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ABSTRACT

Material discovery is a critical research area with profound implications for var-
ious industries. In this work, we introduce MatExpert, a novel framework that
leverages Large Language Models (LLMs) and contrastive learning to accelerate
the discovery and design of new solid-state materials. Inspired by the workflow
of human materials design experts, our approach integrates three key stages: re-
trieval, transition, and generation. First, in the retrieval stage, MatExpert iden-
tifies an existing material that closely matches the desired criteria. Second, in
the transition stage, MatExpert outlines the necessary modifications to transform
this material formulation to meet specific requirements outlined by the initial user
query. Third, in the generation state, MatExpert performs detailed computations
and structural generation to create new materials based on the provided infor-
mation. Our experimental results demonstrate that MatExpert outperforms state-
of-the-art methods in material generation tasks, achieving superior performance
across various metrics including validity, distribution, and stability. As such, Mat-
Expert represents a meaningful advancement in computational material discovery
using langauge-based generative models.

1 INTRODUCTION

The discovery and design of new materials are central challenges in modern materials science, driven
by the need for materials with tailored properties for applications in energy, electronics, and catal-
ysis. Traditional methods for material discovery, such as high-throughput experiments and density
functional theory (DFT) simulations, are computationally expensive and often require significant
domain expertise to achieve accurate predictions (Miret et al., 2024). Recent advancements in artifi-
cial intelligence (AI), particularly large language models (LLMs), have opened new possibilities for
automating and accelerating the materials design process (Miret & Krishnan, 2024; Jablonka et al.,
2024; Song et al., 2023a;b; Zhang et al., 2024; Ramos et al., 2024).

LLMs such as GPT-4 OpenAI (2023) have demonstrated remarkable success in natural language
processing tasks and have shown potential for application in scientific problems beyond language,
including chemistry and materials science Flam-Shepherd & Aspuru-Guzik (2023); Gruver et al.
(2024); Schilling-Wilhelmi et al. (2024); Mirza et al. (2024); Delétang et al. (2023). For example,
LLMs have been used to generate molecular structures Gruver et al. (2024) and predict material
properties from textual descriptions Alampara et al. (2024). In the context of material generation,
models like Crystal Diffusion Variational Autoencoders (CDVAE) Xie et al. (2022b), as well as
fine-tuned LLMs such as LLaMA-2 Gruver et al. (2024), CrystaLLM Antunes et al. (2023), and
LM-AC/LM-CH, have made significant progress in generating crystal structures directly from Crys-
tallographic Information Files (CIFs) Antunes et al. (2023). Together, these models aim to accelerate
materials design by predicting stable structures and optimizing key properties, such as energy above
hull for stability Riebesell et al. (2023).

Despite the significant progress made in applying AI models to materials science, current methods
for material generation still face critical limitations Miret & Krishnan (2024); Alampara et al. (2024);
Mirza et al. (2024). Most approaches generate material structures in a single step, often resulting in
static outputs that lack the flexibility for iterative refinement and optimization based on intermediate
feedback. Moreover, these models struggle to integrate multimodal data—such as textual descrip-
tions of desired properties and structural information like atomic coordinates from Crystallographic
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Information Files (CIFs)—in a meaningful and cohesive way. Consequently, they fall short of repli-
cating the complex, reasoning-driven processes employed by human experts, limiting their ability to
generate materials that meet specific target properties.

In contrast to AI models, human experts follow a methodical, multi-step process when designing
new materials. They begin by identifying an existing material with properties closely matching the
desired specifications. From there, they apply a series of logical modifications—such as altering
atomic arrangements or chemical compositions—to iteratively refine the material. Only after exten-
sive refinement do they finalize the structural details, ensuring that the material is both feasible and
aligned with the target properties.

To overcome the limitations of current models, we propose MatExpert, a framework that mimics this
expert-driven workflow by breaking down the material generation process into three stages: retrieval,
transition, and generation. Using a text-structure retrieval approach combined with chain-of-thought
reasoning Wei et al. (2022), MatExpert can iteratively refine materials based on intermediate feed-
back, leading to more accurate and interpretable material designs that meet desired specifications.

To comprehensively assess the performance of MatExpert, we assembled a large-scale dataset from
the NOMAD database Scheidgen et al. (2023), which contains a total of 2, 886, 120 materials. This
extensive evaluation on a large-scale testbed demonstrates the robustness and generalizability of
MatExpert in addressing real-world materials discovery challenges.

Concretely, our paper makes the following contributions:

1. We propose MatExpert, a novel framework that mimics the expert-driven workflow for
material discovery by decomposing the generation process into three stages: retrieval, tran-
sition, and generation. By leveraging a text-structure retrieval mechanism and a chain-of-
thought reasoning approach, MatExpert enables the design of accurate and interpretable
materials.

2. We curated a large-scale dataset from the NOMAD Scheidgen et al. (2023) database, which
serves as a comprehensive testbed for evaluating MatExpert across diverse material com-
positions. We will publicly release the datasets and source codes upon publication.

3. We conducted extensive experiments on both the Material Project Jain et al. (2013) and the
curated NOMAD datasets. Our results demonstrate that MatExpert significantly outper-
forms state-of-the-art baseline methods in material generation, showcasing its effectiveness
and generalizability.

2 RELATED WORK
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Figure 1: MatExpert achieves remark-
able performance on all metrics com-
pared with baselines, especially metrics
of distances. See Table 1 for details.

The use of AI and large language models (LLMs) in mate-
rials science has gained traction as a means to accelerate
material discovery, which traditionally relies on compu-
tationally intensive methods like DFT simulations Duval
et al. (2023); Govindarajan et al. (2024). Miret & Krish-
nan (2024) provide an extensive review of the limitations
of current LLMs in materials science, particularly their
inability to handle multi-modal data and iteratively refine
structures based on feedback.

Early work, such as the Crystal Diffusion Variational Au-
toencoder (CDVAE) Xie et al. (2022b), generated crystal
structures by incorporating physical stability constraints
to produce valid periodic materials. Recent work has
expanded on CDVAE’s approach by exploring alterna-
tive representations for diffusion-based models Jiao et al.
(2024); Yang et al. (2024); Zeni et al. (2023), as well as
flow-matching models Miller et al. (2024). Further advancements include the fine-tuning of LLMs
for materials generation. Gruver et al. (2024) fine-tuned LLaMA-2, improving metastable material
generation rates, while CrystaLLM Antunes et al. (2023) employs an autoregressive model trained
on CIF files to generate inorganic crystal structures, leveraging Monte Carlo Tree Search for refine-
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Database

Below is a description a bulk material:
The elements are Co, Mn, Na, Ni, O. 
The spacegroup number is 8. 
The formation energy per atom is -1.6375. 
The band gap is 0.2133. 
The energy above the convex hull is 0.043.

