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Abstract

We analyse the convergence of one-hidden-layer ReLU networks trained by gra-
dient flow on n data points. Our main contribution leverages the high dimension-
ality of the ambient space, which implies low correlation of the input samples, to
demonstrate that a network with width of order log(n) neurons suffices for global
convergence with high probability. Our analysis uses a Polyak–Łojasiewicz view-
point along the gradient-flow trajectory, which provides an exponential rate of
convergence of 1

n . When the data are exactly orthogonal, we give further refined
characterizations of the convergence speed, proving its asymptotic behavior lies
between the orders 1

n and 1√
n

, and exhibiting a phase-transition phenomenon in
the convergence rate, during which it evolves from the lower bound to the upper,
and in a relative time of order 1

log(n) .

1 Introduction

Understanding the properties of models used in machine learning is crucial for providing guaran-
tees to downstream users. Of particular importance, the convergence of the training process under
gradient methods stands as one of the first issues to address in order to comprehend them. If, on the
one hand, such a question for linear models and convex optimization problems [Bottou et al., 2018,
Bach, 2024] are well understood, this is not the case for neural networks, which are the most used
models in large-scale machine learning. This paper focuses on providing quantitative convergence
guarantees for a one-hidden-layer neural network.

Theoretically, such global convergence analysis of neural networks has seen two main achievements
in the past years: (i) the identification of the lazy regime, due to a particular initialization, where
convergence is always guaranteed at the cost of being essentially a linear model [Jacot et al., 2018,
Arora et al., 2019, Chizat et al., 2019], and (ii) the proof that with an infinite amount of hidden units
a two-layer neural network converges towards the global minimizer of the loss [Mei et al., 2018,
Chizat and Bach, 2018, Rotskoff and Vanden-Eijnden, 2018]. However, neural networks are trained
in practice outside of these regimes, as neural networks are known to perform feature learning, and
experimentally reach global minimum with a large but finite number of neurons. Quantifying in
which regimes neural networks converge to a global minimum of their loss is still an important open
question.

We identify a regime—marked by low-correlated inputs—where the training dynamics of shallow
neural networks via gradient flow can be rigorously understood. Unlike prior analyses that hinged
on finely tuned initialization scales [Chizat et al., 2019, Boursier et al., 2022], an infinite number of
neurons [Jacot et al., 2018, Chizat and Bach, 2018], or the unrealistic orthogonality of data [Boursier
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et al., 2022, Frei et al., 2023], our setting arises naturally in high dimensions, notably when the input
dimension d exceeds n2. Beyond existence of convergence, we seek to quantify it: how fast does the
system lock onto a global minimizer? What governs this speed? Our work provides sharp answers.

We summarize our contributions in the analysis of the learning dynamics of a one-hidden-layer
ReLU network on a finite number of data n via gradient flow.

• Our main contribution is that the gradient flow training of shallow neural networks, with
square error, on n low correlated input, converges globally, i.e. converges to a neural
network that interpolates exactly the data. We show that this occurs with high probability
for high dimensional whitened input data as soon as d ≳ n2. Furthermore, this convergence
occurs for any initialization scale and whenever the neural network has more that log(n)
neurons. We also show that the loss converges to zero exponentially fast with a rate at least
of order 1

n .
• Then, when the inputs are orthogonal, we refine our analysis in order to characterize the

range of possible asymptotic speeds, which we find to be at most of order 1√
n

. Moreover,
we conjecture that this speed is always of the highest order 1√

n
with high probability and

verify empirically this claim.
• Finally, for orthonormal inputs and a special initialization of the network, we highlight a

phase transition in the convergence rate during the system’s evolution, and compute the
associated cut-off time and transition period.

2 Problem Setup

Notations. We use ||v|| to denote the euclidean norm of a vector v, ⟨·|·⟩ its scalar product, and
||M || for the operator norm associated with || · || of a matrix M . Moreover, let v̄ = v

||v|| .

Loss function. Let (xi, yi)i=1:n ∈ (Rd × R)n be a sample of input vectors and real outputs. Let
d ∈ N∗ be the dimension of the vector space and n ∈ N∗ the number of data points. In order to learn
the regression problem of mapping xi to yi, we use one-hidden-layer ReLU neural networks, which
we write:

hθ(x) =
1

p

p∑
j=1

ajσ(⟨wj |x⟩) , (1)

where p ∈ N∗ is the number of units, σ(x) = max{0, x} for x ∈ R is the rectified linear unit
(ReLU), and the parameters are gathered in θ = (aj , wj)1≤j≤p ∈ (R×Rd)p. To simplify the ReLU
notation, we define σ(⟨wj |xi⟩) = ⟨wj |xi⟩+ and 1⟨wj |xi⟩>0 = 1j,i. When mentioning neurons of
the network, we refer to ⟨wj |xi⟩+, while second layer neurons refer to aj . Neurons can be activated
if ⟨wj |xi⟩+ > 0, and are correctly activated if moreover ajyi > 0. Upon this prediction class and
data, we analyse the regression loss with square error,

L(θ) :=
1

2n

n∑
i=1

(yi − hθ(xi))
2 . (2)

As soon as d ≥ n, (xi)i=1:n can form a free family, in which case the set of minima of L, which
consists of all interpolators, is non-empty. We note ri = yi − hθ(xi) the residual of the loss.

Gradient flow. In order to understand a simplified version of the optimization dynamics of this
neural network, we study the continuous-time limit of gradient descent. We initialize θt=0 = θ0 and
follow for all t ≥ 0 the ordinary differential equation

d

dt
θt = −p∇θtL(θt) , (3)

where we choose a particular element of the sub-differential of the ReLU σ′(x) = 1x>0, for any
x ∈ R. This choice is motivated by both prior empirical work from Bertoin et al. [2021] and
theoretical work from Boursier et al. [2022, Proposition 2] and Jentzen and Riekert [2023]. Because
ReLU is not differentiable at 0, we don’t have a unique valid trajectory satisfying the gradient flow
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equation. We thus chose among all the trajectories the only one for which deactivated neurons cannot
reactivate themselves alone (more in Appendix C.2). We also decided to accelerate the dynamics
by a factor p as only this scaling gives a consistent mean field limit for the gradient flow when the
number of neurons tends to infinity (see Definition 2.2 by Chizat and Bach [2018]).

Weight invariance. The 1-homogeneity of the ReLU provides a continuous symmetry in the func-
tion θ 7→ hθ and hence the loss4. This feature is known to lead automatically to invariants in the
gradient flow as explained generally by Marcotte et al. [2024]. The following lemma is not new
[Wojtowytsch, 2020, p.11], and shows that, from this invariance, we deduce that the two layers have
balanced contributions throughout the dynamics.
Lemma 1. For all j ∈ J1, pK, for all t ≥ 0, |aj(t)|2 − ||wj(t)||2 = |aj(0)|2 − ||wj(0)||2 , and thus,
if |aj(0)| ≥ ||wj(0)||, then aj(t) maintains its sign and |aj(t)| ≥ ||wj(t)||.

Initialization. Throughout the paper, we initialize the network’s weights wj and aj from a joint
distribution where both marginals are non-zero, centered, rotational-invariant, are sub-Gaussian, and
we take the norms of aj and wj independent of d, n, p. Each pair of neuron is sampled independently
from the other pairs. Moreover, we need an assumption of asymmetry of the norm at initialization.
Assumption 1 (Asymmetric norm at initialization). We assume that the weights of the network at
initialization satisfy for all j ∈ J1, pK, |aj(0)| ≥ ||wj(0)||.

Articles by Boursier and Flammarion [2024a,b] already used this assumption to study two-layer
neural networks in order to use the property described in Lemma 1.

Data. We define the data matrix X = (x1, . . . , xn) ∈ Rd×n. Denote C−
x = mini ||xi|| and C−

y =

mini |yi|; in what follows, we suppose that C−
x > 0 and C−

y > 0, i.e., the input and output data are
bounded away from the origin. Similarly, we also let C+

x = maxi ||xi|| and C+
y = maxi |yi|. We

note C+,−
x,y to refer to the set of these constants. Finally, we introduce the following hypothesis on

the low correlation between the inputs.
Assumption 2 (Low correlated inputs). We assume that the data satisfy

||XTX −DX || < (C−
x )

2

2
√
n

C−
y

C+
y

, (4)

where DX denotes the diagonal matrix with coefficients ||xi||2.

The term ||XTX − DX || is a control on the magnitude of the correlations (⟨xi, xj⟩)i ̸=j . As an
extreme case, when it equals zero, the inputs are orthogonal. This assumption is purely deterministic
at this stage. Later, we show that this weak interaction between the inputs is highly likely to occur
for random whitened vectors in high dimensions (see Corollary 1).

Dimensions. Throughout the paper, even if the results provided are all non-asymptotic in nature,
the reader can picture that the numbers n, p, d (respectively data, neurons and dimension) are all
large. Moreover, they verify the following constraint: n is less than d, and p can be thought of the
order log(n), meaning only a “low” number of neurons is required.

2.1 Related works

Convergence of neural networks. Neural networks are known to converge under specific data,
parameter, or initialization hypotheses, among which: the neural tangent kernel regime studied by
Jacot et al. [2018], Arora et al. [2019], Du et al. [2019], Allen-Zhu et al. [2019], that has been
shown to correspond in fact to a lazy regime where there is no feature learning because of the
initialization scale. Another field of study is the mean-field regime, where feature learning can
happen but where the optimization has been shown to converge only in the infinite width case [Mei
et al., 2018, Chizat and Bach, 2018, Rotskoff and Vanden-Eijnden, 2018]. Note that it is also possible
to produce generic counter examples, where convergence does not occur [Boursier and Flammarion,

4Indeed, the subspace built from all parameters θγ = (
aj
γj
, γjwj)1≤j≤p, when γ varies in (R∗

+)
p, maps to

the same network, i.e., hθγ = hθ1 .
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2024b]. Beyond these, there have been attempts to generalize convergence results under local PL
(or local curvature) conditions as shown by Chatterjee [2022], Liu et al. [2022], Zhou et al. [2021],
but they remain unsatisfactory to explain the good general behavior of neural networks due to the
constraint it imposes on the initialization. Convergence theorems similar in spirit to Theorem 1 can
be found in an article by Chen et al. [2022]. The main difference relies on two features: only the
inner weights are trained and their result necessitates a large value of outer weights when n is large,
which is the regime of interest of the present article. Finally, it is worth mentioning other works on
neural networks dynamics, e.g., the study of the implicit bias either for regression [Boursier et al.,
2022] or classification [Lyu and Li, 2020, Ji and Telgarsky, 2020], or sample complexity to learn
functions in a specific context [Glasgow, 2023].

