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ABSTRACT

Multi-agent adversarial reinforcement learning (MaARL) has shown promise in
solving adversarial games. However, the theoretical tools for MaARL’s analysis
is still elusive. In this paper, we take the first step to theoretically understand
MaARL through mean-field optimal control. Specifically, we model MaARL as
a mean-field quantitative differential game between two dynamical systems with
implicit terminal constraints. Based on the game, we respectively study the opti-
mal solution and the generalization of the fore-mentioned game. We first establish
a two-sided extremism principle (TSEP) as a necessary condition for the opti-
mal solution of the game. We then show that this TSEP is also sufficient given
that the terminal time is sufficiently small. Based on the TSEP, a generalization
bound for MaARL is further proposed. This bound does not explicitly rely on the
dimensions, norms, or other capacity measures of the model, which are usually
prohibitively large in deep learning. To our best knowledge, this is the first work
on the theory of MaARL.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton, 1988; Sutton and Barto, 1998; Barto et al., 1991), aimed at
single-agent environments, has been successfully deployed in many application areas, including
ethology (Dayan and Daw, 2008), economics (Jasmin et al., 2011), psychology (Leibo et al., 2018),
and system control (Arel et al., 2010). It studies how artificial systems learn to predict the optimal
action according to the current state. The agent in the system determines the best course of action to
maximize its rewards, which also moves its state to the next state.

However, real-world RL agents inhabit natural environments also populated by other agents. Agents
in these environments can interact with each other and modify each other’s rewards via their actions.
Based on this point, multi-agent adversarial reinforcement learning (MaARL) is proposed by Uther
and Veloso (2003), in which adversarial neural networks are employed for solving games in adver-
sarial environments (Mandlekar et al., 2017). MaARL is well suited for multi-party game problems
such as autonomous driving (Behzadan and Munir, 2019; Pan et al., 2019), AI gaming (Mandlekar
et al., 2017; Pinto et al., 2017; Zhang et al., 2020), and auction games (Bichler et al., 2021). More-
over, adversarial neural networks can also improve feature robustness and sample efficiency (Ma
et al., 2018).

Despite the empirical popularity of MaARL, its theoretical understanding remains blank. We at-
tribute such a gap between theory and practice to the lack of analysis tool: the optimization objective
is defined by a dynamical system, which is too complex to analyze directly.

In this paper, we aim to provide new theoretical tools for the analysis of MaARL. We probe into
MaARL from the view of mean-field optimal control. Specifically, our contributions can be summa-
rized as follows:

1. We propose to model MaARL as a mean-field quantitative differential game (Pontryagin,
1985); and thus, its corresponding training process is regarded as how to achieve the op-
timal control of this game. The mean-field two-sided extremism principle (TSEP) (Guo
et al., 2005) is then presented, which relies on the loss function and terminal constraints.
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This mean-field TSEP serves as the necessary conditions of the convergence (or equiva-
lently, the optimality) of the mean-field quantitative differential game; when the terminal
time is small enough, this mean-field TSEP is also a unique solution, and thus serves as the
sufficient conditions of the convergence.

2. The optimal objective function value is characterized by the viscosity solution (E et al.,
2019) of a mean-field Hamilton-Jacobi-Issacs (HJI) equation (Guo et al., 2005). We then
prove that this viscosity solution is unique. The HJI equation gives a global characterization
of adversarial reinforcement learning, while the previously given mean-field TSEP is a local
special case.

3. Based on the TSEP, a generalization error bound for MaARL is proved. The bound is of
the order O(1/

√
N), where N is the number of samples. They do not explicitly rely on the

dimensions, norms, or other capacity measures of the network parameter, which are usually
prohibitively large in deep learning.

To the best of our knowledge, this is the first work on developing theoretical foundations for ad-
versarial reinforcement learning. Our work may inspire novel designs of optimization methods for
adversarial reinforcement learning. Moreover, the techniques may be of independent interest in
modeling other adversarial learning algorithms, including generative adversarial networks (Good-
fellow et al., 2020; Liu and Tuzel, 2016; Mao et al., 2017), and solving partial differential equations
(Zang et al., 2020).

2 RELATED WORKS.

Mean-field optimal control. Since the work of Fornasier and Solombrino (2014) which introduces
the concept of the mean-field optimal control and describes it as a rigorous limiting process, vari-
ous applications of mean-field optimal control in different scenarios were proposed. Fornasier et al.
(2019) focus on the role of a government of a large population of interacting agents as a mean-field
optimal control problem derived from deterministic finite agent dynamics, Burger et al. (2021) de-
rive a framework to compute optimal controls for problems with states in the space of probability
measures, and Albi et al. (2022) studied the problem of mean-field selective optimal control for
multi-population dynamics based on transient leadership. In terms of the development of mathemat-
ical tools for mean-field optimal control, Bonnet and Frankowska (2022) investigate some of the fine
properties of the value function associated with an optimal control problem in the Wasserstein space
of probability measures, and Bonnet and Rossi (2021) provide sufficient conditions under which the
controlled vector fields solution of optimal control problems formulated on continuity equations are
Lipschitz regular in space. See (Bonnet et al., 2022; Zhou and Xu, 2020; Carrillo et al., 2020) for
more reference.

Deep learning theory based on dynamics. Previous works have been devoted to establish the the-
oretical foundations of deep learning by the dynamical system viewpoint since E (2017). Based
on the PMP and the method of successive approximation (Kantorovitch, 1939), new optimization
methods are developed by Li et al. (2018); Li and Hao (2018). Sonoda and Murata (2017) study the
continuum limit of training neural networks, and Chang et al. (2018b;a); Haber and Ruthotto (2017)
contribute to the design of network architecture based on dynamical systems and differential equa-
tions. E et al. (2019) propose to employ mean-field optimal control formulation for explaining deep
learning. They prove the mean-field optimality conditions of both the Hamilton-Jacobi-Bellman
type and the Pontryagin type (Pontryagin, 1987). Similar results are given by Persio and Garbelli
(2021) through associating deep learning with stochastic optimal control (Guo et al., 2005) from
the perspective of mean-field games (Lasry and Lions, 2007). These mean-field results reflect the
probabilistic nature of deep learning. Compared with above works, this paper models an MaARL
algorithm as a mean-field quantitative differential game between two dynamical systems, rather than
a single dynamical system.

