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Abstract

Synthesizing new inorganic functional materials is a practical goal of materials
science. While the advances in computational techniques accelerated the virtual
design, the actual synthesis of predicted candidate materials still remain as an
expensive and slow process. While a few initial studies attempted to predict
the synthesis routes for inorganic crystals, the existing models do not yield the
uncertainty of the predictions and could produce thermodynamically unrealistic
precursor chemicals. Here, we propose an element-wise graph neural network
to predict the inorganic synthesis recipes. The trained model outperforms the
popularity-based statistical baseline model for top-k exact match accuracy test,
showing the validity of our approach for inorganic solid-state synthesis. We further
validate our model by the publication-year-split test, where the model trained
based on the materials data until the year 2016 is shown to successfully predict the
synthetic precursors for the materials synthesized after 2016. The high correlation
between the classification score and prediction accuracy suggests that the prediction
score can be interpreted as a measure of uncertainty.

1 Introduction

Synthesizing new inorganic functional materials is a practical goal of materials science in various
fields such as batteries, [1} 2| 3] (photo-)electrochemical catalyst,[4} 5] and solar cell[6] to name
a few. While the advances in computational power and electronic structure calculation methods
helped to design new materials in a pace much faster than before,[7, I8} 9} [10] the actual synthesis of
predicted candidate materials still remain as a slow process due to an empirical nature of synthesis.
Thus, to reduce the time and cost associated with failed syntheses, efforts to understand the chemistry
of materials synthesizability have been attempted in literature. Fedorovskiy et al.[11] and Ouyang
et al.[12] suggested the use of heuristic rules to predict the materials synthesizability, e.g., Gold-
schmidt’s tolerance factor for double halide perovskites or the stability rules for NASICON-structured
materials. Since these heuristic rules for synthetic accessibility are usually domain specific, several
thermodynamic quantities (the energy above the convex hull and the decomposition enthalpies)
obtained from electronic structure calculations have been widely used as a guideline to estimate
synthesizability.[13}, [14} [15 [16]] More recently, data-driven machine learning (ML) models have been
proposed to calculate the materials thermodynamics[[17, 18 119] or the synthesizability of materials
based on the structural similarity.[20} 21]]
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Figure 1: The overview of (a) the formulation of source elements and precursor templates libraries
and (b) the inorganic retrosynthetic model architecture (see also Figure ] for more details on the
ElemwiseRetro).
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Beyond the synthetic feasibility predictions as briefly described above, a few studies attempted
to further suggest synthesis routes for inorganic materials. For example, based on thermody-
namic parameters and some kinetic heuristics, favorable pathways for inorganic materials could
be constructed.[22] 23] Notably, several data-driven models have also been proposed to generate
the precursors and synthetic conditions (e.g. heating temperature and time) to synthesize the target
materials using the text-mined meta-datasets.[24, 25| 26l 27]] However, the outcomes from generative
models used in the latter studies[27] can contain thermodynamically unstable precursors and do not
generally inform the measure of uncertainty for predicted reactions, requiring an additional process
by domain experts to screen or rank the generated reaction recipes.

This early stage of inorganic retrosynthetic reaction prediction can be contrasted with the organic
synthesis planning where there are a number of template-free[28 29, |30] and template-based[3 1} [32]]
models with promising prediction accuracy. This difference suggests that the concepts used in the
successful organic retrosynthesis models may be borrowed and adapted to address the inorganic
retrosynthesis problem. In particular, by noting that most solid-state inorganic syntheses are performed
using a finite list of commercial precursors, we envision that the set of popular inorganic precursors
used in literature can be seen as a “template” for inorganic solid-state synthesis, and a similar
probability-based template selection model used in the organic retrosynthesis can be used in the
inorganic synthesis planning. This template-based recommendation would remove the possibility of
yielding unrealistic precursor chemicals in some of the existing generative model-based inorganic
retrosynthesis predictions.[27]]

In this work, we introduce a template-based graph neural network for inorganic synthesis recipe
prediction. The model is trained to predict a set of precursors for inorganic crystals by ranking
the sets of precursors as the probability scores. Temperature for the solid-state reaction is another
important parameter in actual experimental synthesis, that is affected by both the target crystals and
detailed precursors chosen. Thus, we additionally constructed a temperature prediction model that
is sequentially-connected to the precursor set prediction model. These two models combined then
generate a set of precursors and temperature to produce a target solid compound. Due to a high
correlation between the prediction score and the prediction accuracy, the proposed model has a key
advantage of quantifying uncertainty of the predictions.

