
Exploiting Curvature in Online Convex Optimization with Delayed Feedback

Hao Qiu * 1 Emmanuel Esposito * 1 Mengxiao Zhang * 2

Abstract
In this work, we study the online convex opti-
mization problem with curved losses and delayed
feedback. When losses are strongly convex, ex-
isting approaches obtain regret bounds of order
dmax lnT , where dmax is the maximum delay and
T is the time horizon. However, in many cases,
this guarantee can be much worse than

√
dtot as

obtained by a delayed version of online gradi-
ent descent, where dtot is the total delay. We
bridge this gap by proposing a variant of follow-
the-regularized-leader that obtains regret of order
min{σmax lnT,

√
dtot}, where σmax is the max-

imum number of missing observations. We then
consider exp-concave losses and extend the On-
line Newton Step algorithm to handle delays with
an adaptive learning rate tuning, achieving regret
min{dmaxn lnT,

√
dtot} where n is the dimen-

sion. To our knowledge, this is the first algorithm
to achieve such a regret bound for exp-concave
losses. We further consider the problem of un-
constrained online linear regression and achieve
a similar guarantee by designing a variant of the
Vovk-Azoury-Warmuth forecaster with a clipping
trick. Finally, we implement our algorithms and
conduct experiments under various types of de-
lay and losses, showing an improved performance
over existing methods.

1. Introduction
Online convex optimization (OCO) is a powerful framework
for sequential decision making in uncertain environments
(Hazan et al., 2007; Orabona, 2025). In classic OCO, a
learner repeatedly makes a decision, incurs a loss for the
chosen action, and uses the feedback of the loss function at
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lano 2University of Iowa. Correspondence to: Hao
Qiu <hao.qiu@unimi.it>, Emmanuel Esposito <em-
manuel@emmanuelesposito.it>, Mengxiao Zhang <mengxiao-
zhang@uiowa.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

this round to update her strategy in the next round. However,
in many real-world applications, feedback is not immedi-
ately available after the learner’s decision but is instead sub-
ject to a delay. For instance, in online ad recommendation
systems (He et al., 2014), click-through information may
be delayed, and during this time the system must continue
making recommendations for other users without access to
the delayed feedback.

Another crucial element in OCO is given by properties of
the loss functions such as the curvature. It is indeed of-
ten the case that losses have additional curvature properties
such as strong convexity or exp-concavity. For example,
exp-concave losses are prevalent in portfolio management
(Cover, 1991), in which the learner (investor) needs to dis-
tribute her wealth over a set of financial instruments in order
to maximize her return. When the loss functions have a
certain curvature, previous works (Hazan et al., 2007) have
shown that a significantly better regret guarantee can be
achieved (i.e., the so-called fast rates). However, this type
of assumption received little attention when assuming that
the feedback suffers some delay. Therefore, we are inter-
ested in investigating the following question:

Can we design algorithms that exploit the loss curvature to
obtain improved guarantees even with delayed feedback?

There is a line of works studying OCO with delayed feed-
back. For general convex functions, Quanrud & Khashabi
(2015) provided an algorithm called Delayed Online Gradi-
ent Descent (DOGD) and achieves a regret of O(

√
T + dtot)

where T is the time horizon and dtot is the total delay. Sub-
sequently, Wan et al. (2022a); Wu et al. (2024) focused on
strongly convex losses, introducing DOGD-SC and SDMD-
RSC, which achieve a regret bound of O((dmax + 1) lnT ),
where dmax represents the maximum delay for any single
round of feedback. However, the O((dmax +1) lnT ) regret
bound can sometimes be much worse than O(

√
T + dtot).