Polyak-Łojasiewicz properties. Dating back from the early sixties, Polyak derived a sufficient
criterion for a smooth gradient descent to converge to a global minimizer [Polyak, 1964]. This
corresponds to the later-called Polyak-Łojasiewicz (PL) constant µ of a function f : Rd → R+, that
can be defined as the best exponential rate of convergence of gradient flow over all initializations,
or equivalently to the following minimum ratio µ = minx∈Rd

||∇f(x)||2
f(x) . This has found many

applications in non-convex optimization, as it is the case for neural network optimization, and is very
popular for optimization in the space of measures [Gentil, 2020]. Other notions of PL conditions
have emerged in the literature to characterize local convergence, by bounding the PL constant over
a ball µ∗(z, r) = minx∈B(z,r)

||∇f(x)||2
f(x) [Chatterjee, 2022, Liu et al., 2022] and comparing it to

f(z). We use a notion of PL which is local and trajectory-wise to prove lower bounds valid on each
trajectory.

3 Convergence in high dimension

In this first section, our goal is to understand when the gradient flow converges toward a global
minimizer of the loss. Note that the parametrization of the prediction function hθ by a neural network
often implies the non-convexity of the objective L and prevents any direct application of convex tools
in order to ensure global convergence. Generally speaking, even if gradient flows are expected to
converge to critical points of the parameter space [Lee et al., 2016], such that ∇θL(θ) = 0, they
might become stuck in local minimizers that do not interpolate the data.

3.1 Local PL-curvature

Convexity is not the only tool that provides global convergence: as known in the optimization com-
munity, showing that ||∇L(θ)||2

L(θ) is uniformly lower bounded suffices. As mentioned in Section 2.1,
this is known as the Polyak-Lojasiewicz condition [Polyak, 1964]. Taking a dynamical perspective
on this, we define a trajectory-wise notion of this “curvature” condition which we name the local-PL
curvature of the system, and define for all t ≥ 0,

µ(t) := p
∥∇L(θt)∥2

L(θt)
= −

d
dtL(θt)

L(θt)
(5)

with the second equality being a property of the gradient flow. Intuitively, this coefficient describes
the curvature in parameter space that θt “sees” at time t ≥ 0. The following lemma is classical and
shows how it can be used to prove the global convergence of the system, as well as a quantification
on the rate.
Lemma 2. Let ⟨µ(t)⟩ := 1

t

∫ t
0
µ(u)du the time average of the local-PL curvature, which we name

the average-PL curvature. We have L(θt) = L(θ(0))e−⟨µ(t)⟩t.

Hence, if the total average-PL curvature ⟨µ∞⟩ := limt→∞⟨µ(t)⟩ is strictly positive, we can
deduce an upper bound on the loss and convergence to 0 at the exponential speed ⟨µ∞⟩. This shows
that the average-PL curvature is actually the instantaneous exponential decay rate of the loss, and
thus controls the speed at which the system converges.

3.2 Global convergence of neural networks for weakly correlated inputs

We are ready to state the main theorem of the paper on the minimization of the loss.
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Theorem 1. Let ε > 0, p ≥ 4 log
(
4n
ε

)(
1 +

(
Ca,w

C+
x

C+
y

)2)
where Ca,w depends only on the

joint law of a,w, and suppose Assumption 1. We fix the data (xi, yi)1≤i≤n and suppose it satisfies
Assumption 2. Then with probability at least 1 − ε over the initialization of the network, the loss
converges to 0 with ⟨µ∞⟩ ≥ C

n , where we define C = 6
5
(C−
x )2

C+
x

C−
y . Moreover, for any t ≥ 0, we

have the lower bound

µ(t) ≥ C

n
min
i

∣∣∣∣1− ri(t)

yi

∣∣∣∣ . (6)

Note that, at best, the number of neurons required in Theorem 1 is logarithmic. This finiteness
stands in contrast with the infinite number required in the mean-field regime, and the polynomial
dependency typical of the neural tangent kernel (NTK) regime [Jacot et al., 2018, Allen-Zhu et al.,
2019]. In the orthogonal case, the ReLU makes the log(n) dependency necessary and sufficient, as
shown in Lemma 5, as the residual ri goes to zero if and only if a neuron gets initialized as ajyi > 0
and ⟨wj |xi⟩ > 0 for each i.

Assumption 2 is crucial for this proof: it means that the examples are insufficiently correlated with
each other for the weights to collapse onto a single direction. As proved by Boursier and Flam-
marion [2024a, Theorem 1], the direction w̄∗ = argminθ={w̄,a} L(θ) will attract all neurons if it is
accessible from anywhere on the initialization landscape5. This phenomenon known as early align-
ment and first described by Maennel et al. [2018], will prevent interpolation if examples are highly
correlated [Boursier and Flammarion, 2024a, Theorem 2]. The fact that our result holds for any
initialization scale shows that near-orthogonal inputs prevent accessibility to w̄∗ and make the early
alignment phenomenon benign, as found by Boursier et al. [2022], Frei et al. [2023].

Note finally that our norm-asymmetric initialization (Assumption 1) is sufficient for global conver-
gence with high probability, but may not be necessary. That said, we present in Appendix C.1 a
detailed example of a low probability interpolation failure when the assumption is not satisfied.

Convergence in high dimension. In this paragraph we assume that the data (xi, yi)i=1:n are gen-
erated i.i.d. from some distribution PX,Y . We first show that, with high probability, Assumption 2
is almost always valid if the dimension is larger than the square root of the number of data points.
Additionally, we assume that the law anti-concentrates at the origin. These two features are gathered
in the following lemma.
Lemma 3. Let (xi, yi)1≤i≤n be generated i.i.d. from a probability distribution PX,Y which
has compact support on R∗ × R∗, and such that the marginal PX has zero-mean, and satisfies
Ex∼PX [xx

T ] = λ
d Id. There exists C > 0 depending only on the constants C+,−

x,y and the initial-
ization weights, such that, if d ≥ C

(
n2 + n log

(
1
ε

))
, then, with probability 1− ε, Assumption 2 is

satisfied.

The hypothesis in the previous lemma is satisfied by standard distributions like Gaussians N (0, 1
dId)

for the inputs. The following corollary restates Theorem 1 for data that are generically distributed
as in Lemma 3, and when the dimension is large enough.
Corollary 1. Let ε > 0. Suppose Assumption 1 and that (xi, yi)1≤i≤n are i.i.d. gener-
ated from a probability distribution satisfying the same properties as in Lemma 3. There ex-
ists a constant C > 0 depending only on the constants C+,−

x,y such that, if the network has

p ≥ 4 log
(
6n
ε

)(
1 +

(
Ca,w

C+
x

C+
y

)2)
neurons in dimension d ≥ C

(
n2 + n log

(
1
ε

))
with Ca,w de-

pending only on the join law of a,w, then, with probability at least 1 − ε over the initialization of
the network and the data generation, the loss converges to 0 at exponential speed of rate at least 1

n .

Beyond the high-dimensionality of the inputs, Corollary 1 does not require any initialization speci-
ficity (small or large), and the number of neurons required to converge can be as low as log(n).
Hence, let us put emphasis on the fact that the global nice structure of the loss landscape comes
from the high-dimensionality: this does not come from a specific region in which the network is

5This accessibility condition is in fact the absence of saddle point for some function of normed neurons,
which imply that neurons can rotate from anywhere on the sphere to w̄∗.
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initialized as in the NTK (or lazy) regime [Chatterjee, 2022], nor rely on the infinite number of
neurons [Wojtowytsch, 2020].

Remark that, under the near-orthogonality assumption, in the large d limit, the largest amount of
data that “fits” in the vector space is only d, and corresponds to a perturbation of the canonical basis.
On average, Corollary 1 finally states that the average number of data points for which we can show
convergence is of the order

√
d. Trying to push back this limit up to order d is an important question

for future research and seems to ask for other techniques. Experiments underlying this question are
presented in Section 5 (Figure 3).

3.3 Sketch of Proof

The proof of convergence relies on three key points: (i) the loss strictly decreases as long as each
example is activated by at least a neuron, (ii) for a data point, if there exists a neuron which is
activated at initialization, then at least one neuron remains activated throughout the dynamics, (iii)
At initialization, condition (ii) is satisfied with large probability. Let us detail shortly how each item
articulates with one another.

(i). First, Lemma 7, stated and proved in Appendix, shows that, by computing the derivatives of
the loss, we get a lower bound on the curvature

µ(t) ≥ 2

n
((C−

x )
2 − ||XTX −DX ||)min

i

1

p

p∑
j=1

|aj |21j,i

 . (7)

To prove the strict positivity, one needs to show that ||XTX−DX || is small enough, and that for each
data i, there exists j such that |aj |21j,i is strictly positive. Thanks to the initialization of the weights,
|aj |2 ≥ |aj(0)|2 − ||wj(0)||2 > 0, and to Assumption 2, 1

2
√
2
(C−

x )
2 > ||XTX −DX ||. Thus, we

have convergence if at any time, for any data input, one neuron remains active, i.e., formally, for
all t ≥ 0, and all i ∈ J1, nK, there exists j ∈ J1, pK such that ⟨wj(t)|xi⟩+ > 0. Hence, the loss
decreases as long as one neuron remains active per data input. We see next how to show this crucial
property.

(ii). Let us fix the data index i ∈ J1, nK, and yi > 0 without loss of generality. Let us define
j∗i = argmaxajyi>0⟨wj(t)|xi⟩ the index of the largest correctly initialized neuron. Since aj
cannot change sign thanks to Assumption 1, ⟨wj∗i (t)|xi⟩ is continuous, and has a derivative over
each constant segment of j∗i . The strict positivity of this neuron is an invariant of the dynamics: if
ri ≥ yi, the derivative of the neuron shows it increases, and if ri < yi, the residual has decreased,
which implies that the ⟨wj∗i (t)|xi⟩ is strictly positive. Thus, if a neuron is correctly initialized for
the data point i, a neuron stays active throughout the dynamics. This invariant however requires a
large but constant of n number of neurons.

(iii). Finally, Lemma 5 shows P(∀i,∃j, ⟨wj(0)|xi⟩ > 0∩ ajyi > 0) ≥ 1− n
(
3
4

)p
, which implies

that for p ≥ 4 log(nε ), the network is well initialized with probability at least 1− ε.

4 Orthogonal Data

In this section, we go deeper on the study of the gradient flow, assuming that the input data are
perfectly orthogonal, or equivalently that ||XTX − DX || = 0. Since most of the intuition for the
convergence is drawn from the orthogonal case, it offers stronger results which we detail. In partic-
ular, we are able to closely understand the local-PL curvature (µ(t))t≥0 evolution and asymptotic
behaviour.