2 Methods

Element-wise formulation of inorganic retrosynthesis We formulate the retrosynthetic problems
of inorganic materials by first dividing the chemical elements in the target product into two types:



Table 1: The top-k exact match accuracy for the prediction of inorganic synthesis precursors by

ElemwiseRetro and the popularity-based baseline model.

Model
Top-k accuracy (%) ElemwiseRetro  ElemwiseRetro-TimeSplit Baseline
k=1 83.06 £0.05 83.26 +0.14 54.00 £0.46
k=2 91.14 +0.04 91.28 +0.17 74.92 +0.24
k=3 94.14 £0.07 94.62 +0.21 79.62 £0.19
k=14 95.98 +0.15 96.10 +0.14 81.56 +0.20
k=5 97.60 £0.15 96.92 £0.13 82.64 +0.15

elements that have to be provided as reaction precursor (denoted as “source element”) and elements
that can come from the reaction environments (denoted as “environmental element”). After selecting
the source elements from the given target inorganic compositions, proper anionic frameworks (denoted
as “precursors templates”) have to be attached to each source element to complete the actual precursor
compounds. This formulation of the problem is summarized in Figure[Th.

To categorize the source and environmental elements, we examined the text-mined inorganic reaction
database[33]. To that end, we assigned the metal groups (alkali, alkaline, transition, lanthanide,
actinide, post transition), metalloid, phosphorus, selenium, and sulfur as the source elements, and
the others as environmental elements from the inorganic retrosynthetic point of view. Based on
these definitions, we constructed the total 39 precursors templates (tabulated in Table [2)) from the
11,122 curated inorganic retrosynthetic datasets. The detailed procedures for the dataset selection
and curation, and the precursor template extraction are described in the supplementary section.

Retrosynthetic model Based on these definitions, for a given target composition, the compound is
encoded as Roost[34] representaiton, which is a 2D graph whose node features are obtained from a
separate pretrained representation of inorganic compounds. Once the representation is fed into the
model, the inorganic retrosynthetic model predicts the precursors that can provide all source elements
contained in the given target composition using the source element mask, as shown in Figure[Tp. The
formulated source element mask enables the model to discriminate the source elements (L%, La, and
Zr) information from the given compositions (Li7 Las Zr2012). Each source element is separately
used in the following precursor classifier which predicts the precursor in the formulated templates
library. By calculating the joint probability of a set of precursors determined for each source element,
the precursor-sets (synthesis “recipe”) are finally predicted as a probability score which can be ranked.
The brief and detailed architecture of the proposed model, ElemwiseRetro, is described in Fig. [T]and
the supplementary section, respectively.

3 Experiments

Precursor set prediction To demonstrate the ElemwiseRetro model performance, we calculated
the top-k exact match accuracy for the test dataset. Since the model might capture merely the
popularity trend of literature-reported examples, as recently discussed for some organic retrosynthesis
predictions,[35] we constructed the template-popularity-based model as a baseline comparison. In this
baseline, the prediction is made statistically based on the number of examples in which a particular
template appears in the dataset. The results for the top-k exact match tests are shown in Table[I} The
error bars correspond to the standard deviation of the 5 trained models. The proposed ElemwiseRetro
shows the promising 83 % top-1, and 97 % top-5 accuracy, as compared to the popularity baseline
model whose top-1 and top-5 accuracies are 54 % and 83 %, respectively.

Uncertainty estimation The reliability of the prediction is important to measure in order to
prioritize and manage the cost of experimental environments. We split the top-1 exact match accuracy
of precursors set prediction depending on their prediction scores. As shown in Figure 2, a positive
correlation between the prediction score and the accuracy is clear. This means that the predictions
with higher classification scores can be considered as more reliable predictions.
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Figure 2: The prediction accuracy of precursors sets as a function of prediction scores for (a) the
randomly split and (b) the publication-year-split test dataset. (c) Inorganic reaction dataset counted
by published years. After training the model only using the dataset before 2016, the dataset after
2016 were tested to validate the model transferability up to the afterward time space.

