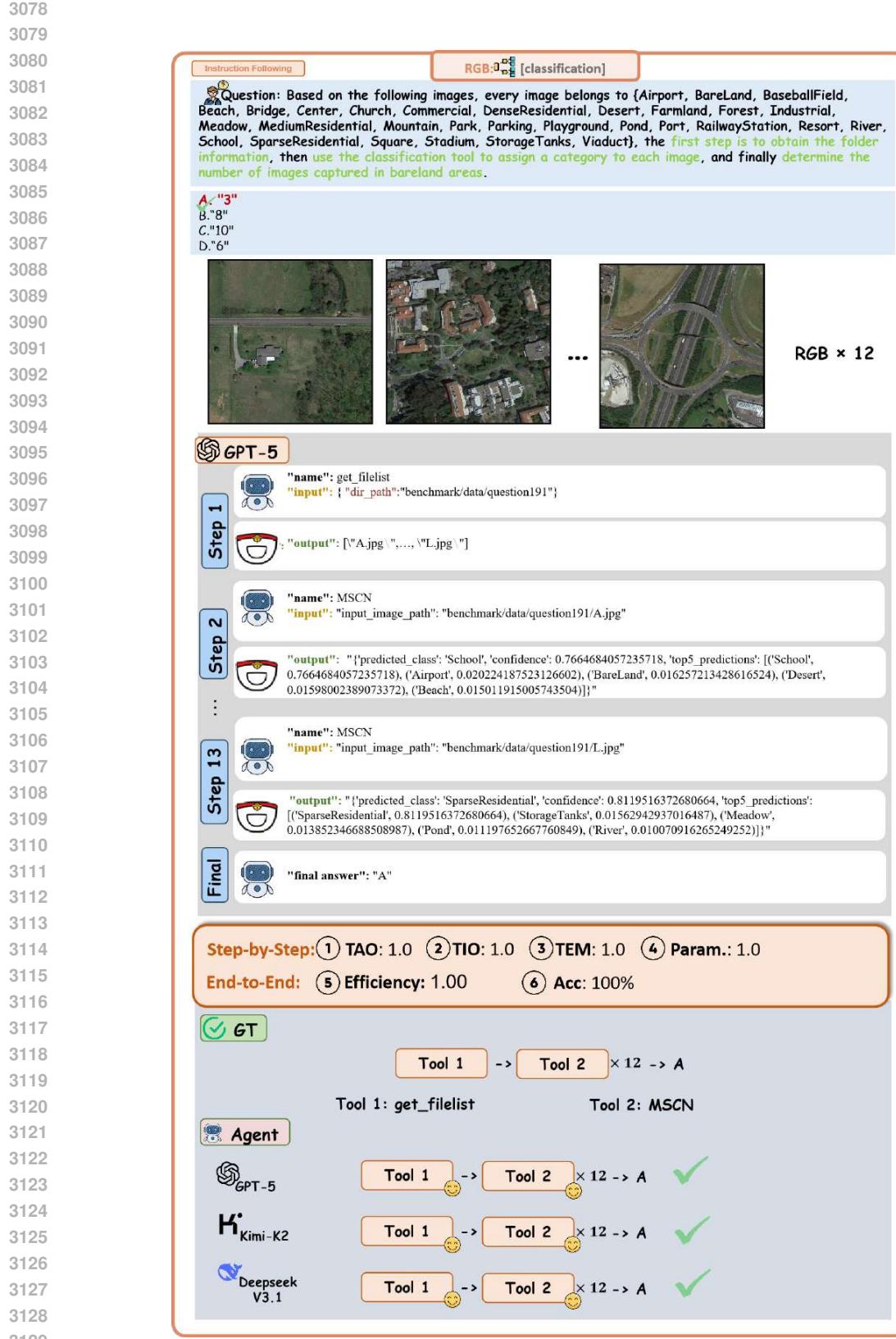


Figure 31: Example of Classification with RGB Data under the Instruction-Following Regime.

3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185

Autonomous Planning **RGB: [detection]**

Question: As part of a regional sports infrastructure audit, you are tasked with estimating the total area occupied by baseball diamonds using bounding boxes (GSD = 0.13 m/px).