3 PRELIMINARIES

One-agent reinforcement learning. One-agent reinforcement learning aims to solve aK-step deci-
sion problem. Specifically, the agent namedDz starts from state x0 = x ∈ Rn1 . At step k, the agent
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are able to take action ak based on its current state xk and moves to state xk+1 = xk + fk(x
k, ak),

where fk is the transition function. The error of action ak is penalized by Lk(x
k, ak) from the

environment.

A final penalty Φ(xK , y) applies at the last step K, where y represents some known prior informa-
tion, e.g., the engine power of a vehicle in autonomous driving.As a summary, the overall penalties
during the agent course is as follows:

E(x,y)∼µ

[
Φ(xK , y) +

K−1∑
k=0

Lk(x
k, ak)

]
.

In deep reinforcement learning, the action ak is represented by a deep neural network parameterized
by θk, i.e., ak = ak(xk, θk), and we can view the agent Dz as a mapping Dz(x; θ̂z = {θk}K−1

k=0 )
from the initial state x0 = x to the last-step state xK . Also, in practice, the terminal state is usually
subject to a constraint represented by function g(xK), such as a vehicle (the agent) is controlled to
reach a certain area (the constraint). In this way, one-agent reinforcement learning can be modelled
as a mean-field optimal control problem with trainable parameters {θk}K−1

k=0 , as follows,

inf
θ
E(x,y)∼µ

[
Φ(xK , y) +

K−1∑
k=0

Lk(xk, θ
k)

]
s.t. xk+1 = xk + fk(x

k, θk), x0 = x ∈ Rn1 , g(xK) = 0. (1)

Multi-agent adversarial reinforcement learning. In this setting, besides the original deep-
learning-based agent Dz(xz; θ̂z = {θkz}K−1

k=0 ) : Rn1 → Rn1 (Eq. 1), an adversarial deep-learning-
based agent Dd(xd; θ̂d = {θkd}

K−1
k=0 ) : Rn2 → Rn2 exists, where θ̂z ∈ Θ̂z and θ̂d ∈ Θ̂d are

parameters of Dz and Dd respectively, and xz and xd are initial states of Dz and Dd respectively.
We use akz(x

k
z , θ

k
z ) and akd(x

k
d, θ

k
d) to denote the action of the original and the adversarial agents at

step k, respectively. The penalty at step k now relies on the states and actions both of the original
agent Dz and of the adversarial agent Dd, represented as Lk(x

k
z , x

k
d, θ

k
z , θ

k
d). Similarly, the terminal

cost function can be represented as Φ(Dz(xz; θ̂z), Dd(xd; θ̂d), y).

In MaARL, θ̂z is trained to maximize the loss, while θ̂d is trained to minimize the loss. We can then
formulate the adversarial reinforcement learning problem as

inf
θ̂z∈Θ̂z

sup
θ̂d∈Θ̂d

E(xz,xd,y)∼µ

[
Φ(xKz , x

K
d , y) +

K−1∑
k=0

L(xkz , x
k
d, θ

k
z , θ

k
d)

]
(2)

s.t. xk+1
z = xkz + fz(x

k
z , θ

k
z ), x

0
z = xz, gz(x

K
z ) = 0,

xk+1
d = xkd + fd(x

k
d, θ

k
d), k = 0, . . . ,K − 1, x0d = xd, gd(x

K
d ) = 0.

The goal of MaARL is to find the optimal parameters θ̂z and θ̂d satisfying Eq. (2), such that two
agents reach a Nash equilibrium (Maskin, 1999). In this paper, we consider a currently popular
offline setting (Agarwal et al., 2020) of MaARL, where the model is learned on N data points
{(xzi , xdi , yi)}i=1,··· ,N sampled from the distribution µ.

4 MAARL AS A MEAN-FIELD DIFFERENTIAL GAME

Given the current formulation of MaARL (Eq. 2), it is not easy to provide a theoretical analysis
due to its discrete iterations. To faciliate analysis, we consider the dynamical systems viewpoint and
translate problem (2) into the following continuous form.

inf
θz

sup
θd

J(θz, θd) = inf
θz

sup
θd

E(xz,xd,y)∼µ

[
Φ(x(tf ), y) +

∫ tf

0

L(x(t), θz(t), θd(t))dt

]
, (3)

s.t.
dx(t)

dt
= f(x(t), θz, θd), x(0) = (xTz , x

T
d )

T , x(tf ) ∈ S := {x
∣∣g(x) = 0},
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where f(x, θz, θd) = (fTz (x, θz), fTd (x, θd)
T ), g(x(tf )) = (gTz (xz(tf )), g

T
d (xd(tf )))

T , xz(⋆) :
[0, tf ] → Rn1 , xd(⋆) : [0, tf ] → Rn2 , θz(⋆) : [0, tf ] → Rr1 , θd(⋆) : [0, tf ] → Rr2 , gz(⋆) :
Rn1 → Rp1 , gd(⋆) : Rn2 → Rp2 , Φ, L and f are all functions of appropriate input and output
dimensions. Thus, x : [0, tf ] → Rn, g : Rn → Rp, n = n1 + n2 and p = p1 + p2. We define Uz

(Ud) as the set of admissable strategy θz (θd) that satisfies the terminal constraint gz(xz(tf )) = 0
(gd(xd(tf )) = 0).