4.1 Asymptotic PL curvature

Theorem 1 has shown that the local-PL curvature is lower bounded by a term of order 1
n , allowing

us to show an exponential convergence rate of this order. The following proposition shows that in
the orthogonal case the curvature can also be upper bounded.
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Figure 1: Example of group initialization with pn = 3 neurons, kn = 2 examples per neurons, for
n = 6 total examples. Group initialization allows to treat each group independently from the other,
an thus to solve the problem for a 1-neuron network.

Proposition 1. Let ε > 0. Given orthogonal inputs, and a constant ∆ > 0 such that for all
j ∈ J1, pK, |aj(0)| − ||wj(0)||2 > ∆, there exists C > 0 depending only the constants C+,−

x,y , ∆,

and on the law of a,w, such that for d ≥ C log(p) log(np) log
(
1
ε

)2
, with probability 1 − ε on the

initialization of the network, we have an upper-bound on the local-PL curvature for all t ≥ Cn,

µ(t) ≤ C

√
p

n
max
i

∣∣∣∣1− ri(t)

yi

∣∣∣∣+ C

n
. (8)

This upper bound uses two properties that are characteristic of the orthogonal case. First, once a
neuron is inactive on some data input, then, it can never re-activate again. The second property is
that for an initialization scale independent on n, there is a phase during which correctly initialized
neurons increase while the others decrease to 0. This extinction phase, proved in Lemma 8, is short
in comparison to the time needed to fit the residuals, and leaves the system decoupled between
positive and negative outputs yi.

In the limit where n goes to infinity, Proposition 1 shows that the network does not learn since
the local-PL is 0. This is an artifact of the orthogonality of the inputs: the interaction between
inputs should accelerate the dynamics. However, although all quantities have well defined limits as
n → +∞, the limits cannot be understood as a gradient descent in an infinite dimensional space6.

Proposition 1 is in fact valid for p fixed, and an initialization of the weights for which every data
is correctly initialized by a neuron. In that case, Proposition 1 shows that the asymptotic curvature
cannot be larger than the order 1√

n
. While the local-PL curvature is between the order 1

n and 1√
n

, the
next proposition shows that any intermediate order 1

nα , for α ∈ [ 12 , 1], can be reached asymptotically,
with strictly positive probability, using a particular initialization of the network.

Group initialization. In the following, we use pn to denote the number of neurons, and partition
the n data points in pn groups of cardinality kn (note that pnkn = n). We re-index the examples per
group as by (xji , y

j
i ) = (xi+(j−1)kn , yi+(j−1)kn), for all i ∈ J1, knK and j ∈ J1, pnK. Moreover, we

use a special initialization of the network such that for all j, q ∈ J1, pnK, i ∈ J1, knK,{
⟨wj |xqi ⟩ > 0 if j = q
⟨wj |xqi ⟩ ≤ 0 if j ̸= q

and aj = sj ||wj || , (9)

i.e., wj is correctly activated on the group j only. An example of group initialization is visible on
Figure 1.
Proposition 2. Suppose the group initialization described above, with orthonormal inputs, and the
signs of all outputs of the group j are equal to sj .Suppose moreover that the initialization is symmet-
ric, i.e. |aj(0)| = ||wj(0)||. We fix kn = n2(1−α) with α ∈ [ 12 , 1]. Then, for t ≥ Cn3α−1 log (Cn),
the local-PL curvature satisfies

K1

nα
≤ µ(t) ≤ K2

nα
, (10)

6One would like to write the loss as an expectation over the data point, yet it is impossible as there is no
uniform distribution on N.
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where C = max
(
αC−

y , (
1

2C−
y
)

1
α

)
, K1 = 2C−

y minj
||wj(0)||2

2+||wj(0)||2 and K2 = 4C+
y .

Proposition 2 states that any asymptotic value ⟨µ∞⟩ ∈ [K1

n , K2√
n
] can be achieved with strictly posi-

tive probability using group initialization. But of what order is the most likely limit of the curvature
for standard initialization? The experiment in Section 5.2 suggest that, with high probability, the
asymptotic curvature is always of the order 1√

n
.

Conjecture 1. Let ε > 0. There exist C1, C2 > 0 depending only on the data and the initialization,
such that for p ≥ C1 log(

n
ε ) and for orthogonal examples, with probability at least 1 − ε over the

initialization of the network, we have convergence of the loss to 0 and

⟨µ∞⟩ = C2√
n
. (11)

4.2 Phase transition in the PL curvature

In the previous section, we emphasized the asymptotic order of the local-PL curvature with respect
to n and hypothesized that it is of the order 1√

n
in most cases. In this section, we are interested in

the evolution of the local-PL curvature during the dynamics. Lemma 4 below computes the local-PL
curvature at initialization in the large p regime, and shows that initially it is of order 1

n .
Lemma 4. At initialization, the local-PL curvature µ(0) is a random variable which satisfy√
p(nµ(0)−β0) −→

p→+∞
N
(
0, γ2

0

)
, and with β0, γ0 depending only on the data and the distributions

of the network’s neurons.

The constant β0 is strictly positive as soon as the limit network does not directly equal the labels,
which is natural to assume since they are unknown a priori. Thus the exponential rate of decrease
of the loss in the early times of the dynamics is of order 1

n . Importantly, Proposition 2 with a single
group has an asymptotic speed of order 1√

n
, meaning that the local-PL curvature transitions between

1
n and 1√

n
. If Conjecture 1 is true, then this phenomenon happens with high probability during the

dynamics.

Let us study this phenomenon through the example of Proposition 2, with a fixed number of
neurons p. In this case, the following theorem shows that there are exactly p phase transitions
of the loss, which each corresponds to a data group being fitted. To be precise, let us define
L∞(t) = limn→+∞ Ln(t), with Ln(t) = L(θ(t × tn)), tn =

√
np

4 log(np), and p fixed (kn = n
p ).

We prove that L∞ is constant by parts with at most p parts.
Theorem 2. Suppose the same data hypothesis and initialization as Proposition 2. We define
||Dn

j ||2 = 1
kn

∑kn
i=1(y

j
i )

2 for each cluster, and suppose its limit ||D∞
j ||2 finite. Then, the function

L∞ is constant by parts with at most p parts, and the transitions happen at each time tj = 1
||D∞

j || .

Moreover, for all ε ∈]0, 1[, there exist times tjn(ε) satisfying

Lj(tjn(ε)) =
ε

2
||Dn

j ||2,
tjn(ε)

tjn(1− ε)
∼n 1 and

tjn(1− ε)− tjn(ε)

tn
∼n

1

2||D∞
j ||

log
(
Cj(ε)

)
log(n)

, (12)

where Lj is the part of the loss corresponding to the group j, and Cj(ε) > 1 depends on ε and the
initializations and data of the group j.

The theorem shows that each transition of Ln occurs in the time frame which decreases as 1
log(n) .

Note that these transitions are subtle: one needs extremely large dimensions in order to differentiate
two close transitions as shown on Figure 2. The phase transitions of the loss are in fact associated
with transitions of ||wj ||2 from a constant order to an order

√
n, and by Lemma 7 with transitions

on the local-PL from order 1
n to order 1√

n
.

5 Experiments

In this Section, we aim to perform deeper experimental investigations on the system, which we could
not do formally. Precisely, we want to answer two questions:
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Figure 2: Simulation of the loss trajectory of a network with 2 neurons and group initialization, each
activated separately on half the data points. Ln is the rescaled loss for n examples, and L∞ is its
limit as n goes to infinity. We can see two phase transitions in the very high-dimensional regime.

1. What is the probability that the loss reaches 0 for n data points in dimension d, under the
distributional hypotheses of Lemma 3 (sub-Gaussian, zero-mean and whitened data)? What
is the maximum n for a fixed d such that global convergence holds with high probability ?

2. In the orthogonal case, is the asymptotic exponential convergence rate of order 1√
n

(on
average over the initialization) as stated in Conjecture 1?

The data and weights distribution which have been used for the experiments below can be found in
Appendix B, and the code is available on GitHub.

5.1 Probability of Convergence

This section aims to test the limit in which Corollary 1 holds when the number of data points in-
crease. Intuitively, as the number of examples n grows, the neural network becomes less and less
overparametrized, and hence is expected to fail to globally converge. Knowing if and when this
occurs with high probability is important for us to understand how much our current threshold C

√
d

can be improved. We thus plot the probability of convergence, as well as the loss at convergence to
obtain additional information when the probability is zero. We train 500 one-layer neural networks
with the normalization presented in Section 2, dimension d = 100, n ranging from 2500 to 3500,
and pn = C log(n) neurons. Additional details on the training procedure can be found in Appendix
B.

Figure 3 shows that for n ≤ 2900, the probability of convergence is very likely, for n ≥ 3100 the
probability is almost zero, and in between, there is a sharp transition. This sharp transition is visible
for any value d at some point N(d, p), which we name the convergence threshold. By measuring
the point for different values of d and p, we see that the threshold scales like N(d, p) ≃ C(p)d, with
C(p) which is sub-linear (see Figure 5 in Appendix B). In particular, for n ≤ Cdp, there exists a
network that interpolates the data, meaning that the convergence threshold is not a threshold for the
existence of a global minimum. The threshold’s scaling is linear in d which implies that proving
convergence for Cd data in dimension d seems feasible.

5.2 Empirical asymptotic local-PL curvature

In this section we test Conjecture 1, and to do so we measure µ(t) during the dynamics, and mostly
at the end of the dynamics, since we know by Lemma 4 that near 0 the local-PL curvature is of
order 1

n . To provide the strongest evidence for the conjecture, we measured the order of the local-

9

https://github.com/leodana2000/Convergence-High-Dimension


Figure 3: Left: Probability that a network trained on n data converges to 0 loss. We observe a
transition at n = 3000, from likely to unlikely convergence.
Right: Loss at convergence normalized by the loss at initialization. For n ≥ 3000, the loss increases
to 0.6%, which is equivalent to fitting all but one example.

PL curvature in three ways: by directly measuring the local-PL µ(t∞) = log
(
L(t∞−1)
L(t∞)

)
at the

last epoch t∞, by measuring the average-PL curvature ⟨µ∞⟩ = 1
t∞

log
(
L(0)
L(t∞)

)
, and finally by

mesuring the lower and upper bounds on the local-PL given in Lemma 7.

Following Conjecture 1, all approximations should likely be decreasing in 1√
n

as n increases. To
show this, we plot the log-log graph of each measure above. We train 500 networks in dimension
d = 2000, with n ranging from 1000 to 2000, and pn = C log(n). All resulting plots appear linear
in the log-log scale, with a slope close to − 1

2 (see Figure 6 in Appendix B), meaning that the scalings
are indeed in C√

n
. This empirically confirms our conjecture that the local-PL curvature has order

1√
n

asymptotically.