This occurs in scenarios when even a single round of feed-
back is delayed by Θ(T ) rounds (e.g., missing feedback),
undermining the benefits of having both regret guarantees
under stronger curvature assumptions. Furthermore, to
the best of our knowledge, no prior work has investigated
whether improved regret guarantees are achievable for exp-
concave losses under delayed feedback, leaving an impor-
tant gap in the literature.
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Contribution. To address these gaps, we propose a suite
of algorithms and offer a comprehensive analysis for OCO
with delayed feedback under both strongly convex and exp-
concave losses, and we include a special case of (uncon-
strained) online linear regression with delays. The main
contributions of this work can be summarized as follows
(see also Table 1):

• We first consider the class of strongly convex losses
in Section 3. Specifically, we propose an algorithm
based on the follow-the-regularized-leader framework
and obtain a O

(
min

{
σmax lnT,

√
dtot

}
+ lnT

)
re-

gret, where σmax is the maximum number of missing
observations over rounds. Compared with the results
obtained by Wan et al. (2022a) and Wu et al. (2024),
our results have several advantages. First, since σmax

is always no larger than dmax and can be significantly
smaller than it, our σmax lnT bound improves upon
the dmax lnT bound in Wan et al. (2022a) and Wu et al.
(2024). Second, we prove that our algorithm simultane-
ously achieves a O

(√
dtot + lnT

)
regret bound, mak-

ing our algorithm no worse than the bound achieved
by DOGD (Quanrud & Khashabi, 2015) either. Third,
compared with the regret bounds obtained in Wan et al.
(2022a) and Wu et al. (2024), our regret guarantee does
not depend on the diameter of the action domain and
recovers the one proven in Hazan et al. (2007) when
there is no delay. Additionally, we provide a novel
and improved analysis of the OMD-based algorithm
originally proposed by Wu et al. (2024) in Appendix E,
obtaining a regret bound that is again independent of
the diameter of the action domain.

• In Section 4, we consider exp-concave losses, a broader
function class compared to the strongly convex one.
Specifically, we propose an algorithm based on the
Online Newton Step (ONS) method that achieves a
O
(
min

{
dmaxn lnT,

√
dtot

}
+ n lnT

)
regret bound.

To the best of our knowledge, this is the first algorithm
to achieve logarithmic regret for exp-concave losses
under delayed feedback, answering an open question
proposed in Wan et al. (2022a). While both the bounds
dmaxn lnT and

√
dtot can be achieved using a simple

learning rate within the ONS framework, it is essential
to use a delay-adaptive learning rate tuning scheme
to achieve the best of these two guarantees within our
analysis.

• In Section 5, we investigate online linear regres-
sion (OLR) problem, where the feasible domain
is unconstrained, i.e., it corresponds to the en-
tire n-dimensional Euclidean space Rn. Lever-
aging the specific structure in OLR, we de-
velop an algorithm based on the Vovk-Azoury-
Warmuth forecaster, achieving a regret bound of

O
(
∥u∥22(min

{
dmaxn lnT,

√
dtot

}
+ n lnT )

)
with-

out requiring any prior knowledge of neither the com-
parator u ∈ Rn nor the data. This result is achieved by
incorporating a carefully designed clipping technique
and, once again, employing an adaptive tuning of the
learning rate.

• Finally, in Section 6, we implement all our proposed
algorithms and conduct experiments to validate our
theoretical results across multiple delayed settings and
loss functions with different curvature properties. We
also compare our methods with existing approaches to
demonstrate their effectiveness.

1.1. Related works

Online learning with curved losses. While Abernethy
et al. (2008) have shown that Θ(

√
T ) is the minimax regret

for OCO, if the loss functions further enjoy curvature, the
minimax regret can be improved. Hazan et al. (2007) show
that OGD with a specific choice of learning rate achieves
O(G

2

λ lnT ) regret for strongly convex losses whereG is the
maximum ℓ2 norm of any loss gradient and λ is the strong
convexity parameter.1 This upper bound is also minimax op-
timal as proven in Abernethy et al. (2008). For exp-concave
losses, Hazan et al. (2007) proposed Online Newton Step
(ONS) achieving O(( 1

α +GD) lnT ) regret where α is the
exp-concavity parameter and D is the diameter of the feasi-
ble domain. Hazan et al. (2007) also proposed Exponential
Weight Online Optimization (EWOO), achieving diameter
and gradient scale independent guarantees. However, the
algorithm is less practical due to its sampling complexity.
For OLR, Vovk (2001) and Azoury & Warmuth (2001) in-
dependently introduced the Vovk-Azoury-Warmuth (VAW)
forecaster achieving O(lnT ) regret without requiring prior
knowledge of the data and the comparator. For a more de-
tailed survey on OCO, we recommend the reader to Hazan
(2016) and Orabona (2025).