We note that the above problem (Eq. (3)) is a special case of the mean-field differential games, and
name it as the mean-field quantitative differential game. We believe that Eq. (3) is a reasonable mod-
eling of MaARL, since most dynamic systems in MaARL scenarios are naturally described in terms
of continuous time because of physical laws (e.g., the trajectory of the vehicle in autonomous driv-
ing). Furthermore, as the mean-field quantitative differential game is a special case of the mean-field
differential games, methodology from this area can be borrowed and can offer theoretical insight into
this problem.

Our goal is to characterize the optimal strategy (θ∗z , θ
∗
d) of Eq. (3) and the corresponding optimal

trajectory x∗(t) for any (θz, θd) ∈ Uz × Ud that satisfies

J(θ∗z , θd) ≤ J(θ∗z , θ
∗
d) ≤ J(θz, θ

∗
d), (4)

where Eq. (4) is called the saddle point condition. Furthermore, as Eq. (3) is a characterization of
the expected penalty while empirically only the penalty from the sample is available, another goal
of us is to characterize the gap between the sampled penalty and the expected penalty.

The rest of the paper is organized as follows: in Section 5, we characterize the optimal solution of Eq.
(3) through the mean-field two-sided extremism principle (TSEP). In Section 5, we characterize the
optimal objective function value of Eq. (3) through the mean-field HJI function. Finally, in Section
7, we derive the generalization bound between the sampled penalty and the expected penalty.

5 MODELING OPTIMAL SOLUTION USING MEAN-FIELD TSEP

In this section, we characterize the optimality of the mean-field quantitative differential game (3)
through a two-sided extremism principle (TSEP) with terminal constraints. We prove that satisfying
such a TSEP is a necessary condition for being the optimal solution of Eq. (3). With additional mild
assumptions, we will show the TSEP is also a sufficient condition.

We first introduce the Hamilton function of Eq. (3) as follows,

H(x(t), θz(t), θd(t), ψ(t)) := −L(x(t), θz(t), θd(t)) + ψT (t)f(x(t), θz(t), θd(t)),

Intuitively, H : Rn ×Θz ×Θd × Rn → R is the total energy of the dynamical system and ψ ∈ Rn

represents the momentum.

We are now ready to prove derive the necessary condition of being the optimal solution of Eq. (3).

Theorem 5.1 Under the assumptions,

i) f is bounded and f, L are continuous w.r.t. θz, θd;

ii) f, L and Φ are continuously differentiable w.r.t x, and the distribution µ has bounded support.

Let (θ∗z , θ
∗
d) ∈ Uz × Ud be the optimal strategy of problem (3), x∗(t) be the corresponding optimal

trajectory, then there exists ψ∗ : [0, tf ] → Rn and ξ ∈ Rp such that for t ∈ [0, tf ],

1) ẋ∗(t) = f(x, θ∗z , θ
∗
d), x∗(0) = x0, ψ̇

∗(t) = −∇xH(x∗(t), θ∗z(t), θ
∗
d(t), ψ

∗(t)),

ψ∗(tf ) = −∇xΦ(x
∗(tf ), y0)− ξT∇xg(x

∗(tf )) (5)

2) E(x0,y0)∼µH(x∗(t), θ∗z(t), θ
∗
d(t), ψ

∗(t)) = sup
θz∈Θz

inf
θd∈Θd

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t))

= inf
θd∈Θd

sup
θz∈Θz

E(x0,y0)∼µH(x∗(t), θz, θd, ψ
∗(t)), a.e., (6)

where f(·), L(·) and Φ(·) are defined in Eq. (3) and H(·) is the Hamilton function.
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Theorem 5.1 introduces the necessary conditions for the convergence of the unique global solution
to the mean-field TSEP, relying on the loss function and terminal constraints.

Since the necessary conditions for optimality have been provided by the TSEP, a natural question is
to understand when sufficient conditions for optimality can be also provided. This part presents one
simple case where it is sufficient, i.e., an optimal solution exists, when does the mean-field TSEP
admit a unique solution?

Theorem 5.2 Suppose that

i) f is bounded, g is continuously differentiable w.r.t x with bounded and Lipschitz partial deriva-
tives, µ has bounded support in Rn × Rm;

ii) f , L and Φ are twice continuously differentiable w.r.t x, θz and θd with bounded and Lipschitz
partial derivatives, and ∂f/∂θz∂θd, ∂L/∂θz∂θd ≡ 0;

iii) H(x, θz, θd, ψ) is strongly concave in θz , strongly convex in θd and uniform in x ∈ Rn, ψ ∈ Rn.

Then for sufficiently small tf , if (θ1z , θ
1
d) and (θ2z , θ

2
d) are solutions of the mean-field TSEP derived

in Theorem 5.1 and are continuously w.r.t time t, then (θ1z , θ
1
d) = (θ2z , θ

2
d).

Theorem 5.2 shows that small tf roughly corresponds to the regime where the reachable set of
the forward dynamics is small. Hence, the solution is unique. We then assume the continuity of
θ1z , θ

1
d, θ

2
z , θ

2
d with respect to t in Theorem 5.2. In fact, when θ1z , θ

1
d, θ

2
z , θ

2
d are discontinuous on

at most a set with zero measure, we can also conclude for a.e. t ∈ [0, tf ] that (θ1z(t), θ
1
d(t)) =

(θ2z(t), θ
2
d(t)).

6 MODELING OPTIMAL OBJECTIVE FUNCTION VALUE VIA MEAN-FIELD HJI
EQUATION

In this section, we study mean-field HJI equation from another perspective. This section presents
(1) the mean-field HJI equation for MaARL; and (2) the relationship between the HJI equation and
the TSEP.

6.1 OPTIMAL OBJECTIVE FUNCTION VALUE OBEYS MEAN-FIELD HJI EQUATION

To simplify the notations, we define

v∗(t, µ) := J(θ∗z , θ
∗
d, t, µ), (7)

where J , θ∗z , and θ∗d are defined in Section 4. One can easily observe that v∗(t, µ) corresponds to
the optimal objective function value with sample distribution µ and time t. we then have following
theorem characterizing v.