Na3MnCoNiO6 is Caswellsilverite-derived 
structured and crystallizes in the 
monoclinic Cm space group. There are 
three inequivalent Na sites. In the first Na 
site, Na(1) is bonded to one O(3), one O(6), 
two equivalent O(1), and two equivalent…

T5 Encoder

T5 Encoder

Property
Embeddings

Structure
Embeddings

Minimize
Distance

Property Description

Structure Description

Na₃MnCoNiO₆

Figure 2: We utilize a contrastive learning framework to train two encoders for reference material
retrieval. For a given sample material (e.g., Na3MnCoNiO6), we extract both its property description
and structural description using PyMatgen Ong et al. (2013) and Robocrystallographer Ganose &
Jain (2019), respectively. The model employs two T5-based encoders Raffel et al. (2020), which are
trained to minimize the distance between these two representations.

ment. Flam-Shepherd & Aspuru-Guzik (2023) proposed LM-AC and LM-CH, which explore gen-
erating 3D molecular structures directly from CIF, XYZ, and PDB formats, pushing the boundaries
of LLM applications in material science. In addition to generative models for materials discovery, as
well as the development domain-specific LLMs for diverse language tasks materials science (Song
et al., 2023b;a; Xie et al., 2023; Zhang et al., 2024), LLMs are also being used to automate the ex-
traction of structured data from scientific literature, streamlining the creation of datasets for machine
learning Hira et al. (2024); Mishra et al. (2024); Schilling-Wilhelmi et al. (2024).

In summary, while LLMs show great promise, challenges remain in integrating multi-modal data
and refining material designs iteratively. Most prior work has focused on unconditioned material
generation, but current methods lack the ability to iteratively refine and reason like human experts.
Our MatExpert framework addresses this shortcoming by mimicking an expert-driven workflow,
employing multi-stage iterative refinement through retrieval, transition, and generation processes,
and achieves remarkable performance compared to state-of-the-art methods, particularly in metrics
of distances (see Figure 1).

3 METHODOLOGY

Our MatExpert framework simplifies the complex process of material discovery by emulating hu-
man experts through three key stages: retrieval, transition, and generation. First, we retrieve a
reference material from a database that closely aligns with the desired properties. Next, using a
fine-tuned large language model (LLM) with Low-Rank Adaptation (LoRA) Hu et al. (2022), we
generate insights on how to modify the reference material to meet the target specifications. Finally,
we generate the new material’s structure based on the reference and transition steps. The framework
employs a T5-based Raffel et al. (2020) model for the retrieval stage and a fine-tuned LLM for the
transition and generation stages. A comprehensive illustration of the MatExpert framework pipeline
is shown in Figure 3.

3.1 FIRST STAGE: RETRIEVAL

The retrieval stage is the foundational step of our framework, aimed at identifying the material in
the database that best matches the desired property description provided by the user.

To bridge the gap between the representation of the desired properties and the relevant material, we
apply contrastive learning. Contrastive learning Chen et al. (2020) is a self-supervised method that
learns representations by bringing positive pairs closer together while pushing negative pairs farther
apart in the embedding space. Contrastive learning was first applied in the domain Radford et al.
(2021); Singh et al. (2022), recent works have successfully applied similar methods to domains to
materials design, such as molecular Liu et al. (2022) and protein modeling Xu et al. (2023). In the
context of material retrieval, we use this method to embed material properties and structures in a
shared space, enabling the efficient retrieval of materials that closely match specific queries.
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Below is a description a bulk material: The formation energy per atom is -1.828. The band gap is 1.1081. The energy above the 
convex hull is 0.0491. The elements are Co, Li, Mn, Ni, O. The spacegroup number is 5.

(Stage 1: Retrieval)  The most similar material related to the description in the database is Na₃MnCoNiO₆.

Na3MnCoNiO6 is Caswellsilverite-derived structured and crystallizes in the monoclinic Cm space group. There are three 
inequivalent Na sites. In the first Na site, Na(1) is bonded to one O(3), one O(6), two equivalent O(1), and two equivalent O(5) 
atoms to form distorted NaO6 octahedra that share corners with three equivalent Mn(1)O6 octahedra, corners with three …

How should I modify Na3MnCoNiO6 to develop a new material with the desired properties?

(Stage 2: Transition) To transit from Na3MnCoNiO6 to a new material, the process would involve altering the cation 
composition and the crystal structure while maintaining the metal and oxygen framework. Specifically, the sodium (Na) atoms 
in Na3MnCoNiO6, which exist in a configuration forming various bonds and angles in a monoclinic Cm space group, …

Based on the information, for the new material, could you generate a description of the lengths and angles of the lattice 
vectors and then the element type and coordinates for each atom within the lattice?

(Stage 3: Generation) [ALX representation] 5.1 5.1 5.1\n80 80 120\nLi\n0.26 0.20 0.21\nLi\n0.59 0.87 0.21\nLi\n0.93 0.54 
0.21\nMn\n0.43 0.04 0.71\nCo\n0.76 0.71 0.71\nNi\n0.09 0.37 0.71\nO\n0.36 0.65 0.94\nO\n0.67 0.28 0.93\nO\n0.03 0.95 
0.93\nO\n0.18 0.80 0.48\nO\n0.52 0.44 0.48\nO\n0.81 0.11 0.48

Desired Properties

Material Database  
Structure

Retrieved
Material

Generated Material
ALX representation

Transition
Pathway

GPT-4 LLama LLM

Generated Material
CIF representation

Ground-Truth
Material

Figure 3: Pipeline of MatExpert: Given a description of the desired material, MatExpert first re-
trieves the most similar material from the database (e.g., Na3MnCoNiO6). Next, the LLM provides
transition pathways to modify the retrieved material into the desired material (e.g., replacing Na
with Li). Finally, the LLM generates the detailed structural information of the desired material
(Li3MnCoNiO6). See Figure 7 for a full case of conditional material generation.

To implement this, we employ a contrastive learning framework (see Figure 2), using two parallel
T5-based encoders to process and embed both property and structure descriptions. The property
descriptions include key characteristics such as composition, space group number, formation energy,
band gap, and energy above hull. Structural descriptions are extracted using RoboCrystallographer,
which provides detailed linguistic descriptions of the structure for each material.

The primary objective is to ensure that the embedding of the property description (qi) is closely
aligned with the embedding of the corresponding structure description (mi), while distinctly sep-
arating it from embeddings of other materials (mk). To quantitatively enforce this alignment, a
contrastive loss function is defined as:

L = − log
exp(sim(qi,mi)/τ)∑N

k=1 exp(sim(qi,mk)/τ)
. (1)

Here, sim(qi,mi) denotes the cosine similarity between the property and structure embeddings, τ is
a temperature parameter that controls the sharpness of the distribution, and N is the size of negative
sampling. The output of this stage is the best matching material, which serves as a candidate for
further refinement.

3.2 SECOND STAGE: TRANSITION

The transition stage focuses on developing a detailed and viable method for modifying the retrieved
material to meet the desired properties. This stage bridges the gap between the existing material and
the target material by outlining specific structural or compositional changes required to achieve the
desired specifications.

