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ABSTRACT

We propose AdapTok, an adaptive temporal causal video tokenizer that can flex-
ibly allocate tokens for different frames based on video content. AdapTok is
equipped with a block-wise masking strategy that randomly drops tail tokens of
each block during training, and a block causal scorer to predict the reconstruc-
tion quality of video frames using different numbers of tokens. During infer-
ence, an adaptive token allocation strategy based on integer linear programming
is further proposed to adjust token usage given predicted scores. Such design al-
lows for sample-wise, content-aware, and temporally dynamic token allocation
under a controllable overall budget. Extensive experiments for video reconstruc-
tion and generation on UCF-101 and Kinetics-600 demonstrate the effectiveness
of our approach. Without additional image data, AdapTok consistently improves
reconstruction quality and generation performance under different token budgets,
allowing for more scalable and token-efficient generative video modeling.

Block-wise Adaptive Tokenization frames
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Figure 1: AdapTok performs adaptive tokenization both temporally and across samples. Left-
to-right shows token allocation adapting over time, top-to-bottom presents sample-wise allocation
under different token budgets. Blue bars indicate the tokens counts used per block (i.e., 4 frames).

1 INTRODUCTION

The vast amount of video data available in the internet and physical world makes efficient video
modeling crucial for building visual-centric agents and world models. With the rise of large lan-
guage models (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023a), auto-regressive
(AR) generative modeling has become a universal paradigm for various modalities, including im-
ages and videos (Wang et al., 2024c; Wu et al., 2024; Tian et al., 2024; Li et al., 2024; Jin et al.,
2024; Hong et al., 2023).
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Consequently, numerous works (Gupta et al., 2022; Wu et al., 2022; Hong et al., 2023; Yan et al.,
2021; Ge et al., 2022; Yu et al., 2023; Wang et al., 2024a) have begun exploring video tokeniza-
tion to quantize spatiotemporally continuous video frames into discrete token sequences, enabling
autoregressive generation through causal transformers. Unlike image data, video frames exhibit
temporal causality despite both being continuous signals. To better model such characteristic, some
approaches (Yu et al., 2023; NVIDIA, 2025; Villegas et al., 2022; Wang et al., 2024b) have incorpo-
rated temporal causal regularization, supporting online streaming processing of video frames during
encoding and decoding, thereby significantly improving throughput efficiency.

However, most existing works (Wang et al., 2024b; NVIDIA, 2025; Wang et al., 2024a) encode dif-
ferent frames using a fixed number of tokens, ignoring the inherent redundancy in video data. While
some approaches (Duggal et al., 2024; Koike-Akino & Wang, 2020; Miwa et al., 2025; Bachmann
et al., 2025; Shen et al., 2025) have attempted to encode images with variable-length token se-
quences, few of them is extended to video data. A recent work named ElasticTok (Yan et al., 2024),
to the best of our knowledge, made an initial attempt to encode different frames within the same
video using varying numbers of tokens. Nevertheless, due to its lack of global planning capabilities
and constraints from 2D spatial priors, its token allocation strategy still suffers from imbalances
across samples and spatial regions, resulting in suboptimal performance.

From our perspective, an efficient video tokenizer should encompass the following three key char-
acteristics: (1) temporal causality, where the encoding and decoding of preceding frames are in-
dependent of subsequent frames, thus supporting online streaming processing; (2) 1-D latent token
space, where the token allocation is decoupled from spatial structure, ensuring information density
is evenly distributed in space; and (3) adaptive token allocation, that adjusts token numbers based
on the information of different samples under a given token budget, achieving global optimality.

Motivated by these considerations, we propose AdapTok, a transformer-based framework consist-
ing of a VQ-tokenizer and a causal scorer. During tokenization, the 3D video frame blocks are
transformed into 1D latent tokens using a set of learnable latent tokens and a causal block mask is
introduced to enable temporal causal modeling. To enable representing videos with variable length
latent tokens, we randomly drop tokens at the tail of each block during training. Additionally, a
block causal scorer is also trained to model the reconstruction quality of video frames when using
token sequences with different token numbers. During inference, we further propose an adaptive
token allocation strategy based on integer linear programming (ILP) named IPAL. Given a desired
token count, IPAL adjusts token allocation across different samples based on the predicted metrics
by trained scorer, thereby optimizing overall reconstruction quality.

Extensive experiments are conducted to validate the effectiveness of our method. Notably, on UCF-
101, AdapTok achieves a video reconstruction performance of FVD=28, significantly outperforming
existing methods. With our adaptive token allocation strategy, AdapTok achieves Pareto optimality
between performance and token count. As shown in Fig.1, AdapTok can adaptively allocate tokens
based on video frame content, both temporally and sample-wise, and the reconstruction performance
continues to improve as the number of tokens increases. Furthermore, we evaluated video generation
performance using AdapTok as a tokenizer on UCF-101 class-conditional generation and Kinetics-
600 frame prediction tasks, where our method also demonstrated significant performance gains.
Comprehensive ablation studies are also conducted to verify the necessity of each component.

Our contributions can be summarized as follows:

• We propose AdapTok, an adaptive framework designed for video tokenization that simultaneously
features temporal causality, a 1D latent token space, and a flexible adaptive token allocation strat-
egy, yielding more compact token representations.

