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ABSTRACT

Large language model (LLM)-based multi-agent systems have shown significant
potential, but their effectiveness often depends on manually engineered prompts,
which are refined through labor-intensive trial and error. While automatic opti-
mization methods exist, they often rely on coarse, task-level outcomes, neglect-
ing the rich trajectory-level information that captures how agents reason, coordi-
nate, and fail. To address this gap, we propose a Trajectory-Aware Verbalized
Optimization (TAVO) framework for prompt refinement in multi-agent systems.
Inspired by reinforcement learning, TAVO introduces a credit assignment mecha-
nism that decomposes interaction trajectories into sub-trajectories, linking specific
reasoning and coordination steps to the final outcome. This generates fine-grained,
process-level feedback. By modeling prompts as verbalized policies, TAVO trans-
lates this trajectory feedback into concrete editing instructions, which are aggre-
gated across tasks for systematic refinement. Experiments on both collabora-
tive and competitive multi-agent benchmarks demonstrate that our framework en-
hances system performance while reducing coordination costs, underscoring the
value of leveraging trajectory-level signals to construct more adaptive and efficient
LLM-based multi-agent systems.

1 INTRODUCTION

The rise of large language models (LLMs) (Brown et al., 2020) has transformed artificial intelligence
from standalone systems into ecosystems of interacting autonomous agents. These LLM-based
multi-agent systems (Guo et al., 2024), where agents perceive complex environments (Li et al.,
2024b) and coordinate through communication to solve tasks beyond individual capabilities (Zhu
et al., 2025), are demonstrating broad potential, from collaborative coding in software engineering
(Qian et al., 2023) to diagnostic teamwork in healthcare (Li et al., 2024a). At the core of these
systems lies a fragile but decisive element: the prompts that specify agent roles, behaviors, and
coordination protocols. Prompt quality determines whether the system operates as a cohesive unit
or descends into misalignment.

Currently, the craft of prompt engineering remains more of an art than a science, representing a sig-
nificant bottleneck in the reliable deployment of these systems. Expert practitioners refine prompts
through an iterative process of analyzing interaction histories, such as reasoning chains, message
exchanges, and coordination patterns, to identify errors and attribute to the specific part of prompt
for agents. While effective, this process is labor-intensive and does not scale, especially as the num-
ber of agents and interaction complexity grow. To automate this process, recent work has proposed
prompt optimization techniques (Khattab et al., 2024; Yuksekgonul et al., 2025), which primarily
use final task outcomes as optimization signals. However, the reward on the final outcome is not al-
ways enough to reflect the real quality of the multi-agent system (Zhuge et al., 2025). In multi-agent
settings, outcomes are the cumulative result of many interdependent steps. A positive reward cannot
reflect the potential redundant steps in the whole process (Wu et al., 2025), while a negative reward
does not reflect the reason for the error (Zhang et al., 2025). This “black-box” perspective overlooks
the trajectory-level evidence that leads to the success or failure. Without examining these steps,
optimization can only indicate failure, not diagnose its source or cause. As a result, adjustments are
often blunt and generic, failing to resolve specific coordination issues and sometimes introducing
inefficiencies (Cemri et al., 2025).
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Figure 1: Motivation for TAVO. We identify the key difference in utilizing trajectory information
between the current automatic prompt refinement methods and human expert in refining prompt in
multi-agent system. Our TAVO aims to fill this gap, via imitating human experts.

We argue that the next breakthrough in multi-agent prompt optimization requires bridging the gap
between scalable automation and expert-level insight. The key challenge is to systematically exploit
trajectory information. Reinforcement learning (RL) provides a natural pathway, as it assigns credit
from outcomes back to individual steps using estimates such as value functions (Jia & Zhou, 2022)
or policy advantages (Schulman et al., 2015). RL approaches provide a strong foundation, yet their
direct application to multi-agent prompt optimization in natural language introduces open questions
regarding efficiency and interpretability in trajectory-level analysis.

To this end, we introduce the Trajectory-Aware Verbalized Optimization (TAVO) framework (Fig-
ure 1), a methodology designed to emulate the diagnostic process of human experts: learning from
the entire interaction trajectory rather than only the final outcome. TAVO builds on two synergistic
pillars, inspired by RL. First, it incorporates a trajectory-aware credit assignment mechanism, to de-
compose long, complex interactions into meaningful sub-sequences and attribute outcomes back to
critical segments. This resolves the credit assignment problem in long-horizon tasks, enabling fine-
grained, process-level feedback that highlights strengths and weaknesses in coordination. Second,
by conceptualizing prompts as verbalized policies—explicit, interpretable specifications—TAVO
bridges analytical feedback with actionable intervention. This design allows trajectory-level signals
to be translated directly into natural language suggestions for policy refinement, yielding systematic,
interpretable, and iterative improvement of multi-agent directives.

