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Abstract
Recent offline meta-reinforcement learning (meta-
RL) methods typically utilize task-dependent be-
havior policies (e.g., training RL agents on each
individual task) to collect a multi-task dataset.
However, these methods always require extra in-
formation for fast adaptation, such as offline con-
text for testing tasks. To address this problem,
we first formally characterize a unique challenge
in offline meta-RL: transition-reward distribution
shift between offline datasets and online adap-
tation. Our theory finds that out-of-distribution
adaptation episodes may lead to unreliable pol-
icy evaluation and that online adaptation with in-
distribution episodes can ensure adaptation per-
formance guarantee. Based on these theoretical
insights, we propose a novel adaptation frame-
work, called In-Distribution online Adaptation
with uncertainty Quantification (IDAQ), which
generates in-distribution context using a given
uncertainty quantification and performs effective
task belief inference to address new tasks. We
find a return-based uncertainty quantification for
IDAQ that performs effectively. Experiments
show that IDAQ achieves state-of-the-art perfor-
mance on the Meta-World ML1 benchmark com-
pared to baselines with/without offline adaptation.

1. Introduction
Human intelligence is capable of learning a wide variety of
skills from past experiences and can adapt to new environ-
ments by transferring skills with limited experience. Current
reinforcement learning (RL) has surpassed human-level per-
formance (Mnih et al., 2015; Silver et al., 2017; Hafner
et al., 2019). However, in many real-world applications,
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RL encounters two major challenges: multi-task efficiency
and costly online interactions. In multi-task settings, such
as robotic manipulation or locomotion (Yu et al., 2020b),
agents are expected to solve new tasks in few-shot adapta-
tion using previously learned knowledge. Moreover, collect-
ing sufficient exploratory interactions is usually expensive
or dangerous in robotics (Rafailov et al., 2021), autonomous
driving (Yu et al., 2018), and healthcare (Gottesman et al.,
2019). One popular paradigm for breaking this practical
barrier is offline meta reinforcement learning (offline meta-
RL; Li et al., 2020b; Mitchell et al., 2021), which trains a
meta-RL agent with pre-collected offline multi-task datasets
and enables fast policy adaptation to unseen tasks.

Recent offline meta-RL methods have been proposed to
utilize a multi-task dataset collected by task-dependent be-
havior policies (Li et al., 2020b; Dorfman et al., 2021).
They show promise by solving new tasks with few-shot
adaptation. However, existing offline meta-RL approaches
require additional information or assumptions for fast adap-
tation. For example, FOCAL (Li et al., 2020b) and MACAW
(Mitchell et al., 2021) use offline contexts for meta-testing
tasks. BOReL (Dorfman et al., 2021) and SMAC (Pong
et al., 2022) employ few-shot online adaptation, in which
the former assumes known reward functions, and the lat-
ter assumes unsupervised online samples (without rewards)
are available in offline meta-training. Therefore, achieving
effective online fast adaptation without extra information
remains an open problem for offline meta-RL.

To approach meta-testing relying on online experience in
offline meta-RL, we first characterize a unique conundrum:
transition-reward distribution shift between offline datasets
and online adaptation, complementary to state-action dis-
tribution shift in offline RL (Levine et al., 2020). As il-
lustrated in Figure 1, we propose a motivating example to
visualize the transition-reward distribution shift. In this ex-
ample, the robot aims to choose the correct path to reach
the diamond ( ) in three tasks. During task-dependent
data collection, the offline multi-task dataset consists of all
successful episodes ( ) through expert behavior policies.
After offline meta-training on the given dataset, the robot
needs to fast adapt to a (unknown) meta-testing task, i.e.,
task 3 shown in Figure 1. In the first adaptation episode,
the robot does not know the identification of meta-testing
task. It may try the middle path, stop in front of the stone,
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Figure 1. Illustration of transition-reward distribution shift between offline training and online adaptation.

and fail. The reward and transition of this failed adaptation
episode ( ) is out-of-distribution from the offline dataset
because the trajectories of the given dataset are successful.
This out-of-distribution context will confuse the agent in
inferring task belief since it is not encountered during offline
meta-training. To formalize this phenomenon, we build a
theory from the perspective of Bayesian RL (BRL; Duff,
2002; Zintgraf et al., 2019), which maintains a task belief
given the context history and learns a meta-policy on the
belief states. Our theory finds that (i) the transition-reward
distribution shift exists and may lead to unreliable policy
evaluation, (ii) filtering out out-of-distribution episodes in
online adaptation can ensure the performance guarantee,
and (iii) meta-policies with Thompson sampling (Strens,
2000) can generate in-distribution episodes.

The transition-reward distribution shift induces the inconsis-
tency dilemma of experience between offline meta-training
and online meta-testing. We can choose either to trust the
offline dataset ( ) or to trust new experience ( ) and
continue online exploration. The latter may not be able to
collect sufficient data in few-shot adaptation to learn a good
policy only on online data. Therefore, we adopt the former
strategy and, inspired by our theory, propose a novel context-
based online adaptation framework, called In-Distribution
online Adaptation with uncertainty Quantification (IDAQ).
To align online experience with the offline dataset, IDAQ dis-
tinguishes in-distribution context using a given uncertainty
quantification, performs task belief updating, and samples
“task hypotheses” to solve new tasks. We investigate three
uncertainty quantifications to measure the confidence that
adaptation episodes are in-distribution, and find that IDAQ
with a greedy return-based quantification can perform effec-
tively in complex domains. To serve intuitions in Figure 1,
IDAQ will continue to sample other “task hypotheses” (i.e.,
try other paths) during meta-testing and infer the unknown
task 3 using in-distribution adaptation episode (left).

Our main contribution is to formalize a specific challenge
(i.e., transition-reward distribution shift), reveal theoretical
insights for offline meta-RL with online adaptation, and fur-
thermore propose a novel in-distribution online adaptation

framework with theoretical motivation. To our best knowl-
edge, our method is the first to conduct in-distribution online
fast adaptation in offline meta-RL. We extensively evaluate
the performance of IDAQ in didactic problems proposed
by prior work (Rakelly et al., 2019; Zhang et al., 2021)
and Meta-World ML1 benchmark with 50 tasks (Yu et al.,
2020b). Empirical results show that IDAQ significantly out-
performs baselines with fast online adaptation, and achieves
better or comparable performance than offline adaptation
baselines with expert context.

2. Notations and Preliminaries
We defer the detailed background to Appendix A.1.

2.1. Standard Meta-RL
The standard meta-RL (Finn et al., 2017; Rakelly et al.,
2019) deals with a distribution p(κ) over Markov Decision
Processes (MDPs), where each task κi ∼ p(κ) presents a
finite-horizon MDP (Zintgraf et al., 2019), which is defined
by a tuple (S,A,R, H, Pκi , Rκi), including state space S,
action spaceA, reward spaceR, planning horizonH , transi-
tion function Pκi(s′|s, a), and reward function Rκi(r|s, a).
In this paper, we assume dynamics function P and reward
functionR may vary across tasks and share a common struc-
ture. The meta-RL algorithms repeatedly sample batches of
tasks to train a meta-policy. In meta-testing, the agent aims
to rapidly adapt a good policy for new tasks drawn from
p(κ) within N adaptation episodes.

From a perspective of Bayesian RL (BRL; Ghavamzadeh
et al., 2015), recent meta-RL methods (Zintgraf et al., 2019)
utilize a Bayes-adaptive MDP (BAMDP; Duff, 2002) to for-
malize standard meta-RL. A BAMDP is defined as a tuple
M+ =

(
S+,A,R, H+, P+

0 , P
+, R+

)
, where S+ = S×B

is hyper-state space, B is task belief space, a task belief b
is the posterior over MDPs given the previous experience,
H+ = N×H is planning horizon, P+

0

(
s+0
)

is initial hyper-
state distribution, P+

(
s+t+1

∣∣s+t , at, rt ) is transition func-
tion, and R+

(
rt
∣∣s+t , at ) is reward function. The objective

of meta-RL agents is to find a meta-policy π+
(
at
∣∣s+t ) to

maximize the online policy evaluation JM+ (π+).
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2.2. Offline Meta-RL
In the offline meta-RL setting (Li et al., 2020b), a meta-
learner only has access to an offline multi-task dataset D+

and is not allowed to interact with the environment during
meta-training. Recent offline meta-RL methods (Dorfman
et al., 2021) always utilize task-dependent behavior policies
p(µ|κ), which represents the random variable of the behav-
ior policy µ(a|s) conditioned on the random variable of the
task κ. For brevity, we overload [µ] = p(µ|κ). Similar to
offline RL (Yin & Wang, 2021), we assume thatD+ consists
of multiple i.i.d. trajectories that are collected by execut-
ing task-dependent policies [µ] in M+. Denote the reward
and transition distribution of the task-dependent offline data
collection (Jin et al., 2021) by PM+,[µ]

(
rt, st+1

∣∣s+t , at ).
During meta-training, offline RL (Liu et al., 2020; Chen &
Jiang, 2019) approximates offline policy evaluation for a
batch-constrained policy π+ by sampling from an offline
dataset D+, which is denoted by JD+ (π+) and called Ap-
proximate Dynamic Programming (ADP; Bertsekas & Tsit-
siklis, 1995). Note that a batch-constrained policy π+ only
selects actions within the dataset D+ to avoid extrapolation
error (Fujimoto et al., 2019). In meta-testing, RL agents
perform online fast adaptation using a meta-trained policy
π+ in a new task κtest ∼ p(κ). The reward and transition
distribution of online data collection in M+ (Zintgraf et al.,
2019) is denoted by PM+,π+

(
rt, st+1

∣∣s+t , at ).
2.3. Offline Meta-Training with Task Embedding
In this paper, we follow the algorithmic framework of Task
Embeddings for Actor-Critic RL (PEARL; Rakelly et al.,
2019). The task identification κ is modeled by a latent task
embedding z, called “task hypothesis”. The offline meta-
training learns a context encoder q(z|c), a policy π(a|s, z),
and a value function Q(s, a, z) from a given dataset, where
c is the context information including states, actions, re-
wards, and next states. The encoder q(z|c) infers a task
belief about the latent task variable z based on the received
context. Denote the prior distribution with c = ∅ by q(z).
To distinguish different task identifications from an offline
dataset, recent offline meta-RL (Li et al., 2020b; Yuan &
Lu, 2022) apply the contrastive loss on the representation of
latent task embedding z. The policy π and value function Q
are trained with RL losses on the given z.

3. Theory: Transition-Reward Distribution
Shift in Offline Meta-RL

Recently, offline meta-RL (Dorfman et al., 2021) faces a
new challenge: transition-reward distribution shift between
offline datasets and online adaptation. We first formalize this
data distribution mismatch from the perspective of Bayesian
RL (BRL; Zintgraf et al., 2019) and prove its existence.
Our theory shows that the transition-reward distribution
shift may lead to unreliable policy evaluation and that in-

s0

rκ1 (a1)=1,rκi̸=1 (a1)=0

**...
//

rκv (av)=1,rκi̸=v (av)=0

44 s0

p(κi) =
1
v , p(µi|κi) = 1, and µi(ai|s0) = 1

Figure 2. A concrete example, which has v meta-RL tasks, one
state, v actions, v behavior policies, horizon H = 1 in an episode,
and v adaptation episodes, where v ≥ 3.

distribution online adaptation can provide consistent perfor-
mance guarantee. In addition, we prove that meta-policies
with Thompson sampling (Strens, 2000) can generate in-
distribution online adaptation episodes.

3.1. Transition-Reward Distribution Shift

We define the distributional shift as follows.

Definition 1 (Transition-Reward Distribution Shift). In
a BAMDP M+, for each task-dependent behavior policy
[µ] and batch-constrained meta-policy π+, the transition-
reward distribution shift is defined by that there exists a pair
of
(
s+t , at

)
with executing π+ in M+, s.t.,

PM+,[µ]

(
rt, st+1

∣∣s+t , at ) ̸= PM+,π+

(
rt, st+1

∣∣s+t , at ) ,
(1)

where PM+,[µ],PM+,π+ are the reward and transition dis-
tribution of offline data collection by [µ] and online data
collection by π+, respectively, whose formal definition are
deferred to Appendix A.1.4.

This definition utilizes the discrepancy between offline and
online data collection to characterize the joint distribution
gap of reward and transition. Note that in offline data collec-
tion PM+,[µ], the behavior policies p(µ|κ) can vary based
on task identification, whereas the online data collection
PM+,π+ is the expected reward and transition distribution
across the task distribution p(κ).

Theorem 1. There exists a BAMDP M+ with task-
dependent behavior policies [µ] such that, for any batch-
constrained meta-policy π+, the transition-reward distribu-
tion shift between PM+,[µ] and PM+,π+ occurs.

To prove the existence of distributional shift, we construct an
offline meta-RL setting shown in Figure 2, which has v meta-
RL tasks {κ1, . . . , κv}, v behavior policies {µ1, . . . , µv},
and v ≥ 3. The task distribution p(κ) is uniform, the be-
havior policy of task κi is µi, and each behavior policy µi
will perform ai. After data collection, RL agents will offline
meta-train policies on a given dataset D+ and fast adapt to
a meta-testing task κtest ∼ p(κ) within v online episodes.

In this example, for any action ai in s+0 , the offline data
collection PM+,[µ]

(
r = 1

∣∣s+0 , ai ) = 1 since expert task-
dependent behavior policies all collect data with reward 1.
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During online meta-testing, for any batch-constrained meta-
policy π+ selects an action ai in s+0 , the online data col-
lection PM+,π+

(
r = 1

∣∣s+0 , ai ) = 1
v because there is the

probability of 1
v to sample a meta-testing task κi, whose

reward function of ai is 1. Thus, PM+,[µ] ̸= PM+,π+ .

3.2. Data Distribution Matters for Online Adaptation

To investigate the impact of data distribution mismatch, we
analyze the gap of policy evaluation between offline dataset
JD+ and online adaptation JM+ in offline meta-RL.

Proposition 1. There exists a BAMDP M+ with task-
dependent behavior policies such that, for any batch-
constrained meta-policy π+, (i) RL agents will visit out-
of-distribution hyper-states and (ii) the gap between offline
policy evaluation JD+ (π+) and online policy evaluation
JM+ (π+) is at least H

+−1
2 .

Proposition 1 states that RL agents will go out of the dis-
tribution of the offline dataset D+ due to the shifts in the
reward and transition distribution. Thus, the offline policy
evaluation of π+ in meta-training cannot provide a refer-
ence for the online mest-testing. For example in Figure 2,
the agent will visit out-of-distribution belief states when
receiving reward 0 with probability 1− 1

v in s+0 . In addition,
the offline policy evaluation JD+ (π+) = H+ = v since
the dataset D+ only contains reward 1. For each π+, we
have JM+ (π+) ≤ H++1

2 and detailed proof is deferred
to Appendix A.2. Hence, the gap between JD+ (π+) and
JM+ (π+) is at least H

+−1
2 .

To address this inconsistency dilemma, we choose to trust
the offline dataset within few-shot online adaptation and
derive the following theorem.

Theorem 2. In a BAMDP M+, for each task-dependent
behavior policy [µ], denoting a transformed BAMDP M

+

by incorporating [µ] into the belief of M+, we have (i) for
feasible Bayesian belief updating, M

+
confines the agent

in the in-distribution hyper-states, (ii) for each π̄+, the dis-
tribution of P

M
+
,[µ]

and P
M

+
,π̄+ matches, and (iii) policy

evaluation JD+ (π̄+) and J
M

+ (π̄+) will be asymptotically
consistent, as the offline dataset grows.

To achieve in-distribution online adaptation, transformed
BAMDPs incorporate additional information about offline
data collection into the beliefs of BAMDPs. We prove that
transformed BAMDPs require RL agents to filter out out-of-
distribution episodes to support feasible belief updating of
behavior policies. In this way, the distribution of reward and
transition between offline and online data collection coin-
cides, which can provide the guarantee of consistent policy
evaluation between JD+ (π̄+) and J

M
+ (π̄+). Theorem 2

shows that we can meta-train policies with offline policy
evaluation and utilize in-distribution online adaptation to
guarantee the final performance in meta-testing.

3.3. Generating In-Distribution Online Adaptation

In this subsection, we will incorporate Thompson sam-
pling (Strens, 2000) into the meta-policies to generate in-
distribution episodes during online adaptation as follows.

Theorem 3. In a transformed BAMDP M
+

, for each batch-
constrained meta-policy with Thompson sampling π̄+,T in
a meta-testing task κtest ∼ p(κ), there exists a task hypoth-
esis from the current belief, executing π̄+,T in κtest can
generate in-distribution online adaptation episodes with
high probability, as the offline dataset grows.

Theorem 3 indicates that for each adaptation episode, we
can sample task hypotheses from the current task belief and
execute π̄+,T to interact with the environment until finding
an in-distribution episode. For example in Figure 2, after
offline meta-training, a meta-policy with Thompson sam-
pling π̄+,T will perform ai with a task hypothesis of κi and
expect to receive a reward 1. During online meta-testing,
κtest is drawn from p(κ) and the agent needs to infer the
task identification. To achieve in-distribution online adapta-
tion, π̄+,T will try various actions according to diverse task
hypotheses until sampling an in-distribution episode with a
reward 1. Updating the task belief with the in-distribution
episode, RL agents can infer and solve this task.

In contrast, when updating task belief using an out-of-
distribution episode with a reward 0, the posterior task be-
lief will be out of the offline dataset D+

. Note that offline
training paradigm can not well-optimize π̄+,T on out-of-
distribution states (Fujimoto et al., 2019) and policy π̄+,T

will fail in this case. Moreover, Thompson sampling is
very popular in context-based deep meta-RL (Rakelly et al.,
2019) and we will generalize these theoretical implications.