Online learning with delayed feedback. Weinberger &
Ordentlich (2002) initiated the study of online learning
with delayed feedback, proposing an algorithm achieving
d ·R(T/d) where d is the fixed and known per-round delay
andR(T ) is the regret upper bound for some base algorithm
that assumes no delay in the feedback. Specifically, their
meta-algorithm runs d+ 1 independent copies of the base
algorithm on disjoint time lines in a round-robin fashion.
However, this meta-algorithm is computationally expensive
and does not show good empirical performances. Subse-
quently, Langford et al. (2009) proposed a practical algo-
rithm by simply performing the gradient descent step using
the observed gradients at each round, and achieved O(

√
dT )

and O(d lnT ) regret bounds for convex and strongly convex

1The definitions of these parameters are deferred to Section 2.
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Loss type Regret bound

Quanrud & Khashabi (2015)
Wan et al. (2022a);

Wu et al. (2024) Our work

Strongly convex
√
dtot + T (dmax + 1) lnT min{σmax lnT,

√
dtot}+ lnT

Exp-concave
√
dtot + T N/A min{dmaxn lnT,

√
dtot}+ n lnT

Online linear regression N/A N/A min{dmaxn lnT,
√
dtot}+ n lnT

Table 1. Main results and comparisons with prior work. Here T is the number of rounds, n is the dimension of the feasible domain, dmax

is the maximum delay, σmax ≤ dmax is the maximum number of missing observations, and dtot is the total delay. In Table 1, we omit the
dependency on the curvature parameters, Lipschitz parameters, the norm of the comparator and domain diameter for conciseness. The
detailed dependencies are explicitly shown in the respective theorem statements.

functions, respectively.

When delay is not uniform, Joulani et al. (2013) proposed
BOLD (Black-box Online Learning with Delays) extend-
ing the method of Weinberger & Ordentlich (2002) and
achieve dmax · R(T/dmax) regret, but the algorithm still
maintains multiple instances of base algorithms, which
could be prohibitive in terms of computational costs. For
convex functions, Quanrud & Khashabi (2015) achieved
O(

√
dtot) where dtot is the total delay accumulated over T

rounds. Wan et al. (2022b; 2023) proposed a first Frank-
Wolfe-type online algorithm to handle delayed feedback and
obtain a regret bound of O(T 3/4 + dtotT

−3/4) for general
convex loss and O(T 2/3 + dmax lnT ) under strong convex-
ity. There is also an interesting line of works whose focus is
to obtain adaptive regret guarantees with delayed feedback
(McMahan & Streeter, 2014; Joulani et al., 2016; Flaspohler
et al., 2021) or variants of delayed feedback (Gatmiry &
Schneider, 2024; Bar-On & Mansour, 2025; Ryabchenko
et al., 2025).

Two most related works to ours are Wan et al. (2022a) and
Wu et al. (2024), which consider strongly convex losses
together with delays. Specifically, Wan et al. (2022a) first
proposed DOGD-SC for strongly convex losses, and estab-
lish a regret bound of O(GD+G2

λ dmax lnT ). Subsequently,
Wu et al. (2024) proposed SDMD-RSC and obtained a
O(dmaxG

2

λ2 + G2+D
λ dmax lnT ) regret bound.2

Beyond full-gradient feedback, there exists a growing inter-
est in developing algorithms with delayed bandit feedback
for a range of problems, including multi-armed bandits
(Cesa-Bianchi et al., 2016; Cella & Cesa-Bianchi, 2020;
Zimmert & Seldin, 2020; Masoudian et al., 2022; Van
der Hoeven & Cesa-Bianchi, 2022; Esposito et al., 2023;
Van der Hoeven et al., 2023; Masoudian et al., 2024; Schlis-
selberg et al., 2025; Zhang et al., 2025), Markov decision
processes (Lancewicki et al., 2022; Jin et al., 2022; Van
der Hoeven et al., 2023), and online convex optimization
(Héliou et al., 2020; Bistritz et al., 2022; Wan et al., 2024).

2Wu et al. (2024) also considers the class of relative strongly
convex loss functions.