Our contributions are substantiated through both theoretical design and empirical validation: (1)
We propose TAVO, a holistic framework that integrates trajectory-level analysis into the automatic
prompt optimization loop for multi-agent systems, bridging the gap between expert-inspired debug-
ging and scalable automation. (2) Within TAVO, we introduce a trajectory-aware credit assignment
mechanism that delivers fine-grained, localized feedback by linking sub-trajectories to outcomes
and distilling clear signals from extended interactions. (3) We further conceptualize prompts as op-
timizable verbalized policies and generate explicit, natural-language policy-editing instructions from
trajectory feedback, enabling systematic and interpretable refinement. (4) We empirically validate
TAVO across both collaborative and competitive settings, demonstrating significant performance
gains and reduced coordination overhead, thereby highlighting its potential to build more robust and
efficient autonomous systems

2 RELATED WORKS

2.1 LLM-BASED MULTI-AGENT SYSTEM

LLM-based multi-agent systems have emerged as a promising paradigm for complex tasks that re-
quire specialization and collaboration. Prior work generally follows two directions. One designs
structured role-play workflows, where agents assume distinct roles (e.g., programmer and tester) to
mimic real-world processes in domains like code generation (Qian et al., 2023) and medical diag-
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nosis (Li et al., 2024a). The other emphasizes dynamic communication strategies, such as debates
(Khan et al., 2024) or iterative self-reflection (Madaan et al., 2023), to refine collective reasoning.
Despite their effectiveness, both paradigms rely heavily on hand-crafted prompts to specify roles
and coordination patterns. Designing and refining these prompts is labor-intensive and does not
scale, creating a key bottleneck. To address this, recent work has begun to automate optimization.
Program-search methods employ evolutionary algorithms or Monte Carlo Tree Search to discover
effective workflows and prompts (Hu et al., 2024; Zhang et al., 2024); gradient-based approaches
model the system as a differentiable graph and propagate textual gradients (Yin & Wang, 2025); and
staged methods strengthen role prompts before joint tuning (Zhou et al., 2025). These approaches
improve robustness, but their reliance on outcome-level feedback provides limited diagnostic in-
sight into coordination failures. Our work departs from this outcome-centric view by incorporating
process-level feedback to guide optimization.

2.2 PROMPT OPTIMIZATION FOR LLMS

Prompt optimization has evolved from early gradient-based tuning methods (Lester et al., 2021)
to approaches that use LLMs themselves as optimizers. One line of work relies on numeric feed-
back, framing prompt optimization as program synthesis guided by evaluation metrics (Yang et al.,
2024; Fernando et al., 2024; Khattab et al., 2024). Another leverages verbal feedback, where natural
language critiques and textual gradients provide more nuanced updates (Shinn et al., 2023; Yuk-
sekgonul et al., 2025). While effective in single-agent contexts, these methods primarily depend
on outcome-level signals and overlook the process-level information that is crucial in multi-agent
coordination. A complementary direction distills prior experiences into reusable natural-language
policies. ExpeL aggregates successful trajectories into textual insights retrievable at inference time
(Zhao et al., 2024), AutoGuide generates state-conditioned guidelines via contrastive analysis (Fu
et al., 2024), and Mobile-AgentE operationalizes shortcuts into executable procedures (Wang et al.,
2025). GiGPO further provides fine-grained credit assignment within trajectories (Feng et al., 2025).
These works highlight the potential of experience-based policies but remain designed for single-
agent scenarios. Our work extends this paradigm by transforming multi-agent trajectories into role-
aware policies that explicitly govern interaction and division of labor.

2.3 AGENTIC EVALUATION AND THE ROLE OF TRAJECTORIES

Evaluating LLM-based agents is challenging because their problem-solving unfolds as multi-step
process (Yao et al., 2023). Existing benchmarks, such as SWE-Bench for software engineering
(Jimenez et al., 2024), typically emphasize final success rates. However, outcome-centric evaluation
is often an unreliable proxy for capability (Zhuge et al., 2025), as it overlooks robustness, efficiency,
and coordination quality. Recent work increasingly recognizes the value of trajectory-level analysis.
Trajectories capture reasoning chains, social dynamics, and failure modes (Lù et al., 2025), enabling
error attribution (Zhang et al., 2025) and root-cause analysis (Cemri et al., 2025). Building on this
perspective, our framework leverages trajectory-level signals as a more informative and reliable
basis for optimizing multi-agent systems.

3 PRELIMINARY

3.1 MULTI-AGENT SYSTEM AS A MARKOV DECISION PROCESS

We formalize an LLM-based multi-agent system as a Markov game, a multi-agent extension of the
Markov decision process (MDP) framework (Littman, 1994). Consider a task described by T and
a set of agents A = {ai}Ni=1, where each agent ai is governed by a textual prompt Pi that defines
its behavior and role. Formally, the system is defined by the tuple (S,Ai,P,R, γ). State Space
S: A state st ∈ S at step t consists of the accumulated dialogue history Ht−1, which includes the
task description T and all messages exchanged among agents up to step t − 1. Action Space Ai:
Each agent ai takes an action by generating a message mi,t at step t. The joint action of all agents
is denoted as mt = {mi,t}Ni=1. Transition Dynamics P: The state transition is deterministic:
given the joint action mt, the new state is updated by appending the new messages to the history,
i.e., st+1 = Ht = Ht−1 ∪ {mt}. Reward Function R: After the interaction concludes with a
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Figure 2: Overview of our TAVO. Our framework models the agent’s prompt as verbalized poli-
cies. It first generates global feedback on the final output, then assigns credit to each sub-trajectory
to produce local feedback and corresponding policy-editing suggestions. These suggestions are ag-
gregated by identifying common revisions to refine the prompt. The optimization process is applied
iteratively on training tasks, after which the optimized system is deployed to handle unseen tasks.

trajectory HT and a final outcome r, an evaluation function provides a global outcome feedback
signal R(T , r). Discount Factor γ: This factor determines the present value of future rewards.