4. IDAQ: In-Distribution Online Adaptation
with Uncertainty Quantification

In our setting, offline meta-RL contains two phases: of-
fline meta-training and online adaptation. For offline meta-
training, we employ an off-the-shelf context-based algo-
rithm, e.g., FOCAL (Li et al., 2020b), which follows the
learning paradigm of latent task embedding (see Section
2.3). In this section, we will focus on investigating a practi-
cal scheme to address the major challenge of the transition-
reward distribution shift during online adaptation. Moti-
vated by our theory in Section 3, we aim to distinguish
whether an adaptation episode is in the distribution of the
offline dataset, and utilize meta-policies with Thompson
sampling (Strens, 2000) to generate in-distribution online
adaptation. Therefore, we will introduce a novel context-
based online adaptation algorithm, called In-Distribution
online Adaptation with uncertainty Quantification (IDAQ),
which infers in-distribution context for solving meta-testing
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tasks. The overall algorithm of IDAQ is illustrated in Al-
gorithm 1. IDAQ consists of two main components: (i) a
general in-distribution online adaptation framework, and
(ii) a plug-in uncertainty quantification function. We will
describe these components in detail as follows.

4.1. In-Distribution Online Adaptation Framework
As motivated by Theorem 3, our adaptation protocol adopts
the popular framework of Thompson sampling (Rakelly
et al., 2019) for online meta-testing. IDAQ will iteratively
update posterior task belief based on online interactions
with environment and execute the meta-policy with a sam-
pled “task hypothesis”. For in-distribution online adaptation,
IDAQ utilizes a given uncertainty quantification Q(τ) to em-
pirically measure the confidence that online experience {τi}
are in-distribution. Note that the context encoder q(z|c) (i.e.,
a task inference module) is meta-trained in the offline dataset
and cannot handle out-of-distribution adaptation (Mendonca
et al., 2020), where c is the episode-based context. To real-
ize reliable task belief updating, IDAQ needs to estimate a
reference threshold δ and defines the in-distribution context

cin = {τi |Q(τi) ≤ δ, ∀τi ∈ c} . (2)

In this way, IDAQ will perform a two-stage paradigm of
online adaptation: (i) a Reference Stage to estimate the
uncertainty threshold δ and (ii) an Iterative Updating Stage
to update the in-distribution context cin, posterior task belief
q(z|cin), and execution meta-policy π(a|s, z).

Reference Stage collects nr online adaptation episodes
{τi}nr

i=1 using the prior task distribution q(z) and meta-
policy π(a|s, z) in a meta-testing task κtest. IDAQ will cal-
culate the in-distribution confidence of adaptation episodes
{Q(τi)}nr

i=1 and estimate the reference threshold δ that is the
bottom k%-quantile of {Q(τi)}nr

i=1, where k is a hyperpa-
rameter to divide the range of uncertainty of in-distribution
episodes. Hence, IDAQ can derive the in-distribution con-
text cin and posterior task belief q(z|cin).

Iterative Updating Stage will update the posterior task
belief q(z|cin) in ni iterations. In each iteration, IDAQ col-
lects an online adaptation episode τj using the current task
belief q(z|cin) and meta-policy π(a|s, z) in κtest. When
the uncertainty of this episode Q(τj) is less than the ref-
erence threshold δ, IDAQ will update the in-distribution
context, i.e., cin ← cin∪{τj}, and derive the posterior task
belief q(z|cin). The final policy πout(a|s, z) is executed
with the total in-distribution context cin.

4.2. Uncertainty Quantification
Uncertainty quantification is a popular tool for empirically
measuring the confidence that data is in the distribution of
offline RL (Yu et al., 2020c) or noisy oracle (Ren et al.,
2022). In this subsection, we will analyze three practical un-
certainty quantifications to adapt IDAQ to complex domains:

Algorithm 1 IDAQ: In-Distribution online Adaptation with
uncertainty Quantification

1: Require: An offline dataset D+, a meta-testing task
κtest, the number of iterations ni, a context-based of-
fline meta-training algorithm A (i.e., FOCAL), and an
in-distribution uncertainty quantification Q

2: Offline meta-train a context encoder q(z|c) and a meta-
policy π(a|s, z) using an algorithm A in a dataset D+

{Offline meta-training}
3: Perform reference stage of online adaptation and es-

timate the in-distribution threshold δ using Q {Start
online meta-testing}

4: Derive the in-distribution context cin with Eq. (2) and
posterior task belief q(z|cin)

5: for t = 1 . . . ni do {Iterative updating stage}
6: Collect an online adaptation episode using the poste-

rior task belief q and meta-policy π in κtest
7: Update the in-distribution context cin using Q, δ and

derive the posterior task belief q(z|cin)
8: end for
9: Return: π, q(z|cin)

Prediction Error, Prediction Variance, and Return-based.
The empirical evaluation is deferred to Section 5.1.

To realize the uncertainty quantification of prediction error
and prediction variance, we adopt a model-based approach
to learn an ensemble of L reward and dynamics models
{rϕi

(s, a, z), pψi
(s, a, z)}Li=1 according to the latent task

embedding z. We parameterize them by {ϕi, ψi}Li=1 and
optimize {rϕi

, pψi
}Li=1 on the offline multi-task dataset D+

by minimizing the MSE loss function during meta-training.
Formal loss function is deferred to Appendix B.

Prediction Error quantifies the model error to estimate the
confidence that data is trained during offline meta-training.
This metric is also called “curiosity”, a popular intrinsic
reward in exploration of single-task RL (Pathak et al., 2017),
which encourages the agent to visit new areas. In offline
meta-RL, we utilize this quantification to filter out out-of-
distribution adaptation episodes and denote by

QPE(τi, z) =
1

HL

H−1∑
t=0

L∑
i=1

|rt − rϕi
(st, at, z)| (3)

+ ∥st+1 − pψi(st, at, z)∥2 ,

where z is the “task hypothesis” of the episode τi in IDAQ.
QPE averages model errors across timesteps and an ensem-
ble. The challenge of QPE is that the hyperparameter k
for the reference threshold δ will be sensitive for different
multi-task datasets since the model error of in-distribution
episodes can be various.

Prediction Variance captures the epistemic and aleatoric
uncertainty of the true models using a bootstrap ensemble
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(Yu et al., 2020c). This metric is popular to measure whether
data is in the dataset of offline single-task RL (Kidambi et al.,
2020). In offline meta-RL, we denote this quantification by

QPV (τi, z) =
1

H

H−1∑
t=0

max
i,j

∣∣rϕi(st, at, z)− rϕj (st, at, z)
∣∣

+
∥∥pψi(st, at, z)− pψj (st, at, z)

∥∥
2
, (4)

where z is the “task hypothesis” of τi. QPV averages the
ensemble discrepancy across timesteps. However, QPV
cannot handle cases with higher prediction error and lower
prediction variance. For example in Figure 2, the learned
reward model will deterministically output 1 for each action,
in which the prediction error is 1− 1

v with no variance.

Return-based uncertainty quantification is our newly de-
signed metric for offline meta-RL with medium or expert
datasets. To address the limitations of prediction error and
prediction variance, we utilize a bias of offline RL (Fujimoto
et al., 2019) that few-shot out-of-distribution episodes gener-
ated by an offline-learned meta-policy π usually have lower
returns since offline meta-training can not well-optimize
meta-policies on out-of-distribution states. Its contraposi-
tive statement is that executing π with higher returns has a
higher probability of being in-distribution and online policy
evaluation of π presents a good in-distribution confidence:

QRE ({τi}ne

i=1) = −
1

ne

ne∑
i=1

H−1∑
t=0

rit, (5)

where ne is the number of episodes generated by π to ap-
proximate the online policy evaluation. With the mild as-
sumption (i.e., the bias of offline RL above), we can prove
that return-based uncertainty quantification QRE can the-
oretically derive in-distribution contexts using Theorem 3.
The formal analysis is deferred to Appendix A.5. More-
over, in empirical, IDAQ can adopt a conservative (i.e.,
low) reference threshold δ to achieve in-distribution on-
line adaptation. In this case, IDAQ may neglect some in-
distribution episodes with lower returns. We will argue
that, in medium or expert datasets, our method can utilize
informative episodes with higher returns to perform task
inference. It is an interesting and exciting future direction
to differentiate in-distribution episodes with lower returns
in offline meta-RL with online adaptation.

5. Experiments
In this section, we first evaluate the three uncertainty quan-
tifications mentioned in Section 4.2 and empirically demon-
strate that the Return-based quantification works the best
on various task sets. Then we conduct large-scale exper-
iments on Meta-World ML1(Yu et al., 2020a), a popular
meta-RL benchmark that consists of 50 robot arm manip-
ulation task sets. Finally, we perform ablation studies to
analyze IDAQ’s sensitivity to hyper-parameter settings and

dataset qualities. Datasets are collected by script policies
that solve corresponding tasks. We compare against FOCAL
(Li et al., 2020b) and MACAW (Mitchell et al., 2021), as
well as their online adaptation variants. We also compare
against BOReL (Dorfman et al., 2021) . For a fair compari-
son, we evaluate a variant of BOReL that does not utilize
oracle reward functions, as introduced in the original pa-
per (Dorfman et al., 2021). FOCAL is built upon PEARL
(Rakelly et al., 2019) and uses contrastive losses to learn
context embeddings, while MACAW is a MAML-based
(Finn et al., 2017) algorithm and incorporates AWR (Peng
et al., 2019). Both FOCAL and MACAW are originally
proposed for the offline adaptation settings (i.e., with expert
context). For online adaptation, we use online experience
instead of expert contexts, and adopt the adaptation protocol
of PEARL and MAML, respectively. Evaluation results are
averaged over six random seeds, and variance is measured
by 95% bootstrapped confidence interval. Detailed hyper-
parameter settings are deferred to Appendix C. A didactic
example that empirically demonstrates the distributional
shift problem proposed in Section 3 is deferred to Appendix
D. An open-source implementation of our algorithm is avail-
able online1.

5.1. Evaluation of Uncertainty Quantifications

We evaluate the three uncertainty quantifications mentioned
in Section 4.2 on some representative tasks. As shown
in Table 1, the Return-based quantification significantly
outperforms the other two quantifications and the baseline
algorithm FOCAL (which uses all online experiences as
contexts). To further investigate how these quantifications
behave, we illustrate the uncertainty quantifications of vari-
ous episodes collected in the reference stage on one of the
meta-training tasks. As shown in Figure 3(a), the Prediction
Error quantification cannot find a good reference threshold
to distinguish in-distribution episodes. Figure 3(b) shows
that the Prediction Variance quantification fails and may
suffer from situations with higher prediction error and lower
prediction variance in the medium or expert datasets. Figure
3(c) illustrates the minimal distance between episodes col-
lected in the reference stage and the offline dataset on one
of the meta-training tasks. Results show that episodes with
higher returns are closer to the medium or expert datasets,
which implies that the Return-based quantification can cor-
rectly identify in-distribution episodes. Formal distance
function and additional visualizations of other tasks are
deferred to Appendix E and F.1, respectively.

5.2. Main Results

Following results in Section 5.1, we use the Return-based
quantification as the default quantification for IDAQ in
the following experiments. We evaluate on Meta-World

1https://github.com/NagisaZj/IDAQ_Public
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(a) (b) (c)

Figure 3. (a) and (b) illustrate the uncertainty quantifications of Prediction Error and Prediction Variance on episodes collected in
the reference stage on one of the meta-training tasks, respectively. Red shades indicate the density of episode returns in the dataset.
Both quantifications give low uncertainty measures on the out-of-distribution episodes in the bottom left corner, and fail to identify
in-distribution episodes. (c) illustrates the minimal distance between episodes collected in the reference stage and the offline dataset on
one of the meta-training tasks. The dotted green line illustrates the reference threshold found by each quantification. Results imply that
the Return-based quantification successfully identifies in-distribution episodes.

Table 1. Performance of the three uncertainty quantifications and FOCAL on example tasks, a bunch of Meta-World ML1 tasks with
normalized scores. “IDAQ+Return” is short for IDAQ with the Return-based quantification. For Meta-World tasks, “-V2” is omitted for
brevity. “Med” represents results trained on medium quality datasets.

Example Env IDAQ+Prediction Error IDAQ+Prediction Variance IDAQ+Return FOCAL

Push 0.31 ± 0.13 0.13 ± 0.07 0.55 ± 0.10 0.34 ± 0.14
Pick-Place 0.07 ± 0.05 0.04 ± 0.03 0.20 ± 0.03 0.07 ± 0.02
Soccer 0.18 ± 0.03 0.23 ± 0.03 0.44 ± 0.04 0.11 ± 0.03
Drawer-Close 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.02 0.96 ± 0.04
Reach 0.87 ± 0.01 0.49 ± 0.03 0.85 ± 0.03 0.62 ± 0.05

Sweep (Med) 0.15 ± 0.03 0.06 ± 0.02 0.59 ± 0.13 0.38 ± 0.13
Peg-Insert-Side (Med) 0.03 ± 0.02 0.03 ± 0.01 0.30 ± 0.14 0.10 ± 0.07

Point-Robot -5.70 ± 0.05 -21.29 ± 0.85 -5.10 ± 0.26 -15.38 ± 0.95

ML1(Yu et al., 2020a), a popular meta-RL benchmark that
consists of 50 robot arm manipulation task sets. Each task
set consists of 50 tasks with different goals. For each task set,
we use 40 tasks as meta-training tasks, and remain the other
10 tasks as meta-testing tasks. As shown in Table 2, IDAQ
significantly outperforms baselines under the online context
setting. With expert contexts, FOCAL and MACAW both
achieve reasonable performance. IDAQ achieves better or
comparable performance to baselines with expert contexts,
which implies that expert contexts may not be necessary for
offline meta-RL. Under online contexts, FOCAL fails due
to the data distribution mismatch between offline training
and online adaptation. MACAW has the ability of online
fine-tuning as it is based on MAML, but it also suffers from
the distribution mismatch problem, and online fine-tuning
can hardly improve its performance within a few adaptation
episodes. BOReL fails on most of the tasks, as BOReL
without oracle reward functions will also suffer from the
distribution mismatch problem, which is consistent with the
results in the original paper.

Table 3 shows algorithms’ performance on 20 representative

Meta-World ML1 task sets, as well a sparse-reward version
of Point-Robot and Cheetah-Vel, which are popular meta-
RL tasks (Li et al., 2020b). IDAQ achieves remarkable
performance in most tasks and may fail in some hard tasks
as offline meta-training is difficult. We also find that IDAQ
achieves better or comparable performance to baselines
with expert contexts on 33 out of the 50 task sets. Detailed
algorithm performance on all 50 tasks and comparison to
baselines with expert contexts are deferred to Appendix F.2.

5.3. Ablation Studies

We further perform ablation studies on dataset qualities. As
shown in Table 1, IDAQ with the Return-based quantifi-
cation achieves state-of-the-art performance on medium-
quality datasets. The other two quantifications perform
poorly, which may suggest that medium datasets are more
challenging to design a good uncertainty quantification and
the return-based metric can perform effectively in these set-
tings. Further ablation studies on hyper-parameter settings
are deferred to Appendix G. Results demonstrate that IDAQ
is generally robust to the choice of hyper-parameters.
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Table 2. Algorithms’ normalized scores averaged over 50 Meta-World ML1 task sets. Scores are normalized by expert-level policy return.

IDAQ FOCAL MACAW
FOCAL with

Expert Context
MACAW with
Expert Context BOReL

0.73 ± 0.07 0.53 ± 0.1 0.18 ± 0.1 0.67 ± 0.07 0.68 ± 0.07 0.04 ± 0.01

Table 3. Performance on example tasks, a bunch of Meta-World ML1 tasks with normalized scores.

Example Env IDAQ FOCAL MACAW BOReL

Coffee-Push 1.26 ± 0.13 0.66 ± 0.07 0.01 ± 0.01 0.00 ± 0.00
Faucet-Close 1.12 ± 0.01 1.06 ± 0.02 0.07 ± 0.01 0.13 ± 0.03
Faucet-Open 1.05 ± 0.02 1.01 ± 0.02 0.08 ± 0.04 0.12 ± 0.05
Door-Close 0.99 ± 0.00 0.97 ± 0.01 0.00 ± 0.00 0.37 ± 0.19
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 0.53 ± 0.50 0.00 ± 0.00
Door-Lock 0.97 ± 0.01 0.90 ± 0.02 0.25 ± 0.11 0.14 ± 0.00
Plate-Slide-Back 0.96 ± 0.02 0.58 ± 0.06 0.21 ± 0.17 0.01 ± 0.00
Dial-Turn 0.91 ± 0.05 0.84 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Handle-Press 0.88 ± 0.05 0.87 ± 0.02 0.28 ± 0.10 0.01 ± 0.00
Hammer 0.84 ± 0.06 0.59 ± 0.07 0.10 ± 0.01 0.09 ± 0.01
Button-Press 0.74 ± 0.08 0.68 ± 0.14 0.02 ± 0.01 0.01 ± 0.01
Push-Wall 0.71 ± 0.15 0.43 ± 0.06 0.23 ± 0.18 0.00 ± 0.00
Hand-Insert 0.63 ± 0.04 0.29 ± 0.07 0.02 ± 0.01 0.00 ± 0.00
Peg-Unplug-Side 0.56 ± 0.07 0.19 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Bin-Picking 0.53 ± 0.16 0.31 ± 0.21 0.66 ± 0.11 0.00 ± 0.00
Soccer 0.44 ± 0.04 0.11 ± 0.03 0.38 ± 0.31 0.04 ± 0.02
Coffee-Pull 0.40 ± 0.05 0.23 ± 0.04 0.19 ± 0.12 0.00 ± 0.00
Pick-Place-Wall 0.28 ± 0.12 0.09 ± 0.04 0.39 ± 0.25 0.00 ± 0.00
Pick-Out-Of-Hole 0.26 ± 0.25 0.16 ± 0.16 0.59 ± 0.06 0.00 ± 0.00
Handle-Pull-Side 0.14 ± 0.04 0.13 ± 0.09 0.00 ± 0.00 0.00 ± 0.00

Cheetah-Vel -171.5 ± 22.00 -287.7 ± 30.6 -234.0 ± 23.5 -301.4 ± 36.8
Point-Robot -5.10 ± 0.26 -15.38 ± 0.95 -14.61 ± 0.98 -17.28 ± 1.16
Point-Robot-Sparse 7.78 ± 0.64 0.83 ± 0.37 0.00 ± 0.00 0.00 ± 0.00

6. Related Work
In the literature, offline meta-RL methods utilize a context-
based (Rakelly et al., 2019) or gradient-based (Finn et al.,
2017) meta-RL framework to solve new tasks with few-shot
adaptation. They utilize the techniques of contrastive learn-
ing (Li et al., 2020b; Yuan & Lu, 2022; Li et al., 2020a),
more expressive power (Mitchell et al., 2021), or reward
relabeling (Dorfman et al., 2021; Pong et al., 2022) with
various popular offline single-task RL tricks, i.e., using KL
divergence (Wu et al., 2019; Peng et al., 2019; Nair et al.,
2020) or explicitly constraining the policy to be close to
the dataset (Fujimoto et al., 2019; Zhou et al., 2020). How-
ever, these methods always require extra information for
fast adaptation, such as offline context for testing tasks (Li
et al., 2020b; Mitchell et al., 2021; Yuan & Lu, 2022), oracle
reward functions (Dorfman et al., 2021), or available inter-
actions without reward supervision (Pong et al., 2022). To
address the challenge, we propose IDAQ, a context-based
online adaptation algorithm, to utilize an uncertainty quan-

tification for in-distribution adaptation without requiring
additional information.