• AdapTok features a novel causal scorer and corresponding adaptive token allocation strategy that
dynamically adjusts token allocation across different samples during inference, optimizing overall
reconstruction quality.

• AdapTok significantly improves existing video reconstruction performance, achieves Pareto op-
timality between token allocation quantity and reconstruction performance, and enhances video
generation quality of AR models on class-conditional generation and frame prediction tasks.
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2 RELATED WORK

2.1 DISCRETE VIDEO TOKENIZER

Autoregressive (AR) transformers have emerged as powerful generative models across domains, in-
cluding vision. To handle continuous visual signals, VQ-VAE (Van Den Oord et al., 2017) and its
extensions (Esser et al., 2021; Yu et al., 2022; Zheng & Vedaldi, 2023; Zhang et al., 2023; Mentzer
et al., 2023) introduce vector quantization to convert images into discrete 2D code sequences. Fol-
lowing works such as TiTok (Yu et al., 2024b) further propose a 1D tokenizer that tokenizes images
into compact 1D latent sequences. When applied to videos, early approaches use per-frame to-
kenization (Gupta et al., 2022; Wu et al., 2022; Hong et al., 2023), where image tokenizers are
directly applied without temporal modeling. Block-based tokenization (Yan et al., 2021; Ge et al.,
2022; Yu et al., 2023) improves on this by using 3D convolutions to encode short clips with local
spatio-temporal context. More recently, LARP (Wang et al., 2024a) introduces holistic tokens to
capture global video information. However, similar to most prior approaches, its representations
remain non-causal and fixed in length, which limits their applicability to streaming or autoregres-
sive generation tasks. In contrast, we target causal, adaptive video tokenizer that represents videos
with variable-length latent tokens, enabling online, low-latency processing while providing flexible
representation granularity for downstream tasks.

To address the limitations of non-causal tokenizers, several works have explored causal temporal
tokenization architectures. One line of work adopts causal convolutions for autoregressive mod-
eling (Yu et al., 2024a). Building on this, Cosmos-Tokenizer (NVIDIA, 2025) introduces causal
convolution layers and causal temporal attention layers for temporal modeling. In parallel, another
line of work focuses on transformer-based architectures (Villegas et al., 2022; Wang et al., 2024b),
where causality is enforced via attention masks, enabling autoregressive modeling using only past
frames. Following such trend, we also adopt a transformer-based causal architecture.

2.2 ADAPTIVE TOKENIZER

Recent works have explored adaptive tokenization to allow variable length representations. For im-
age tokenization, ALIT (Duggal et al., 2024) dynamically adjusts the token count by recursively
distilling 2D image tokens into 1D latent sequence. Another common strategy is “tail drop” (Koike-
Akino & Wang, 2020), which applies higher dropout rate on the tail of the latent feature to learn
ordered representations. Building on this idea, One-D-Piece (Miwa et al., 2025) and FlexTok (Bach-
mann et al., 2025) introduce tail-drop regularization for 1D image tokenizers. To support adaptive
inference, CAT (Shen et al., 2025) predicts image complexity using captions and large language
models (LLMs), assigning each input to one of three compression ratios (8×, 16×, 32×).

Extending adaptive tokenization to videos, ElasticTok (Yan et al., 2024) applies tail dropping at the
end of each block and supports adaptive inference by selecting token counts via a fixed threshold.
However, due to the local spatial-temporal nature of these tokens—rather than forming a unified 1D
sequence—it is difficult to gather informative content at the head, limiting the effectiveness of tail
dropping. Moreover, relying on a fixed threshold prevents token allocation under a specified global
budget. In contrast, our AdapTok adopts a 1D transformer that decouples token allocation from
spatial structure. We further introduce an online scorer with IPAL for efficient token allocation, to
enable globally optimal token allocation under a given token budget.

3 METHOD

This work aims to present a flexible video tokenizer that adaptively tokenizes videos both temporally
and sample-wise. In pursuit of this goal, we highlight three core designs: an adaptive video tokenizer
which allows for representing videos in variable-length (Sec. 3.1), a scoring module (Sec. 3.2), and
a token allocation strategy (Sec. 3.3). Complementing this, we also explore its integration in video
generation (Sec. 3.4). The overall framework of our method is illustrated in Fig. 2.

3
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(b) Attention mask

(a) Adaptive Tokenizer

Quantizer

Block Causal Decoder

Block-Mask Sampler

Block Causal Encoder

Pred frames

Latent tokens
3D Patchify

Block 1 Block 2 Block 3 Block 4

Latent tokens

Block Causal Scorer

Block Causal Encoder

Block-Mask Sampler

Quantizer & Decoder

Duplicate

Pred frames

(c) Adaptive Scorer

GT framesContinous Quantized Dropped

Figure 2: Overview of the proposed AdapTok framework. (a) Adaptive Tokenizer: composed
of a block-causal encoder, a block-wise mask sampler, and a block causal decoder for reconstructing
video from adaptively masked latent representations. (b) Attention Masks: block-causal attention
patterns used in the encoder, decoder, and scorer. (c) Adaptive Scorer: top-down illustrates the
generation of ground-truth scores - duplicated latent tokens z are masked and decoded into videos,
and perceptual loss LP is computed as the quality scores s. Bottom-up shows the scorer predicting
block-wise quality scores ŝ from continuous latents z and quantized latents zq .