Theorem 6.1 Under the assumptions

i) f, L and Φ are bounded, and the distribution µ ∈ P2(Rn+m);

ii) f, L and Φ are Lipschitz continuous w.r.t x and the Lipschitz constant of f and L are independent
of θz, θd.

Suppose the optimal value function v∗(t, µ) of Eq. (7) exists, then it is the unique viscosity solution
(see the definition in Appendix B) to the following mean-field HJI equation

∂tv(t, µ) + inf
θz∈Θz

sup
θd∈Θd

{∫
Rn+m

[∂µv(t, µ)(x, y)]
T [f(x, θz, θd), 0] + L(x, θz, θd)dµ(x, y)

}
= 0,

v(tf , µ) =

∫
Rn+m

Φ(x, y)dµ(x, y),

(8)
where f(·), L(·) and Φ(·) are defined in (3).

The optimal value function v∗(t, µ) is the solution to Eq. (8) in Theorem 6.1, revealing the dynamic
programming principle, which shows that for any optimal trajectory, starting from any intermediate
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state in the trajectory, the remaining trajectory is also optimal. Theorem 6.1 also establishes the
uniqueness of the HJI equation with regards to viscosity, and identifies the value function for the
mean-field optimal control problem as the unique solution of the HJI equation.

6.2 CONNECTION BETWEEN HJI AND TSEP

In Theorem 5.1, we prove the necessary condition of being the optimal solution of Eq. (3) is char-
acterized by the TSEP, while Theorem 6.1 shows the optimal objective value is the unique viscosity
solution of the mean-field HJI equation. One may wonder what is the connection between the TSEP
and the mean-field HJI equation. In this section, we will show that the TSEP can be understood as
a local result compared to the global characterization of the HJI equation. To see this, we will first
introduce some basic knowledge on the Wasserstein space and its derivation rules.

6.2.1 DERIVATIVE IN WASSERSTEIN SPACE

Let D represent the Fréchet derivative on Banach spaces. Namely, if F : U → V is a mapping
between two Banach spaces (U, ∥ · ∥U ) and (V, ∥ · ∥V ), then DF (x) : U → V is a linear operator
satisfies

∥F (x+ y)− F (x)−DF (x)(y)∥V
∥y∥U

→ 0, as ∥y∥U → 0. (9)

Denote X ∈ Rn+m as a random variable, we use the shorthand L2(Ω,Rn+m) for L2((Ω,F ,P),
Rn+m) to represent the set of Rn+m-valued square integrable random variables with respect to a
probability measure P. Then we equip this Hilbert space with the norm ∥X∥L2 := (E∥X∥2)1/2. As
we assumed in the previous section, x0 ∈ Rn, y0 ∈ Rm are random variables and (x0, y0) ∼ µ ∈
P2(Rn+m), where P2(Rn+m) denotes the integrable probability measure defined on the Euclidean
space Rn+m. The space P2(Rn+m) can be equipped with a metric by 2-Wasserstein distance

W2(µ, ν) := inf

{
∥X − Y ∥L2

∣∣∣∣X,Y ∈ L2(Ω,Rn+m) with PX = µ,PY = ν

}
.

For µ ∈ P2(Rn+m), define ∥µ∥L2 := (
∫
Rn+m ∥w∥2µ(dw))1/2. Now the variable X ∈

L2(Ω,Rn+m) if and only if its law PX ∈ P2(Rn+m). For any function u : P2(Rn+m) → R, we
can lift it into its ”extension” U ∈ L2(Ω,Rn+m) (Cardaliaguet, 2012) by U(X) = u(PX),∀X ∈
L2(Ω,Rn+m). In particular, we have that u is C1(P2(Rn+m)), if the lifted function U is Fréchet
differentiable with continuous derivatives. Since L2(Ω,Rn+m) can be identified with its dual, if
the Fréchet derivative DU(X) exists, by Riesz’ theorem, it can be identified with an element of
L2(Ω,Rn+m),

DU(X)(Y ) = E[DU(X) · Y ], ∀Y ∈ L2(Ω,Rn+m).

One may check that the law of DU(X) does not depend on X but only on the law of X , thus the
derivative of u at µ = PX is defined as DU(X) = ∂µu(PX)(X), for some function ∂µu(PX) :
Rn+m → Rn+m.

6.3 DERIVE THE CHARACTERIZATION

In what follows, we provide the connection between the HJI equation and TSEP. We will show that
the TSEP can be understood as a local result compared to the global characterization of the HJI
equation. For the value function v(t, µ) in deduced HJI (equation 8), consider the lifted function
V (t,X), where X = (x, y) ∼ µ. We define the Hamiltonian for the lifted HJI equation as

H(X,DXV (t,X)) = inf
θz∈Θz

sup
θd∈Θd

Eµ

[
DXV (t,X)T [f(x, θz, θd), 0] + L(x, θz, θd)

]
. (10)

Suppose θ†z(X,DXV (t,X)) and θ†d(X,DXV (t,X)) are the corresponding optimal strategies and
define P = DXV (t,X), we have

H(X,P ) = Eµ

[
PT [f(x, θ†z(X,P ), θ

†
d(X,P )), 0] + L(x, θ†z(X,P ), θ

†
d(X,P ))

]
,

Eµ

[
∇θz,θd [f(x, θ

†
z(X,P ), θ

†
d(X,P )), 0]P +∇θz,θdL(x, θ

†
z(X,P ), θ

†
d(X,P ))

]
= 0,

(11)
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where the last equation follows from the first order optimality condition. Define Xt = (xt, y),
Pt = DXV (t,Xt), we can apply the characteristic evolution equations (Subbotina, 2006)

Ẋt = DPH(Xt, Pt), Ṗt = −DXH(Xt, Pt). (12)

Plugging equation 11 into equation 12, and let θ∗z(t) = θ†z(Xt, Pt), θ∗d(t) = θ†d(Xt, Pt) and pt is the
first n components of Pt, we have

ẋt = f(xt, θ
∗
z(t), θ

∗
d(t)), ṗt = −∇xf(xt, θ

∗
z(t), θ

∗
d(t))pt −∇xL(xt, θ

∗
z(t), θ

∗
d(t)). (13)

If we let ψ = −p, the first two equalities of equation 5 in Theorem 5.1 is converted to equation 13.
The Hamilton equation in TSEP can be regarded as the characteristic equations for the HJI equa-
tion originating from µ0, which justifies the claim that the TSEP constitutes a local condition as
compared to the HJI equation.

