
Under review as a conference paper at ICLR 2021

RAPID NEURAL PRUNING FOR NOVEL DATASETS
WITH SET-BASED TASK-ADAPTIVE META-PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep neural networks are growing in size and being increasingly deployed to
more resource-limited devices, there has been a recent surge of interest in network
pruning methods, which aim to remove less important weights or activations of a
given network. A common limitation of most existing pruning techniques, is that
they require pre-training of the networks at least once before pruning, and thus
we can benefit from reduction in memory and computation only at the inference
time. However, reducing the training cost of neural networks with rapid structural
pruning may be beneficial either to minimize monetary cost with cloud computing
or to enable on-device learning on a resource-limited device. Recently introduced
random-weight pruning approaches can eliminate the needs of pretraining, but they
often obtain suboptimal performance over conventional pruning techniques and
also does not allow for faster training since they perform unstructured pruning. To
overcome their limitations, we propose Set-based Task-Adaptive Meta Pruning
(STAMP), which task-adaptively prunes a network pretrained on a large reference
dataset by generating a pruning mask on it as a function of the target dataset. To
ensure maximum performance improvements on the target task, we meta-learn
the mask generator over different subsets of the reference dataset, such that it can
generalize well to any unseen datasets within a few gradient steps of training. We
validate STAMP against recent advanced pruning methods on benchmark datasets,
on which it not only obtains significantly improved compression rates over the
baselines at similar accuracy, but also orders of magnitude faster training speed.

1 INTRODUCTION

Deep learning has achieved remarkable progress over the last years on a variety of tasks, such as
image classification (Krizhevsky et al., 2012; Wang et al., 2017; Rawat & Wang, 2017), object
detection (Lin et al., 2017b; Liu et al., 2020), and semantic segmentation (Lin et al., 2017a; Huang
et al., 2019). A key factor to the success of deep neural networks is their expressive power, which
allows them to represent complex functions with high precision. Yet, such expressive power came
at the cost of increased memory and computational requirement. Moreover, there is an increasing
demand to deploy deep neural networks to resource-limited devices, which may not have sufficient
memory and computing power to run the modern deep neural networks. Thus, many approaches have
been proposed to reduce the size of the deep neural networks, such as network pruning, training the
model with sparsity-inducing regularizations or prior (Han et al., 2015; Yoon & Hwang, 2017; Lee
et al., 2019a), network distillation (Hinton et al., 2014; Hui et al.), and network quantization (Han
et al., 2016; Jung et al., 2019). Arguably the most popular approach among them is network pruning,
which aims to find the optimal subnetwork that is significantly smaller than the original network
either by removing its weights and activations (unstructured) or filters and channels (structured).
Structured pruning is often favored over unstructured pruning since GPUs can exploit its data locality
to yield actual reduction of inference time, while unstructured pruning sometimes lead to longer
inference time than the full networks (Wen et al., 2016).

Yet, most conventional pruning techniques have a common limitation, in that they require a network
pretrained on the target dataset. With such two-satage schemes, training will inevitably take more
time than training of a full network, and thus most works focus only on the efficiency at inference
time. However, in many real-world scenarios, it may be desirable to obtain training-time speedups
with pruning. For instance, if we have to train a large network for a large dataset on cloud, it may

1

Under review as a conference paper at ICLR 2021

Figure 1: Illustrations of our Set-based Task-Adaptive Meta-Pruning (STAMP): STAMP meta-learns a
general strategy to rapidly perform structural pruning of a reference network, for unseen tasks. If a learner gives
a small fraction of information for his/her target tasks, STAMP almost instantly provides an optimally pruned
network architecture which will train faster than the full network with minimal accuracy loss.

incur large monetary cost (Figure 1(a)). As another example, due to concerns on data privacy, we
may need to train the network on resource-limited devices (Figure 1(b)). However, the device may
not have enough capacity even to load the original unpruned networks on memory. Handling such
diverse requirements for each end-user when pruning neural networks to their needs, is crucial for the
success of an AutoML platform (Figure 1). Then how can we perform pruning without pretraining
on the target tasks?

A few recently introduced methods, such as SNIP (Lee et al., 2019c) and Edge-Popup (Ramanujan
et al., 2019) allow to prune randomly initialized neural networks, such that after fine-tuning, the
pruned network obtains performance that is only marginally worse than that of the full network. This
effectively eliminates the needs of pretraining, and SNIP further reduces pruning time by performing
pruning in a single forward pass. However, they are limited in that they perform unstructured pruning
which will not result in meaningful speedups on GPUs, either at inference or training time. Moreover,
they underperform state-of-the-art structure pruning techniques with pretraining. Thus, none of the
existing works can obtain structurally pruned subnetworks that provide us practical speedups both at
the training and inference time, with minimal accuracy loss over the full network.

To achieve this challenging goal, we first focus on that in real-world scenarios, we may have a
network pretrained on a large reference dataset (Figure 1 (c)). If we could prune such a reference
pretrained network to make it obtain good performance on an unseen target task, it would be highly
efficient since we only need to train the model once and use it for any given tasks. However, pruning
a network trained on a different dataset may yield a suboptimal subnetwork for the target task. Thus,
to ensure that the pruned network obtains near-optimal subnetwork for an unseen task, we propose to
meta-learn the task-adaptive pruning mask generator as a set function, such that given few samples of
the target dataset, it instantly generates a task-optimal subnetwork of a pretrained reference network.

We validate our Set-based Task-Adaptive Meta Pruning (STAMP) on multiple benchmark datasets
against recently proposed structural pruning and random-weight pruning baselines. The results show
that our method can rapidly prune an network to obtain a network is significantly more compact
than the networks with similar accuracy using baseline pruning techniques. Further, this rapid
structural pruning allows our model to significantly reduce the training cost in terms of both memory,
computation, and wall-clock time, with minimal accuracy loss. Such efficiency makes STAMP
appealing as a cheap alternative for neural architecture search in machine learning platforms (See
Figure 1). The contribution of our work is threefold:

• We propose a novel dataset-dependent structured pruning model, which instantly gener-
ates a pruning mask for a given dataset to prune a target network.