3.1 ADAPTIVE TOKENIZER

3.1.1 3D PATCHIFICATION

Given a video input x ∈ RT×H×W×3, where T is the number of frames and H ×W is the spatial
resolution, we split it into non-overlapping spatio-temporal patches with a patch size of t × p × p.
The video patches are then flattened and projected into patch embeddings e ∈ RL×d, where L =
T
t × W

p × H
p denotes the total number of tokens. The L tokens are then divided into K blocks.

3.1.2 BLOCK CAUSAL TRANSFORMER

The block causal transformer employs a causal encoder to extract block-wise representations, a
block-mask sampler to randomly sample tokens, an SVQ (Wang et al., 2024a) quantizer for dis-
cretization, and a causal decoder to reconstruct videos.

Block Causal Encoder. To design an adaptive tokenizer, it is crucial to disentangle the positional
dependencies between the latent space and the local spatiotemporal regions. Motivated by Yu et al.
(2024b); Wang et al. (2024a), the encoder employs learnable latent tokens to transform patch em-
beddings into a 1D sequence. Specifically, the latent tokens qenc ∈ RN×d are concatenated with
video tokens e ∈ RL×d, forming a combined input of (L+N) tokens to a block-causal transformer
encoder E . The output corresponding to the latent tokens, denoted as z̃ = E(e ⊕ qenc)L:(L+N),
serves as the latent representation.
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Across blocks, block-causal attention is applied: all tokens in a block (both latent tokens qenc and
video tokens e) can only attend to tokens from the same or previous blocks, thereby enforcing a
causal dependency structure. The pattern for the encoder attention mask is shown in Fig. 2(b-i).

Block-mask Sampler. Inspired by Miwa et al. (2025); Bachmann et al. (2025); Yan et al. (2024), we
train AdapTok to learn variable-length codes over a short video block (e.g., 4 frames) by randomly
dropping the tail codes for each block during training. Specifically, for each latent block z̃i, we
randomly sample the number of tokens to retain, denoted as ℓi. After sampling {ℓi}Ki=1, a binary
latent mask m ∈ {0, 1}M ·K is constructed, where the first ℓi values in each of the K blocks are set
to 1, and M is the total length of each block that satisfies N = M ·K.

m′ = [m1 ⊕m2 ⊕ · · · ⊕mK ], mi = [1j≤ℓi ]
M
j=1. (1)

The mask m′ is then applied to the latent token sequence z̃, where tokens with m′
j = 0 are dropped

during training. The resulting sequence, denoted as z = BlockTailDrop(z̃ |m′), is then discretized
into the quantized feature zq .

Block Causal Decoder. The quantized tokens zq are concatenated with a set of learnable video
latent tokens qdec ∈ RL×d, and the combined (N ′ + L) tokens are fed into a block-causal decoder
D, implemented as a transformer. The last L outputs, denoted as ẑ = D(qdec ⊕ zq,M′)N ′:(N ′+L),
are used to reconstruct the video. Here, N ′ denotes the number of quantized tokens remaining after
tail-drop, and M′ is the attention mask applied in the decoder.This mask is derived by applying the
dropout mask m′ to the original block-causal attention pattern M, as shown in Fig 2(b-ii),

M′ = BlockTailDrop(M |m′). (2)
Within this mask, quantized tokens zq attend only to quantized tokens from the same or preced-
ing blocks, while video latent tokens qdec attend to all video tokens within the same block and to
quantized tokens from the same or earlier blocks.

3.1.3 TRAINING

Following previous works Esser et al. (2021); Ge et al. (2022); Wang et al. (2024a), the tokenizer is
optimized with a composite objective:

L = LR + LV Q + LP + LG + Lprior, (3)
where LR denotes the L1 reconstruction loss, LV Q the quantizer loss, LP the perceptual loss (Zhang
et al., 2018), LG the adversarial loss (Goodfellow et al., 2014) to enhance visual quality, and Lprior

the autoregressive prior loss (Wang et al., 2024a) for modeling the latent sequence.

3.2 ADAPTIVE SCORER

To enable adaptive token allocation during inference, we introduce a block-causal scorer that learns
to predict reconstruction quality under different token budgets, as illustrated in Fig. 2(c).

Generating Ground-Truth Scores. At each iteration, a target block index q ∼ U(0,K − 1) is
sampled. We duplicate the latent sequence z and apply a series of latent masks {m′

p}, each corre-
sponding to a different number of tokens ℓq , ranging from the supported range of encoding lengths.
The token lengths ℓi<q for preceding blocks are randomly sampled, while all subsequent blocks are
fully masked, i.e., ℓi>q = 0. For the p-th duplicated sample, the latent mask is given by:

m′
p = [mp,1 ⊕mp,2 ⊕ · · · ⊕mp,q ⊕ 0 ], mp,i<q = [1j≤ℓi ]

M
j=1, mp,q = [1j≤p]

M
j=1. (4)

For each m′
p, the perceptual loss LP over the q-th block is computed, used as the quality scores s.