6 Conclusion

We have studied the convergence of the gradient flow on one-hidden-layer ReLU networks with
finite datasets. Our analysis leverages a local Polyak-Łojasiewicz viewpoint on the gradient-flow
dynamics, revealing that for a large dimension d in the order of n2 data points, we can guarantee
global convergence with high probability using only log(n) neurons. The specificity of the system
relies on the low-correlation between the input data due to the high dimension. Moreover, in the
orthogonal setting the loss’s exponential rate of convergence is at least of order 1

n and at most
of order 1√

n
, which is also the average asymptotic order as experimentally verified. For a special

initialization of the network, a phase transition in this rate occurs during the dynamics.

Future Directions. We are most enthusiastic about proving the convergence of the networks for
linear threshold d ≥ Cn, which should require new proof techniques, as well as quantifying the
impact of large amounts of neurons on the system, which has been overlooked in our study. Future
work should also consider using a teacher-network to generate the outputs, in order to link the
probability or interpolation with the complexity, in terms of neurons, of the teacher.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have shown with a theorem and experiments the convergence of the neural
network setting we considered.

Guidelines:

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations : it is not a true deep neural network, discretization has to be
carried out, and weaker assumption on the data could be made as said in the conclusion.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Simply refer to the appendix and theorems statements.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the experiment section, every thing is stated to reproduce them.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See link.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, in the link to the code and the details of the experimental section.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: We should add the error bars to add some statistical precision to Figure 2.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: Theoretical paper, time is very short to produce the experiments. Yet, justifi-
cation can be found in Appendix B.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Theoretical paper.

Guidelines:

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Theoretical study.

Guidelines:

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Theoretical study.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Theoretical study.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: Theoretical study.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Theoretical study.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Theoretical study.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Theoretical study.
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ORGANIZATION OF THE APPENDIX

The appendices of this article are structured as follows. Appendix A contains the proofs of each
of the 10 statements of the paper in an entitled subsection, with additional lemmas included in the
relevant subsections. Only Corollary 1 doesn’t have a complete proof as it is a simple combination
of Lemma 3 and Theorem 1. Appendix B contains additional details on the experiments that were
performed in Section 5, as well as graphs for the scaling laws. Finally, Appendix C contains general
discussions about the possibility to provably learn 2d inputs in dimension d, and the possible collapse
of the second-layer weights.

A Proofs

Let us note a few equations that we will use as references for the proofs below. First, the two
equations from the gradient descent in (3) are the following.

d

dt
wj =

aj
n

n∑
i=1

rixi1j,i =
aj
n
XPjR (13)

d

dt
aj =

1

n

n∑
i=1

ri⟨wj |xi⟩+ =
1

n
wTj XPjR (14)

In matrix notation, R(t) is the column vector of the residuals, X is the data matrix, and Pj is the
diagonal matrix with diagonal elements 1i,j = 1⟨wj |xi⟩+>0. A second important derivative of the
system is then the residuals.

d

dt
ri = −1

p

p∑
j=1

(
d

dt
aj

)
⟨wj |xi⟩+ + aj

(
d

dt
⟨wj |xi⟩+

)

= − 1

np

p∑
j=1

1j,ix
T
i wjw

T
j XPjR+ |aj |21j,ixTi XPjR

d

dt
R = − 1

np

 p∑
j=1

PjX
Twjw

T
j XPj + |aj |2PjXTXPj

R

= − 1

n
MR

(15)

with M a time dependent symmetric matrix. Finally, taking the product with R in equation (15), we
obtain an equation on the local-PL curvature.

d

dt
L(t) = − 2

n
RT (t)M(t)R(t)

µ(t) =
2

n
R̄T (t)M(t)R̄(t)

(16)

where we recall that R̄ = R
||R|| .

A.1 Theorem 1

Lemma 5 shows that a number of neurons of order log(n) is both necessary and sufficient to obtain
the event I, which corresponds to an initialization of the network which guarantees convergence.
Lemma 5. Suppose yi ̸= 0, and let I be the event: for all i, there exists j such that, ⟨wj(0)|xi⟩ > 0
and aj(0)yi > 0. For all ε > 0,

• if p ≥ 4 log(nε ), then P(I) ≥ 1− ε,

• if p ≤ 3 log(nε )− 2, then P(I) ≤ 1− ε,

and thus, P(I) = 1− ε implies p ∈ J3 log(nε )− 2, 4 log(nε )K.
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Proof. of Lemma 5
Let us note ⟨wj(0)|xi⟩ = Wi,j and Aj = aj(0)yi random variables which are symmetric. Aj
are independent with all variables, while Wj,i are independent with all variables Aj and Wq,k with
q ̸= j.

P(I) = P(∀i,∃j, ⟨wj(0)|xi⟩ > 0 ∩ ajyi > 0)

= P

⋂
i

⋃
j

Wi,j > 0 ∩Aj > 0


= 1− P

⋃
i

⋂
j

Wi,j ≤ 0 ∪Aj ≤ 0


≥ 1− nP

⋂
j

Wi,j ≤ 0 ∪Aj ≤ 0


= 1− nP (Wi,j ≤ 0 ∪Aj ≤ 0)

p

= 1− n(1− P (Wi,j > 0 ∩Aj > 0))p

= 1− n (1− P (Wi,j > 0)P (Aj > 0))
p

= 1− n

(
3

4

)p

(17)

Replacing the expression with p = 4 log(nε ) ≥
1

1
3−

1
2

1
32

log(nε ) ≥
log(nε )

log( 4
3 )

, we find that the probability

is larger than 1− ε. Now for the other bound,

P(I) = P(∀i,∃j, ⟨wj(0)|xi⟩ > 0 ∩ ajyi > 0)

= P

⋂
i

⋃
j

Wi,j > 0 ∩Aj > 0


≤ P

⋂
i

⋃
j

Wi,j > 0


= P

⋃
j

W1,j > 0

n

= (1− P (W1,1 > 0)
p
)n

= (1− 2−p)n

≤
(
1− 4

( ε
n

)3 log(2)
)n

≤
(
1− 4

ε

n

)n
≤ 1− ε

(18)

where we use (1− x
n )
n ≤ 1− x

e ≤ 1− x
4 valid on x ∈ [0, 1].

Lemma 6. Let ε > 0, and p ≥ 1
c log

(
2
ε

)
max

((
||a⟨w|x̄⟩+||ψ1

C+
x

C+
y

)2
, ||a⟨w|x̄⟩+||ψ1

C+
x

C+
y

)
for any

vector x, c > 0 a constant, and || · ||ψ1
the sub-exponential norm. We have the following bound on

the loss at initialization.

P
(
L(θ0) ≤ 2(C+

y )
2
)
≥ 1− ε (19)
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Proof. of Lemma 6
First, let us upper bound the loss at t = 0.

L(θ0) =
1

2n

n∑
i=1

r2i

≤ 1

2n

n∑
i=1

yi −
1

p

p∑
j=1

aj⟨wj |xi⟩+

2

≤ 1

2

yI −
1

p

p∑
j=1

aj⟨wj |xI⟩+

2

(20)

Since a,w are sub-Gaussian random variables, the product is a centered sub-exponential random
variable. Now, using Theorem 2.9.1 from Vershynin [2018], we get the following bound

P

∣∣∣∣∣∣1p
p∑
j=1

aj⟨wj |xI⟩+

∣∣∣∣∣∣ ≤ K

 ≥ 1− P

∣∣∣∣∣∣1p
p∑
j=1

aj⟨wj |xI⟩+

∣∣∣∣∣∣ > K


≥ 1− 2e

−cpmin

(
K2

||a⟨wj |xI⟩+||2
ψ1

, K
||a⟨wj |xI⟩+||ψ1

) (21)

where c is an absolute constant. Taking K = ||a⟨wj |xI⟩+||ψ1
max

(
log( 2

ε )
cp ,

√
log( 2

ε )
cp

)
, we get that

the sum is bounded with probability at least 1 − ε. Now using the inequality on p in the statement
and that w as a distribution invariant by rotation, we obtain K ≤ C+

y , and thus

L(θ0) ≤ 2(C+
y )

2. (22)

Lemma 7. For any set of parameters θ = (aj , wj)j=1:p, the following bounds on the local-PL
curvature hold.

µ(t) ≤ 2

n
(C+

x )
2 max

i

1

p

p∑
j=1

(|aj |2 + ||wj ||2)1j,i

µ(t) ≥ 2

n
((C−

x )
2 − ||XTX −DX ||)min

i

1

p

p∑
j=1

|aj |21j,i

(23)

where we recall that DX denotes the diagonal matrix with coefficients ||xi||2.

Proof. of Lemma 7
We start from equation (16), which shows that the local-PL curvature lies between the largest and
smallest eigen values of the symmetric matrix M(t).

µ(t) =
2

n

1
p

p∑
j=1

(wTj XPjR̄)2 + |aj |2||XPjR̄||2
 (24)

By the triangular inequality, we have 0 ≤ (wTj XPjR̄)2 ≤ ||wj ||2||XPjR̄||2, which gets us bounds
on the local-PL curvature.

2

np

p∑
j=1

|aj |2||XPjR̄||2 ≤ µ(t) ≤ 2

np

p∑
j=1

(||wj ||2 + |aj |2)||XPjR̄||2 (25)

We transform the term ||XPjR̄||2 to make ||XTX −DX || appear.

||XPjR̄||2 = R̄TPTj XTXPjR̄

= R̄TPTj (DX − (XTX −DX))PjR̄

= ||
√

DXPjR̄||2 − ||
√

XTX −DXPjR̄||2
(26)
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Now, by bounding
√
DX by its largest and smallest eigen values, namely C+

x and C−
x , we get the

bounds on this term.

(C−
x )

2||PjR̄||2 − ||XTX −DX ||||PjR̄||2 ≤ ||XPjR̄||2 ≤ (C+
x )

2||PjR̄||2 (27)

The next step is to find the lower bound on the two remaining terms.

1

p

p∑
j=1

|aj |2||PjR̄||2 =
1

p

p∑
j=1

|aj |2
||PjR||2

||R||2
=

1

p

p∑
j=1

|aj |2
∑n
i=1 ri(t)

21i,j∑n
i=1 ri(t)

2
(28)

By inverting the sum in i and j, and taking the minimum of maximum over j, we get the bounds.

1

p

p∑
j=1

|aj |2||PjR̄||2 ≥ min
i

1

p

p∑
j=1

|aj |21i,j (29)

1

p

p∑
j=1

(|aj |2 + ||wj ||2)||PjR̄||2 ≤ min
i

1

p

p∑
j=1

(|aj |2 + ||wj ||2)1i,j (30)

From equation (25), we use the equation (27) as well as equation (29) for the lower bound and (30)
for the upper bound and find the expected bounds on the local-PL curvature.

Proof. of Theorem 1
This is a proof based on the sketch visible in Section 3. The proof of convergence relies on three
key points:

(i) The loss strictly decreases as long as each example is activated by at least a neuron.