Publication-year-split validation To further validate our model, we performed the publication-
year-split test, for which we mined the published years of each data using the DOIs tagged in the
inorganic reaction database (Figure 2k). In this benchmark, instead of splitting the entire dataset
between the training and test sets randomly as in the original ElemwiseRetro, we used the time
sequence to split the dataset, the data before year 2016 for training (~ 75%), and the data after
2016 for testing (~ 25%). As the accuracy results for this time split case is summarized in Table[T}
both original ElemwiseRetro and ElemwiseRetro-TimeSplit yield the consistent model performance.
Furthermore, we split the top-1 exact match accuracy depending on their classification scores (Figure
[2b), and a positive correlation is still clear even though the test dataset was derived from the out
of time domain. This result clearly suggests that our model can be used to discover undiscovered
inorganic materials in the future.

Synthetic temperature prediction The synthetic temperature prediction model performance was
investigated by the 2D parity heat map as shown in Figure[5] The predicted temperatures from the
model reproduces the real temperatures qualitatively with the mean absolute error (MAE) of 117.9°C,
which outperforms the MAE (~ 140°C') of previous results.[25], 26] Nevertheless, a wide range of
temperatures (300 ~ 1600°C') used to synthesize a target crystal with a limited number of data points
is potentially contributing to a relatively large MAE observed here.

4 Conclusion

We proposed an element-wise template-based retrosynthetic model that enables a probabilistic
prediction of precursors set for inorganic crystals and the corresponding synthetic temperatures.
Based on the concept of “source element” and “environmental element”, we derived a set of precursor
templates of inorganic crystal compounds. We demonstrated a promising model performance by
the top-k exact match accuracy test. The observed positive correlation between the classification
score and the prediction accuracy also allows us to estimate the uncertainty of the predictions. We
further validated our model by the publication-year-split test, which suggests that our model has
a possibility of covering up to the afterward time space where novel inorganic materials will be
discovered. While the current approach is the first and initial effort to use a probabilistic modeling for
inorganic solid-state retrosynthesis predictions with uncertainty estimation, we expect that the concept
of templates, source-element decomposition, and element-wise prediction proposed here can be a
promising direction to further develop inorganic retrosynthetic models with improved performance.
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A Method details

A.1 Dataset preparation

For preparing the dataset for train and test, we started with the inorganic synthesis-related dataset[33]]
which was text-mined from the literatures published after the year 2000. The raw text-mined data
contain some incomplete entries thus we further refined the data. We removed the data with missing
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Figure 3: (a) By the definition of the formulated source elements and environmental elements, the
element coverage in the periodic table for making up target material compositions are shown as the
colored map counted by target crystal compositions. The source elements and the environmental
elements are boxed with yellow and blue lines, respectively. (b) Based on the formulated source
elements and precursor templates, reaction coverage ratios depending on the most frequent inorganic
target types are displayed.

or incorrectly parsed elements and stoichiometry, which reduces the data size from 31,782 to 25,873.
Next, the entries with the inconsistency between the target crystal elements and the source elements
in precursors were removed, resulting in 22,837 data. The data are further trimmed by selecting data
where only one source element is present for each precursor, which is the case for the most of the data
(20,843) due to its affordability in real experimental synthesis for any type of inorganic synthesis.
The duplicate cases were removed (13,445), and few cases of the unstable or metastable precursors
like LioO2 were also filtered out due to unmanageability in real synthetic environments.

For synthesis step with several experiment, the synthetic temperature was calculated by averaging.
The data with the synthesis temperature less than 300°C' and more than 1600°C' were removed, as
they are outliers. For multi-step reaction cases which have more than one heating step, we took the
average temperature to represent the overall reaction. Those with the high standard deviation data
were removed. In this study, several other reaction conditions (e.g. sequence of action verbs, type
of mixing device, heating atmosphere, etc.) which might be up to each laboratorial standardized
procedure would not be considered, incorporating the conditions is a topic of future work.