Similar to single-task offline RL (Levine et al., 2020),
SMAC (Pong et al., 2022) finds the policy or state-action
distribution shift between learning policies and datasets in
offline meta-RL. In this paper, we characterize the transition-
reward distribution shift between offline datasets and online
adaptation (see Eq. (1)), which is fundamentally different
from state-action distribution shift. The reward-transition
distribution shift is induced by task-dependent data col-
lection and is unique in offline meta-RL. It specifies the
discrepancy of reward and transition distribution given the
state-action pairs. When using a behavior meta-policy to
collect an offline dataset, reward-transition distribution shift
will not appear but state-action or policy distribution shift
still exists. SMAC claims that the distribution shift in z-
space occurs due to a ”policy” mismatch between behav-
ior policies and online adaptation policy. In contrast, the
reward-transition distribution shift is a general challenge in
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the setting of offline meta-RL. This distribution shift chal-
lenge occurs in any offline meta-RL algorithms, including
gradient-based algorithms (Finn et al., 2017), and is beyond
the z distribution shift tailored for context-based algorithms
(Rakelly et al., 2019).

BOReL (Dorfman et al., 2021) focuses on MDP ambiguity
for task inference. MDP ambiguity and transition-reward
distribution shift are two orthogonal challenges in offline
meta-RL with task-dependent behavior policies. MDP am-
biguity arises from offline datasets with task-dependent data
collection, where it may be difficult to differentiate between
different MDPs due to narrow sub-datasets of various tasks.
On the other hand, the reward-transition distribution shift
studies the discrepancy of reward and transition distributions
between task-dependent offline dataset and online adapta-
tion. Our work leverages off-the-shelf context-based offline
meta-training algorithms, e.g., FOCAL (Li et al., 2020b), for
solving the MDP ambiguity problem during offline training,
and proposes IDAQ to tackle the reward-transition distribu-
tion shift during online adaptation.

PEARL-based online adaptation (Rakelly et al., 2019) may
generate out-of-distribution episodes (see Figure 1 and Sec-
tion 3). Meta-policies with Thompson sampling can gen-
erate in-distribution episodes, but the episodes generated
by meta-policies with Thompson sampling are not all in-
distribution. This is the motivation that we propose our
method, which filters out out-of-distribution episodes to
support in-distribution online adaptation. Moreover, IDAQ
utilizes an exploration method (i.e., Thompson sampling
(Strens, 2000)) for in-distribution online adaptation, which
is supported by Theorem 3. Thompson sampling is a pop-
ular approach for temporally-extended exploration in the
literature of meta-RL (Rakelly et al., 2019).

7. Conclusion
This paper formalizes the transition-reward distribution
shift in offline meta-RL and introduces IDAQ, a novel in-
distribution online adaptation approach. We find that IDAQ
with a return-based uncertainty quantification performs ef-
fectively in medium or expert datasets. Experiments show
that IDAQ can conduct accurate task inference and achieve
state-of-the-art performance on Meta-World ML1 bench-
mark with 50 tasks. IDAQ also performs better or compa-
rably than offline adaptation baselines with expert context,
suggesting that offline context may not be necessary for the
testing environments. One limitation of the greedy quan-
tification is that it may not utilize in-distribution episodes
with lower returns for random datasets and requires more
adaptation episodes to sample in-distribution “task hypothe-
ses”. Two interesting future directions are to design a more
accurate uncertainty quantification and to extend IDAQ to
gradient-based in-distribution online adaptation algorithms.
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Szepesvári, C. Lecture 17: Batch rl: Introduction discussion.
In CMPUT 653: Theoretical Foundations of Reinforce-
ment Learning, University of Alberta. 2022. OpenCours-
eLecture.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Yin, M. and Wang, Y.-X. Towards instance-optimal offline
reinforcement learning with pessimism. Advances in
neural information processing systems, 34, 2021.

Yin, M., Bai, Y., and Wang, Y.-X. Near-optimal provable
uniform convergence in offline policy evaluation for re-
inforcement learning. arXiv preprint arXiv:2007.03760,
2020.

Yin, M., Bai, Y., and Wang, Y.-X. Near-optimal offline
reinforcement learning via double variance reduction.
Advances in neural information processing systems, 34,
2021.

Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan,
V., and Darrell, T. Bdd100k: A diverse driving video
database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687, 2(5):6, 2018.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on Robot Learning, pp. 1094–1100. PMLR,
2020a.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020b.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020c.

Yuan, H. and Lu, Z. Robust task representations for of-
fline meta-reinforcement learning via contrastive learning.
In International Conference on Machine Learning, pp.
25747–25759. PMLR, 2022.

Zhang, J., Wang, J., Hu, H., Chen, T., Chen, Y., Fan, C., and
Zhang, C. Metacure: Meta reinforcement learning with
empowerment-driven exploration. In International Con-
ference on Machine Learning, pp. 12600–12610. PMLR,
2021.

Zhou, W., Bajracharya, S., and Held, D. Plas: Latent action
space for offline reinforcement learning. arXiv preprint
arXiv:2011.07213, 2020.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method
for bayes-adaptive deep rl via meta-learning. In Interna-
tional Conference on Learning Representations, 2019.

11



Offline Meta Reinforcement Learning with In-Distribution Online Adaptation

A. Theory
Our theory is the first to formalize the offline meta-RL with online adaptation using task-dependent behavior policies.
We adopt the perspective of Bayesian RL to formalize task distribution, i.e., Bayes-Adaptive MDP (BAMDP) (Zintgraf
et al., 2019), which is a popular theoretical framework for meta-RL. In this paper, we incorporate offline datasets with
task-dependent behavior policies into BAMDPs and present a unique challenge: reward-transition distributional shift, which
differs from state-action distributional shift in SMAC and single-task offline RL (Levine et al., 2020). The consistency
between offline and online policy evaluation is a very important criterion to measure the efficiency of algorithms in offline RL
(Levine et al., 2020). We find that filtering out out-of-distribution episodes in online adaptation can ensure the consistency
of offline and online policy evaluation. Moreover, some insights are general for meta-RL. For example, Lemma 10 shows
that, for a meta-testing task drawn from arbitrary task distribution, the distance from the closest meta-training task will
asymptotically approach zero with high probability, as the number of sampled meta-training tasks grows.

A.1. Background

Throughout this paper, for a given non-negative integer N ∈ Z+, we use [N ] to denote the set {0, 1, . . . , N − 1}. For any
object that is a function of/distribution over S, S × A, S × A × S, or S × A ×R, we will treat it as a vector whenever
convenient.

A.1.1. FINITE-HORIZON SINGLE-TASK RL

In single-task RL, an agent interacts with a Markov Decision Process (MDP) to maximize its cumulative reward (Sutton
& Barto, 2018). A finite-horizon MDP is defined as a tuple M = (S,A,R, H, P,R) (Zintgraf et al., 2019; Du et al.,
2019), where S is the state space, A is the action space, R is the reward space, H ∈ Z+ is the planning horizon,
P : S ×A → ∆(S) is the transition function which takes a state-action pair and returns a distribution over states, and R :
S ×A → ∆(R) is the reward distribution. In particular, we consider finite state, action, and reward spaces in the theoretical
analysis, i.e., |S| < ∞, |A| < ∞, |R| < ∞. Without loss of generality, we assume a fixed initial state s02. A policy
π : S → ∆(A) prescribes a distribution over actions for each state. The policy π induces a (random) H-horizon trajectory
τπH = (s0, a0, r0, s1, a1, . . . , sH−1, aH−1, rH−1), where a0 ∼ π(s0), r0 ∼ R(s0, a0), s1 ∼ P (s0, a0), a1 ∼ π(s1), etc. To
streamline our analysis, for each h ∈ [H], we use Sh ⊆ S to denote the set of states at h-th timestep, and we assume Sh
do not intersect with each other. To simplify notation, we assume the transition from any state in SH−1 and any action to
the initial state s0, i.e., ∀s ∈ SH−1, a ∈ A, we have P (s0|s, a) = 13. We also assume rt ∈ [0, 1],∀t ∈ [H] almost surely.
Denote the probability of τH :

p (τπH) =

 ∏
t∈[H]

π(at|st) ·R(rt|st, at)

 ∏
t∈[H−1]

P (st+1|st, at). (6)

For any policy π, we define a value function Vπ : S → R as: ∀h ∈ [H],∀s ∈ Sh,

Vπ(s) = Esh=s,at∼π(·|st),rt∼R(·|st,at),st+1∼P (·|st,at)

[
H−1∑
t=h

rt

]
(7)

=



∑
a∈A

π(a|s) · Er∼R(·|s,a) [r] , if h = H − 1,

∑
a∈A

π(a|s)

Er∼R(·|s,a) [r] +
∑

s′∈Sh+1

P (s′|s, a)Vπ(s′)

 , otherwise,

2Some papers assume the initial state is sampled from a distribution P1. Note this is equivalent to assuming a fixed initial state s0, by
setting P (s0, a) = P1 for all a ∈ A and now our state s1 is equivalent to the initial state in their assumption.

3The transition from the state in SH−1 does not affect learning in the finite-horizon MDP M .
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and a visitation distribution of π is defined by ρπ(·) : ∆ (S) which is ∀h ∈ [H],∀s ∈ Sh,

ρπ(s) =



1

H
, if h = 0 and s = s0,∑

s̃∈Sh−1,ã∈A
ρπ(s̃) · π(ã|s̃) · P (s|s̃, ã), if h > 0,

0, otherwise,

(8)

and ∀s ∈ S, a ∈ A, r ∈ R,

ρπ(s, a) = ρπ(s) · π(a|s) and ρπ(s, a, r) = ρπ(s) · π(a|s) ·R(r|s, a). (9)

The expected total reward induced by policy π, i.e., the policy evaluation of π, is defined by

JM (π) = Vπ (s0) = H
∑

s∈S,a∈A
ρπ(s, a) · Er∼R(·|s,a) [r] . (10)

The goal of RL is to find a policy π that maximizes its expected return J (π).

A.1.2. OFFLINE FINITE-HORIZON SINGLE-TASK RL

We consider the offline finite-horizon single-task RL setting, that is, a learner only has access to a dataset D consisting of K
trajectories

{(
skt , a

k
t , r

k
t

)}k∈[K]

t∈[H]
(i.e., |D| = KH tuples) and is not allowed to interact with the environment for additional

online explorations. The data can be collected through multi-source logging policies and denote the unknown behavior
policy µ. Similar with related work (Ren et al., 2021; Yin et al., 2020; Yin & Wang, 2021; Yin et al., 2021; Shi et al., 2022),
we assume that D is collected through interacting K i.i.d. episodes using policy µ in M . Define the reward and transition
distribution of data collection with µ in M by PM (Jin et al., 2021), i.e., ∀t ∈ [H] in each episode,

PM (rt, st+1 |st, at ) = RM (rt |st, at ) · PM (st+1 |st, at ) , (11)

where the action at is drawn from a behavior policy µ. Denote a dataset collected following the i.i.d. data collecting process,
i.e., D ∼ (PM , µ) is an i.i.d. dataset. Note that the offline dataset D can be narrowly collected by some behavior policy µ
and a large amount of state-action pairs are not contained inD. These unseen state-action pairs will be erroneously estimated
to have unrealistic values, called a phenomenon extrapolation error (Fujimoto et al., 2019). To overcome extrapolation error
in policy learning of finite MDPs, Fujimoto et al. (Fujimoto et al., 2019) introduces batch-constrained RL, which restricts
the action space in order to force policy selection of an agent with respect to a subset of the given data. Thus, define a
batch-constrained policy set is

ΠD = {π |π(a|s) = 0 whenever (s, a) ̸∈ D} , (12)

where denoting (s, a) ∈ D if there exists a trajectory containing (s, a) in the datasetD, and similarly for s ∈ D, (s, a, r) ∈ D,
or (s, a, r, s′) ∈ D. The batch-constrained policy set ΠD consists of the policies that for any state s observed in the dataset
D, the agent will not select an action outside of the dataset. Thus, for any batch-constrained policy π ∈ ΠD, define the
approximate value function V D

π : S → R estimated from D (Fujimoto et al., 2019; Liu et al., 2020) as: ∀h ∈ [H],∀s ∈ Sh,

V D
π (s) = Esh=s,at∼π(·|st),(st,at,rt,st+1)∼D

[
H−1∑
t=h

rt

]
(13)

=


∑
a∈A

π(a|s)E(s,a,r)∈D [r] , if h = H − 1,∑
a∈A

π(a|s)E(s,a,r,s′)∈D
[
r + V D

π (s′)
]
, otherwise,

(14)

which is called Approximate Dynamic Programming (ADP) (Bertsekas & Tsitsiklis, 1995) and such methods take sampling
data as input and approximate the value-function (Liu et al., 2020; Chen & Jiang, 2019). In addition, define the approximate
policy evaluation of π estimated from D as

JD(π) = V D
π (s0). (15)
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The offline RL literature (Fujimoto et al., 2019; Liu et al., 2020; Chen & Jiang, 2019; Kumar et al., 2019; 2020) aims to
utilize approximate expected total reward JD(π) with various conservatism regularizations (i.e., policy constraints, policy
penalty, uncertainty penalty, etc.) (Levine et al., 2020) to find a good policy within a batch-constrained policy set ΠD.

Similar to offline finite-horizon single-task RL theory (Ren et al., 2021; Yin et al., 2020; Yin & Wang, 2021; Yin et al., 2021;
Shi et al., 2022), define

dMµ = min {ρµ(s, a) |ρµ(s, a) > 0,∀s ∈ S, a ∈ A} , (16)

which is the minimal visitation state-action distribution induced by the behavior policy µ in M and is an intrinsic quantity
required by theoretical offline learning (Yin et al., 2020). Note that, different from recent offline episodic RL theory (Ren
et al., 2021; Yin et al., 2020; Yin & Wang, 2021; Yin et al., 2021; Shi et al., 2022), we do not assume any weak or uniform
coverage assumption in the dataset because we focus on the policy evaluation of all batch-constrained policies in ΠD rather
than the optimal policy in the MDP M .

A.1.3. STANDARD META-RL

The goal of meta-RL (Finn et al., 2017; Rakelly et al., 2019) is to train a meta-policy that can quickly adapt to new tasks
using N adaptation episodes. The standard meta-RL setting deals with a distribution p(κ) over MDPs, in which each
task κi sampled from p(κ) presents a finite-horizon MDP (Zintgraf et al., 2019; Du et al., 2019). κi is defined by a tuple
(S,A,R, H, Pκi , Rκi), including state space S, action space A, reward spaceR, planning horizon H , transition function
Pκi(s′|s, a), and reward function Rκi(r|s, a). Denote K is the space of task κi. In this paper, we assume dynamics function
P and reward function R may vary across tasks and share a common structure. The meta-RL algorithms repeatedly sample
batches of tasks to train a meta-policy. In the meta-testing, agents aim to rapidly adapt a good policy for new tasks drawn
from p(κ).