Block Causal Scorer. The scorer Sϕ, implemented as a transformer encoder with block causal
attention, takes both the continuous latent tokens z and the quantized tokens zq as input. In a single
forward pass within a block, it predicts quality scores for all candidate token lengths ℓq , denoted as:

ŝ = Sϕ(z ⊕ zq,M′
s)qM :(q+1)M , (5)

where M′
s is a block-causal attention mask derived from a base pattern Ms (Fig 2(b-iii)) by apply-

ing a dropout mask m′
s. The dropout mask m′

s is constructed in a manner similar to m′
p (used for

ground-truth generation), except that ℓq is fixed to the maximum block token length M .

The MSE loss Ls is computed between the predicted score ŝ and the ground-truth quality scores s.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 ADAPTIVE TOKEN ALLOCATION

At inference, we introduce an integer programming-based adaptive allocation strategy (IPAL) that
assigns a variable number of tokens to each video block, aiming to optimize the overall reconstruc-
tion quality under a global token budget, as detailed in Algorithm 1. Specifically, for each block in
a mini-batch B, the block-causal scorer Sϕ predicts a vector of quality scores ŝk for each sample
k, across candidate token lengths. A binary variable bkj ∈ {0, 1} indicates whether sample k is
assigned j tokens. The ILP is formulated as:

min
b

∑
k,j

ŝkj · bkj s.t.
∑
j

bkj = 1 ∀k,
∑
k,j

j · bkj = B ·Nb, (6)

where B is the batch size and Nb is the average number of tokens to be assigned per block.

The objective minimizes the total predicted scores ŝkj (perceptual loss) across a mini-batch,
weighted by the binary assignment variables bkj . The first constraint ensures that each sample
selects exactly one token length, while the second constraint enforces the total token budget across
the batch. The optimal assignment b∗ yields the final token count for each sample: nk =

∑
j j · b∗kj .

Algorithm 1: Integer Linear Programming

1 Inputs: Video x, Block idx q;
2 Hyperparameters: Average Token Nb,

tokens per block M , batch size B;
3 z = E(x), zq = Q(z);
4 ŝ = Sϕ(z, zq)qM :(q+1)M ;
// solve the ILP

5 Define: bkj ∈ {0, 1} for binary score bins;
6 Objective: L = minb

∑
k,j ŝkjbkj ;

7 s.t.
∑

j bkj = 1, ∀k;
8

∑
k,j j · bkj = B ·Nb;

9 b∗ = ILPSolve(L);
10 nk =

∑
j j · b∗kj ;

11 Return: assigned tokens nk;

8
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Figure 3: Comparison of rFVD by Token Length.
AdapTok achieves better rFVD with fewer tokens than
existing causal tokenizers.

3.4 VIDEO GENERATION

Given a sequence of adaptively allocated tokens from the scorer with IPAL, an end-of-block token
<EOB> is appended to the end of each block. The resulting concatenated sequence is then fed
into a Llama-style transformer (Touvron et al., 2023a;b) for autoregressive generation. Formally,
let y = (y1, y2, · · · , yS) denote the multi-block adaptive sequence. The model is trained to model
the probability distribution by maximize the likelihood of each token yi autoregressively using a
standard cross-entropy loss:

L = −
S∑

i=1

logP (ŷi|c, y1:i−1; θ), (7)

where c denotes the conditions, e.g., class labels for class-conditional generation or context tokens
for frame prediction, and θ represents the trainable parameters of the transformer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. We train the model and evaluate its performance on two standard datasets: video recon-
struction and class-conditional generation on UCF-101 (Soomro et al., 2012) and frame prediction
on Kinetics-600 (Carreira et al., 2018) with 5-frame conditioning.

Implementation details. Following Ge et al. (2022); Yu et al. (2024a), we adopt 16 × 128 × 128
video clips for both training and evaluation. Patch embeddings are extracted with a patch size of

6
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Table 1: Comparison of Video Reconstruction FVD on UCF-101. All models use a causal visual
tokenizer. Bold and underline indicate the best and the second best performance, respectively. †
denotes models trained using the same dataset and receipe as ours.

Method Data size Codebook Tokens rFVD ↓
OmniTokenizer (Wang et al., 2024b) 1.4M 8,192 1,280 42
ElasticTok (Yan et al., 2024) 356M 64,000 1,024 390
ElasticTok (Yan et al., 2024) 356M 64,000 2,048 93
Cosmos-Tokenizer-DV (NVIDIA, 2025) 100M 64,000 1,280 140
OmniTokenizer † (Wang et al., 2024b) <0.5M 8,192 1,280 94
ElasticTok † (Yan et al., 2024) <0.5M 64,000 1,022 230
CausalTok † <0.5M 8,192 1,024 37
AdapTok (Ours) <0.5M 8,192 512 60
AdapTok (Ours) <0.5M 8,192 1,024 36
AdapTok (Ours) <0.5M 8,192 2,048 28

Table 2: Class-conditional generation results on UCF-101 and frame prediciton results on
Kinetics-600. ‡ denotes using pretrained image tokenizer.

gFVD ↓Method Data size Params K600 UCF
Phenaki (Villegas et al., 2022) 465M 1.8B 36.4 /
MAGVIT-AR (Yu et al., 2023) 12M 306M / 265
MAGVIT-v2-AR (Yu et al., 2024a) 1.8M 840M / 109
OmniTokenizer (Wang et al., 2024b) 1.4M 650M 32.9 191
CogVideo ‡ (Hong et al., 2023) 5.4M 9.4B 109.2 626
Video-LaVIT ‡ (Jin et al., 2024) 10M 7B / 281
TATS (Ge et al., 2022) <0.5M 321M / 332
CausalTok <0.5M 633M / 80
AdapTok-AR (Ours) <0.5M 633M 11 67

4×8×8, resulting in L = 1024 tokens per video. A sequence of latent tokens qenc is used to extract
these patch embeddings, and is partitioned into K = 4 blocks, each containing M = 512 tokens.