7 GENERALIZATION BOUND

In this section, we establish generalization bounds for MaARL in the offline setting both from the
perspective of the global minimum of the loss function and from the perspective of algorithmic
stability.

7.1 GENERALIZATION BOUND FROM TSEP

We define the loss function of each training sample

Xi := (xzi , xdi
, yi), i = 1, · · · , N

as

J0(θz, θd;Xi) =Φ(xz(tf ), xd(tf ), yi) +

∫ tf

0

L(xz(t), xd(t), θz(t), θd(t))dt,

where xz(0) = xzi , xd(0) = xdi
. Now

J(θz, θd) = EX0∼µJ
0(θz, θd;X0), (14)

and we define

JN (θz, θd) =
1

N

N∑
i=1

J0(θz, θd;Xi). (15)

We then estimate the generalization bounds for offline MaARL based on the TSEP. The necessary
condition of Hamiltonian for the sampled version is expressed as

1

N

N∑
i=1

H(xθ
N
z ,θN

d ,i(t), θNz (t), θNd (t), ψθN
z ,θN

d ,i(t))

= inf
θd∈Θd

sup
θz∈Θz

1

N

N∑
i=1

H(xθ
N
z ,θN

d ,i(t), θz, θd, ψ
θN
z ,θN

d ,i(t)),

a.e., (16)

where t ∈ [0, tf ], θNz and θNd are the solution of sampled TSEP. Note that if Θz and Θd are suffi-
ciently large, e.g.

Θz = Rr1 ,Θd = Rr2 ,

the solution θ∗z , θ
∗
d of TSEP satisfies

F (θ∗z , θ
∗
d)(t) := Eµ0∇θz,θdH(x

θ∗
z ,θ

∗
d

t , ψ
θ∗
z ,θ

∗
d

t , θ∗z(t), θ
∗
d(t)) = 0, a.e. t ∈ [0, tf ],

while the solution θNz , θ
N
d of sampled TSEP satisfies

FN (θNz , θ
N
d )(t) :=

1

N

N∑
i=1

∇θz,θdH(x
θN
z ,θN

d ,i
t , ψ

θN
z ,θN

d ,i
t , θNz (t), θNd (t)) = 0, a.e. t ∈ [0, tf ].

(17)
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Now, FN is a random approximation of F and

EFN (θz, θd)(t) = F (θz, θd)(t)

for all θz, θd and a.e. t ∈ [0, tf ].

Let (U, ∥ · ∥U ), (V, ∥ · ∥V ) be Banach spaces and F : U → V . We first provide the definition of
stability, which is the primary condition that ensures the approximation of FN to F .

Definition 7.1 For ρ > 0 and x ∈ U , Sρ(x) := {y ∈ U : ∥x− y∥U < ρ}. The mapping F is stable
on Sρ(x) if there exists a constant Kρ > 0 such that,

∥y − z∥U ≤ Kρ∥F (y)− F (z)∥V , ∀y, z ∈ Sρ(x).

Notice that in this case, we are only concerned about whether θ∗z and θ∗d follow the first-order op-
timality condition. We define θ = (θTz , θ

T
d )

T and redefine F (θ∗z , θ
∗
d)(·) and FN (θNz , θ

N
d )(·) as

F (θ)(·), F (θN )(·), respectively. Then we obtain the following Theorem 7.1, which describes the
convergence of the sampled solution to the mean-field solution as the number of samples increases.

Theorem 7.1 Assuming that f, L, and Φ are bounded and Lipschitz continuous with respect to
x and the Lipschitz constants of f and L are independent of θz, θd. Let (θ∗z , θ

∗
d) be a solution

of F = 0 (Eq. (17)), which is stable on Sρ(((θ
∗
z)

T , (θ∗d)
T )T ) for some ρ > 0. Then there ex-

ists positive constants s0, C,K1,K2, ρ1 < ρ and a random variable θN := ((θNz )T , (θNd )T )T ∈
Sρ(((θ

∗
z)

T , (θ∗d)
T )T ), such that for s ∈ (0, s0], the following holds.

P
[
∥θ∗z − θNz ∥L∞ ≥ Cs

]
≤ 4 exp

{
− Ns2

K1 +K2s

}
,

P
[
∥θ∗d − θNd ∥L∞ ≥ Cs

]
≤ 4 exp

{
− Ns2

K1 +K2s

}
,

P
[
|J(θ∗z , θ∗d)− J(θNz , θ

N
d )| ≥ s

]
≤ 4 exp

{
− Ns2

K1 +K2s

}
,

P
[
FN (θN ) ̸= 0

]
≤ 4 exp

{
− Ns20
K1 +K2s0

}
. (18)

The loss function (14) is uniformly bounded under the given assumptions, then we can apply the
Hoeffding’s inequality (Corollary 2 in Pinelis and Sakhanenko (1986)). Using Theorem 6 in E et al.
(2019) and rewriting θ as (θTz , θ

T
d )

T , this theorem can be proved. Let s ≤ 1, set the right-hand side
of Eq. (18) to be less than δ. Solving for ϵ immediately yields the following bound.