• We suggest a meta-learning framework to train our set-based pruning mask generator, to
obtain an approximately optimal subnetwork within few gradient steps on an unseen task.

• We validate our meta-pruning model on three benchmark datasets against structured and
random weight pruning baselines, and show that it obtains significantly more compact
subnetworks, which require only a fraction of wall-clock time to train the network to target
accuracy, compared to baselines.

2

Under review as a conference paper at ICLR 2021

2 RELATED WORK

Neural network pruning. There has been a surge of interest on weight pruning schemes for deep
neural networks to promote memory/computationally efficient models. Unstructured pruning methods
prunes the weight of the network without consideration of its structure. Some of them have been
shown to obtain extremely sparse networks that match the accuracy of full network, such as iterative
magnitude pruning (Han et al., 2015) which repeats between training and finetuning to recover from
the damage from pruning. Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019) discusses the
existence of a subnetwork which matches the accuracy and training time of a full network, referred
as the winning ticket, and show that they can be found with iterative magnitude pruning. Lee et al.
(2019c) propose a simple pruning method which can identify a similar subnetwork without pretraining
in single forward step. Though SNIP does not strictly find a winning ticket, it is highly efficient and
opens possibility to further research on rapid pruning without pretraining. Edge-Popup (Ramanujan
et al., 2019) finds optimal subsets from random weights, without any pretraining, which is also simple.
However, SNIP is faster than Edge-popup in searching a pruned network.

Although unstructured pruning methods find extremely sparse subnetworks and gets simpler, due to
poor data locality, it is difficult to reduce the network inference time on general-purpose hardware.
Due to this limitation, recent works (Liu et al., 2017; 2019b; He et al., 2017; Guo et al., 2020; Luo
et al., 2017; Zhuang et al., 2018) target to prune groups of weights (e.g., channels or neurons), to
achieve actual reduction in the model size. Such structured pruning methods are useful in a resource-
limited environment with compressed architectures to practically reduce the memory requirement and
the running time and at inference time. Wen et al. (2016) introduce a structured sparsity regularization
method to prune neurons using (2,1)-norm during training. Yoon & Hwang (2017) propose to
combine group sparsity with exclusive sparsity regularization. VIBNet (Dai et al., 2018) utilizes the
variational information bottleneck principle to compress neural networks. They compel the networks
to minimize the neuron redundancy across adjacent layers with binary mask vectors. BBDropout (Lee
et al., 2019a) learns a structured dropout function sampled from the Bernoulli distribution where the
probability is given from the beta distribution with learnable parameters. Further, they introduce a
data dependent BBDropout which generates a pruning mask as a function of the given data instance.

Meta learning. Meta-learning, which learns over a distribution of task, have shown its efficiency in
handling unseen tasks for various tasks, such as few-shot learning and sample-efficient reinforcement
learning. The most popular meta-learning methods are gradient-based approaches (Finn et al.,
2017; Nichol & Schulman, 2018), which aim to find an initialization that can rapidly adapt to new
tasks. BASE (Shaw et al., 2019) learns through MAML algorithm to rapidly search for optimal
neural architecture, and thus significantly reduce the search cost over state-of-art neural architecture
search (NAS) methods (Liu et al., 2019a; Xie et al., 2018). BASE learns a general prior through
meta learning to perform fast adaptation for unseen tasks. On the other hand, our method learns
the good initialization as a function of a set, such that it can rapidly adapt to the given targe
task. MetaPruning (Liu et al., 2019b) trains a hypernetwork that can generate sparse weights for any
possible structures(i.e. the number of channels) of a network architecture. However, the hypernetwork
does not generalize across tasks and thus the method requires to train one hypernetwork for each task.

3 RAPID NEURAL PRUNING FOR UNSEEN TASKS WITH STAMP

We introduce a novel structural pruning method for deep neural networks, Set-based Task-Adaptive
Meta-Pruning (STAMP), which rapidly searches and prunes uninformative units/filters of the initial
neural network trained on some other reference datasets. In Section 3.1, we define an optimization
problem for deep neural networks with pruning masks. In Section 3.2, we describe our set-based
structural pruning method which efficiently reduces the model size in a few gradient steps while
avoiding accuracy degradation. Finally, in Section 3.3, we describe our full meta-learning framework
to train the pruning mask generator that generalizes to unseen tasks.

3.1 PROBLEM DEFINITION

Suppose that we have a neural network f(x;W), which is a function of the dataset D = {xi, yi}Ni=1

parameterized by a set of model weights W = {Wl}Ll=1, where xi ∈ RXd and l is a layer. Further

3

Under review as a conference paper at ICLR 2021

Figure 2: Set-based Task-Adaptive Pruning: We sample the subset X̃ from D and train the model while
simultaneously optimizing set-based binary masks through a set encoding function and mask generative functions.

suppose that the network has maximum desired cost κ (e.g., FLOPs, Memory, the number of
parameters, and training/inference time), which depends on the hardware capability and applications.
By denoting the total cost of the model as C, we formulate the problem of searching for a network
that minimizes the task loss while satisfying the total cost C as an optimization problem, as follows:

minimize
W

1

N

N∑
i=1

L(f(xi;W), yi) +R(W), s.t. |C| ≤ κ (1)

where R is an arbitrary regularization term. To obtain an optimal model with the desired cost,
we basically follow popular pruning strategy that adopts sparsity-inducing masking parameters for
deep neural networks. We reformulate the problem as obtaining compressed weights ωl with the
corresponding binary masks ml at layer l, ωl = ml �Wl, where ml ∈ {0, 1}Il×Cl . This will result
in unstructured pruning, which will prune individual weight elements. However, we may allow
the model to compress its size by structured pruning, to yield actual wall-clock time speedup in
training/inference time. We focus on generating structural pruning masks where the compressed
weights will be expressed as ωl = ml ⊗Wl, where ml ∈ {0, 1}Cl . Then, the objective function is
defined to minimize a following loss function: L(h(D;ω)) +R(ω) where ω = {ωl}Ll=1.