For adaptive token sampling, we employ a block-wise mask sampler. In each block, the token
number is sampled from a truncated Gaussian distribution with mean µ = 256, standard deviation
σ = 128, and bounded between Mmin = 32 and Mmax = 512.

AdapTok is trained on UCF-101 and Kinetics-600 for 250 epochs with a batch-size of 128.
Adam (Kingma & Ba, 2014) is adopt as the optimizer with hyperparameters β1 = 0.5 and β2 = 0.9.
The learning rate is linearly warmed up to 10−4 and then decayed to 10−6 using a cosine scheduler.

Fréchet Video Distance (FVD) (Unterthiner et al., 2018) is adopt as the primary metric for recon-
struction and generation. Additionally, we report PSNR and LPIPS for video reconstruction.

4.2 MAIN RESULTS

Video Reconstruction. We first evaluate the video reconstruction performance of AdapTok on
UCF-101, with results summarized in Tab. 1. In particular, we implement a strong baseline named
CausalTok that shares the same block-causal architecture as AdapTok, but applies a standard non-
adaptive pipeline. To ensure fair comparison, we also reproduced previous works (i.e., ElasticTok
and OmniTokenizer) using the same dataset and receipe as ours. With fewer training data and latent
tokens, AdapTok significantly outperforms existing causal video tokenizers, achieving an rFVD of
28 with 2048 tokens and 36 with 1024 tokens.

To further evaluate efficiency under varying token budgets, we compare AdapTok with several causal
tokenizer baselines. As shown in Fig. 3, AdapTok consistently achieves lower rFVD across different
token counts. Remarkably, it achieves an FVD of 60 using only 512 tokens, outperforming most
baselines, and achieves comparable performance to CausalTok while using 1.8× fewer tokens.

7
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Table 4: Ablation on adaptive training and inference.

Tokens Sampler Scorer rFVD ↓ PSNR ↑ LPIPS ↓

1024
✗ ✗ 37.13 25.92 0.111
✓ ✗ 38.79 25.29 0.122
✓ ✓ 36.36 25.72 0.114

512
✗ ✗ 509.95 14.38 0.368
✓ ✗ 121.88 22.89 0.170
✓ ✓ 59.96 24.06 0.144

Table 5: Comparison of inference
latency. AdapTok achieves 11×
lower latency than ElasticTok.

Method Time (ms/video)
ElasticTok 571.7
AdapTok 50.9

Table 6: Ablation on token allocation strategies.

Method rFVD ↓ PSNR ↑ LPIPS ↓
Fixed 38.79 25.29 0.122
BiThr 42.12 25.23 0.120
BiDelta 38.13 25.65 0.115
ILP 36.36 25.72 0.114

Table 7: Comparison on scoring metrics.

Metric rFVD ↓ PSNR ↑ LPIPS ↓
SSIM 37.12 25.74 0.115
PSNR 36.56 25.84 0.115
MSE 36.97 25.75 0.115
Perceptual 36.28 25.72 0.113

Video Generation. For video generation, we use AdapTok to tokenize videos and train a Llama-
style model to autoregressively generate token sequences. As reported in Tab. 2, our model achieves
competitive performance on both class-conditional generation and frame prediction. With only
633M parameters, AdapTok-AR achieves a gFVD of 11 on Kinetics-600 and 67 on UCF-101. No-
tably, with similar reconstruction performance, AdapTok achieves better generation results than
CausalTok, demonstrating the advantage of adaptively allocating tokens for different videos.

Model Scaling. To further investigate the impact of model size on performance, we trained models
across 3 different sizes: AdapTok-S, AdapTok-L, and AdapTok-XL. As shown in Tab. 3, the recon-
struction quality improves consistently with increasing model size. Such results indicate that Adap-
Tok benefits from the increased model capacity, highlighting the scaling potential of our method.

Table 3: Performance of AdapTok with different model sizes. Continuous improvement is
achieved as the model size increases.

Model Params rFVD ↓ PSNR ↑ LPIPS ↓
AdapTok-S 59M 87.32 24.23 0.151
AdapTok-L 259M 36.36 25.72 0.144

AdapTok-XL 913M 32.43 26.29 0.103

4.3 ABLATION STUDIES

Adaptive training and inference paradigms. AdapTok leverages two adaptive mechanisms: a
block-mask sampler for training and an adaptive scorer for inference. The block-mask sampler
enables the model to learn from variable token lengths by randomly sampling token counts per block,
while the adaptive scorer allocates tokens based on reconstruction quality scores during inference.
As shown in Tab. 4, leveraging both mechanisms results in the best performance, achieving the
lowest rFVD of 36.36. The performance gain becomes more pronounced with lower token budgets in
inference, highlighting the importance of our adaptive mechanisms for efficient video representation.