To build a model capable of generating transition pathways that describe how to transform the exist-
ing reference material into the desired target material, two key steps are necessary: (1) constructing
a training dataset consisting of <source material, transition pathways, target
material> triples, and (2) fine-tuning a model that can produce transition pathways
given an source material as a reference.

4
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In this stage, we utilize two LLMs in a sequential process. First, during the training phase, we em-
ploy GPT-4 to generate ground-truth transition pathways, which provide comprehensive, step-by-
step instructions for transforming the retrieved material to meet the target properties. Subsequently,
we fine-tune a second, smaller LLM using these ground-truth pathways. In practical applications,
including our experiments, this fine-tuned LLM is deployed to generate the potential transition path-
ways, offering a more efficient solution while maintaining accuracy.

Ground-Truth Pathway Generation with GPT-4: During the training phase, we utilize GPT-4
to generate detailed transition pathways by providing it with carefully designed prompts. These
prompts are constructed to ensure that GPT-4 receives all necessary information about both the
source material and the target material, enabling it to produce accurate and comprehensive modifi-
cation pathways. An example template of such a prompt is:

I have two materials: <formula source> and <formula target>.
Based on the descriptions and properties of the two materials
below, can you summarize the main reasons for the differences
in properties when transitioning from <formula source> to
<formula target>? The description of <formula source>:
<description source>. The description of <formula target>:
<description target>.

Fine-Tuning the Second LLM: The ground-truth transition pathways generated by GPT-4 form the
basis for the supervised fine-tuning of a second LLM. This model is trained to learn and replicate the
detailed modification steps provided by GPT-4, allowing it to generate potential transition pathways
in practical applications. An example prompt template used for fine-tuning is:

I am looking to design a new material with the following
properties: <property list>. The closest existing material
I found in the database is <formula source>, which has
similar properties. Below is the structure description of
<formula source>. \n <description source> \n How should I modify
<formula source> to develop a new material with the desired
properties?

3.3 THIRD STAGE: GENERATION

The generation stage is focused on producing the CIF (Crystallographic Information File) represen-
tation of the predicted material. Specifically, we first generate a detailed description of the lattice
vectors and atomic coordinates, which we refer to as the ALX representation. This ALX representa-
tion is then automatically converted into CIF format using the pymatgen library, which serves as
the final output of our framework.

Fine-Tuning: The generation process builds upon the conversation initiated during the earlier stages
of the framework. The output from the transition stage serves as input for the generation stage. An
additional prompt is introduced to extend the conversation, guiding the model to generate the ALX
representation based on the transition pathway provided in the previous stage. The prompt for the
generation stage is:

Based on the information, for the new material, could you generate
a description of the lengths and angles of the lattice vectors
and then the element type and coordinates for each atom within the
lattice?

ALX Representation: After fine-tuning, the LLM generates the ALX representation for the mate-
rial based on the transition pathways (as shown in the final response in Figure 3). This representation
includes:

• Lattice Vectors: The lengths and angles of the lattice vectors that define the unit cell of
the material.

• Atomic Coordinates: The precise atomic types and their coordinates within the lattice,
ensuring that the generated structure aligns with the desired material properties.

5
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Final Output in CIF Format: Once the ALX representation is generated, it is converted into CIF
format using the pymatgen library. The CIF file contains the complete structural information of
the predicted material and serves as the final output of the generation stage. This file can be utilized
for further computational studies, experimental validation, or integration into material databases.

4 DATA COLLECTION & PRE-PROCESSING

To rigorously evaluate the performance of MatExpert, we assembled a comprehensive dataset from
the NOMAD database Scheidgen et al. (2023), utilizing its API. This extensive dataset serves as the
large-scale testbed for assessing the capabilities of our framework.

Data Collection from NOMAD NOMAD (Novel Materials Discovery) Scheidgen et al. (2023)
is a vast repository of material data, providing access to millions of entries with detailed structural
and property information. For our data collection, we applied specific filters to refine the dataset.
We excluded materials containing inert elements to focus on those with more active chemical prop-
erties, which are of greater interest in materials science research. Additionally, we restricted the
dataset to materials whose structures were simulated using the Vienna Ab initio Simulation Pack-
age (VASP) Kresse & Hafner (1993), ensuring high-quality computational data. To further improve
computational efficiency during training and analysis, we also excluded materials with more than 30
atoms in their original structures.

By applying these filtering criteria, we obtained a dataset of 2, 886, 120 materials. This large-scale
dataset provides a rich foundation for training and evaluating our models, enabling us to explore a
wide range of material compositions and properties.

Pre-processing Each filtered material was converted into CIF format, ensuring the structural in-
tegrity of the original data was preserved. CIF files are widely used in materials science to represent
crystal structures and are compatible with various computational tools, facilitating seamless integra-
tion into our framework.

In addition to structural data, we enriched our dataset with linguistic descriptions of each material,
generated using RoboCrystallographer Ganose & Jain (2019), a tool that automatically produces
human-readable summaries of crystallographic information. This step allows for the integration of
language-based processing within our framework, leveraging the strengths of large language models.
We also extracted key material properties—such as formation energy, total energy, and elemental
composition—using the M3GNet Chen & Ong (2022) and PyMatgen Ong et al. (2013) libraries in
Python. These properties provide essential inputs for condition-based material design and evaluation
within MatExpert.

By leveraging this meticulously curated dataset, we ensure that MatExpert is evaluated on a robust
and diverse set of large-scale materials, facilitating comprehensive assessments of its performance
and effectiveness.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

Material Project: We leverage datasets from the Materials Project database similar to prior stud-
ies Xie et al. (2022b); Gruver et al. (2024). The MP-20 dataset (Xie et al., 2022b) for unconditional
generation contains 45,231 stable materials, filtered to exclude structures with over 30 atoms per unit
cell for computational efficiency. The datasets are exclusively used for the unconditional generation
task.

NOMAD: We also collected a large-scale dataset from the NOMAD database, consisting of
2,928,355 materials. The dataset was filtered to exclude structures with inert atoms and more than
30 atoms per unit cell, and it only includes structures computed using VASP in the database. The
datasets are exclusively used for the conditional generation task.

To evaluate the effectiveness of MatExpert, we compare its performance against the following state-
of-the-art baselines in material generation:

6
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Table 1: MatExpert shows general outperformance compared to baseline methods for unconditional
generation on Materials Project based on various metrics like validity checks, coverage, property
distribution, and stability. The best results are in bold, while the second-best results are underlined.