Through the aforementioned preprocessing, our final dataset size is 11,122 for the precursors set
prediction from the targets and 7,541 for the synthetic temperature prediction. The whole dataset
was divided into training: validation: test (8: 1: 1) to separate test data from training process. Figure
[3]shows the coverage of the inorganic reaction data based on the formulated source elements and
precursors templates. The element coverage (Figure [3h) in the periodic table which makes up the
target crystals and the reaction coverage (Figure [3p) depending on the target types in the inorganic
reaction dataset were shown, which represents our inorganic reaction domain. Although the total
reaction coverage from our template-based approach is 74.6 %, which should be further developed,
our formulated concepts still have a possibility to handle reactions involving most elements and the
broad types of popular inorganic materials (e.g. oxide, composite, alloy, halide, and etc.).

A.2 Precursor templates extraction

In predicting the retrosynthetic precursors for given inorganic materials, we used source element-wise
precursors templates to determine each types of precursor compounds. After thoroughly investigating
the whole 11,122 inorganic synthetic dataset which was curated by the abovementioned preprocessing,
we obtained the list of the precursors templates (e.g. -C O3 in Lis(COs3), Naz(COs), and -OH in
Li(OH), Al(OH)3). The full list of total 39 retrosynthetic precursor templates are shown in Table 2]
which appeared at least once in the whole curated dataset. Based on this precursor templates, our
retrosynthetic model can predict each precursor per one source element within the pre-defined 39
template space.



Table 2: The list of 39 templates of precursor frameworks which appeared in the inorganic synthetic

dataset.
Formula Nomenclature Formula Nomenclature
-Op, - oxide -(OOH), - oxy-hydroxide
-(CO3)n - carbonate . (Pure source element)
-(OH), - hydroxide -(CO)y - carbonyl
-(NO3), - nitrate -(CH50), - methoxide
-F, - fluoride -(CoH50), - ethoxide
-(OF), - oxyfluoride -(CsH70), - isopropoxide
-Cl, - chloride -(C4HyO),, - tert-butoxide
-(ClO),, - hypochlorite -(CeHs07)n - citrate
-Br,, - bromide -(CH5C00), - acetate
-(BrO), - oxybromide  -[(CH3COO)O], - yl acetate
-In - iodide -(CsH703), - acetylacetonate
-H, - hydride -[(C5H704)20],, - oxy-acetylacetonate
-Cp, - carbide -H,0,, - ic acid
-(CN), - cyanide -(NH4)»nOm - ammonium ate
-(Co.7No3)n - carbo-nitride -(NHy4),H,,0, - ammonium ate acid
-N, - nitride -[((NHy4)2(NOs3)g]n, ~ - ammonium nitrate
-(ON),, - oxynitride -[(CO3)4(OH)3], - carbonate hydroxide
-(NHs), - amide -(NO3)nOp, - nitrate oxide
-[C2H3(NH3)],  -acetamide  -(NO3),O,(OH); - oxy-nitrate-hydroxide
-(C304)n, - oxalate - -

B Model details

B.1 Retrosynthetic model

We denote our retrosynthetic precursor prediction model as ElemwiseRetro, and the other for the
synthetic temperature prediction. The overall schematics of the two model architectures are illustrated
in Figure[d} In order to find the plausible set of precursors that could synthesize the target product,
the composition of the inorganic target material was converted to a graph representation, referred
to as Roost.[34] The atomic feature vectors learned from the ElemNet[36] were embedded as
the initial node states of the inorganic graph. We then apply the message passing neural network
(MPNN)[37] to the graph representation, which updates the initial atomic features by the surrounding
environmental information. Typically, after passing the MPNN, the pooling operation is used to
gather the updated node vectors in order to obtain single inorganic descriptor as one-to-one mapping
with target input. Instead of using the pooling layer, however, we extracted the node vectors, which
correspond to the source elements, from the updated atomic features to solve the retrosynthetic
one-to-many (target-to-precursors) problem. Then the source element descriptors were separately
entered into the prediction network (element-wise prediction).

After the training with the precursor templates, the retrosynthetic model classified each source
elements to infer their precursor template classes. At the end of the classifier, probability score
distributions of the precursor templates for each source elements were obtained by the SoftMax
layer. Using this individual probability, we can automatically compute the joint probability, resulted
in the set of precursors outcome. These probability concept enables the model to derive the most
synthetically probable precursors for inorganic retrosynthesis by ranked as descending probability
scores.