Within this formulation, the prompt Pi of each agent functions as a verbalized policy πverbal
i , which

directly conditions the agent’s response generation:

mi,t ∼ πverbal
i (· | st, Pi). (1)

3.2 CREDIT ASSIGNMENT IN SEQUENTIAL DECISION MAKING

Reinforcement learning (RL) provides a general framework for estimating process rewards in long-
horizon decision making (Sutton et al., 1998) for updating policy. A fundamental challenge in RL
is the credit assignment problem: rewards are often sparse and delayed, making it difficult to trace
the final outcome back to the intermediate actions that most contributed to success or failure. To
address this challenge, RL introduces intermediate feedback signals that approximate the long-term
contribution of each action. Techniques such as value estimation (Jia & Zhou, 2022), temporal-
difference (Sutton, 1988), and advantage functions (Schulman et al., 2015), serve as surrogates
for the eventual outcome, enabling agents to update their policies even before the final reward is
observed. These process-level signals provide a bridge between sparse outcome feedback and fine-
grained policy optimization.

However, a fundamental limitation arises when applying these RL principles to LLM-based multi-
agent systems where policies are encoded as textual prompts, especially when the underlying LLM
parameters are frozen. Standard RL algorithms are designed for continuous parameter spaces
amenable to gradient-based optimization. In contrast, prompt-based policies are discrete, structured
in natural language, and cannot be directly optimized via numeric gradients. Consequently, while
the conceptual framework of credit assignment is highly relevant, the technical machinery of RL
cannot be directly transferred to the problem of optimization of LLM-based multi-agent systems.

4 TRAJECTORY-AWARE VERBALIZED OPTIMIZATION

We introduce Trajectory-Aware Verbalized Optimization (TAVO), a framework that refines agent
prompts by leveraging the MDP formulation of multi-agent interactions. Within this view, prompts
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function as policies, interaction histories form state-action sequences, and optimization is achieved
through structured credit assignment and iterative policy improvement. As illustrated in Figure 2,
TAVO consists of three core components: (1) Trajectory-aware credit assignment, which de-
composes sparse outcome-level rewards into fine-grained, verbalized process feedback; (2) Policy-
editing suggestion generation, which translates this feedback into interpretable, natural language
instructions for prompt modification; and (3) Aggregated policy refinement, which consolidates
suggestions across multiple tasks to identify robust, generalizable improvements.

4.1 PROMPTS AS VERBALIZED POLICY

Within the MDP framework, each agent ai is governed by a verbalized policy πverbal
i instantiated by

its prompt Pi. At step t, the agent generates messages mi,t according to Equation1. The prompt
Pi thus encodes the strategies, rules, and behavioral guidelines that condition the agent’s responses.
This formulation is particularly critical when using frozen base models, where the prompt serves as
the primary mechanism for steering behavior due to constraints on model access or computational
resources. The joint trajectory HT emerges from the execution of the joint policy {πverbal

i }Ni=1 over
the sequence of states. The final output r is derived fromHT , and the reward function evaluates the
task-result pair (T , r). In this formulation, the main challenge of credit assignment in RL remains.

Under this formulation, we confront the classic credit assignment challenge from RL in a novel
context: it is difficult to (1) identify which specific intermediate actions within a long interaction
sequence contributed most significantly to the final outcome, and (2) associate that contribution
back to specific components of the verbalized policy (the prompt) to guide optimization.

4.2 TRAJECTORY-AWARE CREDIT ASSIGNMENT

To address the credit assignment challenge, we propose a trajectory-aware credit assignment mech-
anism. The core insight is that in long-horizon, multi-agent interactions, the trajectory, i.e., the
sequence of intermediate responses and decision points, encodes rich information about how the
final outcome emerged. Leveraging this information allows for a more precise attribution of credit
than relying solely on the final outcome. However, utilizing full trajectories directly is challenging.
As task complexity and the number of agents increase, trajectories become lengthy and information-
dense. LLMs are known to struggle with such extended contexts, often overlooking critical details
while being distracted by irrelevant information (Zhao et al., 2025). Simply feeding the raw trajec-
tory to an LLM risks losing the very signals needed for accurate credit assignment.

Our mechanism overcomes this by first evaluating the final outcome r to obtain a verbalized reward:

Fr = R(T , r), (2)

where R may be implemented using either pre-defined rule-based evaluation or LLM-based eval-
uator, such as LLM-as-a-Judge (Gu et al., 2024) to provide outcome-level feedback. To manage
context length, the full trajectoryHT is decomposed into manageable sub-trajectories ht, each cap-
turing a coherent segment of the interaction (e.g., one round of a debate (Khan et al., 2024) or a
single stage in a structured workflow (Qian et al., 2023)). For each sub-trajectory, we derive process
feedback by conditioning the outcome evaluation on the partial history:

Ft = TAVOcredit(T , ht, Fr), (3)

where TAVOcredit employs an LLM to verbally articulate the contribution of sub-trajectory ht to the
final outcome Fr. This process can be executed in parallel for all sub-trajectories, making it efficient
regardless of total trajectory length.

Conceptually, this mirrors value decomposition methods in multi-agent reinforcement learning.
However, instead of producing numeric estimates, it generates interpretable, verbal signals that at-
tribute credit to specific interaction segments, thereby transforming a sparse outcome evaluation into
actionable, step-level guidance.

4.3 GENERATING POLICY-EDITING SUGGESTIONS

Even with step-level feedback from trajectory-aware credit assignment, a key challenge remains:
determining which agent’s policy, and which specific part of its prompt, should be updated based on
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that feedback. Prompts are often high-level and semantically entangled, making the link between a
trajectory segment and a specific policy component non-obvious.