3.2 RAPID NEURAL PRUNING WITH SET-ENCODED REPRESENTATION

To obtain an optimal pruned structure for the target task, we need to exploit the knowledge of the
given task. Conventional pruning schemes search for the desired subnetworks through full mini-batch
training where all of the instances are trained through numerous iterations, incurring excessive
training cost C as the data size gets bigger. To bypass this time-consuming search, and rapidly obtain
the task-adaptive pruning masks, we adopt two learnable functions: a set encoding function e(D;θ)
generates a set encoded output and a mask generative function g(·;π) obtains a binary mask vector
m, parameterized by θ and π, respectively. That is, at each layer l, through two different functions,
the model generates the task-adaptive mask vector ml given the dataset-level encoded representation
from a set encoding function. To reduce an burden for encoding the entire dataset, we use a sampled
subset X̃ ∈ RB×Xd ∼ {xi}Ni=1 from D, where B < N is the sampled batch and Xd is the input
dimensionality. To this end, we formulate the objective of our set-based task-adaptive pruning as
follows:

minimize
W,θ,π

1

N

N∑
i=1

L(f(xi;ω), yi) +R(ω), |C| ≤ κ, (2)

ωl = gl(ol;πl)⊗Wl, ol = hl(ol−1;Wl), s.t. o0 = e(X̃;θ) ∈ Rr×Xd (3)

where r is a batch dimension of the set representation. Throughout the paper, we use r = 1. The
illustration of the set-based task-adaptive pruning model is described in Figure 2.

3.3 META-UPDATE FOR UNSEEN TARGET TASKS

Now we describe how we learn the optimal parameters θ and π for set based pruning. The simplest
approach we can use is performing gradient descent through back propagation, as our model is
end-to-end differentiable. However, this only results in optimized parameters for a specific task DS ,
which will not allow us to obtain an optimized parameters for an unseen task. As stated earlier,
we want to apply our method across different task domains, such that we learn the pruning mask
generator and the set encoder on DS and apply them on DT . To this end, we apply gradient-based
meta learning method which obtains initialization parameters that rapidly adapts to given tasks.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Set-based Task-Adaptive Meta-Pruning (STAMP)

input Source Dataset DS , Target Dataset DT , Learnable parameters φ0 = {W0, π0, θ0}
1: function STAMP
2: for i = 1, 2, ... do
3: for n = 1, ..., N in parallel do
4: Sample task D(n)

S ⊂ DS , and φ(n)
i = φi−1

5: Sample batch of tasks X̃
(n)

= {x(n)
j }

B
j=1, {x(n)

j , y(n)
j }

B
j=1 ∼ D

(n)
S

6: Compute L(D(n)
S ;φ

(n)
i) with Eq. 2

7: end for
8: Update φi ← φi−1 − η

∑N
n=1∇φ

(n)
i

L(D(n)
S ;φ

(n)
i)

9: end for
10: end function
11: Meta train φ with function STAMP
12: Prune K step to optimize L(DT ;φ) with Eq. 2
13: Finetune the pruned architecture to minimize L(DT ;ω)

Basically, we train the parameters on multiple tasks sampled from DS by computing inner gradient
in the inner loop and combining them to update the outer loop parameters. Then, the objective of
the meta-train step of STAMP is learning good initialization of φ in the outer loop. We sample
N tasks from DS , where each task is D(n)

S ⊂ DS . From each N tasks, a batch {x(n)j , y(n)j }Bj=1 is
sampled and it is divided into mini-batches to update inner gradient in respect to the loss function
L and the regularization terms described in Section 3.2. We note that the whole batch excluding

labels X̃
(n)

= {x(n)j }Bj=1 is used for encoding set representation. For updating outer loop parameters
φi = {Wi,πi,θi} at ith epoch, we only use the gradients of the last mini-batch, similarly to
first-order MAML (Finn et al., 2017) to accelerate learning as below:

φi ← φi−1 − η
N∑

n=1

∇
φ

(n)
i
L(D(n)

S ;φ
(n)
i) (4)

After meta learning a set of the parameters, we can adapt it to various unseen tasks DT by performing
few steps of gradient updates, with the maximum steps of 1 epoch. Through the meta-learn procedure,
we can speed-up the training time on the target task by starting with the pruned network architecture
in the early stage. We describe our whole process in Algorithm 1.

While we can plug in various set encoding methods (Edwards & Storkey, 2016; Zaheer et al., 2017)
or pruning methods to the proposed framework, STAMP adopts a transformer module (Lee et al.,
2019b) for set encoding function e(·) and proposed a set-based pruning mask generator g(·) based on
the Beta-Bernoulli dropout (Lee et al., 2019a).

4 EXPERIMENTS

We demonstrate the effectiveness of STAMP with two widely used network architectures, namely
VGGNet-19 (Zhuang et al., 2018) and ResNet-18 (He et al., 2016), on several benchmark datasets
(CIFAR-10, SVHN and downsampled Aircraft (Maji et al., 2013)). We implement the code for all the
experiments in Pytorch framework, and use Titan XP GPU for measuring the wall-clock time.