Corollary 7.1 Under the assumptions and notations of Theorem 7.1, for any

0 < δ ≤ max
s∈(0,min{1,s0}]

4 exp

{
− Ns2

K1 +K2s

}
, (19)

the following inequality holds with probability at least 1− δ.

∥θ∗z − θNz ∥L∞ < C

√
K1 +K2

N
log

4

δ
,

∥θ∗d − θNd ∥L∞ < C

√
K1 +K2

N
log

4

δ
,

|J(θ∗z , θ∗d)− J(θNz , θ
N
d )| <

√
K1 +K2

N
log

4

δ
.

(20)

Corollary 7.1 basically shows that the difference between the optimizer over the whole distribution
and the optimizer over finite samples is bounded, and has order O(1/

√
N) with a total ofN samples.

This bound is independent of the training algorithm.

8
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7.2 GENERALIZATION BOUND VIA ALGORITHMIC STABILITY

In the end, we estimate the generalization bounds for offline ARL from the view of algorithmic
stability. In the rest of this section, we redefine the integral form in J , JN , J0 as the discrete sum
form (2) and redefine r1, r2 as the total dimension of θz, θd. We define the generalization error by
taking the expectation with respect to the randomized algorithm

er(θz, θd) := EA
[
J(θz, θd)− JN (θz, θd)

]
.

We update θz and θd alternately, i.e. from the initial value (θz,0, θd,0), update θz by Mz,1 steps
to get (θz,Mz,1

, θd,0), then update θd by Md,1 steps to get (θz,Mz,1
, θd,Md,1

). Keep going until the
algorithm converges, we can get (θz,Mz,2

, θd,Md,2
), (θz,Mz,3

, θd,Md,3
) · · · (θz,Mz,n

, θd,Md,n
).

Consider Stochastic Gradient Langevin Dynamics (SGLD), which is a popular variant of stochastic
gradient methods adding isotropic Gaussian noise in each iteration, e.g.

θz,k+1 = θz,k − ηk∇θzJN (θz,k, θd,0) +

√
2ηk
β

N (0, Ir1).

We have the following generalization bound in expectation of random draw of training data.

Theorem 7.2 Suppose that J0(θz, θd;X) is uniformly bounded by C, and

∥∇θzJ
0(θz, θd;X)−∇θzJ

0(θz, θd;X
′)∥ ≤ Lz,

∥∇θdJ
0(θz, θd;X)−∇θdJ

0(θz, θd;X
′)∥ ≤ Ld, ∀X,X ′,

then we have the following generalization bound

E[er(θz,Mz,n , θd,Md,n
)]

≤ 2

N

n∑
i=1

min (k1,Mz,i −Mz,i−1) +

√
βLzC

N

n∑
i=1

Mz,i−Mz,i−1∑
j=k1+1

ηj

1/2

+
2

N

n∑
i=1

min (k2,Md,i −Md,i−1) +

√
βLdC

N

n∑
i=1

Md,i−Md,i−1∑
j=k2+1

ηj

1/2

,

(21)

where Mz,0 =Md,0 = 0, k1 and k2 are chosen to satisfy ηk1 ≤ ln 2/βL2
z , ηk2 ≤ ln 2/βL2

d.

Theorem 7.2 obtains a bound of O(1/N), which matches the generalization bounds of stochastic
gradient descent ascent (SGDA) for minimax problems in Lei et al. (2021). This bound relies on
the aggregated step sizes and does not explicitly depend on the dimensions, norms, or other capacity
measures of the parameter, which are usually excessively large in deep learning.

8 CONCLUSION

Adversarial reinforcement learning (MaARL) has shown superior performance in solving adversar-
ial games, but the theoretical understanding of MaARL is still premature. This paper studies the
convergence and generalization of MaARL under the mean-field optimal control framework. We
first model MaARL as a mean-field quantitative differential game problem. We prove the necessary
conditions for the convergence of MaARL from two perspectives, two-sided extremism principle
(TSEP) and Hamilton-Jacobi-Issacs (HJI) equation. The uniqueness of the solutions to a mean-
field TSEP and the HJI equation are also established. Further, we present the connection between a
mean-field TSEP and a mean-field HJI equation. In this way, we show that the TSEP is actually a
local special case compared to the global characterization of the HJI equation. We also prove two
generalization bounds of orders O(1/

√
N) and O(1/N) from two aspects, global minimum of the

loss function and algorithmic stability, respectively, where N is the number of initial states used in
training. Both bounds do not explicitly rely on the dimensions, norms, or other capacity measures
of the network parameter, which are usually prohibitively large in deep learning. The bounds illus-
trate how the algorithmic randomness facilitates the generalization of MaARL. To the best of our
knowledge, this is the first theoretical work on the convergence and generalization of MaARL.
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José A Carrillo, Edgard A Pimentel, and Vardan K Voskanyan. On a mean field optimal control
problem. Nonlinear Analysis, 199:112039, 2020.

B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. Reversible architectures for
arbitrarily deep residual neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018a. ojs.aaai.org/AAAI/article/download/11668/11527.

B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert. Multi-level residual networks from
dynamical systems view. In International Conference on Learning Representations, 2018b.
https://openreview.net/pdf?id=SyJS-OgR-.

Peter Dayan and Nathaniel D Daw. Decision theory, reinforcement learning, and
the brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4):429–453, 2008.
https://doi.org/10.3758/CABN.8.4.429.

W. E. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, 2017. https://doi.org/10.1007/s40304-017-0103-z.

W. E, J. Han, and Q. Li. A mean-field optimal control formulation of deep learning. Research in the
Mathematical Sciences, 6(1):1–41, 2019. https://doi.org/10.1007/s40687-018-0172-y.

Massimo Fornasier and Francesco Solombrino. Mean-field optimal control. ESAIM: Control, Opti-
misation and Calculus of Variations, 20(4):1123–1152, 2014.