To bridge this gap, we model prompts as verbalized policies, where the prompt consists of a list of
explicit policies. The policies can also be customized based on the system, such as a list of rules,
instructions, or guidelines that agents should follow. Building on the outcome feedback Fr and step-
level feedback Ft, TAVO generates structured policy-editing suggestions that map verbalized credit
to specific prompts. For an agent ai active in a sub-trajectory ht, edits are proposed as:

∆Pi,t = TAVOsuggestion(T , Fr, Ft, Pi), (4)

where ∆Pi,t is a set of natural language instructions generated by an LLM (i.e., TAVOsuggestion) to
refine prompt Pi. ∆Pi,t are structured into three actionable types: (1) Addition: introducing new
rules that encourage effective behaviors observed in the trajectory; (2) Deletion: removing policies
that led to harmful actions; and (3) Modification: rephrasing existing instructions to better align
with task goals. This process is analogous to calculating a policy gradient in reinforcement learn-
ing. However, instead of updating numeric parameters, it operates in the space of natural language
policies, providing an interpretable pathway from evaluation signals to prompt optimization.

4.4 AGGREGATED POLICY REFINEMENT ACROSS TASKS

The process above generates numerous policy-editing suggestions across different tasks and trajec-
tory segments. These suggestions are often redundant, overlapping, or sometimes contradictory.
Applying them directly would lead to noisy and unstable prompt updates. To ensure robust refine-
ment, TAVO includes an aggregation step. For each agent ai, edits collected across all its involved
trajectories and tasks are consolidated:

P T
i = {P T

i,t}Tt=1, (5)

∆P ′
i = TAVOaggregate({∆P T

i }T ∈B), (6)

where B denotes a batch of tasks. The aggregation module TAVOaggregate (implemented with an
LLM) identifies common themes, merges redundant suggestions, and resolves conflicts by favoring
coherent, high-impact edits. The final, refined prompt for agent ai is then produced by:

P new
i = TAVOrefine(P

old
i ,∆P ′

i ). (7)

This aggregation transforms a collection of localized, potentially noisy edits into a stable and gen-
eralizable policy update, ensuring improvements are consistent across diverse tasks. Conceptually,
this entire loop—trajectory rollout, credit assignment, suggestion generation, and aggregated re-
finement—parallels policy iteration in RL. TAVO adapts this powerful principle to the domain of
verbalized policies, enabling systematic and interpretable optimization of LLM-based MAS.

4.5 CONNECTIONS AND ADVANTAGES OF TAVO

TAVO is grounded in reinforcement learning (RL) principles but tailored to the constraints of LLM-
based systems. Like RL, it builds on the MDP formalism and addresses credit assignment for iter-
ative policy improvement, but it operates in the verbalized policy space, enabling use with frozen
or gradient-inaccessible models—a common case for proprietary LLMs (see Table 1). Unlike stan-
dard RL, TAVO avoids dense reward design by using LLMs to generate interpretable credit signals.
Compared to existing prompt optimization methods, it provides a more systematic trajectory-based
decomposition, yielding three key benefits: (1) Interpretability: updates are expressed in natural
language, ensuring transparency; (2) Generalizability: task-level aggregation supports transferable
improvements; and (3) Accessibility: no gradient access is required.

5 EXPERIMENTAL SETUP

Benchmark and Evaluation. We conduct the experiments on MultiAgentBench (Zhu et al., 2025),
which is a comprehensive benchmark designed to evaluate LLM-based multi-agent systems. We
conduct experiments on three collaborative domains: Research, Coding, and Database, and one
competitive domain: Bargaining. For each domain, we create disjoint train/validation/test partitions
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Aspect Traditional RL TAVO Example - TAVO
Policy Numeric parameters (e.g., neural

network weights) optimized via
gradient-based methods.

Natural language prompts (e.g., behav-
ior rules, or task guideline) optimized
in verbalized (non-gradient) way

Encourage comprehensive literature
reviews and integration of recent find-
ings into research proposal

Optimization
Signal

Numeric rewards, often sparse and
delayed.

Verbalized feedback derived from
trajectory-aware credit assignment and
outcome evaluation.

The task was completed thoroughly, ad-
dressing all specified requirements in-
cluding literature review, brainstorm-
ing, summarization...

Credit As-
signment

Numeric proxy, like value estima-
tion and advantage functions.

Verbalized process feedback derived
from outcome feedback based on sub-
trajectory.

The current iteration makes significant
progress towards task completion by
defining the research question and de-
veloping a detailed methodology...

Update
Mechanism

Policy gradient derived from nu-
meric credit.

Policy-editing suggestion derived from
verbalized outcome and process feed-
back.

Modify literature review prompts to en-
sure comprehensive coverage and inte-
gration of recent advancements

Table 1: Comparison between traditional reinforcement learning (RL) and our proposed TAVO.

Research Coding Database
TS CS Milestones TS CS Milestones TS CS Milestones

Baseline 80.00 84.69 5.55 51.00 63.26 7.93 47.33 89.33 9.90
Reflexion 79.33 86.10 5.95 49.33 63.04 6.53 44.67 91.00 10.00

DsPy 82.33 82.95 6.10 50.67 64.00 8.87 54.67 93.90 10.50
TextGrad 80.33 86.25 6.00 51.00 67.62 9.13 56.00 88.65 11.20

TAVO 83.00 88.50 7.50 52.00 85.54 9.87 58.67 94.00 11.80

Table 2: Task Score (TS), Coordinate Score (CS), and Average Milestone Achievement on three
collaborative domains: Research, Coding, and Database.