Method Validity Check Coverage Distribution Metastable Stable
Struc↑ Comp↑ Rec↑ Prec↑ wdist(ρ)↓ wdist(Nel)↓ M3GNet↑ DFT↑

CDVAE 1.00 0.867 0.991 0.995 0.68 1.43 28.8% 5.4%
LM-CH 0.848 0.835 0.992 0.978 0.86 0.13 n/a n/a
LM-AC 0.958 0.889 0.996 0.985 0.69 0.09 n/a n/a
Crystal-LLM with LLaMA-2
7B (τ = 1.0) 0.918 0.879 0.969 0.960 3.85 0.96 35.1% 6.7%
7B (τ = 0.7) 0.964 0.933 0.911 0.949 3.61 1.06 35.0% 6.2%
70B (τ = 1.0) 0.965 0.863 0.968 0.983 1.72 0.55 35.4% 10.0%
70B (τ = 0.7) 0.996 0.954 0.858 0.989 0.81 0.44 49.8% 10.6%
MatExpert with LLaMA-2
7B (τ = 1.0) 0.920 0.908 0.984 0.994 0.49 0.11 37.5% 7.8%
7B (τ = 0.7) 0.946 0.943 0.952 0.986 0.51 0.13 36.2% 8.0%
70B (τ = 1.0) 0.968 0.878 0.982 0.986 0.23 0.06 50.2% 11.3%
70B (τ = 0.7) 0.998 0.959 0.969 0.993 0.23 0.07 50.9% 11.8%
MatExpert with LLaMA-3
8B (τ = 1.0) 0.933 0.910 0.992 0.995 0.36 0.07 39.1% 8.1%
8B (τ = 0.7) 0.975 0.959 0.988 0.990 0.38 0.10 39.5% 8.4%
70B (τ = 1.0) 0.970 0.880 0.980 0.988 0.21 0.05 50.5% 11.0%
70B (τ = 0.7) 0.998 0.961 0.986 0.991 0.18 0.04 51.0% 12.0%

Table 2: Comparison results of conditional generation on NOMAD datasets with MatExpert outper-
forming baseline methods. The best results are in bold.

Method Validity Check Coverage Distribution
Struc↑ Comp↑ Rec↑ Prec↑ wdist(ρ)↓ wdist(Nel)↓

Crystal-LLM with LLaMA-2
70B (τ = 1.0) 0.983 0.892 0.979 0.984 1.63 0.53
70B (τ = 0.7) 0.997 0.971 0.873 0.988 0.77 0.42
MatExpert with LLaMA-2
70B (τ = 1.0) 0.991 0.913 0.986 0.992 0.18 0.08
70B (τ = 0.7) 0.998 0.981 0.982 0.994 0.21 0.08
MatExpert with LLaMA-3
70B (τ = 1.0) 0.996 0.922 0.991 0.997 0.15 0.08
70B (τ = 0.7) 0.999 0.986 0.989 0.985 0.14 0.09

Crystal-LLM Gruver et al. (2024): A state-of-the-art approach fine-tuning large language models
(LLaMA-2 Touvron et al. (2023)) for generating stable inorganic materials. It excels in generating
valid crystal structures and serves as a primary baseline due to its pioneering use of LLMs for
material generation.

CDVAE Xie et al. (2022b): A Crystal Diffusion Variational Autoencoder tailored for periodic ma-
terial generation. It combines generative models within a continuous VAE latent space, widely used
for generating stable materials and considered a strong benchmark.

LM-CH and LM-AC Flam-Shepherd & Aspuru-Guzik (2023): Transformer-based models for
3D crystal structure generation. LM-CH uses character-level tokenization, while LM-AC uses atom
and coordinate-level tokens.

For a fair comparison, MatExpert and baselines are trained on the same datasets for each experiment.

5.2 UNCONDITIONAL GENERATION

In the unconditional generation task, we aim to assess the ability of MatExpert to produce novel and
stable material structures without any specific property constraints. This stage serves as a benchmark
for evaluating the intrinsic generative capabilities of the model, focusing on the validity, diversity,
and stability of the generated materials. For unconditional generation, we randomly select a material
from the database during the first stage of MatExpert.

7
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The comparison results are shown in Table 1. As evident from the table, the MatExpert family with
LLaMA-3 (Dubey et al., 2024) outperforms all other methods across all metrics except metrics of
coverage. Traditional models such as CDVAE, LM-CH, and LM-AC excel in coverage and structural
validity. When compared to the state-of-the-art LLM-based model Crystal-LLM, our MatExpert
method consistently outperforms Crystal-LLM across all settings, including the same model size
and temperature as well as DFT-based stability. Notably, MatExpert achieves remarkable results in
distribution metrics, benefiting from the transition from an existing material in the database. While
Crystal-LLM may struggle with the hallucinations of LLM, thus generating out-of-distribution ma-
terials.

5.3 CONDITIONAL GENERATION
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Figure 4: Conditional satisfaction rates
of common property constraints. Ma-
tExpert consistently outperforms base-
line methods.

In the conditional generation task, we evaluate MatEx-
pert’s ability to generate material structures that meet spe-
cific property constraints using the large-scale NOMAD
dataset. This task is crucial for practical applications,
where researchers often require materials with targeted
properties, such as specific band gaps, space groups, and
chemical compositions, etc. As shown in Table 2, MatEx-
pert significantly outperforms the baseline Crystal-LLM
for all metrics. MatExpert also excels in property dis-
tribution, achieving much lower Wasserstein distances,
which reflects its ability to generate materials with prop-
erty distributions closely aligned with the training data.
Notably, the stability metric like the energy above the hull
is treated as an input property in this task and is not separately evaluated as a performance metric.

To rigorously evaluate the effectiveness of MatExpert in satisfying user-defined property constraints,
we also conducted additional experiments aimed at quantifying the percentage of generated materi-
als that meet specific property criteria set by users.

We selected a set of common property constraints, including:

• Formula: We parse the composition from the generated CIF. We show the results in three
levels by atom numbers: ≤ 5 atoms, ≤ 10 atoms, and ≤ 15 atoms.

• Energy above hull: We use M3GNet Chen & Ong (2022) to estimate the energy above hull.
We bin stability as Êhull < 0.1 for metastable and Êhull ≥ 0.1 for unstable.

• Space Group Number: We use PyMatgen’s SpacegroupAnalyzer with a precision of 0.2
angstroms. Ong et al. (2013)

For each constraint, we generated 10,000 materials using MatExpert and the baselines. We then
calculated the percentage of materials that met the specified property criteria. The results of the con-
dition satisfaction experiments are summarized in Figure 4. MatExpert consistently outperformed
the baselines across all property constraints, demonstrating its superior capability to generate mate-
rials that meet user-defined specifications.