10

http://proceedings.mlr.press/v119/agarwal20c.html
https://doi.org/10.1049/iet-its.2009.0070
https://doi.org/10.1109/MITS.2019.2898964
https://wwwnature.53yu.com/articles/s42256-021-00365-4
https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf
https://ojs.aaai.org/index.php/AAAI/article/download/11668/11527
https://openreview.net/pdf?id=SyJS-OgR-
https://doi.org/10.3758/CABN.8.4.429
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s40687-018-0172-y


Under review as a conference paper at ICLR 2023

Massimo Fornasier, Stefano Lisini, Carlo Orrieri, and Giuseppe Savaré. Mean-field optimal control
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A PROOF OF RESULTS IN SECTION 5

Before proving Theorem 5.2, we write the express in Theorem 5.1 more compactly. For each control
process θz ∈ L∞([0, tf ],Θz) and θd ∈ L∞([0, tf ],Θd), we denote by xθz,θd := {xθz,θdt : 0 ≤ t ≤
tf} and ψθz,θd := {ψθz,θd

t : 0 ≤ t ≤ tf} the solutions of Hamilton’s Equation equation 5, i.e.

ẋθz,θdt = f(x
θz(t),θd(t)
t , θz, θd), xθz,θd0 = x0,

ψ̇θz,θd
t = −∇xH(xθz,θd , θz(t), θd(t), ψ

θz,θd
t ), ψθz,θd

tf
= −∇xΦ(x

θz,θd
tf

, y0)− ξ∇xg(x
θz,θd
tf

).

We have the following lemma, which provides an estimate of the difference between xθ
1
z,θ

1
d , ψθ1

z,θ
1
d

and xθ
2
z,θ

2
d , ψθ2

z,θ
2
d .

Lemma A.1 Let θ1z , θ
2
z ∈ L∞([0, tf ],Θz) and θ1d, θ

2
d ∈ L∞([0, tf ],Θd). Then there exists a con-

stant T0 such that for all tf ∈ [0, T0), it holds that:

∥xθ
1
z,θ

1
d − xθ

2
z,θ

2
d∥L∞ + ∥ψθ1

z,θ
1
d − ψθ2

z,θ
2
d∥L∞ ≤ C(tf )(∥θ1z − θ2z∥L∞ + ∥θ1d − θ2d∥L∞),

where C(tf ) > 0 satisfies C(tf ) → 0 as tf → 0.
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Proof A.1 (Proof of Lemma A.1) Denote δθz := θ1z − θ2z , δθd := θ1d − θ2d, δx := xθ
1
z,θ

1
d − xθ

2
z,θ

2
d

and δψ := ψθ1
z,θ

1
d − ψθ2

z,θ
2
d . The first two assumptions of Theorem 5.2 leads to

∥δxt∥ ≤
∫ t

0

∥f(xθ
1
z,θ

1
d

s , θ1z(s), θ
1
d(s))− f(x

θ2
z,θ

2
d

s , θ2z(s), θ
2
d(s))∥ds

≤ K

∫ tf

0

∥δxs∥ds+K

∫ tf

0

∥δθz(s)∥ds+K

∫ tf

0

∥δθd(s)∥ds,

and so
∥δx∥L∞ ≤ Ktf∥δx∥L∞ +Ktf∥δθz∥L∞ +Ktf∥δθd∥L∞ .

If tf ≤ T0 := 1/K, we have

∥δx∥L∞ ≤ Ktf
1−Ktf

(∥δθz∥L∞ + ∥δθd∥L∞). (22)

Similarly,

∥δψt∥ ≤ K∥δxtf ∥+K

∫ tf

t

∥δxs∥+ ∥δψs∥+ ∥δθz(s)∥+ ∥δθd(s)∥ds,

∥δψ∥L∞ ≤ (K +Ktf )∥δx∥L∞ +Ktf (∥δψ∥L∞ + ∥δθz∥L∞ + ∥δθd∥L∞),

hence

∥δψ∥L∞ ≤ K(1 + tf )

1−Ktf
∥δx∥L∞ +

Ktf
1−Ktf

(∥δθz∥L∞ + ∥δθd∥L∞),

which combined with equation 22 proves the lemma.

We can now prove Theorem 5.2.

Proof A.2 (Proof of Theorem 5.2) By uniform strong concavity and the second assumption of The-
orem 5.2, there exists a λ0 > 0 such that

λ0∥θ1z(t)− θ2z(t)∥2 ≤
[
Eµ0∇θzH(x

θ1
z,θ

1
d

t , θ2z(t), θ
2
d(t), ψ

θ1
z,θ

1
d

t )

− Eµ0∇θzH(x
θ1
z,θ

1
d

t , θ1z(t), θ
1
d(t), ψ

θ1
z,θ

1
d

t )
]
· (θ1z(t)− θ2z(t)),

λ0∥θ1d(t)− θ2d(t)∥2 ≤
[
Eµ0

∇θdH(x
θ1
z,θ

1
d

t , θ2z(t), θ
2
d(t), ψ

θ1
z,θ

1
d

t )

− Eµ0
∇θdH(x

θ1
z,θ

1
d

t , θ1z(t), θ
1
d(t), ψ

θ1
z,θ

1
d

t )
]
· (θ2d(t)− θ1d(t)).