2. Problem setting
Let T ∈ N be the time horizon and n ∈ N be the dimension.
Denote by X ⊂ Rn the domain, which we assume to be
closed and non-empty. In each round t ∈ [T ], the learner
selects a point xt ∈ X as its decision and incurs a loss
ft(xt) given by some unknown function ft : X → R that
we assume to be convex and differentiable. Normally, in the
standard OCO setting, the learner would then immediately
observe the gradient gt = ∇ft(xt). On the other hand, here
we consider the delayed feedback scenario in which such
a gradient gt is only observed at round t + dt with some
unknown arbitrary delay dt ≥ 0. We assume t+dt ≤ T for
all t ∈ [T ] without loss of generality (Joulani et al., 2013;
2016) because the feedback of any round t with t+ dt ≥ T
cannot be used the learner. The performance of the learner
is then measured via the regret, which is defined as follows:

RegT = max
u∈X

RegT (u) = max
u∈X

T∑
t=1

(
ft(xt)− ft(u)

)
.

For convenience, we define ot = {τ ∈ N : τ + dτ <
t} ⊆ [t − 1] to be the set of rounds whose gradients are
observed before round t, and let mt = [t − 1] \ ot be the
set of rounds whose observation is yet to be received at
the beginning of round t. Define σmax = maxt∈[T ] |mt|
to be the maximum number of missing observations over
T rounds, dmax = maxt∈[T ] dt to be the maximum delay,
and dtot =

∑
t dt to be the total delay. Also define d≤tmax =

maxτ≤tmin{dτ , t−τ} as the maximum delay that has been
perceived up to round t.

Before presenting our main results, we must first introduce
some definitions about the curvature of the loss functions.

Definition 2.1. A function f : X → R is λ-strongly convex
with respect to ∥·∥ for λ > 0 if, for all x, y ∈ X , f(y) ≥
f(x) + ⟨∇f(x), y − x⟩+ λ

2 ∥y − x∥2 .
Definition 2.2. A function f : X → R is α-exp-concave for
α > 0 if x 7→ exp(−αf(x)) is concave over X .

We finally introduce some standard boundedness assump-
tions relating to the gradients and the domain.
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Algorithm 1 Delayed FTRL for strongly convex functions

input strong convexity parameter λ > 0
initialize x1 ∈ X

1: for t = 1, 2, . . . do
2: Play xt; receive gτ = ∇fτ (xτ ) for all τ ∈ ot+1 \ ot
3: Update

xt+1 = argmin
x∈X

∑
τ∈ot+1

⟨gτ , x⟩+
λ

2

∑
s≤t

∥x− xs∥22 (1)

4: end for

Assumption 2.3. For every t ∈ [T ], the gradient of ft has
norm bounded by G ≥ 0, i.e., maxx∈X ∥∇ft(x)∥2 ≤ G.

Assumption 2.4. The diameter of X is bounded by D ≥ 0,
i.e., maxx,y∈X ∥x− y∥2 ≤ D. We also assume 0 ∈ X .

Other notations. For a positive semidefinite matrix A ∈
Rn×n and x ∈ Rd, we denote ∥x∥A =

√
x⊤Ax to be

the Mahalanobis norm induced by A and, if A is positive
definite, let ∥x∥A−1 =

√
x⊤A−1x be the dual norm. We

denote 1 as the all-one vector in an appropriate dimension.

3. Delayed OCO with strongly convex losses
In this section, we consider the problem of delayed OCO
with strongly convex losses and propose Algorithm 1, which
is built upon the follow-the-regularized-leader (FTRL) al-
gorithm. Specifically, after receiving the gradients gτ for
all τ ∈ ot+1\ot at the end of round t, we compute the
updated decision xt+1 as shown in Eq. (1), which is the
minimizer of the cumulative linearized loss with respect
to all the currently observed gradients, plus a squared
ℓ2-regularization term with respect to all the past deci-
sions. The following theorem shows that Algorithm 1
achieves O

(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
regret

bound without any diameter assumption on the domain.