POMDPs. We can formalize the meta-RL with few-shot adaptation as a specific finite-horizon Partially Observable
Markov Decision Process (POMDP), which is defined by a tuple M̂ =

(
Ŝ,A,R, Ω, Ĥ, P̂ , P̂0, O, R̂

)
, where Ŝ = S × K

is the state space, A andR are the same action and reward spaces as the finite-horizon MDP M defined in Appendix A.1.1,
respectively, Ω = S is the observation space, Ĥ = N ×H is the planning horizon which represents N adaptation episodes
for a single meta-RL MDP κi, as discussed in Zintgraf et al. (Zintgraf et al., 2019), P̂ : Ŝ × A → ∆

(
Ŝ
)

is the transition

function: ∀ŝ, ŝ′ ∈ Ŝ, a ∈ A, where denoting ŝ = (s, κi) and ŝ′ = (s′, κj),

P̂ (ŝ′|ŝ, a) =

{
Pκi(s′|s, a), if κi = κj ,

0, otherwise,
(17)

P̂0 : ∆
(
Ŝ
)

is the initial state distribution: ∀ŝ = (s, κi) ∈ Ŝ,

P̂0 (ŝ) =

{
p(κi), if s = s0,

0, otherwise,
(18)

O : Ŝ → ∆(Ω) is the observation probability distribution conditioned on a state: ∀ŝ = (s, κi) ∈ Ŝ, o ∈ Ω,

O (o|ŝ) =

{
1, if o = s,

0, otherwise,
(19)

and R̂ : Ŝ × A → ∆(R) is the reward distribution: ∀ŝ = (s, κi) ∈ Ŝ, a ∈ A, r ∈ R,

R̂ (r|ŝ, a) = Rκi(r|s, a). (20)

Denote context ct = (at, rt, st+1) as an experience collected at timestep t, and c:t = ⟨s0, c0, . . . , ct−1⟩4∈ Ct ≡ Ω ×
(A×R×Ω)

t indicates all experiences collected during t timesteps. Note that t may be larger than H , and when it is the

4For clarity, we denote cκi
:0 = s0.
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case, c:t represents experiences collected across episodes in the single meta-RL MDP κi. Denote the entire context space
C =

⋃Ĥ−1
t=0 Ct and a meta-policy π̂ : C → ∆(A) (Wang et al., 2016; Duan et al., 2016) prescribes a distribution over actions

for each context. The goal of meta-RL is to find a meta-policy on history contexts π̂ that maximizes the expected return
within N adaptation episodes:

J
M̂
(π̂) = Eŝ0∼P0,ot∼O(·|st),at∼π̂(·|c:t),rt∼R̂(·|st,at),ŝt+1∼P̂ (·|ŝt,at)

Ĥ−1∑
t=0

rt

 (21)

= Eκi∼p(κ)

N−1∑
j=0

Eat∼π̂(·|c:(jH+t) ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] . (22)

BAMDPs. A Markovian belief state allows a POMDP to be formulated as a Markov decision process where every belief
is a state (Cassandra et al., 1994). We can transform the finite-horizon POMDP M̂ to a finite-horizon belief MDP, which
is called Bayes-Adaptive MDP (BAMDP) in the literature (Zintgraf et al., 2019; Ghavamzadeh et al., 2015; Dorfman
et al., 2021) and is defined by a tuple M+ =

(
S+,A,R, H+, P+, P+

0 , R
+
)
, S+ = S × B is the hyper-state space, where

B = {p(κ|c) |c ∈ C } is the set of task beliefs over the meta-RL MDPs, the prior

bκ0 = p (κ|c:0) = p(κ) (23)

is the meta-RL MDP distribution, and ∀t ∈
[
Ĥ − 1

]
, ∀c:(t+1) ∈ C, denoting bκt = p (κ|c:t) and

bκt+1 = p
(
κ|c:(t+1)

)
= p

(
p (κ|c:t) |c:(t+1)

)
= p (p (κ|c:t) |st, ct) = p (bκt |st, ct) (24)

∝ p (bκt , ct|st) = p (ct|st, bκt ) p (bκt |st) = p (ct|st, bκt ) bκt (25)
= Eκi∼bκt [R

κi(rt|st, at) · Pκi(st+1|st, at)] · bκt (26)

is the posterior over the MDPs given the context c:(t+1),A,R are the same action space and reward space as the finite-horizon
POMDP M̂ , respectively, H+ = N ×H is the planning horizon across adaptation episodes, P+ : S+ ×A×R → ∆(S+)
is the transition function: ∀s+t , s+t+1 ∈ S+, at ∈ A, rt ∈ R, where denoting s+t = (st, b

κ
t ) and s+t+1 =

(
st+1, b̃

κ
t+1

)
,

P+
(
s+t+1

∣∣s+t , at, rt ) = P+
(
st+1, b̃

κ
t+1 |st, bκt , at, rt

)
(27)

= P+ (st+1 |st, bκt , at )P+
(
b̃κt+1 |st, bκt , ct

)
(28)

= Eκi∼bκt [P
κi(st+1|st, at)] · 1

[
b̃κt+1 = p(bκt |st, ct)

]
, (29)

P+
0 : ∆ (S+) is the initial hyper-state distribution, i.e., a deterministic initial hyper-state is

s+0 = (s0, b
κ
0 ) = (s0, p(κ)) ∈ S+, (30)

and R+ : S+ ×A → ∆(R) is the reward distribution: ∀s+ = (s, bκ) ∈ S+, a ∈ A, r ∈ R,

R+
(
r|s+, a

)
= R+ (r|s, bκ, a) = Eκi∼bκ [R

κi(r|s, a)] . (31)

In a BAMDP, the belief is over the transition and reward functions, which are constant for a given task. A meta-policy on
BAMDP π+ : S+ → ∆(A) prescribes a distribution over actions for each hyper-state. The agent’s objective is now to find
a meta-policy on hyper-states π+ that maximizes the expected return in the BAMDP,

JM+

(
π+
)
= Eat∼π+(·|s+t ),rt∼R+(·|s+t ,at ),s+t+1∼P+(·|s+t ,at )

Ĥ−1∑
t=0

rt

 (32)

= Eκi∼p(κ)

N−1∑
j=0

Eat∼π+(·|s+jH+t ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] . (33)
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For any meta-policy on hyper-states π+, denote the corresponding meta-policy on history contexts f̂π+ : C → ∆(A), i.e.,
∀t ∈

[
Ĥ − 1

]
,∀c:t ∈ Ct, s.t., f̂π+ (·|c:t) = π+

(
·|s+t

)
, where s+t = (st, b

κ
t ) = (st, p(κ|c:t)), and we have

J
M̂

(
f̂π+

)
= Eκi∼p(κ)

N−1∑
j=0

Eat∼f̂π+(·|c:(jH+t) ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] (34)

= JM+

(
π+
)
. (35)

The belief MDP is such that an optimal policy for it, coupled with the correct state estimator, will give rise to optimal
behavior for the original POMDP (Astrom, 1965; Smallwood & Sondik, 1973; Kaelbling et al., 1998), which indicates that

JM+

(
π+,∗) = J

M̂

(
f̂π+,∗

)
= J

M̂
(π̂∗) , (36)

where π+,∗ and π̂∗ are the optimal policies for BAMDP M+ and POMDP M̂ , respectively. Thus, the agent can find a policy
π+ to maximize the expected return in the BAMDP M+ to address the POMDP M̂ by the transformed policy f̂π+ .

A.1.4. OFFLINE META-RL

In the offline meta-RL setting, a meta-learner only has access to an offline multi-task dataset D+ and is not allowed to
interact with the environment during meta-training (Li et al., 2020b). Recent offline meta-RL methods (Dorfman et al., 2021)
always utilize task-dependent behavior policies p(µ|κ), which represents the random variable of the behavior policy µ(a|s)
conditioned on the random variable of the task κ. For brevity, we overload [µ] = p(µ|κ). Similar to related work on offline
RL (Shi et al., 2022), we assume that D+ is collected through interacting multiple i.i.d. trajectories using task-dependent
policies [µ] in M+. Define the reward and transition distribution of the task-dependent data collection by PM+,[µ] (Jin et al.,
2021), i.e., for each step t in a trajectory,

PM+,[µ]

(
rt, st+1

∣∣s+t , at ) ∝ Eκi∼p(κ),µi∼p(µ|κi)

[
Pκi (rt, st+1 |st, at ) · pM+

(
s+t |κi, µi

)]
, (37)

where Pκi is the reward and transition distribution of κi defined in Eq. (11), and pM+

(
s+t |κi, µi

)
denotes the probability

of s+t when executing µi in a task κi, i.e.,

pM+

(
s+t |κi, µi

)
=
∑
c:t∈Ct

pµi
κi
(c:t) · 1 [bκt = p(κ|c:t)] , (38)

where the state in c:t is st and pµi
κi
(c:t) is defined in Eq. (6). Similar to offline single-task RL (see Appendix A.1.2), offline

dataset D+ can be narrow and a large amount of state-action pairs are not contained. These unseen state-action pairs will
be erroneously estimated to have unrealistic values, called a phenomenon extrapolation error (Fujimoto et al., 2019). To
overcome extrapolation error in offline RL, related works (Fujimoto et al., 2019) introduce batch-constrained RL, which
restricts the action space in order to force policy selection of an agent with respect to a given dataset. Define a policy π+

to be batch-constrained by D+ if π+ (a |s+ ) = 0 whenever a tuple (s+, a) is not contained in D+. Offline RL (Liu et al.,
2020; Chen & Jiang, 2019) approximates policy evaluation for a batch-constrained policy π+ by sampling from an offline
dataset D+, which is denoted by JD+ (π+) and called Approximate Dynamic Programming (ADP; Bertsekas & Tsitsiklis,
1995). During meta-testing, RL agents perform online adaptation using a meta-policy π+ in new tasks drawn from meta-RL
task distribution. The reward and transition distribution of data collection with π+ in M+ during adaptation is defined by

PM+,π+

(
rt, st+1

∣∣s+t , at ) = R+
(
rt
∣∣s+t , at ) · P+

(
st+1

∣∣s+t , at ) , (39)

where P+
(
st+1

∣∣s+t , at ) is the marginal transition functions of M+, i.e.,

P+
(
st+1

∣∣s+t , at ) = Eκi∼bκt [P
κi (st+1 |st, at )] . (40)
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A.2. Main Results in Section 3.1

Definition 1 (Transition-Reward Distribution Shift). In a BAMDP M+, for each task-dependent behavior policy [µ] and
batch-constrained meta-policy π+, the transition-reward distribution shift is defined by that there exists a pair of

(
s+t , at

)
with executing π+ in M+, s.t.,

PM+,[µ]

(
rt, st+1

∣∣s+t , at ) ̸= PM+,π+

(
rt, st+1

∣∣s+t , at ) , (1)
where PM+,[µ],PM+,π+ are the reward and transition distribution of offline data collection by [µ] and online data collection
by π+, respectively, whose formal definition are deferred to Appendix A.1.4.

This definition utilizes the discrepancy between offline and online data collection to characterize the joint distribution gap
of reward and transition. Note that in offline data collection PM+,[µ], the behavior policies p(µ|κ) can vary based on task
identification, whereas the online data collection PM+,π+ is the expected reward and transition distribution across the task
distribution p(κ). Formally, we use pπ

+

M+

(
s+t , at

)
> 0 to present that

(
s+t , at

)
can be reached by π+ in M+, where

pπ
+

M+

(
s+t , at

)
= pπ

+

M+(s
+
t ) · π+

(
at
∣∣s+t ) , (41)

and pπ
+

M+(s
+
t ) is defined in Eq. (6). The data distribution induced by π+ and [µ] mismatches when the reward and transition

distribution of π+ and [µ] differs in a tuple
(
s+t , at

)
, in which the agent can reach this tuple by executing π+ in M+, i.e.,

pπ
+

M+

(
s+t , at

)
> 0. Note that if π+ can reach a tuple

(
s+t , at

)
, this tuple is guaranteed to be contained in the offline dataset,

i.e., p[µ]M+

(
s+t , at

)
> 0, because a batch-constrained policy π+ will not select an action outside of the dataset collected by

[µ], as introduced in Section 2.2.

s0

rκ1 (a1)=1,rκi̸=1 (a1)=0

**...
//

rκv (av)=1,rκi̸=v (av)=0

44 s0

p(κi) =
1
v , p(µi|κi) = 1, and µi(ai|s0) = 1

Figure 4. A concrete example, which has v meta-RL tasks, one state, v actions, v behavior policies, horizon H = 1 in a episode, and v
adaptation episodes, where v ≥ 3.

Theorem 1. There exists a BAMDP M+ with task-dependent behavior policies [µ] such that, for any batch-constrained
meta-policy π+, the transition-reward distribution shift between PM+,[µ] and PM+,π+ occurs.

Proof. To serve a concrete example, we construct an offline meta-RL setting shown in Figure 4. In this example, there
are v meta-RL tasks K = {κ1, . . . , κv} and v behavior policies {µ1, . . . , µv}, where v ≥ 3. Each task κi has one state
S = {s0}, 2v actions A = {a1, . . . , av}, and horizon in an episode H = 1. For each task κi, RL agents can receive
reward 1 performing action ai. During adaptation, the RL agent can interact with the environment within v episodes. The
task distribution is uniform, the behavior policy of task κi is µi, and each behavior policy µi will perform ai. When a
batch-constrained meta-policy π+ selects an action ã in the initial state s+0 , we find that

PM+,[µ]

(
r = 1

∣∣s+0 , ã) = 1 ̸= PM+,π+

(
r = 1

∣∣s+0 , ã) = 1

v
, (42)

in which there is the probability of 1
v to sample a corresponding testing task, whose reward function of ã is 1, whereas the

reward in the offline dataset collected by [µ] is all 1.

A.3. Main Results in Section 3.2

A.3.1. OUT-OF-DISTRIBUTION ANALYSES

Proposition 1. There exists a BAMDP M+ with task-dependent behavior policies such that, for any batch-constrained
meta-policy π+, (i) RL agents will visit out-of-distribution hyper-states and (ii) the gap between offline policy evaluation
JD+ (π+) and online policy evaluation JM+ (π+) is at least H

+−1
2 .
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Proof. Part (i) In the example shown in Figure 4, an offline multi-task dataset D+ is drawn from the task-dependent data
collection PM+,[µ]. Since the reward of D+ is all 1, the task beliefs in D+ have two types: (i) all task possible s+0 and (ii)
determining task i with receiving reward 1 in action ai. For any batch-constrained meta-policy π+ selecting an action ãj on
s+0 during meta-testing, there has probability 1 − 1

v to receive reward 0 and the task belief will become “excluding task
j”, which is not contained in D+ with v ≥ 3. For any δ ∈ (0, 1], let v > 1

δ , with probability 1 − δ, the agent will visit
out-of-distribution hyper-states during adaptation.

Part (ii) In Figure 4, an offline dataset D+ only contains reward 1, thus for each batch-constrained meta-policy π+, the
offline evaluation of π+ in D+ is JD+ (π+) = H+ = vH . The optimal meta-policy π+,∗ in this example is to enumerate
a1, . . . , av until the task identification is inferred from an action with a reward of 1. A meta-policy π+,∗ needs to explore in
the testing environments and its online policy evaluation is

JM+

(
π+,∗) = N−1∑

k=0

N − k
v − k

k−1∏
j=0

(
1− 1

v − j

)
(43)

=

N−1∑
k=0

k−1∏
j=0

v − j − 1

v − j
(44)

=

N−1∑
k=0

v − k
v

= N − N(N − 1)

2v
(45)

=
v + 1

2
=
H+ + 1

2
, (46)

where N = v is the number of adaptation episodes. Thus, the gap of policy evaluation of π+ between offline meta-training
and online adaptation is ∣∣JM+

(
π+
)
− JD+

(
π+
)∣∣ ≥ JD+

(
π+
)
− JM+

(
π+,∗) = H+ − 1

2
. (47)

Proposition 1 states that RL agents will go out of the distribution of the offline dataset D+ due to shifts in the reward and
transition distribution. Thus, the offline policy evaluation of π+ in meta-training cannot provide a reference for the online
meta-testing.

A.3.2. IN-DISTRIBUTION ANALYSES

Definition 2 (Transformed BAMDPs). A transformed BAMDP is defined as a tuple M
+
=
(
S+,A,R, H+, P

+
, P

+

0 , R
+
)

,

where S+ = S × B is the hyper-state space, B is the space of overall beliefs over meta-RL MDPs with behavior policies,
A,R, H+ are the same action space, reward space, and planning horizon as the original BAMDP M+, respectively, P

+

0 is
the initial hyper-state distribution presenting joint distribution of task and behavior policies p(κ, µ) = p(κ)p(µ|κ), and
P

+
, R

+
are the transition and reward functions. The goal of meta-RL agents is to find a meta-policy π̄+

(
at
∣∣s̄+t ) that

maximizes online policy evaluation J
M

+ (π̄+). Denote the reward and transition distribution of the task-dependent data

collection in a transformed BAMDP M
+

by P
M

+
,[µ]

, as defined in Eq. (37). Denote the offline multi-task dataset collected

by task-dependent data collection P
M

+
,[µ]

by D+
.