Note that Eµ0∇θz,θdH(x
θ1
z,θ

1
d

t , θ1z(t), θ
1
d(t), ψ

θ1
z,θ

1
d

t ) = Eµ0∇θz,θdH(x
θ2
z,θ

2
d

t , θ2z(t), θ
2
d(t), ψ

θ2
z,θ

2
d

t ) =
0, ∀t ∈ [0, tf ] due to the optimality and continuity, then combining the two inequalities above we
have

λ0(∥θ1z(t)− θ2z(t)∥2 + ∥θ1d(t)− θ2d(t)∥2)

≤
[
Eµ0

∇θzH(x
θ1
z,θ

1
d

t , θ2z(t), θ
2
d(t), ψ

θ1
z,θ

1
d

t )

− Eµ0
∇θzH(x

θ2
z,θ

2
d

t , θ2z(t), θ
2
d(t), ψ

θ2
z,θ

2
d

t )
]
· (θ1z(t)− θ2z(t))

+
[
Eµ0∇θdH(x

θ1
z,θ

1
d

t , θ2z(t), θ
2
d(t), ψ

θ1
z,θ

1
d

t )

− Eµ0∇θdH(x
θ2
z,θ

2
d

t , θ2z(t), θ
2
d(t), ψ

θ2
z,θ

2
d

t )
]
· (θ2d(t)− θ1d(t))

≤Eµ0
∥∇θzH(x

θ1
z,θ

1
d

t , θ2z(t), θ
2
d(t), ψ

θ1
z,θ

1
d

t )

−∇θzH(x
θ2
z,θ

2
d

t , θ2z(t), θ
2
d(t), ψ

θ2
z,θ

2
d

t )∥∥θ1z(t)− θ2z(t)∥

+Eµ0∥∇θdH(x
θ1
z,θ

1
d

t , θ2z(t), θ
2
d(t), ψ

θ1
z,θ

1
d

t )

−∇θdH(x
θ2
z,θ

2
d

t , θ2z(t), θ
2
d(t), ψ

θ2
z,θ

2
d

t )∥∥θ1d(t)− θ2d(t)∥
≤K(∥δx∥L∞ + ∥δψ∥L∞)(∥δθz∥L∞ + ∥δθd∥L∞).

Combining the above with Lemma A.1, we have

∥δθz∥2L∞ + ∥δθd∥2L∞ ≤ KC(tf )

λ0
(∥δθz∥L∞ + ∥δθd∥L∞)2 ≤ 2KC(tf )

λ0
(∥δθz∥2L∞ + ∥δθd∥2L∞).

C(tf ) → 0 as tf → 0, by taking tf sufficiently small, so that 2KC(tf ) < λ0, which implies
∥δθz∥L∞ = ∥δθd∥L∞ = 0.
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B PROOF OF THEOREM 6.1

Now we introduce the definition of viscosity solution. Consider a function v(t,PX) : [0, tf ] ×
P2(Rn+m) → R, the Hamiltonian H(X, ∂PX

v(t,PX)(X)) : L2(Ω,Rn+m) × L2(Ω,Rn+m) → R
and Ψ : L2(Ω,Rn+m) → R, where v satisfies

∂v

∂t
+H(X, ∂PX

v(t,PX)(X)) = 0, on [0, tf )× L2(Ω,Rn+m),

v(tf ,PX) = Ψ(X), on L2(Ω,Rn+m).
(23)

Then the lifted function V (t,X) = v(t,PX) satisfies

∂V

∂t
+H(X,DXV (t,X)) = 0, on [0, tf )× L2(Ω,Rn+m),

V (T,X) = Ψ(X), on L2(Ω,Rn+m).
(24)

We say that a bounded, uniformly continuous function u : [0, tf ] × P2(Rn+m) → R is a viscosity
solution to equation 23 if its lifted function U : [0, tf ]× L2(Ω,Rn+m) → R defined by

U(t,X) = u(t,PX),

is a viscosity solution to the lifted equation equation 24, namely:

i) U(tf , X) ≤ Ψ(X) and for any test function γ ∈ C1,1([0, tf ] × L2(Ω,Rn+m)) such that the
map U − γ has a local maximum at (t0, X0) ∈ [0, tf )× L2(Ω,Rn+m), one has

∂tγ(t0, X0) +H(X0, Dγ(t0, X0)) ≥ 0.

ii) U(tf , X) ≥ Ψ(X) and for any test function γ ∈ C1,1([0, tf ] × L2(Ω,Rn+m)) such that the
map U − γ has a local minimum at (t0, X0) ∈ [0, tf )× L2(Ω,Rn+m), one has

∂tγ(t0, X0) +H(X0, Dγ(t0, X0)) ≤ 0.

For further details we refer the interested readers to (E et al., 2019).

Proof B.1 (Proof of Theorem 6.1) Suppose v′(t, µ) is a viscosity solution to equation 8 and
(θ′z, θ

′
d) is the corresponding optimal strategy.

We first fix θ′z , consider

∂tv1(t, µ) + sup
θd∈Θd

{∫
Rn+m

[∂µv(t, µ)(x, y)]
T [f(x, θ′z, θd), 0] + L(x, θ′z, θd)dµ(x, y)

}
= 0,

v1(tf , µ) =

∫
Rn+m

Φ(x, y)dµ(x, y).

(25)
By Theorem 1 and Theorem 2 in (E et al., 2019), v′(t, µ) is the unique viscosity solution to equa-
tion 25 satisfies

v′(t, µ) = sup
θd∈Ud

E(x,y)∼µ

[ ∫ tf

t

Φ(x(tf ), y) + L(x(t), θ′z(t), θd(t))dt

]
. (26)

Then fix θ′d, similarly we have

v′(t, µ) = inf
θz∈Uz

E(x,y)∼µ

[ ∫ tf

t

Φ(x(tf ), y) + L(x(t), θz(t), θ
′
d(t))dt

]
. (27)

Now for (θ′z, θ
′
d), equation 4 is satisfied, thus v′(t, µ) = v∗(t, µ).

14


	Introduction
	Related works.
	Preliminaries
	MaARL as a Mean-field differential game
	Modeling Optimal Solution using Mean-field TSEP
	Modeling optimal objective function value via mean-field HJI equation
	Optimal objective function value obeys mean-field HJI equation
	Connection between HJI and TSEP
	Derivative in Wasserstein space

	Derive the characterization

	Generalization bound
	Generalization bound from TSEP
	Generalization bound via algorithmic stability

	Conclusion
	Proof of Results in Section 5 
	Proof of Theorem 6.1 