(ii) For a data point, if there exists a neuron which is activated at initialization, then at least one
neuron remains activated throughout the dynamics.

(iii) At initialization, the previous condition is satisfied with large probability.

We finish the proof with the lower bounds on µ(t) and ⟨µ∞⟩.

(i) First, Lemma 7 shows that, by computing the derivatives of the loss, we get a lower bound on the
curvature.

µ(t) ≥ 2

n

(
(C−

x )
2 − ||XTX −DX ||

)
min
i

1

p

p∑
j=1

|aj |21j,i

 (31)

We want to show the strict positivity of this lower bound. First, using Assumption 2, we have for all
n ≥ 2 that

(C−
x )

2 − ||XTX −DX || ≥ (C−
x )

2

(
1− 1

2
√
n

C−
y

C+
y

)
≥
(
1− 1

2
√
2

)
(C−

x )
2 ≥ 3

5
(C−

x )
2 (32)

which also holds for n = 1 since then ||XTX − DX || = 0. Moreover, thanks to the asymmetric
initialization, we have |aj |2 ≥ |aj(0)|2 − ||wj(0)||2 > 0, which means that µ(t) is bounded away
from 0 as long as for all i there exists j satisfying ⟨wj(t)|xi⟩+ > 0, i.e., that 1i,j = 1.

(ii) Let us fix the data index i ∈ J1, nK, and yi > 0 without loss of generality. Let us define the index
of the largest correctly initialized neuron j∗i .

j∗i = argmax
ajyi>0

⟨wj(t)|xi⟩ (33)
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Since aj cannot change sign thanks to Assumption 1, ⟨wj∗i (t)|xi⟩ is continuous, and has a derivative
over each constant segment of j∗i . We can write the derivatives of this neuron as

d

dt
⟨wj∗i |xi⟩ =

aj∗i
n

n∑
k

rk⟨xi|xk⟩1j∗i ,k

=
aj∗i
n

eTi X
TXPj∗i R

=
aj∗i
n

eTi (DX − (XTX −DX)Pj∗i R

≥
∣∣aj∗i ∣∣
n

[
ri||xi||21j∗i ,isj∗i − ||XTX −DX ||||R||

]
=

∣∣aj∗i ∣∣
n

[
ri||xi||21j∗i ,isj∗i − ||XTX −DX ||

√
2nL(θt)

]
≥
∣∣aj∗i ∣∣
n

[
ri||xi||21j∗i ,isj∗i − ||XTX −DX ||

√
2nL(θ0)

]

(34)

We use Assumption 2 to have ||XTX − DX || < 1
2
√
n
(C−

x )
2C

−
y

C+
y

, and lemma 6 with ε
2 to have

L(θ0) ≤ 2(C+
y )

2 with propability at least 1 − ε
2 . Moreover, sj∗i yi > 0, gets us the following

inequality.

d

dt
⟨wj∗i |xi⟩ >

C−
y (C

−
x )

2

n

∣∣aj∗i ∣∣ [ riyi 1j∗i ,i − 1

]
(35)

Now, the strict positivity of ⟨wj∗i |xi⟩ is an invariant of the system: if ri
yi

≥ 1, then ⟨wj∗i |xi⟩ strictly
increases, and otherwise we have

0 <
yi − ri

yi
=

1

p

p∑
j=1

aj
yi

⟨wj |xi⟩+ ≤ ⟨wj∗i (t)|xi⟩
1

p

p∑
j=1

|aj |
|yi|

(36)

Which implies that ⟨wj∗i |xi⟩ stays strictly positive throughout the dynamics.

(iii) As shown in Lemma 5, for p ≥ 4 log
(
2n
ε

)
, we have the strict positivity with probability 1− ε

2 .

P(∀i,∃j, ⟨wj(0)|xi⟩ > 0 ∩ ajyi > 0) ≥ 1− ε. (37)

Finally, we prove the lower bounds on the PL. Let us recall that |aj | ≥ ||wj || and that 1j,i ≥
⟨w̄j(t)|x̄i⟩+, which gives us

1

p

p∑
j=1

|aj |21j,i ≥

∣∣∣∣∣∣1p
p∑
j=1

aj⟨wj |x̄i⟩+

∣∣∣∣∣∣ =
∣∣∣∣yi − ri(t)

C+
x

∣∣∣∣ . (38)

We can plug these into equation (31) to obtain

µ(t) ≥ 6

5n

(C−
x )

2

C+
x

C−
y min

i

∣∣∣∣1− ri(t)

yi

∣∣∣∣ (39)

We obtain the final lower bound on the local-PL curvature by seeing that 2 −
√
2 ≥ 1

2 . From this
last equation, by integration, we obtain

1

t

∫ t

0

µ(u)du ≥ 6

5n

(C−
x )

2

C+
x

C−
y

(
1− 1

t

∫ t

0

max
i

∣∣∣∣ri(u)yi

∣∣∣∣ du) (40)

Let tδ satisfying maxi |ri(t)| ≤ δ for all t ≥ tδ . tδ exists and is finite since the loss reaches 0. Thus,
we have for any δ > 0 that

1

t

∫ t

0

µ(u)du ≥ 6

5n

(C−
x )

2

C+
x

C−
y

(
1− tδ

t
max
i

√
2nL(θ0)

|yi|
√
p

− t− tδ
t

δ

)
(41)
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whic in the limit t → +∞ gives

⟨µ∞⟩ ≥ 6

5n

(C−
x )

2

C+
x

C−
y (1− δ) (42)

Taking δ → 0 gives the desired bound on the average-PL curvature. In total, we use two bounds
valid with probability 1 − ε

2 , we by the union bound, the Theorem is valid with probability at least
1− ε. Moreover, we check that taking in the statement Ca,w = 1

x ||a⟨w|x̄⟩||ψ1
, allows us to use both

lemmas 5 and 6.

A.2 Lemma 3

Proof. of Lemma 3
This proof heavily relies on the result of Vershynin [2010, Remark 5.59] on the concentration of
sub-Gaussian random variables. It states that if A ∈ Rn×d is a matrix, the columns of which
are n independent centered, whitened7, sub-Gaussian random variables in dimension d, then with
probability 1− 2e−t

2

, ∣∣∣∣∣∣∣∣1dATA− Id

∣∣∣∣∣∣∣∣ ≤ C

√
n

d
+

t√
d

(43)

with C > 0 depending only on maxi ||Ai||ψ2
the sub-Gaussian norm of the columns. We use this

property with Ai =
√
dx̄i which satisfies every hypothesis, in particular it is sub-Gaussian since the

norm is constant. Taking t =
√
log
(
2
ε

)
, we obtain the following bound.

∣∣∣∣X̄T X̄ − Id
∣∣∣∣ = ∣∣∣∣∣∣∣∣1dATA− Id

∣∣∣∣∣∣∣∣ ≤ C

√
n

d
+

√
log
(
2
ε

)
d

(44)

Moreover, we can link this concentration inequality with the control term of Assumption 2.

||XTX −DX || ≤
∣∣∣∣∣∣D 1

2

X(D
− 1

2

X XTXD
− 1

2

X − Id)D
1
2

X

∣∣∣∣∣∣
≤
∣∣∣∣∣∣D 1

2

X

∣∣∣∣∣∣2 ∣∣∣∣∣∣D− 1
2

X XTXD
− 1

2

X − Id

∣∣∣∣∣∣
≤ (C+

x )
2
∣∣∣∣X̄T X̄ − Id

∣∣∣∣
≤ (C+

x )
2

C

√
n

d
+

√
log
(
2
ε

)
d


(45)

Thus, the condition in Assumption 2 is satisfied with probability as least 1− ε if

d ≥ 8

[
C+
y

C−
y

]2 [
C+
x

C−
x

]4(
C2n2 + n log

(
2

ε

))
. (46)

Recall that C+,−
x,y are independent of n since PX,Y has compact support away from 0.

Proof. of Corollary 1
To prove the corollary, we simply use Lemma 3 instead of Assumption 2 in the proof of Theorem 1.
Moreover, we check that taking p as in the statement allows us to have each Lemma 3, 5, and 6with
ε
3 .

A.3 Proposition 1

Lemma 8. Let ε > 0. Suppose that

1. the (xi)i=1:n form an orthogonal family of non zero vectors, and that (yi)i=1:n are non-
zero,

7In this article, Vershynin [2010, Remark 5.59] uses the isotropy of the columns, but defines it as E[xxT ] =
Id, which we rather refer to as a whitened distribution.
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2. for all j ∈ J1, pK, |aj(0)|2 − ||wj(0)||2 ≥ ∆ for some constant ∆ > 0,

3. and that for all i ∈ J1, nK, there exist j ∈ J1, pK such that ⟨wj(0)|xi⟩ > 0 and aj(0)yi > 0.

Then, there exist a constant κ depending only on C+,−
x,y , ∆, ||a||ψ2

and
∣∣∣∣(||w||2)2∣∣∣∣ψ2

such that

if d ≥ κ log(p) log(np) log
(
1
ε

)2
, then with probability at least 1 − ε on the initialization of the

network, at tn = 2n
C−
y C

−
x ∆

maxj,i⟨wj(0)|xi⟩+, we have

aj(0)yi > 0 =⇒ ⟨wj(tn)|xi⟩+ ≥ ⟨wj(0)|xi⟩+
aj(0)yi < 0 =⇒ ⟨wj(tn)|xi⟩+ ≤ 0.

(47)

This Lemma states that, for orthogonal data, incorrectly initialized neuron, i.e. neurons for which
ajyi < 0, vanish in finite time, and cannot become active again. Thus, after time tn, the system is
decoupled between the positive and negative labels, and only correctly initialized neuron, which are
useful to the prediction, persist.

In particular, it is possible to show that neurons vanish if yi = 0, but the vanishing doesn’t happen
in finite time.