6 ANALYSIS

6.1 ANALYSIS OF DIVERSITY AND NOVELTY

To evaluate the MatExpert framework, we use metrics that assess the diversity and novelty of gener-
ated materials. Following Xie et al. (2022b), diversity is calculated as the pairwise distance between
samples using a featurization of structure and composition. Novelty is determined by comparing the
distance to the nearest element of the training set for each sample, with a sample considered novel
if this distance exceeds a threshold. We also assess the overall novelty, defined as having either a
new structure or composition. To further understand the gaps between MatExpert and baselines, we
illustrate the score of each metric normalized to testing samples in Figure 5. As we can see, Mat-
Expert consistently achieves high-level scores in both structure and composition diversity compared
to CDVAE and various Crystal-LLM configurations. This indicates MatExpert’s superior ability
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Figure 5: Scores of diversty and novelty normalized to testing samples. MatExpert consistently
achieves remarkable scores on all metrics. All socres are calculated on the generated materials
passed the validity.

to explore a broad chemical space. In terms of novelty, MatExpert demonstrates a strong capacity
to generate structures and compositions not found in existing databases, as evidenced by its high
novelty scores. Notably, Crystal-LLM faces challenges in balancing model size and novelty, with
larger models exhibiting lower novelty. In contrast, MatExpert consistently maintains high novelty
regardless of model size.

6.2 ABLATION STUDIES

Table 3: Choices of encoders in retrieval
stage. We use top-1 and top-5 accuracy,
along with the average rank of the ground-
truth materials as metrics.

Encoder Accuracy Avg RankTop-1 (%) Top-5 (%)
Bert 59.96 84.51 2.36
T5 (ours) 71.35 93.54 1.59

To understand the contribution of different compo-
nents of our framework, we conduct ablation stud-
ies by systematically removing or modifying key el-
ements of MatExpert and observing the impact on
performance.

Impact of Transition (CoT) Stage The transition
stage, which involves generating modification path-
ways using Chain of Thought (CoT) reasoning Wei
et al. (2022), plays a crucial role in the overall per-
formance of MatExpert. To evaluate the impact of
this component, we conducted experiments where the CoT reasoning was removed entirely. The
results in Figure 6 highlight its effectiveness of CoT reasoning.
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Figure 6: Impact of Transition (CoT) and Re-
trieval Stages. We sequentially remove the
transition (CoT) stage and the retrieval stage
to demonstrate changes in condition satisfac-
tion rates.

Impact of Retrieval Stage We assess the impact
of the retrieval stage with the contrastive learning
framework. By removing the retrieval stage, we ob-
serve a noticeable decline in the quality of the re-
trieved materials (See Figure 6). This confirms that
the retrieval stage is crucial for identifying high-
quality reference materials, which are essential for
effective subsequent modifications.

Choices of Encoders in Retrieval Stage In the re-
trieval stage, we explored various encoder architec-
tures to determine their impact on the quality of ma-
terial retrieval (See Table 3). We compared T5-based
encoders with BERT Devlin et al. (2019). Our find-
ings indicate that T5-based encoders consistently
outperform BERT, providing more accurate embed-
dings for both property and structure descriptions,
making it more effective for capturing the most similar material aligned with the desired properties
in the database.

6.3 CASE STUDY

To showcase the capabilities of MatExpert, we present a comprehensive example of conditional
generation under property constraints in Figure 7. This case illustrates the process of generating a
predicted material and its adherence to the specified properties.
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# generated using pymatgen
data_NaTiVS4
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   7.00000000
_cell_length_b   7.00000000
_cell_length_c   5.70000000
_cell_angle_alpha   65.00000000
_cell_angle_beta   65.00000000
_cell_angle_gamma   30.00000000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   NaTiVS4
_chemical_formula_sum   'Na1 Ti1 V1 S4'
_cell_volume   125.57404231
_cell_formula_units_Z   1
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Na  Na0  1  0.65000000  0.01000000  0.65000000  1
  Ti  Ti1  1  0.89000000  0.25000000  0.99000000  1
  V  V2  1  0.15000000  0.51000000  0.33000000  1
  S  S3  1  0.01000000  0.37000000  0.85000000  1
  S  S4  1  0.76000000  0.12000000  0.08000000  1
  S  S5  1  0.54000000  0.90000000  0.22000000  1
  S  S6  1  0.29000000  0.65000000  0.45000000  1

I am looking to design a new material with the following property: The formation energy per atom is -1.4561. The band gap is 0.0. 
The energy above the convex hull is 0.0. The elements are Na, S, Ti, V. The spacegroup number is 8.

(Stage 1: Retrieval)  The most similar material related to the description in the database is MgScVS4.

Below is the structure description of MgScVS4.

MgScVS4 is Spinel-derived structured and crystallizes in the orthorhombic Imma space group. Mg(1) is bonded to two 
equivalent S(1) and two equivalent S(2) atoms to form MgS4 tetrahedra that share corners with six equivalent Sc(1)S6 
octahedra and corners with six equivalent V(1)S6 octahedra. The corner-sharing octahedral tilt angles range from 55–62°. Both 
Mg(1)–S(1) bond lengths are 2.46 Å . Both Mg(1)–S(2) bond lengths are 2.42 Å . Sc(1) is bonded to two equivalent S(1) and four 
equivalent S(2) atoms to form ScS6 octahedra that share corners with six equivalent Mg(1)S4 tetrahedra, edges with two 
equivalent Sc(1)S6 octahedra, and edges with four equivalent V(1)S6 octahedra. Both Sc(1)–S(1) bond lengths are 2.59 Å . All 
Sc(1)–S(2) bond lengths are 2.57 Å . V(1) is bonded to two equivalent S(2) and four equivalent S(1) atoms to form VS6 octahedra 
that share corners with six equivalent Mg(1)S4 tetrahedra, edges with two equivalent V(1)S6 octahedra, and edges with four 
equivalent Sc(1)S6 octahedra. Both V(1)–S(2) bond lengths are 2.46 Å . All V(1)–S(1) bond lengths are 2.48 Å . There are two 
inequivalent S sites. In the first S site, S(1) is bonded in a rectangular see-saw-like geometry to one Mg(1), one Sc(1), and two 
equivalent V(1) atoms. In the second S site, S(2) is bonded in a rectangular see-saw-like geometry to one Mg(1), two equivalent 
Sc(1), and one V(1) atom.

How should I modify MgScVS4 to develop a new material with the desired property?

(Stage 2: Transition) To transit from MgScVS4 to a new material, a transformation in the crystal structure and composition 
would be necessary. Initially, the orthorhombic Imma space group of MgScVS4 would need to be altered to a monoclinic Cm 
space group. This involves reorganizing the arrangement and bonding of the atoms, particularly the cations and the 
coordination environment around sulfur. Mg would be replaced by Na, which coordinates differently with sulfur, forming NaS6 
octahedra with a mix of edge and corner-sharing geometries. Sc would be substituted with Ti, and the bonding nature of V 
would also need to be adapted to fit the new crystal structure. Additionally, the bonding lengths and angles would need to be 
adjusted to fit the new spatial configuration and coordination geometries required by the monoclinic symmetry. This complex 
reconfiguration would require precise control over the stoichiometry and synthesis conditions to ensure the stability and 
integrity of the new material's crystal structure.

Based on the information, for the new material, could you generate a description of the lengths and angles of the lattice 
vectors and then the element type and coordinates for each atom within the lattice?