After predicting the set of precursors by ElemwiseRetro, both the target and precursors were inputted
in the second model for predicting their synthetic temperature (Figure [@p). The compositions of the
target and precursors were converted to inorganic graph by aforementioned Roost. To distinguish
information between the target and precursors, the atomic nodes in the inorganic graph were only
intra-connected within the target and precursor set, separately. Therefore, the target (or precursor)
atomic features were updated only from the surrounding target (or precursor) information. After the
MPNN, the attention pooling layer was applied to extract the target and precursor descriptors from
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Figure 4: Schematic diagram of (a) the retrosynthetic model (ElemwiseRetro) architecture for the
precursor set prediction and (b) the synthetic temperature prediction. When predicting the set of
precursors for Liy LasZr2012, the updated source element feature vectors (Li, La, and Zr) are
used for the precursor template classifier, resulting in the individual precursors outcome with each
probability scores. Finally, the set of precursors were derived from the joint probability (The rank-1
result came from the highest joint probability).

Table 3: The top-k exact match accuracy for the prediction of inorganic synthesis precursors by three
retrosynthetic the ablation models.

Model
Top-k accuracy (%) Elem-wise Elem-wise w.GLA Global agg.
k=1 83.7 83.0 66.8
k=2 90.9 91.0 74.6
k=3 94.5 94.5 82.4
k= 97.0 96.9 89.0
k=10 98.3 98.3 95.8

the updated target and precursor graphs, respectively. Then the two descriptors were concatenated
and fed into the regressor network to predict their synthetic temperature.

B.2 Model construction

The atomic feature vectors learned from the Elem N et[36] were embedded as the initial node vectors
of the inorganic graph. The atomic embedding dimension is 136, which is mapped to 63 dimensions
by one linear layer. The stoichiometric weight is concatenated to each mapped atomic vector, resulting
that the initial node dimension is 64. We used three MPNN layers to update the node features. The
three hidden layers of prediction network have 512/ 512/ 512 nodes. At the end of the prediction
network, SoftMax layer is used in ElemwiseRetro.

B.3 Model ablation study
To elucidate the crucial components of the model, we constructed ablation models. The schematic

architectures for the ablation models were illustrated in Figure[6] To investigate the pooling effect
that combines the updated atomic node features to one global descriptor, pooling layer was added to
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Figure 5: The result of 2D parity heat map from the synthetic temperature prediction model.

ElemwiseRetro which denoted as the global aggregated prediction model (Global agg.), as shown
in Figure[6p. To further develop the source element-wise prediction model, the global descriptor is
concatenated with the initial atomic features, the model of which is denoted as the source element-
wise with global aggregated prediction model (Elem-wise w. GLA), as shown in Figure [6p. All
prediction networks for the ablation test were composed of identical GRU layers, comparing the
effect of two different types of descriptor network. The top-k exact match accuracy of precursors set
prediction for each model was tabulated in[3} Two source element-wise ablation models outperformed
the conventional global aggregated model from top-1 to top-10, suggesting that the superior model
performance was derived from the usage of element-wise descriptors to predict the set of precursors.
However, the model performance did not depend on the usage of the global factor. This means that
using the concept of source element-wise prediction is the important feature to predict the inorganic
retrosynthetic reactions.

C Experimental details

C.1 Implementation

For curating inorganic database, we used Pymatgen[38] library, which is an open-source Python
library for materials analysis. The model was constructed using Pytorch[39], the deep learning
libraries. All experiments were conducted under the machine, which has an Intel Core 19-12900K @
3.20 GHz, 128 GB of RAM, and NVIDIA GeForce RTX 3090 GPU.

C.2 Training conditions

Train and validation dataset were used to train the two sequentially-connected models (ElemwiseRetro
and the synthetic temperature prediction model). The learning rate for both models was 3e-4, weight
decay coefficient was le-6, and the batch size was 128. The cross entropy and robust L1 loss functions
were used to train these two models, respectively. The weight parameters of the best validation loss
during the training process (within 50 epoch) were used as the optimized model parameters. The
training curve of the trainset and the validation set for two models were shown in Figure 7]
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Figure 6: Schematic diagram of the two retrosynthetic ablation model architectures for (a) the
conventional global aggregated prediction using pooling operation and for (b) the source element-
wise with global aggregated prediction model.
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Figure 7: Training and validation loss curve of (a) the retrosynthetic model (ElemwiseRetro) and (b)
the synthetic temperature prediction model during the training process.
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