Proof. of Lemma 8
We start by computing the derivative of a neuron in the orthogonal setting, which is given from
equation (13).

d

dt
⟨wj |xi⟩+ =

ajri1j,i||xi||2

n
(48)

This equation shows that if a neuron is null or negative at any point in time, then it stays at 0. Thus,
let us only discuss the case of neurons that are positive at initialization. We will show that, before
any ri can change sign, each neurons for which aj(0)yi < 0 reaches 0. Let t∗n be the first time
any |ri − yi| > yi

2 . For t ≤ t∗n, neurons evolve monotonously depending on the sign of aj(0)yi:
for j, i such that aj(0)yi < 0 the neuron decreases, and for aj(0)yi > 0 the neuron increases. If
aj(0)yi < 0, we have

d

dt
⟨wj |xi⟩+ ≤ −

√
|aj(0)|2 − ||wj(0)||2|yi|

2n
||xi||21j,i

⟨wj |xi⟩+ ≤ ⟨wj(0)|xi⟩+ − 1j,i
|yi|
2n

||xi||2∆t

(49)

where |aj(0)|2 − ||wj(0)||2 ≥ ∆ > 0. Other wise the same equation gives for aj(0)yi > 0

d

dt
⟨wj |xi⟩+ ≥

√
|aj(0)|2 − ||wj(0)||2|yi|

2n
||xi||21j,i

⟨wj |xi⟩+ ≥ ⟨wj(0)|xi⟩+ + 1j,i
|yi|
2n

||xi||2∆t

(50)

Let t̃n = 2n
maxj,i⟨wj(0)|x̄i⟩+

C−
y C

−
x ∆

, if t̃n ≤ t∗n, then we have extinction in finite time, i.e., the incorrectly

initialized neurons have reached 0. In the meantime, neurons for which aj(0)yi > 0 will stay
positive. Let us show that at t̃n, residuals have almost not moved. We thus suppose t < t∗n First, we
bound the second-layer neurons aj using equation (14).

d

dt
aj =

1

n

n∑
i=1

ri⟨wj |xi⟩+

≤
3C+

y

2n

n∑
i=1

⟨wj |xi⟩+

(51)

From equation (48), we also have the following bound.

d

dt
⟨wj |xi⟩+ ≤ |aj |ri1j,i||xi||2

n
≤ 3

2n
C+
y (C

+
x )

2|aj | (52)
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Combining both bound give a differential equation on aj which we can solve.

d

dt
|aj | ≤

K

n
|aj |

|aj | ≤ |aj(0)|eK
t
n

(53)

Where K = 9
4 (C

+
y )

2(C+
x )

2. We get a similar bound on the neurons.

d

dt
max
i

⟨wj |xi⟩+ ≤ max
i

d

dt
⟨wj |xi⟩+

≤ |aj |
n

max
i

|ri|||xi||2

≤ K

n2

n∑
i=1

⟨wj |xi⟩+

≤ K

n
max
i

⟨wj |xi⟩+

max
i

⟨wj |xi⟩+ ≤ max
i

⟨wj(0)|xi⟩+eK
t
n

(54)

The previous bounds show us that the growth of both layers’ neurons are only constant for times of
order n. Formally we have the following bound.

|ri(t)− yi| =

∣∣∣∣∣∣1p
p∑
j=1

aj⟨wj |xi⟩+

∣∣∣∣∣∣
≤ 1

p

p∑
j=1

|aj | ⟨wj |xi⟩+

≤ 1

p

p∑
j=1

|aj(0)|max
i

⟨wj(0)|xi⟩+e2K
t
n

≤ C+
x√
d
max
j

|aj(0)|max
i,j

〈√
dwj(0)|x̄i

〉
+
e2K

t
n

(55)

Now let us note that, the norm of w was taken to be independent of d, n, p. So, we have by rotational
invariance that for any orthonormal basis of the space (ei)i=1:d, we have the following equality for
any λ > 0.

E

[
e

⟨
√
dw|e1⟩2

λ2

]
= Πdi=1E

[
e

⟨w|ei⟩
2

λ2

]
= E

[
e

||w||2
λ2

]
(56)

Thus ||⟨
√
dw|e1⟩+||ψ2 ≤

∣∣∣∣(||w||2)2∣∣∣∣ψ2
, with the upper bound that doesn’t depend on d, n, p. We

now use Proposition 2.7.6 from Vershynin [2018] to conclude that

P

(
max
1≤j≤p

|aj(0)| ≤ t

)
≥ 1− 2e

− ct2

C||a||2
ψ2

log(p)

P

(
max
i,j

〈√
dwj(0)|x̄i

〉
+
≤ t

)
≥ 1− 2e

− ct2

C||⟨√dw|x̄⟩+||2ψ2
log(np)

(57)

where C, c > 0 are constants. Thus we conclude that with probability 1− ε, we have

max
1≤j≤p

|aj(0)| ≤ ||a||ψ2

√
C

c
log(p) log

(
4

ε

)

max
i,j

〈√
dwj(0)|x̄i

〉
+
≤
∣∣∣∣∣∣∣∣〈√dw|x̄

〉
+

∣∣∣∣∣∣∣∣
ψ2

√
C

c
log(np) log

(
4

ε

) (58)

This give the new upper bound of

|ri(t)− yi| ≤
C+
x√
d

∣∣∣∣(||w||2)2∣∣∣∣ψ2
||a||ψ2

C

c
log

(
4

ε

)√
log(np) log(p)e2K

t
n (59)
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Now, we pose t̄n with the following definition.

t̄n =
n

2K

[
log

( √
d√

log(p) log(np) log
(
4
ε

))− log

(
3||a||ψ2

∣∣∣∣(||w||2)2∣∣∣∣ψ2

C+
x

C−
y

C

c

)]
(60)

We have that |ri(t̄n) − yi| ≤
C−
y

3 ≤ yi
2 . This means that t̄n ≤ t∗n. Finally, since we have t̃n ≤

2n
C−
y C

−
x ∆

∣∣∣∣(||w||2)2∣∣∣∣ψ2

√
C
c

log(np) log( 4
ε )

d . Thus, there exists a constant κ depending only on ∆,

C+,−
x,y ,

∣∣∣∣(||w||2)2∣∣∣∣ψ2
and ||a||ψ2

, such that for d ≥ κ log(p) log(np) log
(
1
ε

)2
, we have t̃n ≤ t̄n.

This concludes the proof, showing that the neuron initialized with ajyi < 0 reach 0 before t̃n of
order n.

Proof. of Proposition 1
Thanks to Lemma 8, there exists tn such that for t ≥ tn, each example has only correctly activated
neurons. Without loss of generality suppose that all labels are positive. Then the network only has
positive contributions aj(t)⟨wj |xi⟩ ≥ 0 for all i. Let N(j, i) the number of indices q such that
aj(t)⟨wj |xi⟩ ≤ aq(t)⟨wq|xi⟩. We have

N(j, i)

p
aj⟨wj |xi⟩ ≤

1

p

p∑
q=1

aq⟨wq|xi⟩ = yi − ri (61)

Thus, we can bound the norm of wj ,

||wj ||4 ≤ a2j ||wj ||2

=

n∑
i=1

a2j ⟨wj |x̄i⟩2

≤
n∑
i=1

p2

N(j, i)2

(
yi − ri
||xi||

)2

≤ max
i

(
yi − ri

C−
x

)2 n∑
i=1

p2

N(j, i)2

(62)

This helps us upper bound the sum of |aj |2 + ||wj ||2.

1

p

p∑
j=1

(
|aj |2 + ||wj ||2

)
1j,i ≤

1

p

p∑
j=1

(
|aj(0)|2 − ||wj(0)||2

)
1j,i +

2

p

p∑
j=1

||wj ||2

≤ C̄ +
2

p

p∑
j=1

maxi(yi − ri)

C−
x

√√√√ n∑
i=1

p2

N(j, i)2

≤ C̄ + 2
maxi(yi − ri)

C−
x

p∑
j=1

√√√√ n∑
i=1

1

N(j, i)2

≤ C̄ + 2
maxi(yi − ri)

C−
x

√√√√p

p∑
j=1

n∑
i=1

1

N(j, i)2

≤ C̄ + π

√
2

3

maxi(yi − ri)

C−
x

√
np

(63)

Using the upper bound of equation (23) with the previous inequality gives us the upper control on
µ(t).

µ(t) ≤ 2π

√
2

3

(C+
x )

2

C−
x

C+
y max

i

∣∣∣∣1− ri
yi

∣∣∣∣√ p

n
+

2

n
(C+

x )
2C̄ (64)
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Thus, the constant C from the Proposition statement is

C = max

(
2

C−
y C

−
x ∆

max
j,i

⟨wj(0)|xi⟩+,

2(C+
x )

2 1

p

p∑
j=1

(
|aj(0)|2 − ||wj(0)||2

)
1j,i,

2π

√
2

3

(C+
x )

2

C−
x

C+
y ,

κ

)
(65)

with κ the constant of Lemma 8.

A.4 Proposition 2

Proof. of Proposition 2
Recall that we initialize the network with pn neurons, for which there are exactly kn examples
positively correlated with it, i.e., for q ̸= j that ⟨wj |xqi ⟩ ≤ 0 at all time. This means that we can
write hθ(x

j
i ) =

aj
pn

⟨wj |xji ⟩+ =
sj
pn

||wj ||+⟨wj |xji ⟩+, and sj does not change by Lemma 1. This
implies that the dynamics is decoupled: wj and wq can be studied separately.

Let us compute the dynamics for the neuron j. We let Dn
j = 1√

kn

∑kn
i=1 y

j
i x
j
i , Rj =

∑kn
i=1 r

j
ix
j
i ,

||wj ||2+ =
∑n
i=1⟨wj |xi⟩2+, and x̄+ = x

||x||+ . We first consider the alignment between wj and Dn
j :

d

dt
⟨D̄n

j |sjw̄+
j ⟩ =

〈
D̄n
j

∣∣Id − w̄+
j (w̄

+
j )

T
∣∣ 1

||wj ||+
d

dt
wj

〉
=

1

n
⟨D̄n

j |Id − w̄+
j (w̄

+
j )

T |Rj⟩

=
1

n
⟨D̄n

j |Id − w̄+
j (w̄

+
j )

T |knDn
j − sj

pn
||wj ||+wj⟩

=

√
kn||Dn

j ||
n

(1− ⟨D̄n
j |sjw̄+

j ⟩
2)

=
cjn
2
(1− ⟨D̄n

j |sjw̄+
j ⟩

2)

(66)

This equation has a closed-form solution which is

⟨D̄n
j |sjw̄+

j ⟩ =
sinh

(
cjnt
)
+ ⟨D̄n

j |sjw̄
+
j (0)⟩ cosh

(
cjnt
)

cosh
(
cjnt
)
+ ⟨D̄n

j |sjw̄
+
j (0)⟩ sinh

(
cjnt
)

=
1

cjn

d

dt

[
log
(
cosh

(
cjnt
)
+ ⟨D̄n

j |sjw̄+
j (0)⟩ sinh

(
cjnt
))] (67)

Now we can compute the norm of the neuron.

d

dt
||wj ||2+ = 2||wj ||+

sj
n

kn∑
i=1

ri⟨wj |xji ⟩+

=
2

n
||wj ||2+(⟨Dn

j |sjw̄+
j ⟩ −

1

pn
||wj ||2+)

||wj ||2+e
2

npn

∫ t
0
||wj(u)||2+du = ||wj(0)||2+e

2
n

∫ t
0
⟨Dnj |sjw̄

+
j (u)⟩du

e
2

npn

∫ t
0
||wj(u)||2+du − 1 =

2

npn
||wj(0)||2+

∫ t

0

e
2
n

∫ u
0
⟨Dnj |sjw̄

+
j (v)⟩dvdu

||wj(t)||2+ =
||wj(0)||2+e

2
n

∫ t
0
⟨Dnj |sjw̄

+
j (u)⟩du

1 + 2
npn

||wj(0)||2+
∫ t
0
e

2
n

∫ u
0
⟨Dnj |sjw̄

+
j (v)⟩dvdu

(68)

25



Finally, we can replace the expression of the correlation.

||wj(t)||2+ =
pn

√
kn||Dn

j || × ||wj(0)||2+
(
cosh

(
cjnt
)
+ ⟨D̄n

j |sjw̄
+
j (0)⟩ sinh

(
cjnt
))

pn
√
kn||Dn

j ||+ ||wj(0)||2+
(
sinh

(
cjnt
)
+ ⟨D̄n

j |sjw̄
+
j (0)⟩(cosh

(
cjnt
)
− 1)

) (69)

We use this equation in Lemma 7, and easily obtain the upper bound thanks to the monotonicity of
||wj(t)||2 ≤ ||wj(t = +∞)||2 = pn

√
kn||Dn

j ||.