TS CS Deal Ratio Milestones
Average per round per 1M tokens

Baseline 75.09 83.82 0.37 5.86 0.33 109.65
Reflexion 80.33 83.15 0.40 4.13 0.36 70.27

DsPy 55.00 78.38 0.35 10.71 0.34 69.46
TextGrad 63.67 78.33 0.50 8.80 0.33 52.75

TAVO 82.33 85.03 0.55 4.72 0.42 122.90

Table 3: Task Performance and Milestone on One Competitive Domain, i.e., Bargaining.

at the instance level. For evaluation, we follow the original benchmark and employ Task Score,
Coordination Score and Milestones as the metrics. Task Score is computed to evaluate the fi-
nal output quality. Coordination Score is computed to quantify the agents’ communication and
planning capabilities. As for Milestone, each task is segmented into a series of flexible milestones,
and an LLM-based detector continuously monitors the iterative process to identify which milestones
have been achieved. We report the average achieved milestone across tasks in the table. More details
about the benchmark are in Appendix B.

Baselines. We compare TAVO with the following baselines: (1) Baseline: original prompts pro-
vided by the benchmark. (2) Reflexion (Shinn et al., 2023): which involves the verbalized feedback
as part of the prompt. (3) DsPy (Khattab et al., 2024): which utilizes the numeric feedback to
evolve prompts. (4) TextGrad (Yuksekgonul et al., 2025): which uses text gradient as a proxy to
differentiate from the verbalized feedback.

Model and Prompts. Unless otherwise noted, all task-executing agents employ gpt-4o-mini-2024-
07-18 as the backbone model within the multi-agent system, while optimization and evaluation use
gpt-4o-2024-08-06. For both TAVO and the baselines, we optimize prompts on the training set,
select the best prompt on the validation set using milestone-based metrics, and report final results
on the test set. Prompt optimization is limited to five rounds, with details provided in Appendix D.

6 RESULTS ANALYSIS

6.1 PERFORMANCE IN COLLABORATIVE AND COMPETITIVE SYSTEMS

We report results in collaborative and competitive tasks in Table 2 and Table 3, respectively.

7
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Research - Milestone Coding - Milestone Database - Milestone
per round per 1M tokens per round per 1M tokens per round per 1M tokens

Baseline 1.21 16.42 2.07 93.02 1.98 79.80
Reflexion 1.22 17.24 2.02 84.95 2.00 63.29

DsPy 1.27 18.10 2.23 97.70 2.27 81.31
TextGrad 1.20 10.53 2.08 84.76 2.24 61.83

TAVO 1.50 20.40 2.43 110.29 2.36 91.58

Table 4: Milestone per Round and per Million Tokens Usage on Collaborative Domains.
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Figure 3: Efficiency Comparison between Different Methods in Research. The average cumulative
milestone is showed based on the number of iteration (left) and token usage (right). The slope
indicates the rate of achieving milestone, where the higher slope indicates the better efficiency.

Our proposed TAVO consistently outperform the baselines across domains. In three collabo-
rative and one competitive domains, all prompt refinement methods see a consistent improvement
on Task Score and Coordinate Score, which confirms the value of refining the prompt based on
the suggestions from rollout. Moreover, our method TAVO noticeably outperforms two optimiza-
tion methods solely on the outcome feedback (i.e., DsPy and TextGrad) across all domains. This
confirms that incorporating trajectory information is crucial for optimizing a multi-agent system.

The optimization of TAVO consistently enhances achievement on the milestone, leading to a
better task performance. To better understand the effectiveness of our TAVO, we compare Mile-
stone achieved in the process in average. In collaborative domains, our TAVO achieves one more
milestone when compared to other optimization methods that only utilize the outcome feedback.
The only exception is in Bargaining, where DsPy and TextGrad increase the round of biding (i.e.,
milestone) but not help to reach a deal. Instead, our methods sees a decreased milestone but leading
to higher deal ratio (More analysis in Appendix E). It demonstrates that the performance gain of our
methods comes from the milestone achievement in the process. This further confirms the value of
utilizing trajectory information in enhancing the coordination among agents in a multi-agent system
to achieve an enhanced task performance.

Trajectory Information is not only helpful to the effectiveness, but also to the efficiency. We
further show the milestone per round and per million tokens usage in Table 4 and Table 3. The
results show that our TAVO achieves more milestones with the same budget, either per round or per
million tokens usage. The observation demonstrates that the enhanced performance of our TAVO
comes from the milestone achievement under fewer rounds or token usage. We further show the
achievement progress of milestones under different rounds and token usage in Figure 3, where the
slope shows the efficiency of the optimized methods. The results show that DsPy achieves more
milestones with fewer token usage but with more rounds, while TextGrad achieves more milestones
with fewer rounds but more token usage. Instead, our TAVO takes fewer tokens and fewer rounds
to achieve a better performance. This confirms the value of involving trajectory information in
enhancing the efficiency of a multi-agent system.

6.2 EFFECTIVENESS OF CREDIT ASSIGNMENT AND VERBALIZED POLICY

Credit Assignment Mechanism is necessary to align the enhancement between milestone
achievement and final outcome. To further understand the effect of our Credit Assignment Mech-
anism, we remove credit assignment and only use the outcome feedback for generating suggestions

8
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Figure 4: Ablation on local evaluation and verbalized policy in Research.

"most_common_additions":
 
1. Detail the research methodology,
2. Explore unconventional methodologies
3. Identify gaps in existing literature
4. Brainstorm innovative research
directions

"most_common_removals":
......

"most_common_additions":
 
1. Include instructions for comprehensive literature
review
2. Add guidance for detailed methodology description
3. Encourage collaborative brainstorming and idea
sharing
4. Add prompts for iterative idea refinement

"most_common_removals":
......