Baselines. We validate our STAMP against recent structured pruning methods as well as unstruc-
tured random weight pruning methods. We also report the results on the variant of STAMP that only
searches for the structure and randomly reinitializes the weights (STAMP-Structure). Baselines we
use for comparative study are as follows: 1) MetaPruning (Liu et al., 2019b): Structured pruning
method which learns hypernetworks to generate pruned weights at each layer, and searches for
the optimal pruned structure using an evolutionary algorithm. 2) BBDropout (Lee et al., 2019a):
Beta-Bernoulli Dropout which performs structured pruning of the channels by sampling sparse masks
on them. 3) Random Pruning: Randomly pruning of channels. We sample the random structure (
i.e. the number of channels for each layer) under the given FLOP constraints in the same manner
as in MetaPruning. 4) Edge-Popup (Ramanujan et al., 2019): Unstructured pruning method that
searches for the best performing sub-network of a network with random weights. 5) SNIP (Lee et al.,

5

Under review as a conference paper at ICLR 2021

Table 1: Experiment results of CIFAR-10, SVHN, and Aircraft as a target dataset on VGGNet. Training Time
consists of time to search for pruned network, and finetuning. Expense is computed by multiplying the training
time by 146 ¢, which is cost of using GPU (Tesla P100) on Google Cloud. The methods are sub-divided into the
full network without pruning, unstructured pruning methods, structured pruning methods and STAMP. P denotes
the ratio of non-zero parameters. We report the mean ± std values over three runs of experiments.

Target
Task

Methods Pretrained Accuracy (%) P (%) FLOPs Training
Time

Expense

Full Network CIFAR-100 93.72 ± 0.07 100 x1.00 0.78 h 113 ¢
SNIP None 92.85 ± 0.24 4.17 x1.00 0.83 h 121 ¢
SNIP (P) CIFAR-100 92.98 ± 0.22 4.17 x1.00 0.83 h 121 ¢
Random Pruning None 92.01 ± 0.29 32.20 x3.33 0.43 h 62 ¢

CIFAR-10 MetaPruning CIFAR-100 92.12 ± 0.47 21.84 x3.58 4.99 h 728 ¢
BBDropout CIFAR-100 92.97 ± 0.10 3.99 x3.42 2.07 h 302 ¢
STAMP-Structure CIFAR-100 92.69 ± 0.13 4.43 x3.48 0.44 h 64 ¢
STAMP CIFAR-100 93.49 ± 0.04 4.16 x3.56 0.44 h 64 ¢
Full Network CIFAR-100 95.99 ± 0.07 100 x1.00 1.21 h 176 ¢
SNIP None 95.52 ± 0.10 3.08 x1.00 1.22 h 178 ¢
SNIP (P) CIFAR-100 95.56 ± 0.09 3.08 x1.00 1.22 h 178 ¢
Random Pruning None 95.56 ± 0.12 28.95 x3.40 0.62 h 90 ¢

SVHN MetaPruning CIFAR-100 95.50 ± 0.07 22.04 x3.64 2.08 h 303 ¢
BBDropout CIFAR-100 95.98 ± 0.19 2.15 x9.67 3.05 h 445 ¢
STAMP-Structure CIFAR-100 95.39 ± 0.15 3.08 x4.60 0.58 h 84 ¢
STAMP CIFAR-100 95.82 ± 0.16 2.87 x5.10 0.58 h 84 ¢
Full Network CIFAR-100 47.15 ± 0.36 100 x1,00 1.90 m 4 ¢
SNIP None 57.58 ± 0.00 4.07 x1.00 2.85 m 6 ¢
SNIP (P) CIFAR-100 57.30 ± 0.00 4.07 x1.00 2.85 m 6 ¢
Random Pruning None 47.53 ± 0.02 27.55 x3.48 0.83 m 2 ¢

Aircraft MetaPruning CIFAR-100 50.36 ± 0.01 24.10 x3.42 1.09 h 159 ¢
BBDropout CIFAR-100 42.43 ± 0.04 13.65 x3.72 5.06 m 12 ¢
STAMP-Structure CIFAR-100 52.30 ± 0.01 3.63 x4.22 1.15 m 2 ¢
STAMP CIFAR-100 60.36 ± 0.01 3.39 x4.48 1.15 m 2 ¢

2019c): One-shot unstructured pruning on random weights. We also report the results of a variant
of SNIP starting from pretrained weights (SNIP (P)). For finetuning, we follow the standard setting
from Zhuang et al. (2018) and perform mini-batch SGD for 200 epochs where the batch size is 128.

Networks and datasets As for the base networks, we use a modified version of VGGNet-19 with
16 convolution layers and a single fully connected layer, and ResNet-18 with an additional 1 × 1
convolution layer on the shortcut operation to resolve the dimensionality difference between pruned
units/filters. We use VGG-19 and ResNet-18 pretrained on CIFAR-100 (source dataset) for the
baselines, and use CIFAR-10, SVHN, and Aircraft (Maji et al., 2013) as the target tasks for evaluation
of the pruning performance. CIFAR-10 and SVHN have 10 classes and Aircraft has 30 classes
respectively. All images are downsampled to 32x32 pixels.

Meta-training We meta-train our pruning mask generator on CIFAR-100 dataset. During meta-
training time, we divide CIFAR-100 into 10 tasks (subsets), each of which contains 10 disjoint classes,
and sampled 64 instances per class. We used total of 640 instances as the input to the set function to
generate a set representation for each task. We also used the sampled instances for model training, by
dividing it into 5 batches (128 instances for each). We used first-order MAML with Adam optimizer
for both inner and outer parameter updates. For more details on training of the baseline methods and
meta-training for STAMP, such as learning rate scheduling, please see Section C of the Appendix.

4.1 EXPERIMENTAL RESULTS

We report the results of pruning VGGNet-19 on CIFAR-10, SVHN, and Aircraft dataset in Table 1,
and ResNet-18 on CIFAR-10 in Table 2. We compare the accuracy as well as wall-clock training and
inference time for all models at similar compression rate (Parameter Used or FLOPs).

Accuracy over memory efficiency and FLOPs. We first compare the accuracy over the parameter
usage and theoretical computation cost, FLOPs. In Table 1 and Table 2, SNIP with either random
networks (SNIP) or the pretrained reference network (SNIP(P)) significantly reduce the number of
activated parameters with a marginal drop of the accuracy on the target dataset (or even improvement

6

Under review as a conference paper at ICLR 2021

Table 2: Experiment results of CIFAR-10 on ResNet18. Other details are same with the Table 1. More results
are in the Table 3 of the Appendix.