µ(t) ≤ 4

npn
max
i

p∑
j

||wj(t)||2+1j,i =
4maxj ||wj(t)||2+

npn
≤

4C+
y

√
kn

n
=

4C+
y

nα
(70)

For the lower bound, we have the bound for t ≥ α
2C−

y
n3α−1 log

(
n(C+

y )
1
α

)
≥

1

cjn
log(pn

√
kn||Dn

j ||) by monotonicity. Indeed,

cosh
(
cjnt
)
+ ⟨D̄n

j |sjw̄+
j (0)⟩ sinh

(
cjnt
)
≥ 1

2
ec
j
nt
(
1 + ⟨D̄n

j |sjw̄+
j (0)⟩

)
(71)

and
sinh

(
cjnt
)
+ ⟨D̄n

j |sjw̄+
j (0)⟩(cosh

(
cjnt
)
− 1) ≤ 1

2
ec
j
nt
(
1 + ⟨D̄n

j |sjw̄+
j (0)⟩

)
(72)

which implies that

||wj(t)||2+ ≥
pn

√
kn||Dn

j || × ||wj(0)||2+ec
j
nt
(
1 + ⟨D̄n

j |sjw̄
+
j (0)⟩

)
2pn

√
kn||Dn

j ||+ ||wj(0)||2+ec
j
nt
(
1 + ⟨D̄n

j |sjw̄
+
j (0)⟩

)
≥ pn

√
kn||Dn

j ||
||wj(0)||2+

(
1 + ⟨D̄n

j |sjw̄
+
j (0)⟩

)
2 + ||wj(0)||2+

(
1 + ⟨D̄n

j |sjw̄
+
j (0)⟩

)
≥ pn

√
kn||Dn

j ||
||wj(0)||2+

2 + ||wj(0)||2+

(73)

since ⟨D̄n
j |sjw̄

+
j (0)⟩ ≥ 0. Finally, we obtain the desired lower bound.

µ(t) ≥ 2

npn
min
i

p∑
j

||wj(t)||2+1j,i =
2minj ||wj(t)||2+

npn
≥

2C−
y

nα
min
j

||wj(0)||2+
2 + ||wj(0)||2+

(74)

A.5 Lemma 4

Proof. of Lemma 4
Recall that, in this proof, p and n are independent parameters of the system. Let us recall the
equation of the local-PL curvature on the system that was found in equation (16).

µ(0) =
2

np

p∑
j=1

(wj(0)
TXPjR(0))2 + |aj(0)|2||XPjR(0)||2

=
2

n
R(0)T

1

p

p∑
j=1

PTj XTwj(0)w
T
j (0)XPj + |aj(0)|2PTj XTXPj

R(0)

=
2

n
R(0)TM(0)R(0)

(75)

Recall that we note Pj the diagonal matrix with diagonal 1j,i = 1⟨wj |xi⟩+>0. This means that
since all terms in the sums can be computed from aj and ⟨wj |xi⟩+, which are mutually independent
random variable, that variables in the sum are mutually independent as well, and by Central Limit
Theorem we have

M(0) = Ew,a
[
PTXTwwTXP + |a|2PTXTXP

]
+

ζp√
p
,
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where the expectancy is taken over the neurons of the network, but not over the data X and Y , and

ζp −→
p→+∞

ζ ∼ N
(
0,Vw,a(P

TXTwwTXP + |a|2PTXTXP )
)
= N (0,V(ζ)).

We now apply the Central Limit Theorem on the residual R(0).

R(0) = Y − 1

p

p∑
j=1

ajPjX
Twj = Y − Ew,a[aPXTw]− ξp√

p
= Ỹ − ξp√

p
(76)

with ξp −→
p→+∞

ξ ∼ N
(
0,Vw,a(aPXTw)

)
= N (0,Vw,a(ξ)). Now, using equations 75 and 76, we

have that
µ(0) −→

p→+∞

2

n
Ew,a

[
(wTXPỸ )2 + |a|2||XPỸ ||2

]
=

β0

n
(77)

and for the next order √
p (nµ(0)− β0) −→

p→+∞
N (0, γ2

0) (78)

with

γ2
0 = Ỹ TV(ζ)Ỹ + 2V(ξ)Ew,a

[
PTXTwwTXP + |a|2PTXTXP

]
Ỹ (79)

A.6 Theorem 2

Proof. of Theorem 2
We consider the setting of Proposition 2 but with a fixed number of neuron p, and as in its proof, we
focus on one specific neuron j for which we suppose sj = 1. We can rewrite equation 69.

||wj(t)||2+ =
p
√
kn||Dn

j ||||wj(0)||2+
(
cosh

(
cjnt
)
+ ⟨D̄n

j |w̄
+
j (0)⟩ sinh

(
cjnt
))

p
√
kn||Dn

j ||+ ||wj(0)||2+
(
sinh

(
cjnt
)
+ ⟨D̄n

j |w̄
+
j (0)⟩(cosh

(
cjnt
)
− 1)

) (80)

Let us rewrite the loss of the group j.

Lj(t) =
1

2kn

kn∑
i=1

(rji )
2

=
1

2kn

kn∑
i=1

(
yji −

||wj ||+
p

⟨w̄+
j |x

j
i ⟩
)2

=
1

2

[
||Dn

j ||2 −
2√
knp

||Dn
j ||⟨D̄n

j |w̄+
j ⟩||wj ||

2
+ +

1

knp2
||wj ||4+

]
(81)

Let tjn(κ) =
1

cjn
log(κp

√
kn||Dn

j ||), where cjn =
2
√
kn||Dnj ||
n , which depends on the variable κ > 0.

We have

||wj(tjn(κ))||2+ = p
√

kn||Dn
j ||

κ||wj(0)||2+
(
1 + K(j,n)2

κ2 + ⟨D̄n
j |w̄

+
j (0)⟩

(
1− K(j,n)2

κ2

))
2 + κ||wj(0)||2+

(
1− K(j,n)2

κ2 + ⟨D̄n
j |w̄

+
j (0)⟩

(
1− K(j,n)

κ

)2)
(82)

with K(j, n) = 1√
knp||Dnj ||

. Moreover, we have

⟨D̄n
j |sjw̄+

j (t
j
n(κ))⟩ =

1− K(j,n)2

κ2 + ⟨D̄n
j |w̄

+
j (0)⟩

(
1 + K(j,n)2

κ2

)
1 + K(j,n)2

κ2 + ⟨D̄n
j |w̄

+
j (0)⟩

(
1− K(j,n)2

κ2

) . (83)

Thus, by taking n large enough, there exists κ(j, n, ε) such that Lj(tjn(κ(j, n, ε))) = Lj(tjn(ε)) =
ε||Dn

j ||2. For simplification, we use tjn(ε) = tjn(κ(j, n, ε)). Moreover, κ(j, n, ε) → κj(ε) when n
goes to infinity.

Lj(tjn(ε)) →
1

2

[
||D∞

j || −
κj(ε)||wj(0)||2+

2 + κj(ε)||wj(0)||2+

]2
=

ε

2
||D∞

j ||2 (84)
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This shows that κj(ε) = 2
||wj(0)||2+

||D∞
j ||(1−

√
ε)

1+||D∞
j ||(1−

√
ε)

. Thus, we have a phase transition since the lost

goes from 1− ε to ε in a time which, after normalization, goes to 0. The time of the phase transition
is

tjn(ε)

tn
= 4

log(κ(j, n, ε)p
√
kn||Dn

j ||)
cjn
√
np log(n)

∼n
1

||D∞
j ||

(85)

and its cutoff window is

tjn(ε)− tjn(1− ε)

tn
= log

(
κ(j, n, ε)

κ(j, n, 1− ε)

)
1

cjntn
∼n

1

2||D∞
j ||

log

(
κj(ε)

κj(1− ε)

)
1

log(n)
(86)

where we recall that tn =
√
np

4 log(n). We conclude that the normalized loss thus has at most p
phase transition at times 1

||D∞
j || . Moreover, the constant in the Theorem is

Cj(ε) =
(1−

√
ε)

1 + ||D∞
j || (1−

√
ε)

1 + ||D∞
j ||

(
1−

√
1− ε

)(
1−

√
1− ε

) ∼ 1

ε

2

1 + ||D∞
j ||

(87)

A.7 Other results

Proof. of Lemma 1
We verify that ⟨ ddtwj |wj⟩ = aj

d
dtaj , using the derivations from equations (14) and (13). Integrating

this equality gives the expected invariance.

Proof. of Lemma 2
By definition, we have µ(t) = |∇L(θt)|2

L(θt)
, and by property of the gradient flow, |∇L(θt)|2 =

− d
dtL(θt). Thus,

d

dt
L(θt) = −µ(t)L(θt)

log(L(θt))− log(L(θ(0))) = −
∫ t

0

µ(x)dx

L(θt) = L(θ(0))e−⟨µ(t)⟩t

(88)

B Experiments

This Appendix contains additional details on the experiments done in Section 5. Data generation
and weight initialization were performed as follows: we initialize all neurons independently as
wj ∼ N (0, 1

dId) as well as aj
|aj | ∼ U({−1, 1}) and |aj | − ||wj || ∼ Exp(1) which implies |aj(0)| ≥

||wj(0)||. For the data, we consider yi ∼ U([−2,−1] ∪ [1, 2]) and ||xi|| ∼ U([1, 2]) in order to
control the constants C−

x , C
−
y ≥ 1 and C+

x , C
+
y ≤ 2. Finally, in order to fall within the assumptions

of Lemma 3, we let xi
||xi|| ∼ U(Sd−1) in Section 5.1, and xi

||xi|| be an orthogonal family in Section 5.2.