A. "About 500 m²"
 B. **"About 1500 m²"**
 C. "About 3500 m²"
 D. "About 80119 m²"

Kimi-K2

Step 1
 "name": get_filelist
 "input": {"dir_path": "benchmark/data/question210"}

Step 2
 "name": InstructSAM
 "input": {"input_image_path": "benchmark/data/question210/P0382.png",
 "text_prompt": "baseball diamond"}

Step 3
 "name": Failed to call model

Step 4
 "name": calculate_bbox_area
 "input": {"bboxes": [[324.6867656820466, 226.69173840553316, 533.4624042398284, 413.52994128196684],
 [820.7124196099571, 522.3619154364535, 1027.0236643744179, 721.6341783135465]]}

Step 5
 "name": calculate_bbox_area
 "input": {"bboxes": [[324.6867656820466, 226.69173840553316, 533.4624042398284, 413.52994128196684],
 [820.7124196099571, 522.3619154364535, 1027.0236643744179, 721.6341783135465]]}

Final
 "name": calculate_bbox_area
 "input": {"bboxes": [[324.6867656820466, 226.69173840553316, 533.4624042398284, 413.52994128196684],
 [820.7124196099571, 522.3619154364535, 1027.0236643744179, 721.6341783135465]]}

Step-by-Step: ① TAO: 1.0 ② TIO: 1.0 ③ TEM: 0.0 ④ Param.: 0.0
End-to-End: ⑤ Efficiency: 1.33 ⑥ Acc: 0%

GT
 Tool 1 → Tool 2 → Tool 3 → B

Tool 1: get_filelist Tool 2: SM3Det Tool 3: calculate_bbox_area Tool 4: InstructSAM

Agent

GPT-5
 Tool 1 → Tool 2 → Tool 3 × 7 → B ✓

Kimi-K2
 Tool 1 → Tool 4 → Tool 2 → Tool 3 → C ✗

Deepseek V3.1
 Tool 1 → Tool 2 → Tool 4 × 2 → B ✓

Figure 32: **Example of Detection with RGB Data under the Auto-Planning Regime.**