Token allocation strategies. We explore several token allocation strategies: 1) Fixed token allo-
cation, which assigns a fixed token count to all blocks; 2) Score-threshold binary search (BiThr),
which binary searches for a global score threshold and selects the minimal token count per block
with predicted score below it; 3) Delta-score binary search (BiDelta), which selects the minimal to-
ken count where the score improvement between consecutive lengths drops below a binary searched
delta; and 4) Integer Linear Programming (ILP), which jointly optimizes token allocation across
a mini-batch under an average token budget. As reported in Tab. 6, the ILP strategy outperforms
the other methods across all metrics. Fig. 4 further compares the different token allocation strate-
gies across varying token lengths, demonstrating that the ILP-based allocation strategy consistently
outperforms the alternatives.
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(a) (b) (c)

Figure 4: Comparison of token allocation strategies. ILP achieves the best performance across all
metrics: (a) FVD, (b) PSNR, and (c) LPIPS.

Token allocation scoring metrics. We also investigate various scoring metrics for the token allo-
cation, including per-sample SSIM, PSNR, MSE, and perceptual loss. As shown in Tab. 7, each
scoring metric performs best on its corresponding evaluation metric, e.g., PSNR score yields the
highest PSNR. Notably, using perceptual loss as the scoring metric also leads to superior perfor-
mance on other evaluation metrics, such as rFVD, indicating its stronger correlation with overall
perceptual quality. For a comparison under varying token lengths, please refer to the Appendix C.

Computational costs analysis. The comparison of computational cost between ElasticTok and ours
is reported in Tab. 5. Thanks to the design of the scorer and IPAL, our method achieves significantly
lower inference latency (11× faster) compared to ElasticTok. The time proportion of IPAL also
remains stable, regardless of varying batch sizes and average token numbers. Please refer to the
Appendix C for more detailed experiment results and analyses.

Figure 5: Attention maps for latent tokens. Each map shows the attention distribution of a token
over spatial patches, with tokens ordered from top-left to bottom-right.

4.4 VISUALIZATIONS

Head tokens encode global information. The tail token drop strategy encourages the head tokens
to capture more global information. As shown in Fig.5, early tokens capture global context, while
later tokens focus on local details. Please refer to the Appendix D for more visualization results.

5 CONCLUSION

In this paper, we propose AdapTok, an adaptive video tokenizer designed with temporal causality
within a unified 1D latent token space. AdapTok incorporates a novel causal scorer and an ILP-
based allocation strategy, IPAL, which dynamically adjusts token usage both temporally and sample-
wise during inference. Extensive experiments demonstrate that AdapTok not only achieves superior
reconstruction quality compared to existing causal video tokenizers, but also provides a favorable
trade-off between performance and token budgets, and improves video generation in both class-
conditional and frame prediction tasks.

Limitations and Future work. In this work, we focus on the design of a sample-wise, content-
aware, and temporally adaptive tokenization framework. Our current implementation adopts a dis-
crete tokenizer based on VQ-VAEs (Van Den Oord et al., 2017; Esser et al., 2021), and future work
may explore continuous alternatives to validate the generality of the proposed framework. In addi-
tion, our model is trained on less than 0.5M publicly available videos due to limited computational
resources. Future efforts will focus on scaling up model capacity and dataset diversity to improve
generalization and applicability across broader domains.
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ETHICS STATEMENT

This work uses only publicly available datasets that have been rigorously filtered to mitigate potential
biases and ethical concerns.

REPRODUCIBILITY STATEMENT

The implementation details of our method are fully described in Sec. 4.1 and Appendix. A, including
both hyper-parameter settings and training costs. Additionally, the pseudo-code for IPAL and details
of other token allocation strategies are provided in Algorithm 1 and Appendix. B. The source code
and checkpoints will be released to enable reproduction of the main results presented in this paper.
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TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

In the supplementary materials, we provide the following additional details:

• Sec. A The comprehensive hyper-parameters and training costs for AdapTok.
• Sec. B The detailed implementation for the quantization method and several other adaptive

inference strategies, such as Fixed, BiThr and BiDelta token allocation strategies.
• Sec. C More ablation experiments on the token scoring metrics, mini-batch size, block

number, and average token count.
• Sec. D More qualitative visualizations, including

– Sec. D.1 More adaptive reconstruction results to demonstrate that the necessity of
tokenizing in 1D latent space (Fig. 7), as well as AdapTok’s ability to perform content-
aware (Fig. 8) and temporally dynamic (Fig. 9) token allocation;

– Sec. D.2 Video generation results on UCF-101 class-conditional generation (Fig. 10)
and Kinetics-600 frame prediction (Fig. 11);

– Sec. D.3 More attention maps for latent tokens (Fig. 12).
– Sec. D.4 The visualization of scorer predictions and corresponding reconstruction re-

sults under varying token counts (Fig. 13).
• Sec. E The Use of Large Language Models (LLMs).
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A IMPLEMENTATION DETAILS

The detailed training hyper-parameter settings for the AdapTok, Scorer, AdapTok-AR (class-
conditional generation on UCF-101) and AdapTok-FP (frame prediciton on Kinetics-600) are re-
ported in Table 8. The architectural configurations of the different AdapTok variants are listed in
Table 9.