V.S,

w/ Credit Assignment w/o Credit Assignment

Finer-grained: suggestion
on adding sub-task

(a) Policy-Editing Suggestion Comparison

Epoch 1
- Ensure a comprehensive literature review is 
conducted, integrating diverse sources and insights.

- Provide detailed descriptions of each methodological 
step and experimental design.
- ......

Epoch 1
To enhance the effectiveness of research 
tasks, agents should prioritize conducting 
comprehensive literature reviews, ensuring that 
relevant and diverse sources are integrated into 
the proposal ......

Epoch 2
- Conduct a comprehensive literature review, 
integrating recent research findings.
- Include prompts for detailed methodological planning 
and exploration of innovative approaches.
- ......

Epoch 2
In conducting research tasks, agents should 
prioritize comprehensive literature integration 
and detailed methodological exploration to 
enhance the quality and depth of their outputs 
......

w/ Verbalized Policy w/o Verbalized Policy

V.S,

Finer-grained: detailed
revision on prompt

(b) Prompt Refinement Comparison.

Figure 5: Case Study for Ablation Study from Research. (a) Policy-editing suggestion comparison
between w/ and w/o credit assignment, where credit assignment enables a finer-grained suggestion,
e.g., “identify gaps”. (b) Prompt refinement between w/ and w/o verbalized policy, where verbalized
policy allows a finer-grained revision, e.g., “integrating recent research findings”.

and refining prompts. As the results in Figure 4, the performance without credit assignment still
outperforms the baselines except the task score. This demonstrates that optimizing without credit
assignment can enhance the milestone achievement, but cannot lead to an enhancement in the final
outcome. The example shown in Figure 5 demonstrates that the credit assignment enables the gen-
eration of finer-grained suggestions (e.g., identify gaps), leading to an improved achieved milestone
and task score. This further confirms the necessity of our proposed Credit Assignment Mechanism.

Verbalized Policy enables a more effective utilization of the trajectory-aware feedback. To
better understand the role of verbalized policies in leveraging trajectory-aware feedback, we remove
policy verbalization. In this setting, the entire prompt is treated as a single unit, and we generate sug-
gestions and refine the prompt as a whole. The results are reported in Figure 4, which demonstrates
that the performance gain from trajectory information remains, but it sees a performance gap when
compared to optimizing in a verbalized policy format. We further show one example in Figure 5
to indicate the effectiveness of verbalized policy. It can be observed that verbalized policy helps to
perform the finer-grained revision, such as from “integrating diverse sources and insights” to a clear
revision “integrating recent research findings”. This observation confirms that verbalized policies
help to utilize the fine-grained feedback captured from the trajectory.

7 CONCLUSION

In this work, we addressed the challenge of optimizing prompts for LLM-based multi-agent sys-
tems, where conventional methods that rely solely on outcome-based signals often fail to capture
the nuances of agent interaction. We introduced TAVO, a Trajectory-Aware Verbalized Optimiza-
tion framework that draws inspiration from reinforcement learning to create a more effective re-
finement process. By implementing a credit assignment mechanism, TAVO generates fine-grained,
process-level feedback from interaction trajectories. We further conceptualize prompts as verbalized
policies, allowing this rich feedback to be translated into concrete, actionable editing suggestions.
Our experiments across both collaborative and competitive benchmarks demonstrate that TAVO not
only improves final task outcomes and process milestones but also enhances coordination efficiency.
These findings underscore the significant value of leveraging detailed trajectory data, paving the way
for more adaptive, efficient, and robust multi-agent systems.

9
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REPRODUCIBILITY STATEMENT

To aid reproducibility, we provide an anonymous link https://anonymous.4open.science/r/TAVO to
the full source code. This repository encompasses all required scripts for data processing, model
training, and evaluation, thereby allowing others to reproduce our results.
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persuasive llms leads to more truthful answers. In International Conference on Machine Learning,
pp. 23662–23733. PMLR, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compil-
ing declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2021.

10

https://anonymous.4open.science/r/TAVO


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng Zhang, Xinhui Kang, Siyu Wang, Peng
Li, Ya-Qin Zhang, Weizhi Ma, et al. Agent hospital: A simulacrum of hospital with evolvable
medical agents. arXiv preprint arXiv:2405.02957, 2024a.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024b.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejan-
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A METHOD DETAILS

We show the pseudo-code in Algorithm 1

Algorithm 1 TAVO: Trajectory-Aware Verbalized Optimization

Input: Task set B = {T }, agents A = {ai}Ni=1, initial prompts P (0) = {P (0)
i }, iterations L

Output: Refined prompts P (L)

1: for ℓ = 1 to L do
2: for each task T ∈ B do
3: (r, {ht}Tt=1)← ROLLOUT(T ,A, P (ℓ−1))
4: Fr ← R(T , r) ▷ Feedback on outcome
5: for t = 1 to T do
6: Ft ← TAVOcredit(T , ht, Fr) ▷ Credit Assignment
7: for each agent ai active in ht do
8: ∆Pi,t ← TAVOsuggestion(T , Fr, Ft, P

(ℓ−1)
i ) ▷ Policy-Editing Suggestion

9: end for
10: end for
11: end for
12: for each agent ai do
13: ∆P ′

i ← TAVOaggregate({∆P T
i }T ∈B) ▷ Suggestion Aggregation

14: P
(ℓ)
i ← TAVOrefine(P

(ℓ−1)
i ,∆P ′

i ) ▷ Prompt Refinement
15: end for
16: end for
17: return P (L)

B BENCHMARK DETAILS

The Research scenario involves multi-stage collaborative workflows spanning literature review,
brainstorming, synthesis, and a 5Q-style proposal; Coding focuses on collaborative code genera-
tion and repair; Database emphasizes structured querying, read–write operations, and consistency
reasoning; Bargaining evaluates multi-round negotiation where agents must maintain strategic co-
herence and reach valid agreements.