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

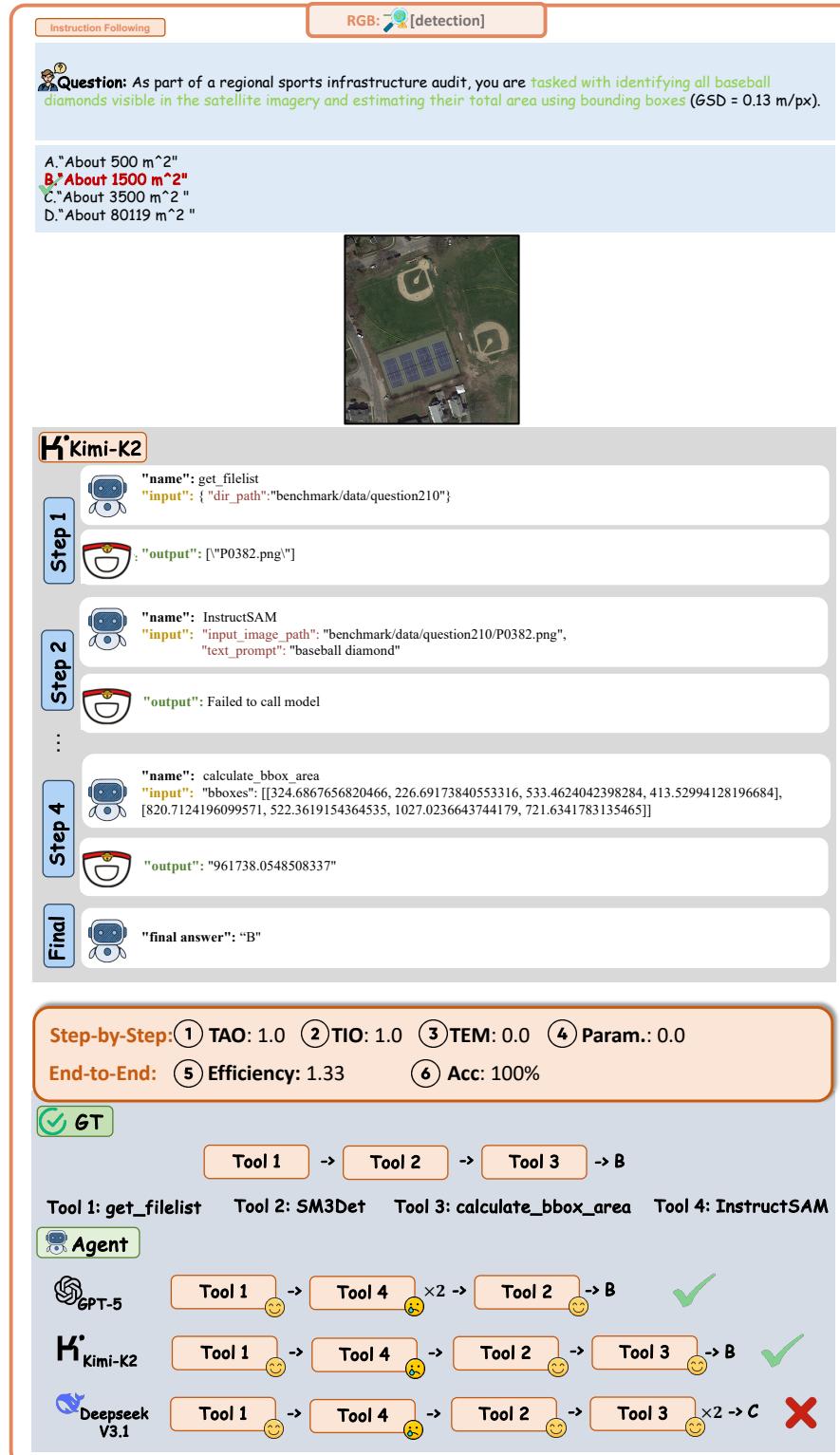


Figure 33: Example of Detection with RGB Data under the Instruction-Following Regime.