Table 8: Hyper-parameters for AdapTok models.

AdapTok Scorer AdapTok-AR AdapTok-FP
Model parameters
Parameters 195M 89M 633M 633M
Frame Resolution 16× 128× 128 16× 128× 128 16× 128× 128 16× 128× 128
Patch Size 4× 8× 8 4× 8× 8 4× 8× 8 4× 8× 8
Hidden Size 768 768 1280 1280
Transformer Layers 12 12 30 30
Training
Optimizer Adam Adam AdamW AdamW
Learning rate 1e−4 1e−4 6e−4 6e−4

Beta1 0.5 0.5 0.9 0.9
Beta2 0.9 0.9 0.95 0.95
Weight decay 0 0 0.05 0.05
Scheduler type cosine cosine cosine cosine
Warmup epochs 8 8 4 1
Batch size 128 128 64 64
Epochs 250 20 3000 75
GPUs 32 32 8 16
Training Time 112h 9h 59h 55h

Table 9: Model configurations of AdapTok variants.

Model Hidden Size Depth Heads Parameters
AdapTok-S 512 6 8 59M
AdapTok-L 768 12 12 259M

AdapTok-XL 1024 24 16 913M

B MORE TECHNICAL DETAILS

B.1 QUANTIZATION METHOD

Following Wang et al. (2024a), a stochastic vector quantization (SVQ) is adopted to the quantizer
Q. Similar to VQ, a codebook C ∈ Rc×d′

containing c codes is maintained. Given a visual feature
z, the cosine similarity with all code vectors in C is computed, followed by a softmax to obtain
a probability distribution. An index xInd is then sampled from this distribution via a categorical
distribution:

xInd ∼ Categorical

(
softmax

({
v · Ci

∥v∥∥Ci∥

}c

i=1

))
. (8)

Given the sampled index, the quantized feature zq is retrieved from the codebook, i.e., zq = CxInd
.

To enable differentiable training, the straight-through estimator Bengio et al. (2013) is applied.

B.2 ADAPTIVE INFERENCE

In addition to the Integer Linear Programming (ILP) method detailed in the main paper, we provide
further details for the other three token allocation methods, including Fixed, BiThr and BiDelta.
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Fixed token allocation uses the same number of tokens across all video samples and blocks. The
latent mask is given by:

m′ = [m1 ⊕m2 ⊕ · · · ⊕mK ], mi = [1j≤Nb
]Mj=1. (9)

where Nb is the fixed number of tokens allocated per block.

Score-threshold binary search (BiThr) binary searches a global score threshold which assigns
the minimum token counts that satisfy a desired video quality. Specifically, given a score threshold
si, the token counts are assigned by selecting the first position where the score drops below si. The
threshold is iteratively updated via binary search until the average token count matches the target
value, as detailed in Algorithm 2.

Delta-score binary search (BiDelta) follows the same binary search procedure as BiThr, but
operates on delta scores instead of raw scores. These delta scores, computed using a difference
function (see Algorithm 2), quantify the marginal gain in perceptual quality from adding each token.
The search aims to find a threshold over these deltas such that the resulting token allocation meets
the desired token count.

Algorithm 2: Binary Search

1 Inputs: Video x, Block idx i;
2 Hyperparameters: Average Token Nb, tokens per block M , max iterations K;
3 z = E(x), zq = Q(z);

4 s =

{
Sϕ(z, zq)iM :(i+1)M , (BiThr)
Sϕ(z, zq)iM :(iM+M−1) − Sϕ(z, zq)(iM+1):(iM+M), (BiDelta)

;

5 smax, smin = max(s),min(s);
6 for k = 1, · · · ,K do
7 smid = (smax + smin)/2;
8 nk = argmax(s < smin);
9 if mean(nk) > Nb then

10 smin = smid;
11 else
12 smax = smid;
13 Return: assigned tokens nk;

C ADDITIONAL EXPERIMENTS

Ablation on token allocation scoring metrics. Fig. 6 presents detailed comparisons of token
allocation under varying token lengths for different scoring metrics. Each metric achieves the best
performance on its corresponding evaluation metric, while perceptual loss consistently yields strong
results across multiple metrics, demonstrating its effectiveness for guiding adaptive token allocation.

(a) (b) (c)

Figure 6: Comparison of scoring metrics. Using perceptual loss as the scoring metric achieves
better overall performance, especially on FVD and LPIPS.
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Further analysis on computational costs. Although IPAL is based on ILP, its actual runtime
overhead is not significant. Table 10-12 shows the runtime scalability of IPAL w.r.t. mini-batch size,
the number of blocks and average token numbers. Specifically, across batch sizes ranging from 8
to 1024, FVD remains stable between 36 and 37, while IPAL accounts for only about 15% of total
inference time. The allocation time also remains stable with varying average token numbers, while
it increases moderately as the number of blocks grows. These results suggest that our method is
efficient, scalable, and practical for real-world deployment scenarios.