(Stage 3: Generation) 7.0 7.0 5.7\n65 65 30\nNa\n0.65 0.01 0.65\nTi\n0.89 0.25 0.99\nV\n0.15 0.51 0.33\nS\n0.01 0.37 
0.85\nS\n0.76 0.12 0.08\nS\n0.54 0.90 0.22\nS\n0.29 0.65 0.45

7.0 7.0 5.7
65 65 30
Na
0.65 0.01 0.65
Ti
0.89 0.25 0.99
V
0.15 0.51 0.33
S
0.01 0.37 0.85
S
0.76 0.12 0.08
S
0.54 0.90 0.22
S
0.29 0.65 0.45

# generated using pymatgen
data_NaTiVS4
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   10.46368810
_cell_length_b   10.46368802
_cell_length_c   7.40269354
_cell_angle_alpha   42.58355171
_cell_angle_beta   42.58355329
_cell_angle_gamma   18.41164930
_symmetry_Int_Tables_number   1
_chemical_formula_structural   NaTiVS4
_chemical_formula_sum   'Na1 Ti1 V1 S4'
_cell_volume   170.50701256
_cell_formula_units_Z   1
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Na  Na0  1  0.64614006  0.00614007  0.73423900  1
  Ti  Ti1  1  0.86369559  0.22369563  1.08682582  1
  V  V2  1  0.12332545  0.48332543  0.29000247  1
  S  S3  1  0.03128273  0.39128276  0.73898858  1
  S  S4  1  0.75154123  0.11154118  0.08293051  1
  S  S5  1  0.55513890  0.91513890  0.25929009  1
  S  S6  1  0.31887605  0.67887603  0.37772353  1

ALX
representation

CIF representation converted from ALX representation

Converted by
PyMatgen

Relaxed by
M3GNet

CIF representation of structure relaxed by M3GNet

NaTiVS4 NaTiVS4

Figure 7: A comprehensive example of MatExpert for conditional generation: Enter the desired
properties, and MatExpert will generate the CIF representation of the material.

7 CONCLUSION

In this work, we introduced MatExpert, a novel framework leveraging LLMs and contrastive learn-
ing for the material discovery process. By emulating the workflow of a human materials science
expert, MatExpert integrates retrieval, transition, and generation stages to design new materials.
Our experiments show that MatExpert significantly outperforms state-of-the-art methods in material
generation tasks, thereby exhibiting its potential to become a scalable tool for accelerating material
discovery with higher-quality crystal generation.
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A REPRODUCIBLITY

A.1 ENVIRONMENT

The experiments were conducted on machines with the following specifications.

Machine 1 for MatExpert with Llama-2 8B and Llama-3 8B:

• Hardware: NVIDIA A5000 GPU (24 GB on-board memory) GPU x 4, AMD Ryzen
Threadripper PRO 3975WX CPU, 256 GB RAM

• Software: Ubuntu 22.04, Python 3.11, PyTorch 2.3.1+cu121, CUDA 12.4

Machine 2 for MatExpert with Llama-2 70B and Llama-3 70B:

• Hardware: NVIDIA L40S GPU (48 GB on-board memory) x 4, INTEL(R) XEON(R)
GOLD 6526Y x 2, 512 GB RAM

• Software: Ubuntu 22.04, Python 3.11, PyTorch 2.3.1+cu121, CUDA 12.4

The list of environment requirements for the Python library will be made publicly available alongside
the release of the open-source code of MatExpert.

A.2 IMPLEMENTATION DETAILS

Table 4: Hyperparameters for training T5-based encoders in the retrieval stage.
Hyperparameter Value Description
Model Architecture t5-base Pretrained model to use as the base encoder.
Learning Rate 1e-4 Learning rate for the optimizer.
Number of epochs 100 Number of epochs to train for.
Temperature 0.1 Temperature parameter for the NT-Xent loss.
Batch Size 32 Batch size for training.
Gradient Accumulation Steps 8 Number of batches for gradient accumulation.

Table 5: Hyperparameters for finetuning Llama family in the transition and generation stage.
Hyperparameter Llama-3 8B Llama-3 70B
Model Architecture Meta-Llama-3-8B-Instruct Meta-Llama-3-70B-Instruct
Learning Rate 1e−4 1e−4

Batch Size 4 4
Batch Size per Device 1 1
Number of Epochs 70 10
Optimizer AdamW AdamW
Sequence Length 2048 1024
LoRA Rank 8 8
LoRA Alpha 16 16
LoRA Dropout 0.1 0.1
Warmup Ratio 0.1 0.1
Gradient Accumulation Steps 8 8

The proposed MatExprt framework consists of two training stages: 1) Training T5-based encoders
of the contrastive learning framework in the stage Retrieval. 2) Finetuning the Llama-2/Llama-3
based LLMs in the stage Transition and stage Generation.

Training T5-based encoders In the retrieval stage, two T5-based encoders are employed. The
model uses the ”t5-base” architecture in Huggingface Wolf (2019) as its foundational structure. The
training process is governed by a learning rate of 0.0001. It undergoes training for 100 epochs with
early stopping. A temperature parameter of 0.1 is utilized, which affects the NT-Xent loss function,
a common choice for contrastive learning. The batch size is set to 32 and gradient accumulation
occurs over 8 steps, effectively simulating a larger batch size and allowing for more stable updates.
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Finetuning Llama family In the transition and generation stages, the Llama family of models is
finetuned. Two variants are used: Llama-3 8B and Llama-3 70B, both with specific architectures
designed for instruction-based tasks named “Meta-Llama-3-8B-Instruct” and “Meta-Llama-3-70B-
Instruct” in Huggingface Wolf (2019). The learning rate is set to 0.0001. Each device processes
a batch size of 1, with an overall batch size of 4. The 8B model is trained for 70 epochs, while
the 70B model undergoes 10 epochs, reflecting differences in their complexity and training needs.
The AdamW optimizer is employed for parameter updates. Sequence lengths differ, with the 8B
model handling sequences of 2048 tokens, and the 70B model processing 1024 tokens limited by
the on-board memory of GPUs. LoRA settings include a rank of 8, an alpha of 16, and a dropout
rate of 0.1, facilitating efficient adaptation. A warmup ratio of 0.1 helps stabilize initial training and
gradient accumulation is set to 8 steps for both models, ensuring robust learning.

A.3 EFFICIENCY

We utilize the open-source LLM training framework named LLaMA-Factory Zheng et al. (2024) to
finetune the LLMs. With the advantages of LoRA Hu et al. (2022) and FlashAttention Dao et al.
(2022) mechanism, it takes around 30 and 120 hours to fine-tune Llama-3 8B and Llama-3 70B in
MatExpert, respectively.

The generation speed of MatExpert on our machines is as follows:

• MatExpert with Llama-3 8B: ∼40 minutes per 10,000 samples.

• MatExpert with Llama-3 70B: ∼5 hours per 10,000 samples.