Methods Accuracy (%) P (%) FLOPs Training Time Inference time Expense
Full Network 94.37 ± 0.12 100 x1.00 1.08 h 1.02 sec 157 ¢
Edge-Popup 89.50 ± 3.46 10.00 x1.00 1.38 h 2.50 sec 201 ¢
SNIP (P) 93.17 ± 0.00 10.04 x1.00 1.71 h 1.90 sec 249 ¢
SNIP 93.11 ± 0.00 10.04 x1.00 1.71 h 1.90 sec 249 ¢
Random Pruned 91.95 ± 0.65 69.77 x3.65 0.58 h 0.58 sec 84 ¢
MetaPruning 91.01 ± 0.91 66.02 x4.09 3.80 h 0.58 sec 554 ¢
BBDropout 93.47 ± 0.14 5.94 x4.11 2.17 h 0.54 sec 316 ¢
STAMP-Structure 93.63 ± 0.08 9.07 x4.08 0.57 h 0.54 sec 83 ¢
STAMP 93.61 ± 0.27 9.22 x4.29 0.57 h 0.54 sec 83 ¢

108654321
Param(%)

0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94

Ac
cu

ra
cy

CIFAR-10

Full
SNIP
BBDropout
Ours

0 2000 4000 6000
Time(sec)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96
Ac

cu
ra

cy
CIFAR-10

Full network
SNIP
BBDropout
Ours

0 2000 4000 11000
Time(sec)

0.92

0.93

0.94

0.95

0.96

0.97

Ac
cu

ra
cy

SVHN

Full network
SNIP
BBDropout
Ours

0 50 100 150 200 250 300
Time(sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Aircraft

(a) Acc. over # of params. (CIFAR-10) (b) Acc. over training time (CIFAR-10, SVHN, Aircraft)
Figure 3: (a): Accuracy over the ratio of used parameters for CIFAR-10 on VGGNet. Full denotes the
accuracy of the VGGNet before pruning. (b): Accuracy over training time for CIFAR-10, SVHN and Aircraft.

on Aircraft). However, as the methods perform unstructured pruning, they can not reduce FLOPs
which remains equal to the original full networks. On the other hand, structural pruning approaches
show actual FLOPs reduction by pruning a group of weights (e.g. units/filters). Interestingly,
MetaPruning, which applies a learned hypernetwork on a reference architecture and dataset to
prune for the target dataset, obtains suboptimal architectures which sometimes even underperforms
randomly pruned networks. This shows that the learned hypernetwork does not generalize across
task domains, which is expected since it is not trained with diverse tasks. BBDropout generally
outperforms other baselines (except on Aircraft) with high model compression rate, but it requires
large amount of training time to train the pruning mask generator, and thus yields slower training time
than the full network training. On the other hand, STAMP either outperforms or achieve comparable
performance to all baselines, in terms of both accuracy and compression rate. The performance gain
of STAMP is especially large on the fine-grained Aircraft dataset, where using the pretrained network
as is may be harmful (see the results of full network) due to mismatch between source (CIFAR-100)
and target (Aircraft) task. We further report the accuracy-sparsity trade-off for SNIP, BBDropout, and
STAMP (Ours) in Figure 3 (a). Our method achieves better accuracy over similar compression rates,
and shows marginal performance degeneration even with 1% of the parameters remaining. Such good
performance on unseen dataset is made possible by meta-learning the pruning mask generator.

Accuracy over wall-clock time for training/inference. As described earlier, our main focus in
this work is to significantly reduce the training time by obtaining a near-optimal compact deep
networks for unseen targets on the fly, which is not possible with any of the existing approaches. As
shown in Table 1 and Table 2, unstructured random weights pruning methods (SNIP and Edge-Popup)
do not results in any speedups in training time, and increases the cost of training over the full networks.
These results are consistent with the findings in Frankle & Carbin (2019), which showed that most of
the subnetworks require larger number of training iterations over the full network.

While structured pruning methods yield speedups in inference time over the full networks, MetaPrun-
ing and BBDropout need ×2.01−×36.3 and ×1.72−×5.96 more training time than full networks
to search pruned architectures, respectively. On the contrary, STAMP instantly obtains a good
subnetwork (single or less than 10 iterations according to the pruned ratio), which trains faster than
the full network. STAMP is remarkably efficient over other structural pruning baselines, achieving
×3.5−×54.5 and ×2.81−×5.76 speedups over MetaPruning and BBDropout, respectively, with
better or comparable performance. We further report the accuracy over training time for SNIP, BB-
dropout, and STAMP (Ours) in Figure 3 (b). Since our philosophy is train-once, and use-everywhere,
once the mask generator is meta-learned on a reference dataset, it can be applied to any number of
tasks without additional cost. Thus we exclude the meta training time of STAMP (15h on VGGNet
and 30h on ResNet) and MetaPruning (1.2h) per task in Table 1 and Table 2.

7

Under review as a conference paper at ICLR 2021

50K25K10K5K
Instance Number

1K

3K

5K

7K

Ti
m

e(
se

c)

Full network
SNIP
BBDropout
Ours

50K25K10K5K
Instance Number

0.94

0.91

0.88

0.85

0.82

0.79

Ac
cu

ra
cy

Full
SNIP
BBDropout
Ours

Accuracy (%)
D Size FULL SNIP BBD STAMP
50K 93.68 92.92 92.66 93.34
25K 90.69 90.21 89.53 90.86
10K 85.77 85.24 84.54 86.70
5K 79.93 78.99 77.77 82.53
1K 63.63 60.34 59.55 69.26

Figure 4: Left: Training time over the number of training instances. Middle: Accuracy over the number of
training instances, Right: Accuracy over the number of instances. All experimental results are obtained on
CIFAR-10 with VGG-19. We prune 96% ∼ 97% of the parameters for STAMP and SNIP.