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255

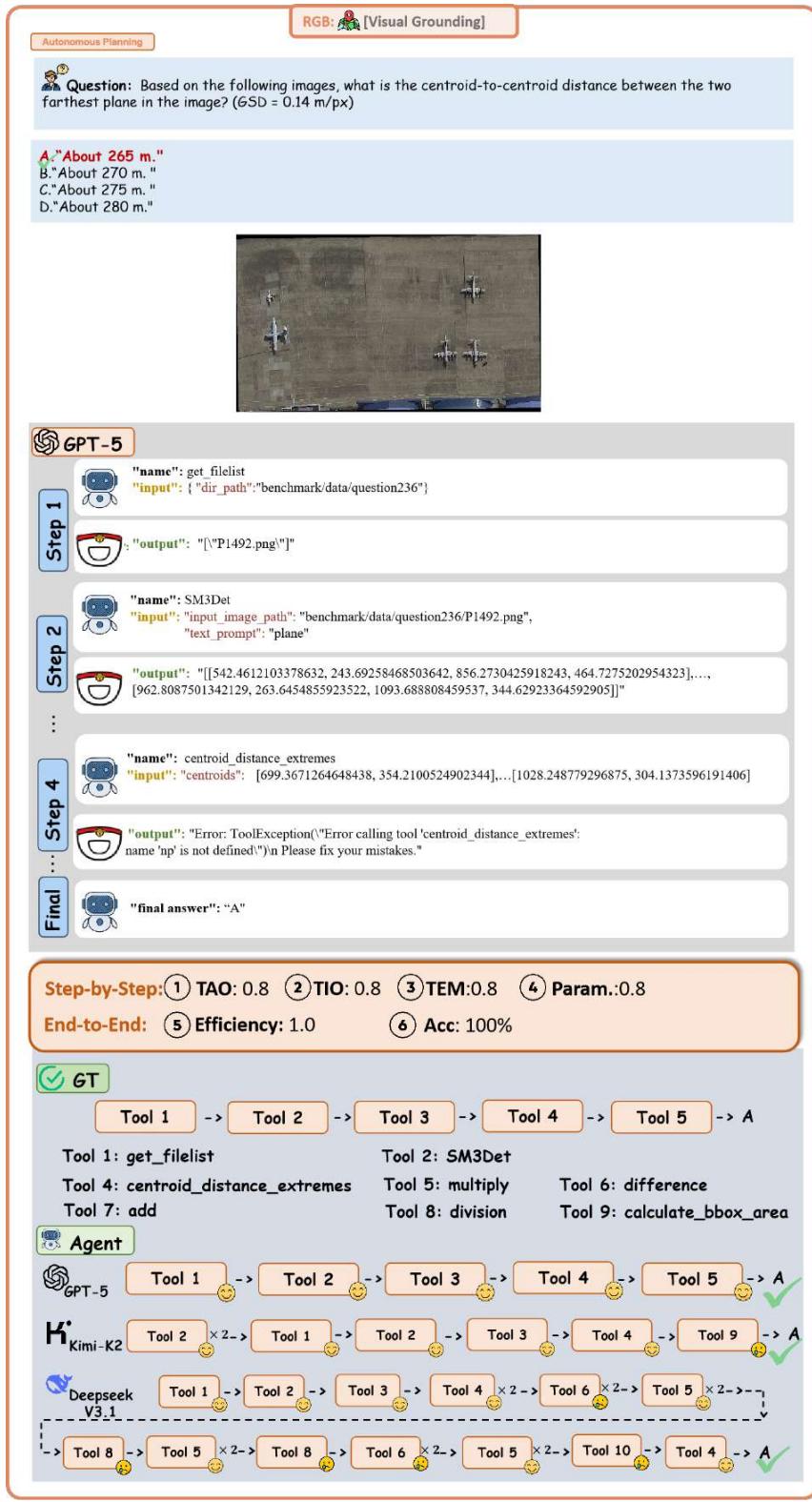


Figure 34: Example of Visual Grounding with RGB Data under the Auto-Planning Regime.

3292
3293

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309

RGB: [Visual Grounding]
Instruction Following

Question: Based on the following images, the first step is to obtain the folder information, then detect all plane in the image, convert their bounding boxes to centroids, calculate the distances between each pair of centroids, and then find the farthest distance.

A."About 265 m."
B."About 270 m."
C."About 275 m."
D."About 280 m."

GPT-5

Step 1
"name": get_filelist
"input": { "dir_path": "benchmark/data/question236"}

Step 2
"name": SM3Det
"input": "input_image_path": "benchmark/data/question236/P1492.png",
"text_prompt": "plane"

Step 3
"output": "[542.4612103378632, 243.69258468503642, 856.2730425918243, 464.7275202954323]....,
[962.8087501342129, 263.6454855923522, 1093.688808459537, 344.62923364592905]"

Step 4-5
"name": centroid_distance_extremes
"input": "centroids": [699.3671264648438, 354.2100524902344]....[1028.248779296875, 304.1373596191406]

Final
"output": "Error: ToolException("Error calling tool 'centroid_distance_extremes':
name 'np' is not defined")n Please fix your mistakes."

"final answer": "C"

Step-by-Step: ① TAO: 0.8 ② TIO: 0.8 ③ TEM: 0.8 ④ Param.: 0.8
End-to-End: ⑤ Efficiency: 1.0 ⑥ Acc: 0%

GT

Tool 1 -> Tool 2 -> Tool 3 -> Tool 4 -> Tool 5 -> A

Tool 1: get_filelist
Tool 2: SM3Det
Tool 3: multiply
Tool 4: centroid_distance_extremes
Tool 5: add
Tool 6: difference
Tool 7: division
Tool 8: calculate_bbox_area
Tool 9: calculate_bbox_area

Agent

GPT-5: Tool 1 -> Tool 2 -> Tool 3 -> Tool 4 -> Tool 5 -> C (X)

Kimi-K2: Tool 1 -> Tool 2 -> Tool 3 -> Tool 4 -> Tool 5 -> Tool 6 -> Tool 7 -> C (X)

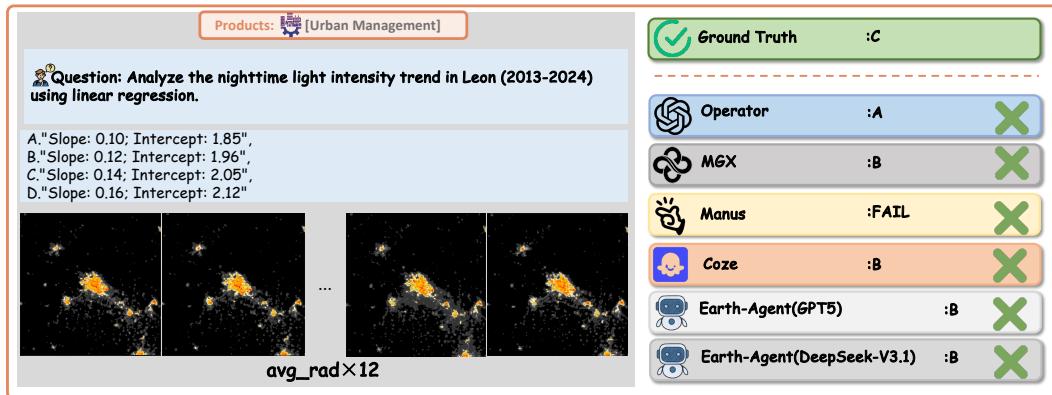
Deepseek V3.1: Tool 1 -> Tool 2 -> Tool 3 -> Tool 4 -> Tool 5 -> Tool 6 -> Tool 7 -> C (X)