Experiment 1. For the experiment in Figure 3, we trained 500 networks in dimension 100, with n

between 2500 and 3500, with 25 runs for each value of n. We used p = ⌊ log(nε )

log( 4
3 )
⌋ + 1 neurons for

each experiment with ε = 0.05, since this is the optimal threshold obtained in Lemma 5. We trained
the networks with gradient descent using a learning rate of 1 for a total time t∞ = 1.5×

√
np

4 log(np)

and thus e = t∞
lr epochs.

We considered that a network converged as long as its loss went below
C−
y

2n , which then guarantees
convergence to 0. We thus early stopped the training and declared the loss was exactly 0. Otherwise,
the convergence went for all epochs and the network was assumed to not be able to reach 0 loss. In
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Figure 4: This graph shows the scaling law of the convergence threshold for a fixed number of
neurons. It suggests that the scaling is linear in d: N(d, p) = C(p)d.

Figure 5: This graph show the scaling law of the convergence threshold for a fixed number of
neurons. It suggests that the scaling is not linear in d, but it is hard to differentiate between a sub-
linear polynomial growth or a logarithmic growth.

doted line, we interpolate the probability plot using a sigmoid function, and learned automatically
the convergence threshold N(d, p).

For the scaling law on d, we fixed p at 30, and trained networks with dimension varying from 10
to 100, and n ranging from N(d, p) − 15d to N(d, p) + 15d, with step d. For each dimension, we
interpolate the probability graph using a sigmoid, and plotted the linear trend on Figure 4. For the
scaling in p, we fixed d = 30, and varied p from 50 to 400, and plotted the trend on Figure 5 which
shows that the scaling in p is sub-linear.

Experiment 2. For this experiment, we trained 500 networks in dimension 2000, with n between
1000 and 2000, with 25 runs for each value of n. We used the same number of neurons, learning
rates, and epochs as in experiment 1. Let us recall the 4 measures we plotted on the Figure 6:
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Figure 6: Scaling laws in log-log for different measures of the local-PL curvature in dimension 2000.
Each curve is in fact linear with slope close to − 1

2 , which is expected by Conjecture 1.

1. The instantaneous local-PL curvature at the end of the training, µ(t∞) = log
(
L(t∞−1)
L(t∞)

)
,

2. The average-PL curvature throughout the training, ⟨µ∞⟩ = log
(
L(0)
L(t∞)

)
,

3. The lower bound on the local-PL at the end of the training, µlow =
2
n mini

1
p

∑p
j=1 |aj |21j,i,

4. The upper bound on the local-PL at the end of the training, µupp =
16
n maxi

1
p

∑p
j=1 |aj |21j,i.

Each of the slope being close to − 1
2 , we conclude from this log-log graph that ⟨µ∞⟩ = K√

n
as

foreseen in Conjecture 1.

Each plot’s related experiments were performed on a MacBook Air under 2 hours without accelera-
tion materials.

C Additional results

C.1 Collapse of the second layer

Similar to the early alignment phenomenon described by Boursier and Flammarion [2024a,b, Theo-
rem 2], where the neurons can rotate and collapse to align on a single vector preventing minimization
of the loss, the weights aj of the second layer can also collapse on a single direction. Under the hy-
pothesis that |aj(0)| ≥ ||wj(0)||, the scalar aj cannot change sign, which prevents this scenario in
the article’s results. But if |aj(0)| < ||wj(0)||, they can change sign, and prevent global minimiza-
tion even when the neurons are correctly initialized. Proposition 3 gives an example of such collapse
in low dimension.
Proposition 3. Suppose that d = n = p = 2. Let (x1, x2) be the canonical basis of R2, with the
outputs satisfying y1y2 < 0, λ = |y2y1 |. Let |a1(0)|, |a2(0)| ≤ δ, and let minj,i⟨wj(0)|xi⟩ > 0. Then,
for δ small enough, y1 large enough, and√

max
j,i

⟨wj(0)|xi⟩
8

y1
≤ λ ≤ minj,i⟨wj(0)|xi⟩

maxj,i⟨wj(0)|xi⟩
(89)

30



we have limt→+∞ L(θt) > 0.

The proof relies on the ratio between outputs being large λ, in order to steer the aj to change signs,
but not too large to then make the neuron go extinct before the signs of aj may change again. This
traps the network in a state of sub-optimal loss, and if aj were initialized as large as the vectors, this
collapse could not have happened.

Proof. of Proposition 3 Without loss of generality, let us suppose y1 > 0 and y2 < 0. We will
show that there are values of λ, ε for which the system will not converge. The derivatives of aj at
the beginning of the dynamics writes

d

dt
aj =

1

4
(r1⟨wj |x1⟩+ r2⟨wj |x2⟩)∣∣∣∣ ddta1 − y1

4
(⟨w1|x1⟩ − λ⟨w1|x2⟩)

∣∣∣∣ ≤ max(|a1|, |a2|)max(||w1||, ||w2||)∣∣∣∣ ddta2 − y1
4
(⟨w2|x1⟩ − λ⟨w2|x2⟩)

∣∣∣∣ ≤ max(|a1|, |a2|)max(||w1||, ||w2||)

(90)

and the derivatives of ⟨wj |xi⟩ are

d

dt
⟨wj |xi⟩ =

ajri1j,i
2∣∣∣∣ ddt ⟨wj |x1⟩ −

ajy11j,1
2

∣∣∣∣ ≤ max(|a1|, |a2|)max(||w1||, ||w2||)∣∣∣∣ ddt ⟨wj |x2⟩+ λ
ajy21j,2

2

∣∣∣∣ ≤ max(|a1|, |a2|)max(||w1||, ||w2||)

(91)

Now suppose that for t ≤ T , |aj |, ||wj || ≤ M and ⟨wj |xi⟩ ≥ m > 0, we have

aj(t) ≥ −δ +
(y1
4
(m− λM)−M2

)
t

aj(t) ≤ δ +
(y1
4
(M − λm) +M2

)
t

(92)

Thus, for T > δ

( y14 (m−λM)−M2)
with λ ≥ m

M and y1 ≥ 4M2

m−λM , we have aj(T ) > 0. We now wish

to find the constants M,m such that the previous equation will hold. To find the constraint on m
and M , let us write

⟨wj |x1⟩ ≥ ⟨wj(0)|x1⟩ −
(
1

2
y1M +M2

)
t

⟨wj |x2⟩ ≥ ⟨wj(0)|x2⟩ −
(
λ

2
y1M +M2

)
t

⟨wj |x1⟩ ≤ ⟨wj(0)|x1⟩+
(
1

2
y1M +M2

)
t

⟨wj |x2⟩ ≤ ⟨wj(0)|x2⟩+
(
λ

2
y1M +M2

)
t

(93)

Thus, the constraints are

m ≥ min

(
min
j,i

⟨wj(0)|x2⟩, δ
)
− δ

2y1M + 4M2

y1(m− λM)− 4M2

M ≤ max

(
max
j,i

⟨wj(0)|x2⟩, δ
)
+ δ

2y1M + 4M2

y1(m− λM)− 4M2

(94)

We see that the constraint are satisfied with m ≥ minj,i⟨wj(0)|x2⟩ − 2δ > 0 and M ≤
maxj,i⟨wj(0)|x2⟩ + 2δ if: δ is small enough, y1 is large enough, and λ <

minj,i⟨wj(0)|x2⟩
maxj,i⟨wj(0)|x2⟩ . Thus,

there exists T > 0 such that at time T , we have a1(T ), a2(T ) > 0, and no neurons went extinct.
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Now, let us show that neurons ⟨wj |x2⟩ will go to 0 for some time T > 0, while the neurons aj stay
positive. We can use the same equations as before, with this time |aj |, ||wj || ≤ N for t ≤ T , and
get

⟨wj |x2⟩ ≤ ⟨wj(0)|x2⟩ −
(
λ

2
y1N −N2

)
t (95)

Thus, for T =
2maxj⟨wj(0)|x2⟩
λy1N−2N2 and λy1 ≥ 2N , we have extinction of the neurons. To find the

constraint on N , use the bounds on the growth of aj and ⟨wj(0)|x1⟩. The constraint is

N ≤ max

(
max
j

⟨wj(0)|x1⟩, δ
)
+ 2max

j
⟨wj(0)|x2⟩

y1 + 2N

λy1 − 2N
(96)

Thus, the constraints are satisfied with N ≤ maxj,i⟨wj(0)|xi⟩(1+ 3
λ ) as long as y1 is large enough,

and

λ ≥
√
max
j,i

⟨wj(0)|xi⟩
8

y1
. (97)

After time T , the neurons ⟨wj(0)|x2⟩ went extinct, and thus we have L(θt) ≥ y22
4 > 0.

C.2 Non-uniqueness of the gradient flow

Since σ =ReLU is non differentiable at 0, the gradient flow equation might have multiple solution
for a single initialization. To see this, let us take the example of orthogonal data, we have for every
neuron wj and data xi, d

dt ⟨wj |xi⟩+ =
riaj
n ||xi||21i,j . As long as ⟨wj |xi⟩+ > 0, then 1i,j = 1

and the neuron can change, and if ⟨wj |xi⟩ < 0, then 1i,j = 0, so the neuron doesn’t change
anymore, and cannot become active. We are interested in the case when ⟨wj |xi⟩ = 0, which is the
non-differentiable point of ReLU.

Suppose that for t ∈ [t1, t2], we have aj(t)ri(t) > 0 and ⟨wj(t1)|xi⟩ = 0. Then for each t̃ ∈ [t1, t2[

there exist trajectories θt̃ such that at 1⟨wj(t)|xi⟩ →
t→t̃+

1 and 1⟨wj(t̃)|xi⟩ = 0. This means that there

exist trajectories such that the neuron ⟨wj |xi⟩ start growing from t̃ even if the neuron was previously
deactivated. The trajectory θt̃ is as follow: for t < t̃, θt̃(t) = θt̃(t1), and then θt̃ solve the gradient
flow equation without 1i,j in the derivative of ⟨wj |xi⟩.
Although there are different possible trajectories for a single initialization of the neurons, only one of
them is realistic in the sense that it is represent what happens in practice: the trajectory where neuron
don’t reactivate alone, which is the limit trajectory of the trajectories from the gradient descent for
small step-size.

32


	Introduction
	Problem Setup
	Related works

	Convergence in high dimension
	Local PL-curvature
	Global convergence of neural networks for weakly correlated inputs
	Sketch of Proof

	Orthogonal Data
	Asymptotic PL curvature
	Phase transition in the PL curvature

	Experiments
	Probability of Convergence
	Empirical asymptotic local-PL curvature

	Conclusion
	Proofs
	Theorem 1
	Lemma 3
	Proposition 1
	Proposition 2
	Lemma 4
	Theorem 2
	Other results

	Experiments
	Additional results
	Collapse of the second layer
	Non-uniqueness of the gradient flow