B DATASETS DETAILS

Two datasets are included in our experiments: Material Project and NOMAD for unconditional
generation and conditional generation, respectively.

Material Project This dataset also named as MP-20 consisting of 45,231 materials is publicly
available and was first proposed in Ong et al. (2013). We follow the data-split setting proposed
in Gruver et al. (2023) and Xie et al. (2022a).

NOMAD This large-scale dataset consisting of 2,886,120 materials is collected by ourselves and
will be publicly available. We collect the datasets via NOMAD API as the following script:

url = ’http://nomad-lab.eu/prod/v1/api/v1/entries/archive/query’
excluded_elements = [

"He", "Ne", "Ar", "Kr", "Xe", "Rn", "U", "Th", "Rn", "Tc",
"Po", "Pu", "Pa",

]
query = {

"results.method.simulation.program_name:any": [
"VASP"

],
"quantities:all": [

"results.properties.structures",
"results.properties.structures.structure_original",
"results.properties.structures.structure_conventional",
"results.properties.structures.structure_primitive"

]
}
required = {

"results": {
"material": {

"chemical_formula_reduced": "*"
},
"properties": {
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"structures": "*"
}

}
}

We filter out the materials with elements in excluded elements and only include the materials
with structures computing by VASP Kresse & Hafner (1993).

Then we further convert the structure in JSON to CIF files via the following script:

def convert_to_cif(structure_json, lattice=’vectors’):
lattice_vectors = structure_json["lattice_vectors"]
lattice_parameters = structure_json["lattice_parameters"]
a = lattice_parameters["a"]
b = lattice_parameters["b"]
c = lattice_parameters["c"]
alpha = lattice_parameters["alpha"] * 180 / np.pi
beta = lattice_parameters["beta"] * 180 / np.pi
gamma = lattice_parameters["gamma"] * 180 / np.pi

if lattice == ’vectors’:
lattice = Lattice(lattice_vectors)

elif lattice == ’parameters’:
lattice = Lattice.from_parameters(a, b, c, alpha, beta, gamma)

positions = structure_json["cartesian_site_positions"]
species = structure_json["species_at_sites"]

structure = Structure(lattice, species, positions, coords_are_cartesian=True)
structure.scale_lattice(1000)

return structure.to(fmt="cif")

We randomly select 10,000 samples and another 10,000 samples as the validation and testing set,
respectively. The remaining samples are all included in the training set.

C EVALUATION METRICS

C.1 VALIDITY

Validity is evaluated based on the structural and compositional integrity of the generated materials.
Following Xie et al. (2022a), a structure is considered valid if the shortest distance between any
pair of atoms is greater than 0.5 Å, ensuring atomic stability. Furthermore, the overall charge of
the material must be neutral to satisfy chemical feasibility. These criteria ensure that the generated
materials conform to realistic physical and chemical constraints.

C.2 COVERAGE

Following the methods outlined in Xie et al. (2022a) and Gruver et al. (2023), we measure coverage
using two metrics: COV-R (Recall) and COV-P (Precision). These metrics quantify how well the
generated materials resemble the ground truth materials in the test set. COV-R (Recall) measures
the percentage of ground truth materials accurately represented by the generated set, while COV-P
(Precision) evaluates the quality of the generated materials in replicating the true material diversity.
These metrics ensure that the generated materials not only capture the diversity of the test set but
also maintain high-quality representations. Both validity and coverage are computed over 10,000
materials randomly sampled from the generated set.
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C.3 DISTRIBUTION

The distribution of properties is compared between the generated materials and the test set using
the Wasserstein distance. The key properties evaluated are density (ρ, measured in g/cm3) and the
number of unique elements (Nel). The property distribution is computed over 1,000 valid materials,
randomly sampled from those that pass the validity test. This method ensures that the generated
materials exhibit realistic physical properties comparable to those in the test set.

C.4 DIVERSITY

Diversity is assessed by calculating the pairwise distances between samples, based on structural and
compositional features as described by Court et al. (2020). This metric quantifies how distinct each
generated sample is relative to others in the dataset, offering insights into the variety of structures
and compositions. Diversity is specifically measured on samples deemed metastable by M3GNet,
as these are more likely to contribute meaningful variation. All diversity values are normalized
against corresponding metrics from the test set, providing a clear comparison of the underlying data
distributions.

C.5 NOVELTY

Novelty is calculated by comparing each generated sample to its nearest neighbor in the training set.
A sample is considered novel if its nearest neighbor exceeds a predefined threshold distance. Specif-
ically, we use a structural distance cutoff of 0.1 and a compositional distance cutoff of 2. Novelty is
assessed both in terms of structure and composition, with overall crystal novelty determined by the
presence of a new structure or composition. These metrics provide insights into the uniqueness of
the generated samples, particularly those identified as metastable. Novelty values are normalized by
corresponding values for the test set to effectively convey the characteristics of the data distribution.

C.6 STABILITY

We assess the stability of materials using a combination of machine learning potentials and density
functional theory (DFT) to ensure a consistent evaluation framework. Specifically, we employ the
M3GNet model Chen & Ong (2022), trained on total energy data from VASP calculations within the
Materials Project dataset. This aligns the results with established correction schemes and absolute
energy values. For consistency with Materials Project settings and prior works Xie et al. (2022a);
Gruver et al. (2023), including the PBE functional and DFT/DFT+U, we perform a single relaxation
for each candidate structure using the default MPRelaSet parameters.

To determine the percentage of metastable compounds, we first filter out samples that fail basic struc-
tural and compositional validity checks. The remaining samples are then relaxed using M3GNet
to obtain final relaxation energies. The stability calculation includes the validity rate from initial
filtering and the rate of compounds with relaxed hull energy Êhull < 0.1. For stable materials,
those identified as metastable by M3GNet undergo further DFT relaxation, and the percentage with
Êhull < 0.0 is reported. This comprehensive approach integrates both machine learning and tradi-
tional DFT methods for a robust stability evaluation.

D CASES OF UNCONDITIONAL GENERATION

Please see Figure 8.

E CASES OF CONDITIONAL GENERATION

Please see Figure 9.