Data size of the target tasks. We further examine the accuracy and time-efficiency of subnetworks
obtained using different pruning methods on various problem size. We previously observed that
STAMP can yield larger saving in the training and inference time as the network size gets larger
(ReNet-18, Table 2). Another factor that defines the problem size is the number of instances in the
unseen target dataset. We used subsets of CIFAR-10 to explore the effect of the task size to training
time and accuracy in Figure 4. The full dataset consists of 50K images, which corresponds to the
results reported in Table 1. We observe that, as the number of instances used for training increases,
STAMP obtains even larger saving in the training time, while BBDropout incurs increasingly larger
time to train. Further, as the number of instances used for training becomes smaller, STAMP obtains
larger gains in accuracy, even outperforming the full network, since the network will become relatively
overparameterized as the number of training data becomes smaller. As another comparison with
structural pruning method with learned masks, when using only 1K data instances for training,
BBDropout finds the subnetwork attaining 43% of parameters of the full network with ×1.54 FLOP
speedup, while STAMP prunes out 95.81% of the parameters, resulting in ×4.17 speedup in FLOPs.
This is because BBDropout learns the pruning mask on the given target task, and thus overfits when
the number of training instances is small. STAMP, on the other hand, does not overfit since it mostly
relies on the meta-knowledge and takes only few gradient steps for the given task.

0 1 2 3
Layer idx

0

20

40

60

80

100

120

Ch
an

ne
l i

dx

Aircraft
CIFAR-10
SVHN

4 5 6 7 8 9 10 11 12 13 14 15
Layer idx

0

100

200

300

400

500

Ch
an

ne
l i

dx

(a) Layer 0-3 (b) Layer 4-15

Figure 5: We denote the indices of the remaining chan-
nels at each convolution layer of VGGNet after pruning on
different datasets, CIFAR-10, SVHN, and Aircraft. All of
them start from same meta-learned parameters φ.

Pruned network structures. We further
show the effect of task-adaptive pruning.
Since STAMP will find different compressed
subnetwork for different tasks, the pruning ra-
tio and the pruned channels at each layer will
be different for each dataset. We visualize
the remaining channels of each convolution
layer of VGGNet on CIFAR-10, SVHN and
Aircraft in Figure 5. Note that unlike existing
channel pruning methods, such as MetaPrun-
ing, we do not enforce any constraints (hyper-
parameters) on how much to prune, or what
layer to prune since they are automatically
determined by STAMP.

5 CONCLUSION

We proposed a novel set-based task-adaptive structural pruning method which instantly generates a
near-optimal compact network for the given task, by performing rapid structural pruning of a global
reference network trained on a large dataset. This is done by meta-learning a pruning mask generator
over multiple subsets of the reference dataset as a function of a dataset, such that it can generate a
pruning mask on the reference network for any unseen tasks. Our model, STAMP obtains a compact
network that not only obtains good performance with large reduction in the memory and computation
cost at inference time, but also enables training time speedup which was not possible with previous
methods. Further analysis showed that STAMP obtains larger performance gains when the target
dataste is small, and prunes out the channels of the same reference network differently for each
dataset. We believe that both the proposal of a framework that can obtain optimal compact network
for unseen tasks, and achieving training time speedup are important contributions that enhances
efficiency and practicality of pruning methods.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bin Dai, Chen Zhu, and David Wipf. Compressing neural networks using the variational information
bottleneck. 2018.

Harrison Edwards and Amos Storkey. Towards a neural statistician. arXiv preprint arXiv:1606.02185,
2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the International Conference on Machine Learning (ICML),
2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

Jinyang Guo, Wanli Ouyang, and Dong Xu. Channel pruning guided by classification loss and feature
importance. arXiv preprint arXiv:2003.06757, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning Workshop, 2014.

Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu. Ccnet:
Criss-cross attention for semantic segmentation. In Proceedings of the International Conference
on Computer Vision (ICCV), 2019.

Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accurate single image super-resolution via
information distillation network. In Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR).

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Juho Lee, Saehoon Kim, Jaehong Yoon, Hae Beom Lee, Eunho Yang, and Sung Ju Hwang. Adap-
tive network sparsification via dependent variational beta-bernoulli dropout. 2019a. URL
booktitle=https://openreview.net/forum?id=rylfl6VFDH.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer. Proceedings of the International Conference on Machine Learning (ICML), 2019b.

9

booktitle=https://openreview.net/forum?id=rylfl6VFDH

Under review as a conference paper at ICLR 2021

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019c.

Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-path refinement networks
for high-resolution semantic segmentation. In Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2017a.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2117–2125, 2017b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
Proceedings of the International Conference on Learning Representations (ICLR), 2019a.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikäinen.
Deep learning for generic object detection: A survey. International journal of computer vision,
128(2):261–318, 2020.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the International Conference on Computer Vision (ICCV), 2019b.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the International
Conference on Computer Vision (ICCV), 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. In Proceedings of the
International Conference on Learning Representations (ICLR), 2017.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2:2, 2018.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? In arXiv preprint arXiv:1911.13299, 2019.

Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
comprehensive review. Neural computation, 29(9):2352–2449, 2017.

Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai. Meta architecture search. In Advances in
Neural Information Processing Systems (NIPS), 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang,
and Xiaoou Tang. Residual attention network for image classification. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems (NIPS), 2016.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural networks.
In Proceedings of the International Conference on Machine Learning (ICML), 2017.

10

Under review as a conference paper at ICLR 2021

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems (NIPS),
2017.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. In Advances in
Neural Information Processing Systems, pp. 875–886, 2018.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

Organization. The supplementary file is organized as follows: We first describe each component
of our Set-based Task-Adaptive Meta-Pruning (STAMP) in detail, including the set encoding function
and the set-based structural pruning method (mask generative function) in Section B. Then, in
Section C, we provide the detailed experimental settings and additional results on SVHN using
ResNet-18 as the backbone network.