Regarding the evaluation, we follow the original benchmark and employ Task Score, Coordination
Score and Milestones as the evaluation metrics. Task Score is computed to evaluate the final output
quality. For tasks of Research and Bargaining, an LLM-defined scoring rubric is applied to gener-
ate the score. For other tasks, a rule-based metric is employed for evaluation. Coordination Score
is computed to quantify the agents’ communication and planning capabilities. As for Milestone,
each task is segmented into a series of flexible milestones, and an LLM-based detector continuously
monitors the iterative process to identify which milestones have been achieved. We report the aver-
age achieved milestone across tasks in the table. It is notable that Task Score focuses more on the
quality of the final outcome, while Milestone provides a process-based evaluation.

For each domain, we create disjoint train/validation/test partitions at the instance level. In Research
and Bargaining we use 5/5/20 splits, while Coding adopts 5/5/15 and Database uses 3/3/10, reflect-
ing domain-specific task volumes.

C BASELINE

We compare our proposed TAVO with the following baselines:

1. Baseline: we use the original prompts provided by the benchmark as the baselines for
comparison. Note that the prompt here is without any optimization.

2. Reflexion Shinn et al. (2023): this is a clasic method, which takes the verbalized feedback
as the part of the prompt to construct the optimized prompt.
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3. DsPy Khattab et al. (2024): this is the evolution-based method that utilizes the numeric
feedback to filter the better prompts.

4. TextGrad Yuksekgonul et al. (2025): this is one of the recent methods that uses text gradient
as a proxy to differentiate from the verbalized feedback, which is used for refining the
prompt.

D MODELS AND PROMPTS

D.1 MODELS

Unless otherwise specified, all task-executing agents use gpt-4o-mini-2024-07-18 as the back-
bone model to run multi-agent dialogues and produce task solutions. The optimizer that performs
trajectory-aware feedback aggregation and policy editing uses gpt-4o-2024-08-06. This separation
follows our design goal: maintain a lightweight, fast inference model for the agents while lever-
aging a stronger model to summarize trajectories and synthesize high-quality verbalized policies.
For task score evaluation, we employ gpt-4o-2024-08-06 as the evaluator. For both of our proposed
TAVO and the used baselines, we optimize the prompts on the training set, select the best prompt
on the validation set, and finally report the results on the held-out test set. For optimization on the
training set, we run at most five optimization rounds. For selection on the validation set, we adopt
milestone-based metrics as the primary selection criterion.

D.2 PROMPTS

We list the used prompts in our experiments.

Prompt for Trajectory-Aware Credit Assignment

Please evaluate the quality and progress of the current iteration
in this multi-agent collaboration.

Current Iteration Context:
Iteration Number: {iteration_number}
Iteration Content: {iteration_content}

Task Context:
Task Background: {task_context}
Previous Iterations: {previous_iterations}

Evaluation of final result:
{global_evaluation}

evaluation_criteria:

iteration_progress:
description: "Progress made in current iteration"
evaluation_points:
"Whether meaningful progress was made"
"Whether intermediate results are valuable"
"Whether the direction is correct and effective"

agent_coordination:
description: "Agent coordination in current iteration"
evaluation_points:
"Whether agents worked together effectively"
"Whether communication was clear and purposeful"
"Whether work division was appropriate"

stage_appropriateness:

14
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description: "Evaluate whether the output meets the current stage"
evaluation_points:
"Whether the content depth is suitable for the current stage"
"Whether it is prepared for the subsequent work"
"Whether the time arrangement is reasonable"

output_format:
Please return the evaluation results in JSON format:
{
"iteration_progress": {
"score": score(1-10),
"analysis": "progress analysis",
"key_achievements": ["key achievement 1", "key achievement 2"]
},
"agent_coordination": {
"score": score(1-10),
"analysis": "coordination analysis",
"coordination_highlights": ["coordination highlight 1",

"coordination highlight 2"],
"coordination_issues": ["coordination issue 1", "coordination

issue 2"]
},
"stage_appropriateness": {
"score": score(1-10),
"analysis": "stage appropriateness analysis",
"alignment_evidence": ["alignment evidence 1", "alignment evidence

2"]
},
"iteration_summary": {
"overall_score": average score,
"main_contributions": ["main contribution 1", "main contribution

2"],
"areas_for_improvement": ["area for improvement 1", "area for

improvement 2"],
"next_iteration_suggestions": ["next iteration suggestion 1",

"next iteration suggestion 2"]
}
}

Prompt for Suggestion-Aggregated Policy Refinement

You are given a list of short rules/suggestions (may be redundant
or semantically similar).

Task:
(1) normalize/merge near-duplicates;
(2) rank by (estimated frequency + practical importance);
(3) return the top-{top_k} representative and concise items.