Table 10: Ablation on mini-batch size with an average token of 512.

Batch size FVD ↓ PSNR ↑ LPIPS ↓ Time (ms/video) IPAL Time
Total IPAL Proportion (%)

8 60.39 24.01 0.146 66.3 28.0 42.2
16 60.14 24.04 0.145 53.7 16.7 31.2
64 59.96 24.06 0.144 45.2 8.6 19.1

128 60.61 24.07 0.144 44.1 7.0 15.8
256 61.48 24.08 0.144 44.0 6.7 15.2
512 61.44 24.08 0.144 43.0 6.3 14.8

1024 61.37 24.09 0.144 44.1 6.8 15.5

Table 11: Ablation on mini-batch size with an average token of 1024.

Batch size FVD ↓ PSNR ↑ LPIPS ↓ Time (ms/video) IPAL Time
Total IPAL Proportion (%)

8 36.55 25.68 0.115 69.0 28.1 40.7
16 36.80 25.71 0.114 56.8 16.9 29.8
64 36.36 25.72 0.114 48.1 8.5 17.8

128 36.52 25.73 0.114 46.7 7.2 15.4
256 37.02 25.74 0.114 47.4 6.9 14.6
512 36.93 25.74 0.113 46.9 7.0 14.8

1024 37.01 25.75 0.113 47.3 7.5 15.8

D MORE VISUALIZATIONS

D.1 VIDEO RECONSTRUCTION

1D latent token space matters. In Fig. 7, we visualize reconstruction results under different token
budgets. Compared to ElasticTok, which relies on local 2D spatial tokens and tends to produce
block-like artifacts, AdapTok leverages 1D latent space that enables a coarse-to-fine reconstruction
process: early tokens capture global structure, while later tokens refine local details.

Content-aware allocation. As shown in Fig. 8, AdapTok adaptively allocates tokens based on the
visual complexity of each scene. Static or low-motion segments receive fewer tokens, while dynamic
or visually complex regions are assigned more, enabling efficient token usage without compromising
important content.

Temporal dynamics. Fig. 9 illustrates how AdapTok adaptively allocates tokens over time. When
scene changes, more tokens are assigned to capture the transition, while fewer tokens are used in
stable or redundant segments.

D.2 VIDEO GENERATION

We present class conditional generation results on UCF-101 in Fig. 10 and frame prediction results
on Kinetics-600 in Fig. 11.
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Table 12: Runtime ablation of IPAL on block and token counts. (a) Ablation on block numbers.
(b) Ablation on average token counts.

(a) Number of blocks.

Blocks Tokens IPAL Time (ms/video)
1 1024 7.9
2 1024 7.1
4 1024 8.0
8 1024 10.6

(b) Average tokens counts.

Blocks Tokens IPAL Time (ms/video)
4 32 7.8
4 128 8.5
4 512 8.3
4 1024 8.0

Tokens/block

(a) GT

16 64 128 256

(b) ElasticTok

16 64 128 256

(c) AdapTok

Figure 7: Reconstruction comparison with ElasticTok Yan et al. (2024) under varying token
budgets. AdapTok reconstructs videos in a coarse-to-fine manner, where early tokens capture global
structure and later ones refine local details, while ElasticTok suffers from blocky artifacts.

D.3 TOKEN CONTRIBUTION ANALYSIS

Fig. 12 provides additional attention maps of latent tokens from various samples. These further
demonstrate that early tokens tend to attend broadly to capture global context, while mid-to-late
tokens focus more on local details.

D.4 SCORER PREDICTIONS

Fig. 13 illustrates the scorer’s prediction quality and the effect of increasing token counts on re-
construction. As shown in Fig. 13a, the predicted scores closely match the ground truth scores
(perceptual loss) across all blocks. As more tokens are allocated within each block (moving along
the x-axis), the score decreases, indicating improved reconstruction quality. This trend is visually
confirmed in Fig. 13b, where reconstructions become progressively more accurate as token counts
increase.
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Figure 8: AdapTok performs adaptive content-aware tokenization. From the top to the bottom,
AdapTok allocates more tokens as scene complexity and motion increase. Blue bars represent the
token counts used per block.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely to assist with grammar correction of the submission. All research ideas,
experiments, and analyses presented in this work were conceived, conducted, and verified by the
authors.
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Figure 9: AdapTok adaptively allocates tokens based on temporal dynamics. Red boxes high-
light the scene transitions, where AdapTok allocates more tokens to capture important temporal
changes.
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Figure 10: Class conditional video generation on UCF-101.

Figure 11: Frame prediction results on Kinetics-600. Red boxes represent the condition frames.
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Figure 12: Additional attention maps for latent tokens. Each map shows how a token attends to
spatial patches, ordered from top-left to bottom-right. Early tokens attend broadly to capture global
context, while later ones focus on local details.
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(a) Scores (b) Reconstructions

Tokens: 128 256 384 512 GT

Figure 13: The visualization of scorer predictions and corresponding reconstruction results.
(a) Scorer predictions. Red curves represent the GT scores, while blue denotes the predictions. A
total of 2048 tokens are divided into 4 blocks. The x-axis represents the index of the last selected
token for each block. (b) Corresponding reconstruction results of frames from the first block under
different token counts.
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