B STRUCTURAL BINARY MASK GENERATION WITH A SET-ENCODED
REPRESENTATION

We now describe how we obtain the set representation with e(·;θ) and learn structural pruning masks
with the set-based mask generative function g(·;π) introduced in Section 3.2.

B.1 SET ENCODING FUNCTION

To obtain an optimally pruned neural architecture for the target task, we need to exploit the knowledge
of the given task. Conventional pruning schemes search for the desired subnetworks through full
mini-batch training, which will incur excessive training cost C when the data size is large. On the other
hand, we rapidly and precisely obtain the desired pruned structures given the encoded reprsentations
for each dataset . This procedure of obtaining a set representation e(X̃;θ) with the set encoder e
parameterized by θ(·) is given as follows:

e(X̃;θ) = fD(fE(X̃;θE);θD) s.t. X̃ ∈ RB×Xd ∼ {xi}Ni=1, o0 = e(X̃;θ) ∈ Rr×Xd (5)

where X̃ ∈ RB×Xd from D is a sampled task set, B ≤ N is the sampled batch, Xd is the input
dimensionality, and r is the batch dimension of the set representation (r � B). We then define the
set function as a stacked function of the encoder and the decoder where fE(·;θE) ∈ RB×Xd is an
arbitrary encoder function parameterized by θE and fD(·;θD) is a decoder function parameterized
by θD. The encoder encodes the sampled task set X̃ and the decoder regenerates the encoded vector
to the dataset-level representation. Throughout the paper, we use r = 1 as the dimension of the
set representation. We adopt a transformer module Lee et al. (2019b) for set encoding, which is a
learnable pooling neural network module with an attention mechanism as shown below:

fE(·) = AE(AE(·)), fD(·) = rF(AE(Poolr(·))). (6)

where rF is a fully connected layer, AE is an attention-based block Vaswani et al. (2017), and Poolr
is a Pooling by Multihead Attention with r seed vectors Lee et al. (2019b). AE is a permutation
equivariant block that constructs upon Multi-head attention (MH), introduced in Transformer Vaswani
et al. (2017). In other words, AE encodes the set information and consists fE(·), while fD(·) also
includes AE to model correlation between r vectors after pooling. AE is defined as below:

AE(·) = Norm(H + rF(H)) (7)

where H = Norm(·+ MH(·, ·, ·)) (8)

where Norm is layer normalization Ba et al. (2016). The encoder encodes the given dataset using the
above module, and the decoder aggregates the encoded vector. The full encoding-decoding process
can be described as follows:

e(X̃;θ) = rF(AE(Poolr(AE(AE(X̃))))) ∈ Rr×Xd (9)

where Poolr(·) = AE(R, rF(·)) ∈ Rr×Xd (10)

In here, pooling is done by applying multihead attention on a learnable vector R ∈ Rr×Xd . We set
r = 1 in the experiments to obtain a single set representation vector. By stacking these attention
based permutation equivaraint functions, we can obtain the set representation e(X̃;θ) ∈ R1×Xd from
the sampled task X̃ ∈ RB×Xd .

12

Under review as a conference paper at ICLR 2021

B.2 MASK GENERATIVE FUNCTION

We now describe the mask generation function ml = gl(ol;πl) at layer l, from which we obtain the
pruned model parameter ωl = ml ⊗Wl. Similarly as in Lee et al. Lee et al. (2019a), we use the
following sparsity-inducing beta-Bernoulli prior to generate a binary pruning mask at each layer,
which follows Bernoulli distribution, Bernoulli(ml;πl), given the probability of parameterized beta
distribution as follows:

ml|πl ∼
Cl∏
c=1

Bernoulli(mc,l;πc,l), where πl ∼
Cl∏
c=1

beta(πc,l;αl, 1) (11)

where Cl is the number of channels in layer l. With a learnable parameter αl for the beta distribution,
the model learns the optimal binary masks from a randomly sampled value from the beta distribution,
to determine which neurons/channels should be pruned. We extend this input-independent pruning
method to sample binary masks based on the set representation of the target task. This set-dependent
pruning with STAMP is different from data-dependent BBDropout Lee et al. (2019a) in that the
former generates a mask per dataset while the altter generates a mask per instance, which makes
it difficult to globally eliminate a channel. Furthermore, rather than searching for the compressed
structure by training with mini-batch SGD at each iteration, we utilize a set representation to rapidly
obtain a near-optimal subnetwork within a few gradient steps. With the set e(X̃;θ) representation
obtained from the given dataset X, we calculate the activation ol = hl(ol−1;Wl) for each layer l,
where hl is the function of the layer l (i.e. convolution) and o1 = h1(e(X̃;θ);W1). We omit the
layer notation l for readability in the following equations. Then, we sample a structural pruning mask
vector m as follows:

m|π, o ∼
C∏

c=1

Bernoulli(mc;πcψ(γcoc + βc, ε)), s.t. [o1; ...; oC] = Pool(ol), (12)

where γ and β are learnable scaling and shifting factors and Pool is the average pooling for o which
obtains a representative value for each channel. The clamping function is defined as ψ(·, ε) =
min(1− ε,max(ε, ·)) with a small ε > 0. Using a clamping function, the network will retain only the
meaningful channels. We employ variational inference to approximate sparsity inducing posterior
p(W,π,θ,β|X). The KL-divergence term for our set-based task-adaptive pruning is as follows:

DKL[q(m,π,θ|X)‖p(m,π,θ)] +DKL[q(β)‖p(β)], s.t. β ∼ N (0, bI), (13)

where b is a fixed value for a variance of the shifting factor β to prevent β from drifting away. The
first term can be computed analytically to obtain a closed form solution Lee et al. (2019a); Nalisnick
& Smyth (2017). Also, we can easily compute the second term,R(ω) in the objective function of
STAMP (Equation 2) by updating it with gradient-based methods.