Input items (one per line with index):
{input_items}

Return STRICT JSON only:
{{
"top": [
{{
"text": "representative concise rule",
"support_examples_idx": [1,5,9],
"support_count": 3,
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"importance": 0
}}

]
}}

Prompt for Generating Policy-Editing Suggestions

Please analyze the following Agent’s performance and provide
improvement recommendations based on final result quality:

**Task Context:**
{task_context}

**Final Result Quality Assessment:**
{result_context}

**Full Result Evaluation:**
{result_evaluation}

**Agent Information:**
- Agent ID: {agent_history[’agent_id’]}
- Agent Type: {agent_history[’agent_type’]}
- Profile: {agent_history[’profile’]}

**Current System Prompt:**
{agent_history[’original_system_prompt’]}

**Agent Historical Performance:**
- Number of tasks executed: {len(agent_history[’tasks_performed’])}
- Number of communications: {len(agent_history[’communications’])}
- Token usage: {agent_history[’token_usage’]}

**Detailed Task History:**
{agent_history[’tasks_performed’]}...

**Communication History:**
{agent_history[’communications’]}...

**Result History:**
{agent_history[’results’]}...

**Result Quality-Based Deep Analysis Requirements:**

1. **Result-Oriented Assessment**: Analyze whether this agent’s
contributions are effective based on final result quality

2. **Causality Analysis**: Analyze the causal relationship between
this agent’s behavior and final result quality

3. **Impact Verification**: Whether this agent’s work had positive
impact on final results

4. **Problem Attribution**: If result quality is poor, whether
this agent is one of the influencing factors

5. **Targeted Improvement**: Provide targeted improvement
recommendations based on result quality issues

**Important**: Please judge agent performance effectiveness by
combining result quality assessment, not just process analysis.

Please return evaluation results in JSON format:
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{{
"overall_score": 1-10,
"result_oriented_analysis": {{

"contribution_to_final_result": "Analysis of this agent’s
specific contribution to final result",

"effectiveness_rating": 1-10,
"impact_on_quality": "Analysis of impact on result quality"

}},
"strengths": ["Strength 1 based on result verification",
"Strength 2 based on result verification", ...],
"weaknesses": ["Weakness 1 affecting result quality",
"Weakness 2 affecting result quality", ...],
"causality_analysis": {{

"positive_contributions": ["Behavior 1 promoting result
quality", "Behavior 2 promoting result quality"],

"negative_impacts": ["Behavior 1 damaging result quality",
"Behavior 2 damaging result quality"],

"missed_opportunities": ["Missed opportunity 1 to improve
results", "Missed opportunity 2 to improve results"]
}},
"prompt_suggestions": {{

"result_oriented_improvements": "Prompt improvement
suggestions based on result quality issues",

"effectiveness_enhancements": "Prompt modifications to
improve actual effectiveness",

"quality_focus_additions": "Prompt additions to enhance
result quality awareness",

"collaboration_optimizations": "Prompt adjustments to
optimize collaboration effects"
}},
"targeted_recommendations": {{

"immediate_fixes": ["Immediate improvement 1", "Immediate
improvement 2"],

"strategic_improvements": ["Strategic improvement 1",
"Strategic improvement 2"],

"quality_assurance_measures": ["Quality assurance measure
1", "Quality assurance measure 2"]
}},
"specific_prompt_modifications": {{

"add_instructions": ["Specific instruction 1 to add",
"Specific instruction 2 to add"],

"remove_content": ["Content 1 to remove", "Content 2 to
remove"],

"restructure_suggestions": ["The content to be modified
1(and the way to modify)", "The content to be modified 2(and
the way to modify)"]
}}

}}

E EVALUATION METRICS ON COMPETITIVE TASK: BARGAINING

The bargaining scenario is competitive: a buyer and a seller exchange proposals and counterof-
fers, and progress may involve strategic hesitation or cycling. In this setting, average milestone
counts alone are not diagnostic, because intermediate events (e.g., offer/counteroffer) can accumu-
late without reflecting substantive movement toward agreement. To account for this difference from
cooperative tasks, we place greater emphasis on outcome-oriented metrics—deal closure rate and
task/coordinate scores—while also reporting efficiency indicators such as Average Milestones per
round and per 1M tokens to characterize system throughput. Our evaluation thus balances effec-
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Figure 6: Validation results across five optimization epochs.

tiveness (whether and how well agreements are reached) with operational efficiency, rather than
interpreting the absolute value of average milestones as a standalone measure of performance.

F MORE RESULTS

We report four indicators on the held-out set: overall throughput (Total Milestones), outcome qual-
ity (Avg. Task Evaluation), and two efficiency proxies (Milestones per iteration and per million
tokens). Across five iterations, we observe a non-monotonic but interpretable pattern. Task Eval-
uation improves from the base to iteration 1 (74.7→82.7) and remains competitive thereafter with
mild fluctuations (76–82.7). In contrast, efficiency and throughput rise more substantially in later
epochs: Milestones/Iterations increases from 0.88 (base) to 1.60 (iter 5), and Total Milestones grows
steadily (≈4.4→8.0). Milestones/Token decreases early (22.54→16.02 by iter 2), then rebounds to
a higher level by iter 4–5 (≈30), indicating a shift toward more aggressive milestone production per
compute.

These trends suggest an evolving balance between effectiveness and operational efficiency. Early it-
erations likely favor conservative, quality-preserving behaviors (higher Task Evaluation with tighter
token budgets), while later iterations emphasize faster progress and higher milestone density. The
modest softening of Task Evaluation at iterations 3–5, alongside strong gains in Milestones/Iter-
ations and Total Milestones, is consistent with a throughput-oriented policy that does not always
translate additional steps into proportional quality gains.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

This work was developed with the support of Large Language Models (LLMs), which served as a
writing assistant and a key component in our experiments. Specifically, ChatGPT aided in drafting
and refining the text, enhancing the clarity and precision of our expression, while LLMs were also
actively employed in the experimental pipeline.
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