More specifically, a finite-horizon transformed BAMDP is defined by a tuple M
+

=
(
S+,A,R, H+, P

+
, P

+

0 , R
+
)

,

S+ = S × B is the hyper-state space, where B = {p(κ, µ|c) |c ∈ C } is the space of beliefs over meta-RL MDPs with
behavior policies, the prior

bκ,µ0 = p (κ, µ |c:0 ) = p(κ, µ) (48)

is the distribution of meta-RL MDPs with behavior policies, and ∀t ∈
[
Ĥ − 1

]
, ∀c:(t+1) ∈ C, denoting bκ,µt = p (κ, µ|c:t)

and

bκ,µt+1 = p
(
κ, µ

∣∣c:(t+1)

)
= p

(
p (κ, µ|c:t)

∣∣c:(t+1)

)
= p (p (κ, µ|c:t) |st, ct) = p (bκ,µt | st, ct) (49)
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∝ p (bκ,µt , ct| st) = p (ct |st, bκ,µt ) p (bκ,µt | st) = p (ct |st, bκ,µt ) bκ,µt (50)
= E(κi,µi)∼bκ,µ

t
[µi (at|st) ·Rκi(rt|st, at) · Pκi(st+1|st, at)] · bκ,µt (51)

is the posterior over the meta-RL MDPs with behavior policies given the context c:(t+1), A,R and Ĥ are the same action

space, reward space, and planning horizon as the finite-horizon BAMDP M+, respectively, P
+
: S+ ×A×R → ∆

(
S+
)

is the transition function: ∀s̄+t , s̄+t+1 ∈ S
+
, at ∈ A, rt ∈ R, where denoting s̄+t = (st, b

κ,µ
t ) and s̄+t+1 =

(
st+1, b̃

κ,µ
t+1

)
,

P
+ (
s̄+t+1

∣∣s̄+t , at, rt ) = P
+
(
st+1, b̃

κ,µ
t+1

∣∣∣ st, bκ,µt , at, rt

)
(52)

= P
+
(st+1 |st, bκ,µt , at )P

+
(
b̃κ,µt+1

∣∣∣ st, bκ,µt , ct

)
(53)

= E(κi,µi)∼bκ,µ
t

[Pκi(st+1|st, at)] · 1
[
b̃κ,µt+1 = p(bκ,µt |st, ct)

]
, (54)

P
+

0 : ∆
(
S+
)

is the initial hyper-state distribution, i.e., a deterministic initial hyper-state is

s̄+0 = (s0, b
κ,µ
0 ) = (s0, p(κ, µ)) ∈ S

+
, (55)

and R
+
: S+ ×A → ∆(R) is the reward distribution: ∀s̄+ = (s, bκ,µ) ∈ S+, a ∈ A, r ∈ R,

R
+ (
r|s̄+, a

)
= R

+
(r |s, bκ,µ, a ) = E(κi,µi)∼bκ,µ [Rκi(r|s, a)] . (56)

In a transformed BAMDP M
+

, the overall belief is about the task-dependent behavior policies, transition function, and
reward function, which are constant for a given task. A meta-policy on M

+
is π̄+ : S+ → ∆(A) prescribes a distribution

over actions for each hyper-state. With feasible Bayesian belief updating, the objective of RL agents is now to find a
meta-policy on hyper-states π̄+ that maximizes the expected return in the transformed BAMDP,

J
M

+

(
π̄+
)
= E

at∼π̄+(·|s̄+t ),rt∼R+(·|s̄+t ,at ),s+t+1∼P
+(·|s̄+t ,at )

Ĥ−1∑
t=0

rt

 (57)

= E(κi,µi)∼p(κ,µ)

N−1∑
j=0

Eat∼π̄+(·|s̄+jH+t ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] (58)

= Eκi∼p(κ)

N−1∑
j=0

Eat∼π̄+(·|s̄+jH+t ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] . (59)

For any meta-policy on hyper-states π̄+, denote the corresponding meta-policy on history contexts f̂π̄+ : C → ∆(A), i.e.,
∀t ∈

[
Ĥ − 1

]
,∀c:t ∈ Ct, s.t., f̂π̄+ (·|c:t) = π̄+

(
·
∣∣s̄+t ), where s̄+t = (st, b

κ,µ
t ) = (st, p (κ, µ|c:t)), and we have

J
M̂

(
f̂π̄+

)
= Eκi∼p(κ)

N−1∑
j=0

Eat∼f̂π̄+(·|c:(jH+t) ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] (60)

= J
M

+

(
π̄+
)
. (61)

Lemma 1. In an MDP M , for each behavior policy µ and batch-constrained policy π, collect a dataset D and the gap
between approximate offline policy evaluation JD(π) and accurate policy evaluation JM (π) will asymptotically approach
to 0, as the offline dataset D grows.

From a given dataset D, an abstract MDP MD can be estimated (Fujimoto et al., 2019; Yin & Wang, 2021; Szepesvári,
2022). According to concentration bounds, the estimated transition and reward function will asymptotically approach M
(Yin & Wang, 2021) during the support of D. Then, using the simulation lemma (Alekh Agarwal, 2017; Szepesvári, 2022),
the gap between JD(π) and JM (π) will asymptotically approach to 0, as the offline dataset D grows. Formal proofs are
deferred in Appendix A.6.
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Theorem 2. In a BAMDP M+, for each task-dependent behavior policy [µ], denoting a transformed BAMDP M
+

by
incorporating [µ] into the belief of M+, we have (i) for feasible Bayesian belief updating, M

+
confines the agent in the

in-distribution hyper-states, (ii) for each π̄+, the distribution of P
M

+
,[µ]

and P
M

+
,π̄+ matches, and (iii) policy evaluation

JD+ (π̄+) and J
M

+ (π̄+) will be asymptotically consistent, as the offline dataset grows.

Proof. Part (i) During online adaptation, RL agents construct a hyper-state s̄+t =
(
st, b̄t

)
from the context history and

perform a meta-policy π̄+
(
at
∣∣s̄+t ). The new belief b̄t accounts for the uncertainty of task MDPs and task-dependent

behavior policies. In contrast with Proposition 1(i), for feasible Bayesian belief updating, transformed BAMDPs do not
allow the agent to visit out-of-distribution hyper-states. Otherwise, the context history will conflict with the belief about
behavior policies, i.e., RL agents cannot update their beliefs b̄t when they have observed an event that they believe to have
probability zero.

Part (ii) We assume feasible Bayesian belief updating in this proof. At first, ∀s+t , at, s.t. pπ̄
+

M
+

(
s̄+t , at

)
> 0, we aim to

prove

P
M

+
,[µ]

(
rt, st+1

∣∣s̄+t , at ) = P
M

+
,π̄+

(
rt, st+1

∣∣s̄+t , at ) . (62)

Since π̄+ is batch-constrained policy by [µ], if pπ̄
+

M
+

(
s̄+t , at

)
> 0, we have p[µ]

M
+

(
s̄+t , at

)
> 0. Then,

P
M

+
,π̄+

(
rt, st+1

∣∣s̄+t , at ) = R
+ (
rt
∣∣s̄+t , at ) · P+ (

st+1

∣∣s̄+t , at ) (63)

= Eκi∼bκ,µ
t

[Pκi (rt, st+1 |st, at )] (64)

= E(κi,µi)∼bκ,µ
t

[Pκi
(rt, st+1 |st, at )] (65)

where bκ,µt is defined in Eq. (48) and

p (κi, µi |bκ,µt ) = Eκi∼p(κ),µi∼p(µ|κi)

[
Ec:t∼pM+ (c:t|κi,µi) [1 [b

κ,µ
t = p(κ, µ|c:t)]]

]
, (66)

where p
M

+ (c:t|κi, µi) is defined in Eq. (6). According to Eq. (37) and (38),

P
M

+
,[µ]

(
rt, st+1

∣∣s̄+t , at ) (67)

∝ Eκi∼p(κ),µi∼p(µ|κi)

[
Pκi

(rt, st+1 |st, at ) · pM+

(
s̄+t |κi, µi

)]
(68)

= Eκi∼p(κ),µi∼p(µ|κi)

[
Ec:t∼pM+ (c:t|κi,µi) [Pκi

(rt, st+1 |st, at ) · 1 [bκ,µt = p(κ, µ|c:t)]]
]

(69)

= E(κi,µi)∼bκ,µ
t

[Pκi
(rt, st+1 |st, at )] (70)

= P
M

+
,π̄+

(
rt, st+1

∣∣s̄+t , at ) . (71)

Thus, the data distribution induced by π̄+ and [µ] matches.

Part (iii) Directly use Lemma 1 in a transformed BAMDP M
+

, in which M
+

is a belief MDP, a type of MDP. Therefore,
the policy evaluation of π̄+ in offline meta-training and online adaptation will be asymptotically consistent, as the offline
dataset grows.

To achieve in-distribution online adaptation, transformed BAMDPs incorporate additional information about offline data
collection into the beliefs of BAMDPs. We prove that transformed BAMDPs require RL agents to filter out out-of-distribution
episodes to support feasible belief updating of behavior policies. In this way, the distribution of reward and transition
between offline and online data collection coincide, which can provide the guarantee of consistent policy evaluation between
JD+ (π̄+) and J

M
+ (π̄+). Theorem 2 shows that we can meta-train policies with offline policy evaluation and utilize

in-distribution online adaptation to guarantee the final performance in meta-testing.

A.4. Main Results in Section 3.3

Definition 3 (Sub-Datasets Collected by Single Task Data Collection). In a transformed BAMDP M
+

, an offline multi-task
dataset D+

is drawn from the task-dependent data collection P
M

+
,[µ]

. A sub-dataset collected by a behavior policy µi in a
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task κi is defined by Dκi,µi
. Note an offline multi-task dataset D+

is the union of sub-datasets Dκi,µi
, i.e.,

D+
=
⋃
κi,µi

Dκi,µi
. (72)

For each sub-dataset Dκi,µi
, we can define a batch-constrained policy set in a single-task (κi, µi) as ΠDκi,µi (see the

definition in Eq. (12)).

Definition 4 (Meta-Policy with Thompson Sampling). For each transformed BAMDPM
+

, a meta-policy set with Thompson
sampling on M

+
is defined by π̄+,T : S × B × K ×Π[µ] → ∆(A), where B is the space of beliefs over meta-RL MDPs

with behavior policies, K is the space of task κ, and Π[µ] is the space of task-dependent behavior policies. In each episode,
π̄+,T samples a task hypothesis (κi, µi) from the current belief bκ,µt′ , where t′ is the starting step in this episode. During this
episode, π̄+,T (· |st, bκ,µt′ , κi, µi ) prescribes a distribution over actions for each state st, belief bκ,µt′ , and task hypothesis
(κi, µi). Beliefs bκ,µt′ and task hypotheses (κi, µi) will periodically update after each episode.

In the deep-learning-based implementation, a context-based meta-RL algorithm, PEARL (Rakelly et al., 2019), utilizes a
meta-policy with Thompson sampling (Strens, 2000) to iteratively update task belief by interacting with the environment
and improve the meta-policy based on the “task hypothesis” sampled from the current beliefs. We can adopt such adaptation
protocol to design practical offline meta-RL algorithms for transformed BAMDPs.

Definition 5 (Batch-Constrained Meta-Policy Set with Thompson Sampling). For each transformed BAMDP M
+

with an
offline multi-task dataset D+

, a batch-constrained meta-policy set with Thompson sampling is defined by

ΠD+
,T =

{
π̄+,T

∣∣π̄+,T (at |st, bκ,µt′ , κi, µi ) = 0 whenever (st, at) ̸∈ Dκi,µi
,∀bκ,µt′

}
, (73)

where denoting (st, at) ∈ Dκi,µi
if there exists a trajectory containing (st, at) in the dataset Dκi,µi

.

The batch-constrained meta-policy set with Thompson sampling ΠD+
,T consists of the meta-policies that for any state st

observed in the hypothesis dataset Dκi,µi
, the agent will not select an action outside of the dataset. Note that in each episode

with a task hypothesis (κi, µi), a batch-constrained meta-policy with Thompson sampling π̄+,T is batch-constrained within
a sub-dataset Dκi,µi

, i.e., ∀bκ,µt′ , we have π̄+,T (· |st, bκ,µt′ , κi, µi ) ∈ ΠDκi,µi .

Definition 6 (Probability that a Policy Leaves the Dataset). In an MDP M and an arbitrary offline dataset D, for each
policy π : S → ∆(A), the probability that executing π in M leaves the dataset D for an episode is defined by

pM,D
out (π) =

∑
τH

pMπ (τH)1 [τH leaves D] (74)

=
∑
τH

pMπ (τH)1 [∃t ∈ [H] s.t. st ̸∈ D or (st, at, rt) ̸∈ D] , (75)

where pMπ (τH) is the probability of executing π in M to generate an H-horizon trajectory τH (see the definition in Eq. (6)),
denoting st ∈ D if there exists a trajectory containing st in the dataset D, and similarly for (st, at, rt) ∈ D.

When we aim to confine the agent in the in-distribution states with high probability as the offline dataset D grows, it is
equivalent to binding the probability that executing a policy π in M leaves the dataset D for an episode, i.e., pM,D

out (π).

Theorem 3. In a transformed BAMDP M
+

, for each batch-constrained meta-policy with Thompson sampling π̄+,T in a
meta-testing task κtest ∼ p(κ), there exists a task hypothesis from the current belief, executing π̄+,T in κtest can generate
in-distribution online adaptation episodes with high probability, as the offline dataset grows.

Proof. Denote the current belief by bκ,µt′ and the task hypothesis by (κi, µi). Thus, for each batch-constrained meta-policy
with Thompson sampling π̄+,T ∈ ΠD+

,T with (bκ,µt′ , κi, µi), similar to Definition 6, define the probability that executing
π̄+,T (· |st, bκ,µt′ , κi, µi ) leaves the dataset D+

in an adaptation episode of a meta-testing task κtest ∼ p(κ):

pκtest,D
+

out

(
π̄+,T , bκ,µt′ , κi, µi

)
=
∑
τ̄+
H

pκtest

π̄+,T

(
τ̄+H
∣∣ bκ,µt′ , κi, µi

)
1

[
τ̄+H leaves D+

]
, (76)
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where pκtest

π̄+,T

(
τ̄+H
∣∣ bκ,µt′ , κi, µi

)
is the probability of executing π̄+,T (· |st, bκ,µt′ , κi, µi ) in κtest to generate an H-horizon

trajectory τ̄+H in an adaptation episode, i.e.,

pκtest

π̄+,T

(
τ̄+H
∣∣ bκ,µt′ , κi, µi

)
(77)

=

t′+H−1∏
t=t′

π̄+,T (at |st, bκ,µt′ , κi, µi ) ·Rκtest (rt|st, at)

 t′+H−2∏
t=t′

Pκtest (st+1 |st, at, rt ) (78)

= pκtest

π̄+,T (τH | bκ,µt′ , κi, µi) , (79)

where we can transform τ̄+H to τH with the same probability since the belief bκ,µt′ and task hypothsis (κi, µi) will periodically
update after each episode. Therefore,

pκtest,D
+

out

(
π̄+,T , bκ,µt′ , κi, µi

)
=
∑
τ̄+
H

pκtest

π̄+,T (τH | bκ,µt′ , κi, µi)1
[
τ̄+H leaves D+

]
(80)

≤
∑
τH

pκtest

π̄+,T (τH | bκ,µt′ , κi, µi)1 [τH leaves Dκi∗ ,µi∗ ] (81)

= p
κtest,Dκi∗ ,µi∗
out

(
π̄+,T

∣∣ bκ,µt′ , κi, µi
)
, (82)

where p
κtest,Dκi∗ ,µi∗
out

(
π̄+,T

∣∣ bκ,µt′ , κi, µi
)

is the probability that executing π̄+,T (· |st, bκ,µt′ , κi, µi ) in κtest leaves the sub-

dataset Dκi∗ ,µi∗ for an episode (see Definition 6), Dκi∗ ,µi∗ is a sub-dataset collected in D+
(see Definition 3) and κi∗ is the

closest offline meta-training task to κtest, i.e.,

κi∗ = argmin
κi∈Ktrain

∥κi − κtest∥∞ (83)

= argmin
κi∈Ktrain

max (∥Pκi(s, a, s′)− Pκtest(s, a, s′)∥∞ , ∥Rκi(s, a, r)−Rκtest(s, a, r)∥∞) , (84)

in which denoting the i.i.d. offline meta-training tasks sampled from p(κ) in D+
by Ktrain. From Lemma 5, as the offline

dataset D+
grows, Dκi∗ ,µi∗ and Ktrain grow monotonically, for any batch-constrained policy π in Dκi∗ ,µi∗ , i.e., ∀π ∈

ΠDκi∗ ,µi∗ , when executing π in an episode of κtest ∼ p(κ), the probability leaving the dataset D+
is p

κtest,Dκi∗ ,µi∗
out (π),

which asymptotically approaches zero.

For the first adaptation episode in a meta-testing task κtest ∼ p(κ) with the prior belief p(κ, µ) = p(κ)p(µ|κ), there exists a
task hypothesis (κi∗ , µi∗) in the prior p(κ, µ), then due to π̄+,T (· |st, p(κ, µ), κi∗ , µi∗ ) ∈ ΠDκi∗ ,µi∗ from Definition 5 and

pκtest,D
+

out

(
π̄+,T , p(κ, µ), κi∗ , µi∗

)
≤ pκtest,Dκi∗ ,µi∗

out

(
π̄+,T

∣∣ p(κ, µ), κi∗ , µi∗) , (85)

as the offline dataset D+
grows, executing π̄+,T with (p(κ, µ), κi∗ , µi∗) for the first episode in κtest will confine the agent

in in-distribution hyper-states with high probability. In the subsequent adaptation episodes with current belief bκ,µt′ in κtest,
the task hypothesis (κi∗ , µi∗) is also in the belief bκ,µt′ by induction.

Therefore, for each adaptation episode with current belief bκ,µt′ in κtest, there exists a task hypothesis (κi, µi) from bκ,µt′ ,
e.g., (κi∗ , µi∗), executing π̄+,T with (bκ,µt′ , κi, µi) in κtest will confine the agent in in-distribution hyper-states with high
probability, as the offline dataset D+

grows.

Theorem 3 indicates that for each adaptation episode, we can sample task hypotheses from the current task belief and
execute π̄+,T to interact with the environment until finding an in-distribution episode. For example in Figure 2, after offline
meta-training, a meta-policy with Thompson sampling π̄+,T will perform ai with a task hypothesis of κi and expect to
receive a reward 1. During online meta-testing, κtest is drawn from p(κ) and the agent needs to infer the task identification.
To achieve in-distribution online adaptation, π̄+,T will try various actions according to diverse task hypotheses until sampling
an in-distribution episode with a reward 1. Updating the task belief with the in-distribution episode, RL agents can infer and
solve this task.
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In contrast, when updating task belief using an out-of-distribution episode with a reward 0, the posterior task belief will be
out of the offline dataset D+

. Note that offline training paradigm can not well-optimize π̄+,T on out-of-distribution states
(Fujimoto et al., 2019) and policy π̄+,T will fail in this case. Moreover, Thompson sampling is very popular in context-based
deep meta-RL (Rakelly et al., 2019) and we will generalize these theoretical implications.

Note that Theorem 3 considers arbitrary task distribution p(κ), since the distance between the closest meta-training task κi∗
and κtest will asymptotically approach zero with high probability, as the i.i.d. offline meta-training tasks Ktrain sampled
from p(κ) in D+

grows.