We can further approximate the expectation for the prediction of given dataset D as follows:

p(y|x,W,θ) ≈ p(y|f(x;Eq[m]⊗W,θ)), s.t. Eq[m] = Eq[π] · ψ(γPool(o) + β, ε) (14)

C EXPERIMENTS

C.1 EXPERIMENTAL SETTINGS

We first describe how we meta-train STAMP and set the settings for the baselines , SNIP Lee et al.
(2019c) and MetaPruning Liu et al. (2019b), for the experiments in the main paper (VGGNet and
ResNet-18 on benchmark datasets: CIFAR-10, SVHN, and Aircraft).

For STAMP, in function STAMP in Algorithm 1, we update φ = {W, π, θ} with the learning rate
0.001, 0.01, and 0.001 with Adam optimizer, while decreasing the learning rate by 0.1 at 50% and
80% of the total epoch, following the settings of BBDropout Lee et al. (2019a). For Algorithm 1, we
select i = 2000, B = 640 for VGGNet and i = 3000, B = 500 for ResNet-18. We sampled the same
number of instances per class. We further set N = 10 and the size of the minibatch as 32. When
pruning with STAMP, we use the same learning rate as the one we use in the meta training stage for
VGGNet. However, for ResNet-18, we set the learning rates as π = 0.5 to adjust the pruning rate.

13

Under review as a conference paper at ICLR 2021

Table 3: Experiment results of SVHN on ResNet-18. Training Time consists of time to search for the pruned
network and finetuning (20 epochs). Expense is computed by multiplying the training time by 1.46 ¢, which
is the cost of using GPU (Tesla P100) on Google Cloud. The methods are sub-divided into the full network
without pruning, unstructured pruning methods, structured pruning methods, and STAMP (STAMP-Structure is
a variation of STAMP, which re-initializes the pruned architecture). P is the remaining parameter ratio. We run
each experiment 3 times and report the mean ± std values.

Methods Accuracy (%) P (%) FLOPs Training Time Inference time Expense
Full Network 94.57 ± 0.01 100 x1.00 0.16 h 3.30 sec 24 ¢
Edge-Popup 92.61 ± 0.01 5.00 x1.00 0.20 h 6.15 sec 29 ¢
SNIP (P) 95.38 ± 0.01 6.06 x1.00 0.35 h 6.64 sec 51 ¢
SNIP 94.88 ± 0.01 6.06 x1.00 0.35 h 6.64 sec 51 ¢
Random Pruned 94.39 ± 0.23 72.17 x2.99 0.08 h 1.66 sec 12 ¢
MetaPruning 94.49 ± 0.19 70.99 x2.83 2.41 h 1.68 sec 351 ¢
BBDropout 94.32 ± 0.02 4.90 x5.25 0.31 h 1.52 sec 46 ¢
STAMP-Structure 95.17 ± 0.01 4.81 x5.47 0.11 h 1.51 sec 16 ¢
STAMP 95.41 ± 0.01 4.81 x5.47 0.11 h 1.51 sec 16 ¢

0 5 10 15 20 25 30
Param(%)

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Full
BBDropout
Ours

Methods Accuracy (%) P (%) FLOPs Training
Time

Full Network 94.57 100 x1.00 0.16 h
BBD (kl=15) 94.70 11.09 x2.86 0.31 h
BBD (kl=20) 94.30 4.86 x5.14 0.31 h
BBD (kl=25) 94.12 2.71 x8.62 0.31 h
STAMP (K=1, kl=15) 95.44 7.83 x4.26 0.11 h
STAMP (K=5) 95.73 3.84 x6.39 0.19 h
STAMP (K=10) 95.77 1.81 x8.13 0.31 h

Figure 6: Left: Accuracy over the ratio of used parameters for SVHN on ResNet-18. Full denotes the accuracy
of the ResNet-18 before pruning. Right: Exploring different K (the number of epochs of pruning stage) of
STAMP compared with BBDropout Lee et al. (2019a) (BBD). kl is a scale factor for the regularization term.

For SNIP Lee et al. (2019c), in the ResNet-18 experiment, we do not prune the 1× 1 convolution
layer to match the settings for STAMP experiments. Additionally, we modify the learning rate to
0.01, since at the learning rate of 0.1, SNIP (P) and SNIP obtained lower accuracies (88.51% and
85.26% respectively). For VGGNet, we prune the weights of 16 convolution layers. For SNIP (P) we
load the pretrained weights on CIFAR-100 before pruning.

For MetaPruning Liu et al. (2019b), we used the same settings for ResNet-18 and ResNet-50
experiments. For VGGNet, we prune filters of 16 convolution layers which is the same as STAMP.
At the search phase, we search for the architecture under given FLOP constraints. We set the pruning
ratio at each layer between 20 % to 60 %, to satisfy the FLOP constraints, which is 40 % to 80 %
for the given setting. For the rest of the experimental settings, we followed the settings in Liu et al.
(2019b).

C.2 EXPERIMENTAL RESULTS

We report the experimental results on SVHN with ResNet18 in Table 3, which was omitted from
the main paper due to the page limit. We followed the settings of Liu et al. Liu et al. (2017) and
trained on SVHN for 20 epochs. All other settings are kept the same as the experimental setting in
the previous paragraph. The results show that STAMP has the best trade-off between the accuracy
and the efficiency.

STAMP obtains higher accuracy over BBDropout at the same compression rate as shown in Figure 6).
Further, when trained for larger number of epochs, STAMP can obtain even higher accuracy and
larger compression rate over BBD as shown in Figure 6, outperforming all baselines in Table 3.
Although training STAMP for longer epochs yields slightly higher training time than the time required
to train the full network, STAMP still trains faster than BBdropout.

14

	Introduction
	Related Work
	Rapid Neural Pruning for Unseen Tasks with STAMP
	Problem Definition
	Rapid Neural Pruning with Set-encoded Representation
	Meta-update for Unseen Target Tasks

	Experiments
	Experimental Results

	Conclusion
	Appendix
	Structural Binary Mask Generation with a Set-encoded Representation
	Set Encoding Function
	Mask Generative Function

	Experiments
	Experimental Settings
	Experimental Results