Theorem 3.1. Assume that f1, . . . , fT are λ-strongly con-
vex with respect to the Euclidean norm ∥·∥2. Then, under
Assumption 2.3, Algorithm 1 guarantees that

RegT = O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

Theorem 3.1 highlights two advantages over previous works.
From the perspective of the delay-related term, while both
DOGD-SC (Wan et al., 2022a) and SDMD-RSC (Wu et al.,
2024) achieve a O (dmax lnT ) regret bound, the terms σmax

and
√
dtot in our regret bound can be substantially smaller

than dmax, with σmax ≤ dmax always being true (Ma-
soudian et al., 2022).3 Second, while both DOGD-SC and

3In fact, we also show in Lemma A.7 that σmax ≲
√
dtot, and

in Lemma A.9 that there are delay sequences such that σmax ≪√
dtot and σmax ≈

√
dtot, respectively.

SDMD-RSC have polynomial dependence on the diameter
D of the action set X , we remark that our bound does not
depend on D and recovers the optimal O

(
G2

λ lnT
)

regret
in the no-delay setting.

3.1. Regret analysis

Here we provide a proof sketch of Theorem 3.1, whereas the
full proof is deferred to Appendix B. Specifically, using the
strong convexity property, we first decompose the regret:

RegT (u) ≤
T∑
t=1

(
⟨gt, xt − u⟩ − λ

2
∥xt − u∥22

)

=

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−λ
2

T∑
t=1

∥xt − u∥22,

(2)

where x⋆t = argminx∈X
∑t−1
τ=1(⟨gτ , x⟩+

λ
2 ∥x−xτ∥

2
2) for

t ≥ 2 and x⋆1 = x1 are the decisions assuming that all
gradients before round t are observed.

Next, we analyze the term Reg⋆T (u) and DriftT separately.
For the term DriftT , applying the Cauchy-Schwarz in-
equality and using the fact that ∥gt∥2 ≤ G for all t ∈ [T ]
by Assumption 2.3, we can obtain that

DriftT ≤ G

T∑
t=1

∥x⋆t − xt∥2 . (3)

For the term Reg⋆T (u), following a standard FTRL analysis
and using the optimality of x⋆t , we are able to obtain that

Reg⋆T (u) ≤
λ

2

T∑
t=1

∥xt − u∥22 +
T∑
t=1

⟨gt, x⋆t − x⋆t+1⟩ .

Since the first term can be canceled by the last negative term
shown in Eq. (2), we only need to control the second term
⟨gt, x⋆t−x⋆t+1⟩, which is further bounded byG∥x⋆t−x⋆t+1∥2
via Cauchy-Schwarz and the fact that ∥gt∥2 ≤ G. Then,
using a stability lemma for FTRL (Lemma A.2), we can
show that

∥x⋆t − x⋆t+1∥2 ≤ 2G

λ(2t− 1)
+ ∥x⋆t − xt∥2 .

Interestingly, this inequality relates the Euclidean distance
between adjacent “cheating” iterates (x⋆t )t≥1 in the stability
term of FTRL to the distance between xt and x⋆t , which is
also present in the DriftT term and intuitively quantifies
the influence of delays on the regret.

Combining the inequalities involving Reg⋆T (u) and DriftT ,
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we can finally bound the regret from above as follows:

RegT ≤
T∑
t=1

2G2

λ(2t− 1)
+ 2G

T∑
t=1

∥x⋆t − xt∥2

≤ G2

λ
ln(2T + 1) + 2G

T∑
t=1

∥x⋆t − xt∥2 .

It remains to show how to bound ∥x⋆t − xt∥2 by
O
(
G
λ min{σmax lnT,

√
dtot}

)
, which is the key novelty in

our analysis compared to previous works. Recalling the
definitions of xt and x⋆t , we can apply the stability lemma
of FTRL (Lemma A.2) again and show for all t ≥ 2 that

λ(t− 1)

2
∥x⋆t − xt∥22 ≤

∥∥∑
τ∈mt

gτ
∥∥2
2

2λ(t− 1)
, (4)

meaning that
∑T
t=1 ∥x⋆t − xt∥2 ≤

∑T
t=2

∥∑τ∈mt
gτ∥

2

λ(t−1) ≤∑T
t=2

G|mt|
λ(t−1) , where we also use the fact that x⋆1 = x1.

Here, we highlight the importance of including all previous
decisions xτ for τ ≤ t, instead of τ ∈ ot+1 only, in the
regularization term of the update rule of xt+1 shown in
Eq. (1). Doing so particularly ensures that the updates of xt
and x⋆t share the same regularization terms, which is crucial
in leading to a diameter-free upper bound for ∥x⋆t − xt∥2
using the stability lemma.