A.5. Omitted Assumptions and Propsitions in Section 4

To analyze return-based uncertainty quantification, we first present a mild assumption:

Assumption 1. In a transformed BAMDP M
+

, after effective offline meta-training of meta-policy with Thompson sampling
π̄+,T , with high probability, there exists (accurate or nearly accurate) task hypotheses from the current belief, the online
policy evaluation has higher returns on in-distribution episodes than out-of-distribution episodes with incorrect hypotheses.

This assumption matches the bias of offline RL (Fujimoto et al., 2019) that offline meta-training can not well-optimize
meta-policies on out-of-distribution states.

Proposition 2. In a transformed BAMDP M
+

, after effective offline meta-training of meta-policy with Thompson sampling
π̄+,T , with Assumption 1, return-based uncertainty quantification QRE can support π̄+,T generate in-distribution online
adaptation episodes.

Proof. From Theorem 3, meta-policy with Thompson sampling π̄+,T and accurate or nearly accurate task hypotheses
can generate in-distribution online episodes with high probability. Combining with Assumption 1, for each adaptation
episode, there exists (accurate or nearly accurate) task hypotheses whose online policy evaluation has higher returns. Thus,
from the current belief, we can sample task hypotheses and execute π̄+,T to interact with the environment until finding an
in-distribution episode using QRE .
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A.6. Omitted Proof of Lemma 1

Definition 7 (Dataset Induced Finite-Horizon MDPs). In a finite-horizon MDP M with an offline dataset D, a dataset
induced finite-horizon MDP is defined by MD =

(
S,A,R, H, PMD

, RM
D
)

, with the same state space, action space,

reward space, and horizon as M . The transition function is defined as follows: ∀s, s′ ∈ S, a ∈ A,

PM
D
(s′|s, a) =


N(s, a, s′)

N(s, a)
, if N(s, a) > 0,

0, otherwise,
(86)

where N(s, a, s′) and N(s, a) are the number of times the tuples (s, a, s′) and (s, a) are observed in D, respectively. The
reward function is defined by ∀s ∈ S, a ∈ A, r ∈ R,

RM
D
(r|s, a) =


N(s, a, r)

N(s, a)
, if N(s, a) > 0,

0, otherwise,
(87)

where N(s, a, r) is the number of times the tuple (s, a, r) are observed in D. The offline policy evaluation in D is equal to
the policy evaluation in MD, i.e., for any batch-constrained policy π,

JD(π) = JMD (π). (88)

Note that dataset induced finite-horizon MDPs MD are not defined on supports outside of dataset D. For simplicity, We set
all undefined numbers to 0 in the transition and reward function.

Lemma 2 (Simulation Lemma for Offline Finite-Horizon MDPs). In an MDP M with an offline dataset D, for any
batch-constrained policy π ∈ ΠD, if

max
s∈S,a∈A with ρMD

π (s,a)>0

∥∥PMD (·|s, a)− PM (·|s, a)
∥∥
1
≤ ϵP , (89)

max
s∈S,a∈A with ρMD

π (s,a)>0

∣∣rMD (s, a)− rM (s, a)
∣∣ ≤ ϵr, (90)

max
s∈S,a∈A

max
(
rMD (s, a), rM (s, a)

)
≤ rmax, (91)

where rM (s, a) = Er̃∼RM (s,a)[r̃] and rMD (s, a) = Er̃∼RMD (s,a)[r̃], we have

|JMD (π)− JM (π)| ≤ Hϵr +
H(H − 1)rmax

2
ϵP . (92)

Proof. Similar to the famous Simulation Lemma in finite-horizon MDPs (Alekh Agarwal, 2017), the proof is as follows.
Recall value function ∀h ∈ [H − 1], ∀s ∈ Sh (see Eq. (7)),

VMπ (s) =
∑
a∈A

π(a|s)

rM (s, a) +
∑

s′∈S̄h+1

PM (s′|s, a)VMπ (s′)

 , (93)

JM (π) = VMπ (s0), and ∀h ∈ [H],

max
s∈S̄h

∣∣V κ̄π (s)∣∣ ≤ (H − h)rmax. (94)

We will prove ∀h ∈ [H],∀s ∈ Sh with ρMD
π (s) > 0,

∣∣VMD
π (s)− VMπ (s)

∣∣ ≤ (H − h)ϵr +
(H − h)(H − h− 1)rmax

2
ϵP (95)
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by induction. When h = H − 1, we have ∀s ∈ Sh with ρMD
π (s) > 0,

∣∣VMD
π (s)− VMπ (s)

∣∣ = ∣∣∣∣∣∑
a∈A

π(a|s)rMD (s, a)−
∑
a∈A

π(a|s)rM (s, a)

∣∣∣∣∣ ≤ ϵr (96)

holds. And ∀h ∈ [H − 1], ∀s ∈ Sh with ρMD
π (s) > 0,∣∣VMD

π (s)− VMπ (s)
∣∣ (97)

=

∣∣∣∣∣∑
a∈A

π(a|s)

rMD (s, a) +
∑

s′∈Sh+1

PMD (s′|s, a)VMD
π (s′)

− (98)

∑
a∈A

π(a|s)

rM (s, a) +
∑

s′∈Sh+1

PM (s′|s, a)VMπ (s′)

∣∣∣∣∣ (99)

≤
∑
a∈A

π(a|s)
∣∣rMD (s, a)− rM (s, a)

∣∣+ (100)∑
a∈A

π(a|s)
∑

s′∈Sh+1

∣∣PMD (s′|s, a)VMD
π (s′)− PM (s′|s, a)VMπ (s′)

∣∣ (101)

≤ ϵr +
∑
a∈A

π(a|s)
∑

s′∈Sh+1

∣∣PMD (s′|s, a)− PM (s′|s, a)
∣∣VMπ (s′)+ (102)

∑
a∈A

π(a|s)
∑

s′∈Sh+1

PMD (s′|s, a)
∣∣VMD
π (s′)− VMπ (s′)

∣∣ (103)

≤ ϵr + (H − (h+ 1))rmaxϵP+ (104)(
(H − (h+ 1))ϵr +

(H − (h+ 1))(H − (h+ 1)− 1)rmax
2

ϵP

)
(105)

= (H − h)ϵr +
(H − h)(H − h− 1)rmax

2
ϵP . (106)

Thus,

|JMD (π)− JM (π)| =
∣∣VMD
π (s0)− VMπ (s0)

∣∣ ≤ Hϵr + H(H − 1)rmax
2

ϵP . (107)

Lemma 3. In an MDP M with an offline dataset D collected by a behavior policy µ, for any batch-constrained policy
π ∈ ΠD, ∀δ ∈ (0, 1], with probability 1− δ,

|JMD (π)− JM (π)| ≤ H2 |S|

√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

, (108)

where K is the number of trajectories in the dataset D and dMD
µ is the minimal visitation state-action distribution induced

by the behavior policy µ in MD (see Eq. (16)).

Proof. ∀s, s′ ∈ S, a ∈ A with ρMD
π (s, a) > 0, note that ρMD

π (s, a) ≥ dMD
µ and according to Binomial theorem and

Hoeffding’s inequality, ∀ϵ ∈ [0, 1],

P
(∣∣PMD (s′|s, a)− PM (s′|s, a)

∣∣ ≥ ϵ) ≤ 2
(
1− dMD

µ + dMD
µ exp

(
−2ϵ2

))K
(109)

≤ 2
(
1− dMD

µ ϵ2
)K

(110)

and

P
(∣∣rMD (s, a)− rM (s, a)

∣∣ ≥ ϵ) ≤ 2
(
1− dMD

µ ϵ2
)K

. (111)
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Thus, using union bound, ∀δ ∈ (0, 1], with probability 1− δ, denote

ϵP = max
s∈S,a∈A with ρMD

π (s,a)>0

∥∥PMD (·|s, a)− PM (·|s, a)
∥∥
1

(112)

≤ max
s∈S,a∈A with ρMD

π (s,a)>0

|S|
∥∥PMD (·|s, a)− PM (·|s, a)

∥∥
∞ (113)

≤ |S|

√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

, (114)

ϵr = max
s∈S,a∈A with ρMD

π (s,a)>0

∣∣rMD (s, a)− rM (s, a)
∣∣ ≤

√
log
(
1
δ

)
+ log (2 |S| |A|)
KdMD

µ

, (115)

and rmax = 1, thus, according to Lemma 2 (a variant of the simulation lemma in offline RL), we have

|JMD (π)− JM (π)| ≤
(
H +

H(H − 1)

2
|S|
)√√√√ log

(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

(116)

≤ H2 |S|

√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

(117)

Lemma 1. In an MDP M , for each behavior policy µ and batch-constrained policy π, collect a dataset D and the gap
between approximate offline policy evaluation JD(π) and accurate policy evaluation JM (π) will asymptotically approach
to 0, as the offline dataset D grows.

Proof. From Lemma 3, as the size of an offline dataset |D| = KH grows, the gap between approximate offline policy
evaluation JD(π) and accurate policy evaluation JM (π) will asymptotically approach to 0.
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A.7. Omitted Lemmas for Theorem 3

Lemma 4. In an MDP M and an arbitrary offline dataset D, for each policy π,

pM,D
out (π) ≤ H

(∥∥ρMπ (s)− ρMD
π (s)

∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

)
, (118)

where ρMπ (s, a, r) is the visitation distribution of (s, a, r) in M , as defined in Eq. (9).

Proof. For each τH leaving D, we use the first outlier data (st ̸∈ D or (st, at, rt) ̸∈ D) to represent τH . Thus,

pM,D
out (π) =

∑
τH

pMπ (τH)1 [∃t ∈ [H] s.t. st ̸∈ D or (st, at, rt) ̸∈ D] (119)

≤ H

 ∑
s∈S with ρMD

π (s)=0

ρMπ (s) +
∑

s∈S,a∈A,r∈R with ρMD
π (s,a,r)=0

ρMπ (s, a, r)

 (120)

≤ H
(∥∥ρMπ (s)− ρMD

π (s)
∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

)
. (121)

Lemma 5. In a transformed BAMDP M
+

with an offline multi-task dataset D+
collected by task-dependent behavior

policies [µ], denoting the i.i.d. offline meta-training tasks sampled from p(κ) in D+
by Ktrain, for each meta-testing task

κtest ∼ p(κ), and denoting the closest offline meta-training task to κtest by κi∗ , i.e.,

κi∗ = argmin
κi∈Ktrain

∥κi − κtest∥∞ (122)

= argmin
κi∈Ktrain

max (∥Pκi(s, a, s′)− Pκtest(s, a, s′)∥∞ , ∥Rκi(s, a, r)−Rκtest(s, a, r)∥∞) , (123)

then for any batch-constrained policy π in Dκi∗ ,µi∗ , where Dκi∗ ,µi∗ is a sub-dataset collected in D+
(see Definition 3), i.e.,

∀π ∈ ΠDκi∗ ,µi∗ ,

p
κtest,Dκi∗ ,µi∗
out (π) (124)

≤ 2H2 |S|2 |A| |R|



√√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ︸ ︷︷ ︸

Asymptotically approaches zero,
when Dκi∗ ,µi∗ is sufficiently large

+ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

︸ ︷︷ ︸
Asymptotically approaches zero,
when Ktrain is sufficiently large


, (125)

where Kκi∗ ,µi∗ is the number of trajectories in the sub-dataset Dκi∗ ,µi∗ , d
MDκi∗ ,µi∗
µ is the minimal visitation state-action

distribution induced by the behavior policy µ in MDκi∗ ,µi∗
(see Eq. (16)), and |Ktrain| is the number of i.i.d. offline

meta-training tasks sampled from p(κ) in D+
.

Proof. According to Lemma 4,

p
κtest,Dκi∗ ,µi∗
out (π) (126)

≤ H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκtest
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκtest
π (s, a, r)

∥∥∥
1

)
(127)

≤ H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκi∗
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκi∗
π (s, a, r)

∥∥∥
1

)
+ (128)

H (∥ρκi∗
π (s)− ρκtest

π (s)∥1 + ∥ρ
κi∗
π (s, a, r)− ρκtest

π (s, a, r)∥1) . (129)
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Part I Similar with Lemma 3, ∀δ ∈ (0, 1], with probability 1− δ, denote

ϵP = max
s∈S,a∈A with ρ

MDκi∗ ,µi∗
π (s,a)>0

∥∥∥PMDκi∗ ,µi∗ (·|s, a)− Pκi∗ (·|s, a)
∥∥∥
1

(130)

≤ |S|

√√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ

, (131)

ϵr = max
s∈S,a∈A with ρ

MDκi∗ ,µi∗
π (s,a)>0

∣∣∣rMDκi∗ ,µi∗ (s, a)− rκi∗ (s, a)
∣∣∣ (132)

≤

√√√√ log
(
1
δ

)
+ log (2 |S| |A|)

Kκi∗ ,µi∗ · d
MDκi∗ ,µi∗
µ

, (133)

thus, from Lemma 6, we have

H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκi∗
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκi∗
π (s, a, r)

∥∥∥
1

)
(134)

≤ 2H2 |S|2 |A| |R|

√√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ

. (135)

Part II From Lemma 10, ∀δ ∈ (0, 1], with probability 1− δ, denote

ϵ̃P = max
s∈S,a∈A

∥Pκi∗ (·|s, a)− Pκtest(·|s, a)∥1 (136)

≤ |S| ∥κi∗ − κtest∥∞ (137)

≤ 2 |S|

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

, (138)

ϵ̃R = max
s∈S,a∈A,r∈R

|Rκi∗ (r|s, a)−Rκtest(r|s, a)| (139)

≤ ∥κi∗ − κtest∥∞ (140)

≤ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

, (141)

then from Lemma 8, we have

H (∥ρκi∗
π (s)− ρκtest

π (s)∥1 + ∥ρ
κi∗
π (s, a, r)− ρκtest

π (s, a, r)∥1) (142)

≤ 4H2 |S|2 |A| |R|

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

. (143)

Overall Combining Part I and Part II, we have

p
κtest,Dκi∗ ,µi∗
out (π) (144)

≤ H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκi∗
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκi∗
π (s, a, r)

∥∥∥
1

)
+ (145)

H (∥ρκi∗
π (s)− ρκtest

π (s)∥1 + ∥ρ
κi∗
π (s, a, r)− ρκtest

π (s, a, r)∥1) (146)

≤ 2H2 |S|2 |A| |R|


√√√√√ log

(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ

+ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

 . (147)
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A.7.1. DETAILED LEMMAS (PART I)

Lemma 6. In an MDP M with an offline dataset D, for any batch-constrained policy π ∈ ΠD, if

max
s∈S,a∈A with ρMD

π (s,a)>0

∥∥PMD (·|s, a)− PM (·|s, a)
∥∥
1
≤ ϵP , (148)

max
s∈S,a∈A,r∈R with ρMD

π (s,a)>0

∣∣RMD (r|s, a)−RM (r|s, a)
∣∣ ≤ ϵR, (149)

we have ∥∥ρMπ (s)− ρMD
π (s)

∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

(150)

≤ |S| (|A| |R|+ 1)
H − 1

2
ϵP + |S| |A| |R| ϵR. (151)

Proof. For each ŝ ∈ S, â ∈ A, create an auxiliary reward function r̃(s, a) : S ×A → [0, 1]: ∀s ∈ S, a ∈ A,

r̃(s, a) =


1

H
, if s = ŝ and a = â,

0, otherwise.
(152)

Denote M̂ =
(
S,A,R, H, PM , r̃

)
and M̂D =

(
S,A,R, H, PMD , r̃

)
. Using the offline Simulation Lemma shown in

Lemma 2, for any batch-constrained policy π ∈ ΠD,

ρMπ (ŝ, â) = J
M̂
(π) and ρMD

π (ŝ, â) = J
M̂D

(π). (153)

Thus, ϵr = 0, rmax = 1
H , and ∣∣ρMπ (ŝ, â)− ρMD

π (ŝ, â)
∣∣ ≤ ∣∣∣JM̂ (π)− J

M̂D
(π)
∣∣∣ (154)

≤ Hϵr +
H(H − 1)rmax

2
ϵP (155)

=
H − 1

2
ϵP . (156)

Similarly, we have ∀s ∈ S, ∣∣ρMπ (s)− ρMD
π (s)

∣∣ ≤ H − 1

2
ϵP . (157)

For any s ∈ S, a ∈ A, r ∈ R,∣∣ρMπ (s, a, r)− ρMD
π (s, a, r)

∣∣ (158)

=
∣∣ρMπ (s, a)RM (r|s, a)− ρMD

π (s, a)RMD (r|s, a)
∣∣ (159)

≤
∣∣ρMπ (s, a)− ρMD

π (s, a)
∣∣RM (r|s, a) + ρMD

π (s, a)
∣∣RM (r|s, a)−RMD (r|s, a)

∣∣ (160)

≤
∣∣ρMπ (s, a)− ρMD

π (s, a)
∣∣+ ∣∣RM (r|s, a)−RMD (r|s, a)

∣∣ (161)

≤ H − 1

2
ϵP + ϵR. (162)

Therefore, ∥∥ρMπ (s)− ρMD
π (s)

∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

(163)

≤ |S| H − 1

2
ϵP + |S| |A| |R|

(
H − 1

2
ϵP + ϵR

)
(164)

= |S| (|A| |R|+ 1)
H − 1

2
ϵP + |S| |A| |R| ϵR. (165)
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A.7.2. DETAILED LEMMAS (PART II)

Lemma 7 (Simulation Lemma for Finite-Horizon MDPs). Given a pair of finite-horizon MDPs M1 and M2 with the same
state space S, same action space A, same reward functionR, and same horizon H . If

max
s∈S,a∈A

∥∥PM1(·|s, a)− PM2(·|s, a)
∥∥
1
≤ ϵ̃P , (166)

max
s∈S,a∈A

∣∣rM1(s, a)− rM2(s, a)
∣∣ ≤ ϵ̃r, (167)

max
s∈S,a∈A

max
(
rM1(s, a), rM2(s, a)