Figure 35: Example of Visual Grounding with RGB Data under the Instruction-Following Regime.

3348 **I CASE STUDY: COMPARE WITH OTHER AGENTS**

3349

3350



3363 **Figure 36: A Question Case of the Urban Management Task using Products Data with Re-
3364 sponses from Different Agent.**

3365

3366

3379 **Figure 37: A Question Case of the Urban Management Task using Products Data with Re-
3380 sponses from Different Agent.**

3381

3382

3395 **Figure 38: A Question Case of the Change Detection Task using RGB Data with Responses
3396 from Different Agent.**

3397

3398

3399

3400

3401

3402
3403
3404
3405
3406
3407
3408

RGB: [classification]

Question: Based on the following images, every image belongs to {Airport, BareLand, BaseballField, Beach, Bridge, Center, Church, Commercial, DenseResidential, Desert, Farmland, Forest, Industrial, Meadow, MediumResidential, Mountain, Park, Parking, Playground, Pond, Port, RailwayStation, Resort, River, School, SparseResidential, Square, Stadium, StorageTanks, Viaduct}, determine the number of images captured in bareland areas.

A."3"
B."8"
C."10"
D."6"

RGB×12

Ground Truth	:A
Operator	:B
MGX	:FAIL
Manus	:B
Coze	:FAIL
Earth-Agent(GPT5)	:A
Earth-Agent(DeepSeek-V3.1)	:A

Figure 39: A Question Case of the Classification Task using RGB Data with Responses from Different Agent.

3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435

RGB: [classification]

Question: Based on the following images, every image belongs to {Airport, BareLand, BaseballField, Beach, Bridge, Center, Church, Commercial, DenseResidential, Desert, Farmland, Forest, Industrial, Meadow, MediumResidential, Mountain, Park, Parking, Playground, Pond, Port, RailwayStation, Resort, River, School, SparseResidential, Square, Stadium, StorageTanks, Viaduct}, determine the number of images captured in mountain areas.

A."1"
B."3"
C."2"
D."7"

RGB×11

Ground Truth	:B
Operator	:B
MGX	:FAIL
Manus	:B
Coze	:FAIL
Earth-Agent(GPT5)	:B
Earth-Agent(DeepSeek-V3.1)	:B

Figure 40: A Question Case of the Classification Task using RGB Data with Responses from Different Agent.

3451
3452
3453
3454
3455

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

RGB: [detection]

Question: As part of a regional sports infrastructure audit, you are tasked with estimating the total area occupied by baseball diamonds using bounding boxes(GSD = 0.13 m/px).

A."About 500 m²".
B."About 1500 m²".
C."About 3500 m²".
D."About 80119 m²".

Ground Truth :B	
Operator	:B ✓
MGX	:FAIL ✗
Manus	:A ✗
Coze	:FAIL ✗
Earth-Agent(GPT5)	: FAIL ✗
Earth-Agent(DeepSeek-V3.1)	:B ✓

Figure 41: **A Question Case of the Detection Task using RGB Data with Responses from Different Agent.**

RGB: [Visual Grounding]

Question: Based on the following images, calculate the centroid-to-centroid distance between the two farthest plane in the image? (GSD = 0.14 m/px).

A."About 265 m.".
B."About 270 m.".
C."About 275 m.".
D."About 280 m."

Ground Truth :A	
Operator	:D ✗
MGX	:FAIL ✗
Manus	:C ✗
Coze	:FAIL ✗
Earth-Agent(GPT5)	:A ✓
Earth-Agent(DeepSeek-V3.1)	:B ✗

Figure 42: **A Question Case of the Visual Grounding Task using RGB Data with Responses from Different Agent.**