F NUMERICAL RESULTS OF ABLATION STUDY (FIGURE 6)

Please see Table 6.
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# generated using pymatgen
data_U2PN2
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   3.70000000
_cell_length_b   3.70000000
_cell_length_c   5.60000000
_cell_angle_alpha   90.00000000
_cell_angle_beta   90.00000000
_cell_angle_gamma   119.00000000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   U2PN2
_chemical_formula_sum   'U2 P1 N2'
_cell_volume   67.05184523
_cell_formula_units_Z   1
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  U  U0  1  0.78000000  0.28000000  0.10000000  1
  U  U1  1  0.44000000  0.61000000  0.63000000  1
  P  P2  1  0.11000000  0.95000000  0.35000000  1
  N  N3  1  0.78000000  0.28000000  0.74000000  1
  N  N4  1  0.44000000  0.61000000  0.98000000  1

3.7 3.7 5.6
90 90 119
U
0.78 0.28 0.10
U
0.44 0.61 0.63
P
0.11 0.95 0.35
N
0.78 0.28 0.74
N
0.44 0.61 0.98

# generated using pymatgen
data_Si(CN2)2
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   4.80000000
_cell_length_b   4.80000000
_cell_length_c   4.80000000
_cell_angle_alpha   90.00000000
_cell_angle_beta   90.00000000
_cell_angle_gamma   90.00000000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   Si(CN2)2
_chemical_formula_sum   'Si1 C2 N4'
_cell_volume   110.59200000
_cell_formula_units_Z   1
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Si  Si0  1  0.76000000  0.62000000  0.92000000  1
  C  C1  1  0.26000000  0.12000000  0.92000000  1
  C  C2  1  0.26000000  0.62000000  0.42000000  1
  N  N3  1  0.26000000  0.12000000  0.42000000  1
  N  N4  1  0.26000000  0.62000000  0.92000000  1
  N  N5  1  0.76000000  0.12000000  0.42000000  1
  N  N6  1  0.76000000  0.62000000  0.42000000  1

4.8 4.8 4.8
90 90 90
Si
0.76 0.62 0.92
C
0.26 0.12 0.92
C
0.26 0.62 0.42
N
0.26 0.12 0.42
N
0.26 0.62 0.92
N
0.76 0.12 0.42
N
0.76 0.62 0.42

# generated using pymatgen
data_Li2GeF6
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   4.90000000
_cell_length_b   4.90000000
_cell_length_c   9.30000000
_cell_angle_alpha   90.00000000
_cell_angle_beta   90.00000000
_cell_angle_gamma   90.00000000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   Li2GeF6
_chemical_formula_sum   'Li4 Ge2 F12'
_cell_volume   223.29300000
_cell_formula_units_Z   2
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Li  Li0  1  0.89000000  0.57000000  0.70000000  1
  Li  Li1  1  0.39000000  0.07000000  0.20000000  1
  Li  Li2  1  0.89000000  0.57000000  0.20000000  1
  Li  Li3  1  0.39000000  0.07000000  0.70000000  1
  Ge  Ge4  1  0.39000000  0.07000000  0.95000000  1
  Ge  Ge5  1  0.89000000  0.57000000  0.45000000  1
  F  F6  1  0.09000000  0.88000000  0.95000000  1
  F  F7  1  0.09000000  0.88000000  0.45000000  1
  F  F8  1  0.18000000  0.38000000  0.95000000  1
  F  F9  1  0.18000000  0.38000000  0.45000000  1
  F  F10  1  0.59000000  0.27000000  0.62000000  1
  F  F11  1  0.68000000  0.77000000  0.12000000  1
  F  F12  1  0.68000000  0.77000000  0.62000000  1
  F  F13  1  0.59000000  0.27000000  0.12000000  1
  F  F14  1  0.59000000  0.77000000  0.95000000  1
  F  F15  1  0.68000000  0.27000000  0.45000000  1
  F  F16  1  0.09000000  0.27000000  0.95000000  1
  F  F17  1  0.18000000  0.77000000  0.45000000  1

4.9 4.9 9.3
90 90 90
Li
0.89 0.57 0.70
Li
0.39 0.07 0.20
Li
0.89 0.57 0.20
Li
0.39 0.07 0.70
Ge
0.39 0.07 0.95
Ge
0.89 0.57 0.45
F
0.09 0.88 0.95
F
0.09 0.88 0.45
F
0.18 0.38 0.95
F
0.18 0.38 0.45
F
0.59 0.27 0.62
F
0.68 0.77 0.12
F
0.68 0.77 0.62
F
0.59 0.27 0.12
F
0.59 0.77 0.95
F
0.68 0.27 0.45
F
0.09 0.27 0.95
F
0.18 0.77 0.45

Figure 8: Cases of unconditional generation.
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# generated using pymatgen
data_LiHg3
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   4.30000000
_cell_length_b   4.30000000
_cell_length_c   4.30000000
_cell_angle_alpha   90.00000000
_cell_angle_beta   90.00000000
_cell_angle_gamma   90.00000000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   LiHg3
_chemical_formula_sum   'Li1 Hg3'
_cell_volume   79.50700000
_cell_formula_units_Z   1
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Li  Li0  1  0.70000000  0.86000000  0.21000000  1
  Hg  Hg1  1  0.20000000  0.36000000  0.21000000  1
  Hg  Hg2  1  0.20000000  0.86000000  0.71000000  1
  Hg  Hg3  1  0.70000000  0.36000000  0.71000000  1

4.3 4.3 4.3
90 90 90
Li
0.70 0.86 0.21
Hg
0.20 0.36 0.21
Hg
0.20 0.86 0.71
Hg
0.70 0.36 0.71

I am looking to design a new material with the following property: The formation energy per atom is -0.168. The band gap is 0.0. 
The energy above the convex hull is 0.0189. The elements are Hg, Li. The spacegroup number is 221.

4.0 4.0 5.1
90 90 120
Mn
0.67 0.12 0.56
Mn
0.67 0.12 0.06
Mn
0.00 0.78 0.31
Mn
0.33 0.45 0.81
Ge
0.33 0.45 0.31
Ge
0.00 0.78 0.81

# generated using pymatgen
data_Mn2Ge
_symmetry_space_group_name_H-M   'P 1'
_cell_length_a   4.00000000
_cell_length_b   4.00000000
_cell_length_c   5.10000000
_cell_angle_alpha   90.00000000
_cell_angle_beta   90.00000000
_cell_angle_gamma   120.00000000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   Mn2Ge
_chemical_formula_sum   'Mn4 Ge2'
_cell_volume   70.66767295
_cell_formula_units_Z   2
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'
loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Mn  Mn0  1  0.67000000  0.12000000  0.56000000  1
  Mn  Mn1  1  0.67000000  0.12000000  0.06000000  1
  Mn  Mn2  1  0.00000000  0.78000000  0.31000000  1
  Mn  Mn3  1  0.33000000  0.45000000  0.81000000  1
  Ge  Ge4  1  0.33000000  0.45000000  0.31000000  1
  Ge  Ge5  1  0.00000000  0.78000000  0.81000000  1

I am looking to design a new material with the following property: The formation energy per atom is -0.0431. The band gap is 0.0. 
The energy above the convex hull is 0.0531. The elements are Mn, Ge. The spacegroup number is 194. 

Figure 9: Cases of conditional generation.

Table 6: Numerical results of Ablation Study (Figure 6)
MatExpert - CoT Stage - CoT Stage - Retreval Stage
≤ 5 atoms 76% 72% 62%
≤ 10 atoms 69% 62% 59%
≤ 25 atoms 66% 58% 51%
Space group 31% 30% 24%
Energy above hull 60% 56% 53%
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