)
≤ rmax, (168)

where rM1(s, a) = Er̃∼RM1 (s,a)[r̃] and rM2(s, a) = Er̃∼RM2 (s,a)[r̃], we have

|JM1(π)− JM2(π)| ≤ Hϵ̃r +
H(H − 1)rmax

2
ϵ̃P . (169)

Proof. Similar with famous Simulation Lemma in finite-horizon MDPs (Alekh Agarwal, 2017) and the offline variant shown
in Lemma 2, we will prove ∀h ∈ [H],∀s ∈ Sh,∣∣VM1

π (s)− VM2
π (s)

∣∣ ≤ (H − h)ϵ̃r +
(H − h)(H − h− 1)rmax

2
ϵ̃P (170)

by induction. When h = H − 1, we have ∀s ∈ Sh,
∣∣VM1
π (s)− VM2

π (s)
∣∣ ≤ ϵ̃r holds. And ∀h ∈ [H − 1], ∀s ∈ Sh,∣∣VM1

π (s)− VM2
π (s)

∣∣ (171)

≤
∑
a∈A

π(a|s)
∣∣rM1(s, a)− rM2(s, a)

∣∣+ (172)∑
a∈A

π(a|s)
∑

s′∈Sh+1

∣∣PM1(s′|s, a)VM1
π (s′)− PM2(s′|s, a)VM2

π (s′)
∣∣ (173)

≤ (H − h)ϵ̃r +
(H − h)(H − h− 1)rmax

2
ϵ̃P . (174)

Thus,

|JM1
(π)− JM2

(π)| =
∣∣VM1
π (s0)− VM2

π (s0)
∣∣ (175)

≤ Hϵ̃r +
H(H − 1)rmax

2
ϵ̃P . (176)

Lemma 8. Given a pair of finite-horizon MDPs M1 and M2 with the same state space, same action space, same reward
function, and same horizon. If

max
s∈S,a∈A

∥∥PM1(·|s, a)− PM2(·|s, a)
∥∥
1
≤ ϵ̃P , (177)

max
s∈S,a∈A,r∈R

∣∣RM1(r|s, a)−RM2(r|s, a)
∣∣ ≤ ϵ̃R, (178)

we have ∥∥ρM1
π (s)− ρM2

π (s)
∥∥
1
+
∥∥ρM1

π (s, a, r)− ρM2
π (s, a, r)

∥∥
1

(179)

≤ |S| (|A| |R|+ 1)
H − 1

2
ϵ̃P + |S| |A| |R| ϵ̃R. (180)

Proof. Similar with Lemma 6, ∀s ∈ S, a ∈ A, r ∈ R, using Simulation Lemma 7, we have∣∣ρM1
π (s)− ρM2

π (s)
∣∣ ≤ H − 1

2
ϵ̃P and

∣∣ρM1
π (s, a)− ρM2

π (s, a)
∣∣ ≤ H − 1

2
ϵ̃P , (181)
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and ∣∣ρMπ (s, a, r)− ρMD
π (s, a, r)

∣∣ ≤ H − 1

2
ϵ̃P + ϵ̃R. (182)

Therefore, ∥∥ρM1
π (s)− ρM2

π (s)
∥∥
1
+
∥∥ρM1

π (s, a, r)− ρM2
π (s, a, r)

∥∥
1

(183)

≤ |S| (|A| |R|+ 1)
H − 1

2
ϵ̃P + |S| |A| |R| ϵ̃R. (184)

Lemma 9. Let X,Y be two i.i.d. random vectors that take values in [0, 1]n, n ∈ N+. For any ϵ ∈ (0, 1], we have

P
[
max
i∈[n]
|Xi − Yi| ≥ ϵ

]
≤ 1−

( ϵ
2

)n
. (185)

Proof. Denote an auxiliary set

V =

{
x ∈ Rn

∣∣∣∣max
i∈[n]
|xi| <

ϵ

2

}
, (186)

then if X,Y ∈ V , we must have

max
i∈[n]
|Xi − Yi| < ϵ. (187)

For any c ∈ Nn, denote

V c = V + vc, where vci =

(
ci +

1

2

)
ϵ, ∀i ∈ [n]. (188)

We may construct a set of such cosets of V as follows:

S = {V c|c ∈ C} , where C =

{
c ∈ Nn

∣∣∣∣ci ∈ [⌈1ϵ
⌉]}

. (189)

There are several properties related to these constructions:

• For any c ∈ Nn, if X,Y ∈ V c, maxi∈[n] |Xi − Yi| < ϵ.

• The union of sets in S contains [0, 1]n

• Any two different sets in S are disjoint.

The only loophole is that we have not considered points in boundaries ∂V c (V c ∈ S). These boundaries can be decomposed
into disjoint union of hyperplanes in Rn. For each one of the hyperplanes, arbitrarily designate it to an adjacent V c ∈ S.
New V cs are the union of the original one and the hyperplanes designated to it. Note that∑

c∈C
[X ∈ V c] = 1. (190)

Therefore,

P
[
max
i∈[n]
|Xi − Yi| ≥ ϵ

]
≤ 1−

∑
c∈C

P [X ∈ V c]P [Y ∈ V c] (191)

= 1−
∑
c∈C

P [X ∈ V c]2 (192)
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≤ 1− 1

|C|

(∑
c∈C

P [X ∈ V c]

)2

(193)

= 1− 1

|C|
. (194)

Since 1
ϵ ≥ 1, we have

|C| =
⌈
1

ϵ

⌉n
<

(
1 +

1

ϵ

)n
≤
(
2

ϵ

)n
and P

[
max
i∈[n]
|Xi − Yi| ≥ ϵ

]
≤ 1−

( ϵ
2

)n
. (195)

Lemma 10. In a transformed BAMDP M
+

with an offline multi-task dataset D+
, for any meta-testing task κtest ∼ p(κ),

∀δ ∈ (0, 1], with probability 1− δ, we have

∥κi∗ − κtest∥∞ (196)
= max (∥Pκi∗ (s, a, s′)− Pκtest(s, a, s′)∥∞ , ∥Rκi∗ (s, a, r)−Rκtest(s, a, r)∥∞) (197)

≤ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

, (198)

where κi∗ ∈ Ktrain is the closest offline meta-training task to κtest (see Eq. (122)), ∥κi∗ − κtest∥∞ is the distance between
κi∗ and κtest (see Eq. (123)), and Ktrain is the i.i.d. offline meta-training tasks sampled from p(κ) in D+

.

Proof. From Lemma 9, we set n = |S| |A| (|S|+ |R|), then ∀ϵ ∈ (0, 1],∀κi ∈ Ktrain,

P [∥κi − κtest∥∞ ≥ ϵ] ≤ 1−
( ϵ
2

)n
. (199)

Hence

P
[
argmin
κi∈Ktrain

∥κi − κtest∥∞ ≥ ϵ
]
=

∏
κi∈Ktrain

P [∥κi − κtest∥∞ ≥ ϵ] (200)

≤
(
1−

( ϵ
2

)n)|Ktrain|
. (201)

Therefore, ∀δ ∈ (0, 1], with probability 1− δ,

argmin
κi∈Ktrain

∥κi − κtest∥∞ ≤ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

. (202)
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B. Formal loss function of an Ensemble of Reward and Dynamics Models

In Section 4.2, we will optimize an ensemble of L reward and dynamics models {rϕi(s, a, z), pψi(s, a, z)}
L
i=1 on the

multi-task dataset {Dz} with an latent task embedding z. We will minimize the MSE loss function

LM (ϕ, ψ, z) = E
(s,a,r,s′)∼Dz

[
1

L

L∑
i=1

((
r − riϕ(s, a, z)

)2
+
∥∥s′ − piψ(s, a, z)∥∥22)

]
(203)

to train the parameters {ϕi, ψi}Li=1 with the given latent task embedding z.

C. Hyper-Parameter Settings
Environment Settings. Table 4 shows hyper-parameter settings for the task sets used in our experiments. Most hyper-
parameters are adopted from previous works (Li et al., 2020b; Mitchell et al., 2021). For all task sets, 80% of the tasks are
meta-training tasks, and the remaining 20% tasks are meta-testing tasks.

Table 4. Environment parameter settings.

Environment Episode Length
# of Adaptation

Episodes # of Tasks
# of Trajectories

per Task

All Meta-World Envs 500 10 50 45
Cheetah-Vel 200 10 100 45
Point-Robot 20 20 100 45
Point-Robot-Sparse 20 20 100 45

IDAQ hyper-parameter settings. Table 5 shows IDAQ’s hyper-parameter settings. Most hyper-parameters are adopted
from FOCAL (Li et al., 2020b). We set ne to 1 as the evaluation environments are all nearly deterministic.

Table 5. Detailed hyper-parameter settings for IDAQ.

Hyper-Parameter Hyper-Parameter Values

batch size 256
meta batch size 16

learning rates for dual critic 1e-4
learning rates for all other components 3e-4
network structure for all components three fully connected layers with 200 units

optimizer adam
discount 0.99

latent size 20
reward scale 100 for point envs, 1 for all other envs

nr 1/2 of total adaptation episodes
ni 1/2 of total adaptation episodes
k 10 for point envs, 20 for all other envs
L 4
ne 1

33



Offline Meta Reinforcement Learning with In-Distribution Online Adaptation

D. Didactic Example on Distribution Shift
To empirically demonstrate the distributional shift problem proposed in Section 3, we introduce Point-Robot, a simple
2D navigation task set commonly used in meta-RL (Rakelly et al., 2019; Zhang et al., 2021). Figure 5(a) illustrates the
distribution mismatch between offline meta-training and online adaptation, as the dataset is collected by task-dependent
behavior policies. As a consequence, directly performing adaptation with the online collected trajectories leads to poor
adaptation performance (see FOCAL in Figure 5(c)). Figure 5(b) shows that the Prediction Variance quantification cannot
correctly detect OOD data, as there is a large error in uncertainty estimation. The Return-based quantification fixes this
problem by greedily selecting trajectories. As shown in Figure 5(a), at the end of the reference stage, the Return-based
quantification selects the red trajectory as it has the highest return. After the reference stage, IDAQ iteratively optimizes the
posterior belief to get the final policy. As shown in Figure 5(c), IDAQ+Return achieves comparable performance to FOCAL
with expert context and significantly outperforms FOCAL with online adaptation.

To further investigate why the Prediction Variance quantification fails to identify in-distribution trajectories, we demonstrate
the ensemble’s uncertainty estimation on the first 10 trajectories collected in the reference stage. As shown in Figure 6,
the Prediction Variance quantification cannot accurately estimate the distance to the offline dataset, and fail to identify
in-distribution data. On the other hand, the Return-based quantification can successfully select in-distribution data with its
greedy selection mechanism.

Figure 7 shows IDAQ+Return, FOCAL, and IDAQ+Prediction Variance’s adaptation visualization (Episode 11-20) after
the reference phase in adaptation (Episode 1-10). Results demonstrate that while the Return-based quantification is
able to identify in-distribution data and achieve superior adaptation performance, FOCAL utilizes all the 10 trajectories
for adaptation, and cannot correctly update task belief due to the distributional shift problem. The Prediction Variance
quantification, as discussed above, fails to correctly select the in-distribution trajectory, and thus cannot successfully reach
the goal.

(a) IDAQ+Return (b) IDAQ+Prediction Variance (c) Learning Curve

Figure 5. (a) Illustration of data distribution mismatch between offline meta-training (blue) and IDAQ+Return’s online adaptation (green
and red trajectories). (b) The agent fails to identify in-distribution trajectories via the Prediction Variance quantification. Trajectories are
colored with corresponding normalized uncertainty estimation. (c) Adaptation performance of IDAQ+Return, FOCAL, FOCAL with
expert context, and IDAQ+Prediction Variance.
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(a) IDAQ+Return

(b) IDAQ+ Prediction Variance

Figure 6. Visualization of the Return-based quantification and the Prediction Variance quantification’s trajectory selection. (a) The
Return-based quantification successfully selects the in-distribution trajectory. (b) The Prediction Variance quantification cannot identify
in-distribution data, as its uncertainty estimation is not accurate.
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(a) IDAQ+Return

(b) FOCAL

(c) IDAQ+Prediction Variance

Figure 7. Visualization of IDAQ+Return, FOCAL and IDAQ+Prediction Variance’s adaptation in Episode 11-20 on the Point-Robot
environment. (a) The Return-based quantification successfully selects the in-distribution trajectory and keeps improving in adaptation.
(b) FOCAL suffers from the out-of-distribution problem, and cannot correctly update posterior belief, leading to poor performance. (c)
The Prediction Variance quantification method cannot identify in-distribution data, and also suffers from the distributional shift problem.
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E. Formal Definition of Minimal Distance Between Episode and Dataset
In Section 5.1 we demonstrate the minimal distance between episodes and datasets. To give a formal definition of this
distance measure, we first transform an episode τ of length H to a vector vτ as:

vτ = ⟨s0, a0, r0, s1, a1, r1, ..., sH−1, aH−1, rH−1⟩. (204)

vτ contains information about τ ’s reward and transition. Then we define the normalized distance d(τ1, τ2) between episode
τ1 and episode τ2 as:

d(τ1, τ2) =
|vτ1 − vτ2 |2
|vτ2 |2

, (205)

where | · |2 is the L2 distance. d(τ1, τ2) measures distance between τ1 and τ2 normalized by vτ2 . Finally, the minimal
distance dmin(τ,B) between episode τ and dataset D is defined as:

dmin(τ,D) = min
τ ′∈D

d(τ, τ ′). (206)

dmin is calculated by finding the episode τ ′ in D that has the minimal normalized distance to τ .

F. Additional Experiment Results
F.1. Additional Visualization Results

Figure 8, 9 and 10 show how the three quantifications behave on the tasks evaluated in Section 5.1. Results demonstrate that
the Return-based quantification achieves the best performance on identifying in-distribution episodes, which enables IDAQ
to achieve superior adaptation performance. The Prediction Error quantification can identify in-distribution episodes in
simple tasks like Reach-V2, Drawer-Close-V2, and Point-Robot, but fails in more complex tasks. The Prediction Variance
quantification fails to identify in-distribution episodes in these eight tasks. These results correspond to the performance
demonstrated in Table 1.

Figure 8. Visualization of the Prediction Error quantification’s behavior on various tasks. It cannot find a good reference threshold to
distinguish in-distribution episodes.
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Figure 9. Visualization of the Prediction Variance quantification’s behavior on various tasks. It may suffer from situations with higher
prediction error and lower prediction variance in the medium or expert datasets.

Figure 10. Visualization of the Return-based quantification’s behavior on various tasks. It can successfully identify in-distribution
episodes.

F.2. Detailed Algorithm Performance on All Tasks

Table 6, Table 7, Table 8 and Table 9 show baselines’ online adaptation and offline performance on all 50 Meta-World ML1
task sets and MuJoCo tasks, respectively. IDAQ significantly outperforms baselines with online adaptation, and achieves
better or comparable performance to baselines with offline adaptation.
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Table 6. Comparison between FOCAL, MACAW, and BOReL with online adaptation and IDAQ on Meta-World.

Environment IDAQ FOCAL MACAW BOReL

Coffee-Push 1.26 ± 0.13 0.66 ± 0.07 0.01 ± 0.01 0.00 ± 0.00
Faucet-Close 1.12 ± 0.01 1.06 ± 0.02 0.07 ± 0.01 0.13 ± 0.03
Door-Unlock 1.11 ± 0.02 0.97 ± 0.03 0.11 ± 0.01 0.13 ± 0.03
Plate-Slide-Side 1.07 ± 0.08 0.70 ± 0.14 0.00 ± 0.00 0.00 ± 0.00
Faucet-Open 1.05 ± 0.02 1.01 ± 0.02 0.08 ± 0.04 0.12 ± 0.05
Button-Press-Wall 1.04 ± 0.04 0.99 ± 0.06 0.02 ± 0.00 0.01 ± 0.00
Plate-Slide 1.01 ± 0.03 0.83 ± 0.09 0.01 ± 0.00 0.01 ± 0.00
Door-Close 0.99 ± 0.00 0.97 ± 0.01 0.00 ± 0.00 0.37 ± 0.19
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 0.53 ± 0.50 0.00 ± 0.00
Plate-Slide-Back-Side 0.97 ± 0.02 0.77 ± 0.20 0.02 ± 0.01 0.01 ± 0.00
Door-Lock 0.97 ± 0.01 0.90 ± 0.02 0.25 ± 0.11 0.14 ± 0.00
Window-Open 0.96 ± 0.02 0.81 ± 0.07 0.15 ± 0.11 0.03 ± 0.00
Door-Open 0.96 ± 0.02 0.78 ± 0.13 0.06 ± 0.01 0.12 ± 0.01
Plate-Slide-Back 0.96 ± 0.02 0.58 ± 0.06 0.21 ± 0.17 0.01 ± 0.00
Window-Close 0.94 ± 0.01 0.79 ± 0.01 0.54 ± 0.44 0.03 ± 0.00
Reach-Wall 0.93 ± 0.05 0.53 ± 0.18 0.82 ± 0.02 0.06 ± 0.00
Dial-Turn 0.91 ± 0.05 0.84 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Handle-Press-Side 0.91 ± 0.02 0.79 ± 0.10 0.51 ± 0.41 0.02 ± 0.01
Handle-Pull 0.90 ± 0.02 0.67 ± 0.03 0.00 ± 0.00 0.00 ± 0.00
Handle-Press 0.88 ± 0.05 0.87 ± 0.02 0.28 ± 0.10 0.01 ± 0.00
Reach 0.85 ± 0.03 0.62 ± 0.05 0.63 ± 0.04 0.04 ± 0.01
Lever-Pull 0.85 ± 0.02 0.73 ± 0.07 0.20 ± 0.16 0.05 ± 0.00
Hammer 0.84 ± 0.06 0.59 ± 0.07 0.10 ± 0.01 0.09 ± 0.01
Drawer-Open 0.82 ± 0.06 0.64 ± 0.10 0.11 ± 0.02 0.10 ± 0.00
Sweep 0.77 ± 0.04 0.32 ± 0.08 0.20 ± 0.20 0.00 ± 0.00
Button-Press 0.74 ± 0.08 0.68 ± 0.14 0.02 ± 0.01 0.01 ± 0.01
Stick-Push 0.73 ± 0.09 0.46 ± 0.15 0.17 ± 0.17 0.00 ± 0.00
Coffee-Button 0.73 ± 0.14 0.66 ± 0.16 0.15 ± 0.13 0.02 ± 0.00
Push-Wall 0.71 ± 0.15 0.43 ± 0.06 0.23 ± 0.18 0.00 ± 0.00
Shelf-Place 0.70 ± 0.18 0.32 ± 0.11 0.01 ± 0.01 0.00 ± 0.00
Basketball 0.64 ± 0.15 0.41 ± 0.24 0.00 ± 0.00 0.00 ± 0.00
Hand-Insert 0.63 ± 0.04 0.29 ± 0.07 0.02 ± 0.01 0.00 ± 0.00
Sweep-Into 0.61 ± 0.06 0.33 ± 0.05 0.00 ± 0.00 0.01 ± 0.00
Button-Press-Topdown 0.57 ± 0.11 0.45 ± 0.06 0.38 ± 0.36 0.02 ± 0.02
Peg-Unplug-Side 0.56 ± 0.07 0.19 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Assembly 0.55 ± 0.13 0.28 ± 0.05 0.33 ± 0.01 0.04 ± 0.00
Push 0.55 ± 0.10 0.34 ± 0.14 0.28 ± 0.19 0.00 ± 0.00
Bin-Picking 0.53 ± 0.16 0.31 ± 0.21 0.66 ± 0.11 0.00 ± 0.00
Push-Back 0.52 ± 0.05 0.16 ± 0.04 0.00 ± 0.00 0.00 ± 0.00
Box-Close 0.51 ± 0.11 0.15 ± 0.09 0.36 ± 0.11 0.05 ± 0.01
Soccer 0.44 ± 0.04 0.11 ± 0.03 0.38 ± 0.31 0.04 ± 0.02
Button-Press-Topdown-Wall 0.43 ± 0.03 0.40 ± 0.07 0.05 ± 0.02 0.05 ± 0.01
Disassemble 0.42 ± 0.14 0.26 ± 0.04 0.05 ± 0.00 0.04 ± 0.00
Coffee-Pull 0.40 ± 0.05 0.23 ± 0.04 0.19 ± 0.12 0.00 ± 0.00
Stick-Pull 0.32 ± 0.06 0.17 ± 0.07 0.00 ± 0.00 0.00 ± 0.00
Peg-Insert-Side 0.30 ± 0.04 0.08 ± 0.03 0.00 ± 0.00 0.00 ± 0.00
Pick-Place-Wall 0.28 ± 0.12 0.09 ± 0.04 0.39 ± 0.25 0.00 ± 0.00
Pick-Out-Of-Hole 0.26 ± 0.25 0.16 ± 0.16 0.59 ± 0.06 0.00 ± 0.00
Pick-Place 0.20 ± 0.03 0.07 ± 0.02 0.05 ± 0.05 0.00 ± 0.00
Handle-Pull-Side 0.14 ± 0.04 0.13 ± 0.09 0.00 ± 0.00 0.00 ± 0.00

Average 0.73 ± 0.07 0.53 ± 0.08 0.18 ± 0.09 0.04 ± 0.01
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Table 7. Comparison between baselines with offline adaptation and IDAQ on Meta-World tasks. “-V2” is omitted for brevity.

Environment IDAQ FOCAL with Expert Context MACAW with Expert Context

Coffee-Push 1.26 ± 0.13 0.50 ± 0.06 1.14 ± 0.27
Faucet-Close 1.12 ± 0.01 1.07 ± 0.02 1.01 ± 0.01
Door-Unlock 1.11 ± 0.02 0.96 ± 0.03 0.99 ± 0.04
Plate-Slide-Side 1.07 ± 0.08 0.75 ± 0.09 0.91 ± 0.09
Faucet-Open 1.05 ± 0.02 1.00 ± 0.02 0.99 ± 0.01
Button-Press-Wall 1.04 ± 0.04 0.98 ± 0.05 0.99 ± 0.01
Plate-Slide 1.01 ± 0.03 1.00 ± 0.03 0.67 ± 0.07
Door-Close 0.99 ± 0.00 0.97 ± 0.01 0.92 ± 0.05
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 1.00 ± 0.01
Plate-Slide-Back-Side 0.97 ± 0.02 0.90 ± 0.07 0.80 ± 0.05
Door-Lock 0.97 ± 0.01 0.88 ± 0.04 0.97 ± 0.03
Window-Open 0.96 ± 0.02 0.93 ± 0.05 0.98 ± 0.02
Door-Open 0.96 ± 0.02 0.90 ± 0.02 0.99 ± 0.02
Plate-Slide-Back 0.96 ± 0.02 0.93 ± 0.01 0.55 ± 0.11
Window-Close 0.94 ± 0.01 0.73 ± 0.02 1.00 ± 0.01
Reach-Wall 0.93 ± 0.05 0.91 ± 0.05 0.82 ± 0.02
Dial-Turn 0.91 ± 0.05 0.84 ± 0.08 0.98 ± 0.01
Handle-Press-Side 0.91 ± 0.02 0.87 ± 0.04 0.82 ± 0.10
Handle-Pull 0.90 ± 0.02 0.70 ± 0.05 0.95 ± 0.05
Handle-Press 0.88 ± 0.05 0.79 ± 0.08 0.56 ± 0.19
Reach 0.85 ± 0.03 0.83 ± 0.05 0.64 ± 0.08
Lever-Pull 0.85 ± 0.02 0.76 ± 0.03 0.97 ± 0.07
Hammer 0.84 ± 0.06 0.78 ± 0.04 0.40 ± 0.18
Drawer-Open 0.82 ± 0.06 0.73 ± 0.11 0.98 ± 0.01
Sweep 0.77 ± 0.04 0.74 ± 0.02 0.98 ± 0.01
Button-Press 0.74 ± 0.08 0.63 ± 0.09 0.71 ± 0.04
Stick-Push 0.73 ± 0.09 0.14 ± 0.09 0.67 ± 0.09
Coffee-Button 0.73 ± 0.14 0.61 ± 0.20 0.21 ± 0.11
Push-Wall 0.71 ± 0.15 0.90 ± 0.12 0.96 ± 0.09
Shelf-Place 0.70 ± 0.18 0.57 ± 0.13 0.55 ± 0.03
Basketball 0.64 ± 0.15 0.49 ± 0.17 0.47 ± 0.18
Hand-Insert 0.63 ± 0.04 0.64 ± 0.09 0.20 ± 0.09
Sweep-Into 0.61 ± 0.06 0.64 ± 0.09 0.00 ± 0.00
Button-Press-Topdown 0.57 ± 0.11 0.48 ± 0.11 0.92 ± 0.04
Peg-Unplug-Side 0.56 ± 0.07 0.57 ± 0.10 0.18 ± 0.10
Assembly 0.55 ± 0.13 0.64 ± 0.03 0.36 ± 0.02
Push 0.55 ± 0.10 0.98 ± 0.13 0.86 ± 0.02
Bin-Picking 0.53 ± 0.16 0.61 ± 0.12 0.63 ± 0.11
Push-Back 0.52 ± 0.05 0.52 ± 0.16 0.15 ± 0.09
Box-Close 0.51 ± 0.11 0.56 ± 0.08 0.35 ± 0.11
Soccer 0.44 ± 0.04 0.45 ± 0.03 0.59 ± 0.11
Button-Press-Topdown-Wall 0.43 ± 0.03 0.40 ± 0.06 0.43 ± 0.06
Disassemble 0.42 ± 0.14 0.23 ± 0.05 0.50 ± 0.06
Coffee-Pull 0.40 ± 0.05 0.58 ± 0.11 0.45 ± 0.11
Stick-Pull 0.32 ± 0.06 0.18 ± 0.06 0.27 ± 0.09
Peg-Insert-Side 0.30 ± 0.04 0.52 ± 0.08 0.25 ± 0.04
Pick-Place-Wall 0.28 ± 0.12 0.13 ± 0.07 0.21 ± 0.16
Pick-Out-Of-Hole 0.26 ± 0.25 0.27 ± 0.27 0.59 ± 0.08
Pick-Place 0.20 ± 0.03 0.29 ± 0.11 0.72 ± 0.09
Handle-Pull-Side 0.14 ± 0.04 0.09 ± 0.05 0.94 ± 0.08

Average 0.73 ± 0.07 0.67 ± 0.07 0.68 ± 0.07
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Table 8. Comparison between FOCAL, MACAW, and BOReL with online adaptation and IDAQ on MuJoCo tasks.

Environment IDAQ FOCAL MACAW BOReL

Cheetah-Vel -171.52 ± 21.96 -287.70 ± 30.62 -233.97 ± 23.46 -301.4 ± 36.8
Point-Robot -5.10 ± 0.26 -15.38 ± 0.95 -14.61 ± 0.98 -17.28 ± 1.16
Point-Robot-Sparse 7.78 ± 0.64 0.83 ± 0.37 0.00 ± 0.00 0.00 ± 0.00

Table 9. Comparison between baselines with offline adaptation and IDAQ on MuJoCo tasks.

Environment IDAQ FOCAL with Expert Context MACAW with Expert Context

Cheetah-Vel -171.52 ± 21.96 -156.07 ± 23.22 -292.92 ± 36.66
Point-Robot -5.10 ± 0.26 -4.68 ± 0.18 -19.60 ± 1.15
Point-Robot-Sparse 7.78 ± 0.64 8.37 ± 0.67 0.00 ± 0.00

F.3. Dataset Returns

Table 10 and Table 11 show the average returns of the offline datasets used in meta-training.
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Table 10. Dataset average returns on 50 Meta-World tasks.

Environment Dataset Return

Coffee-Push 1487.84
Faucet-Close 4039.52
Door-Unlock 3653.40
Plate-Slide-Side 3530.06
Faucet-Open 4145.18
Button-Press-Wall 2899.34
Plate-Slide 4395.86
Door-Close 4519.77
Drawer-Close 4233.04
Plate-Slide-Back-Side 4735.74
Door-Lock 3352.35
Window-Open 4382.87
Door-Open 4401.24
Plate-Slide-Back 4732.90
Window-Close 3572.99
Reach-Wall 4805.38
Dial-Turn 3824.44
Handle-Press-Side 4836.04
Handle-Pull 3878.46
Handle-Press 4851.51
Reach 4820.84
Lever-Pull 914.01
Hammer 4251.57
Drawer-Open 4041.54
Sweep 4354.57
Button 3855.10
Stick-Push 4230.52
Coffee-Button 4049.44
Push-Wall 3699.66
Shelf-Place 2813.55
Basketball 4071.31
Hand-Insert 3963.11
Sweep-Into 4019.97
Button-Press-Topdown 3570.22
Peg-Unplug-Side 4235.23
Assembly 4238.57
Push 3147.80
Bin-Picking 4257.54
Push-Back 3841.90
Box-Close 4012.39
Soccer 2798.96
Button-Press-Topdown-Wall 3781.99
Disassemble 3865.37
Coffee-Pull 4166.44
Stick-Pull 4015.26
Peg-Insert-Side 3826.91
Pick-Place-Wall 2499.35
Pick-Out-Of-Hole 3405.74
Pick-Place 3482.43
Handle-Pull-Side 2425.14
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Table 11. Dataset average returns on Meta-World-Meidum tasks and MuJoCo tasks.

Environment Dataset Return

Sweep (Med) 2874.00
Peg-Insert-Side (Med) 2342.34
Point-Robot -5.72
Point-Robot-Sparse 7.28
Cheetah-Vel -138.29

G. Additional Ablation Studies
In this section, we will further conduct various ablation studies to investigate the robustness of IDAQ in dataset quality and
hyper-parameters.

Reference stage length. Table 12 shows IDAQ’s performance with different reference stage lengths. The total number
of adaptation episodes is 20. We find that IDAQ performs well during 10-15 episodes, which is 50%-75% of the total
number of adaptation episodes. A small reference stage length (5) may lead to a possibly unreliable task belief and cause a
degradation in performance. The 19-episode does not perform the iterative optimization process, and the task belief updates
will not converge.

Dataset Quality. We test IDAQ and baselines with several “medium” datasets, which are collected by periodically evaluating
policies of SAC. As shown in Table 13, IDAQ still significantly outperforms baseline algorithms on medium datasets, which
implies IDAQ’s ability to learn various datasets.

Table 12. IDAQ’s performance with various initial stage lengths.

Environment 5 Episodes 10 Episodes 15 Episodes 19 Episodes

Point-Robot -6.04 ± 0.31 -5.11 ± 0.21 -5.10 ± 0.26 -5.37 ± 0.11
Point-Robot-Sparse 4.04 ± 0.58 7.78 ± 0.64 8.07 ± 0.62 7.29 ± 0.50

Table 13. Algorithms’ performance on datasets of various qualities.

Environment IDAQ FOCAL MACAW

Sweep 0.77 ± 0.04 0.32 ± 0.08 0.20 ± 0.20
Sweep (Med) 0.59 ± 0.13 0.38 ± 0.13 0.04 ± 0.03

Peg-Insert-Side 0.30 ± 0.04 0.08 ± 0.03 0.00 ± 0.00
Peg-Insert-Side (Med) 0.30 ± 0.14 0.10 ± 0.07 0.00 ± 0.00

Hyper-parameters. The uncertainty quantifications are robust to the hyperparameters in this paper. Prior work (Lu
et al., 2021) introduces three sensitive hyperparameters: penalty scale, rollout length, and the number of models in offline
model-based RL. However, in the in-distribution online adaptation framework of IDAQ, penalty scale and rollout length are
not required. IDAQ utilizes uncertainty quantifications to rank online episodes for deriving in-distribution contexts instead
of using it as a regularization. For IDAQ+Prediction Error and IDAQ+Prediction Variance, the hyperparameter of these
uncertainty quantifications is the number of models L in an ensemble. We perform ablation studies on this hyperparameter.

Results in Table 14 and Table 15 show that IDAQ+Prediction Error and IDAQ+Prediction Variance are robust to the
choice of the number of models in an ensemble, and IDAQ+Return significantly outperforms IDAQ+Prediction Error and
IDAQ+Prediction Variance with different hyperparameter values.

Other baselines. Our approach IDAQ is compatible with existing context-based offline meta-RL methods. FOCAL is
one of such state-of-the-art methods that can address the challenge of MDP Ambiguity (Dorfman et al., 2021) in offline
meta-training. Due to the task-dependent behavior policy, the sub-datasets of different tasks may be disjoint and a promising
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Table 14. Ablation on the number of ensembles L in IDAQ+Prediction Error.

Example Env L = 2 L = 4 L = 8 L = 12 IDAQ+Return

Sweep (Med) 0.13 ± 0.03 0.14 ± 0.05 0.16 ± 0.03 0.17 ± 0.04 0.59 ± 0.13

Point-Robot -6.33 ± 0.22 -5.70 ± 0.05 -6.14 ± 0.24 -5.98 ± 0.24 -5.10 ± 0.26

Reach 0.85 ± 0.02 0.86 ± 0.02 0.85 ± 0.02 0.86 ± 0.01 0.85 ± 0.03

Table 15. Ablation on the number of ensembles L in IDAQ+Prediction Variance.

Example Env L = 2 L = 4 L = 8 L = 12 IDAQ+Return

Sweep (Med) 0.05 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 0.05 ± 0.02 0.59 ± 0.13

Point-Robot -19.30 ± 0.92 -21.29 ± 0.85 -20.51 ± 1.06 -19.48 ± 0.93 -5.10 ± 0.26

Reach 0.47 ± 0.04 0.46 ± 0.03 0.47 ± 0.03 0.46 ± 0.03 0.85 ± 0.03

solution is to apply contrastive loss (Li et al., 2020b; Yuan & Lu, 2022) on the latent task embeddings to distinguish tasks.
Offline PEARL+Contrastive Loss (abbreviated as “OP+CL”) is another popular offline meta-training baseline in the literature
(Li et al., 2020b; Yuan & Lu, 2022). Combining IDAQ with OP+CL, we will investigate how much improvement can be
achieved by in-distribution online adaptation in OP+CL. Results in Table 16 demonstrate that IDAQ can significantly improve
over OP+CL (the “OP+CL+IDAQ” column), and achieves similar or slightly lower performance than FOCAL+IDAQ.

Table 16. Improvement of OP+CL+IDAQ over the OP+CL baseline.

Example Env FOCAL+IDAQ FOCAL OP+CL+IDAQ OP+CL

Push 0.55 ± 0.10 0.34 ± 0.14 0.45 ± 0.04 0.19 ± 0.02
Pick-Place 0.20 ± 0.03 0.07 ± 0.02 0.19 ± 0.04 0.08 ± 0.02
Soccer 0.44 ± 0.04 0.11 ± 0.03 0.42 ± 0.05 0.19 ± 0.02
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 1.00 ± 0.01 0.82 ± 0.04
Reach 0.85 ± 0.03 0.62 ± 0.05 0.90 ± 0.01 0.59 ± 0.03

Sweep (Med) 0.59 ± 0.13 0.38 ± 0.13 0.48 ± 0.09 0.19 ± 0.06
Peg-Insert-Side (Med) 0.30 ± 0.14 0.10 ± 0.07 0.19 ± 0.04 0.06 ± 0.02
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