Finally, we study the term
∑T
t=2

|mt|
t−1 . Directly bounding

|mt| from above by σmax leads to the first σmax lnT bound.
To further obtain the

√
dtot bound, it is crucial to observe

that
∑
τ≤t |mτ | ≤ (t− 1)2 since mτ ⊆ [τ − 1]. Therefore,

by also using Orabona (2025, Lemma 4.13) we are able
to prove that

∑T
t=2

|mt|
t−1 ≤

∑T
t=2

|mt|√∑
τ≤t |mτ |

≤ 2
√
dtot,

which concludes the regret analysis.

4. Delayed OCO with exp-concave losses
In this section, we consider the delayed OCO problem with
exp-concave losses. Exp-concave losses are a more general
class of loss functions that require more sophisticated tech-
niques to be tackled. To address this problem, we design
Algorithm 2, a variant of Online Newton Step (ONS) which
effectively handles delayed feedback. Specifically, after
receiving the gradients gτ for all τ ∈ ot+1\ot, we select
xt+1 as the minimizer of the cumulative surrogate loss over
all the already observed gradients and the past actions, with
an additive squared ℓ2-regularization term. For simplicity,
in this section we omit dependencies on curvature parame-
ters, Lipschitz constants, and domain diameter; they appear
explicitly in the theorem statements. The following result
provides a first regret bound for Algorithm 2.

Theorem 4.1. Assume that f1, . . . , fT are α-exp-concave
and let β = 1

2 min{ 1
4GD , α}. Then, under Assumptions 2.3

Algorithm 2 Delayed ONS for exp-concave functions

input β > 0, learning rate rule {ηt}t≥1,
initialize x1 ∈ X

1: for t = 1, 2, . . . do
2: Play xt; receive gτ = ∇fτ (xτ ) for all τ ∈ ot+1 \ ot
3: xt+1 = argmin

x∈X

∑
τ∈ot+1

(
⟨gτ , x⟩+ β

2 ⟨gτ , x− xτ ⟩2
)

+ηt
2 ∥x∥

2
2

4: end for

and 2.4, Algorithm 2 with 0 < η0 ≤ η1 ≤ · · · ≤ ηT
guarantees that

RegT = O
(n
β
ln
(
1+

βG2T

η0n

)
+ηTD

2+min {B1, B2}
)
,

where B1 =
(
G2

η0
+ 1

β

)
ndmax ln

(
1 + βG2T

η0n

)
and B2 =

G2
∑T
t=1

|mt|
ηt−1

.

We can now introduce two careful tunings of the time-
varying learning rates (ηt)t≥1 to derive the regret bounds
O(dmaxn lnT ) and O(

√
dtot) individually.

Simple tuning. With a constant learning rate constant
ηt = 1 for all t ∈ [T ] , Algorithm 2 directly ob-
tains O(dmaxn lnT ) regret. Alternatively, setting ηt =
G
D

√∑
s≤t |ms|+ |mt|+ 1 for all t ≥ 1, Algorithm 2

achieves O(
√
dtot) regret; here, the |mt| + 1 term is an

essentially tight worst-case estimation of |mt+1|, since
mt+1 ⊆ mt ∪ {t}.

Note that either of these two bounds can be significantly
better than the other under different delay sequences, e.g., as
shown by our Lemma A.10 in the appendix. Therefore, we
ideally want to achieve O(min{dmaxn lnT,

√
dtot}) regret

via a single choice of the learning rates. In fact, we can
show that it is indeed possible to obtain such a bound by a
careful delay-adaptive learning rate tuning.

Adaptive tuning. The adaptive learning rate is given by
η0 = 1 and ηt = min{at, bt}+ 1 for all t ≥ 1, where

at =
2

GD

(
G2 +

1

β

)
nd≤tmax ln

(
1 +

βG2T

n

)
, (5)

bt =
G

D

√∑
s≤t

|ms|+ |mt|+ 1 . (6)

The overall idea behind this learning rate tuning is to keep
track of both the dmaxn lnT and

√
dtot regret guarantees

over the rounds via at and bt, respectively. Then, ηt is set
depending on the best of the two, i.e., min{at, bt}, which
then leads to achieve the best of both regret bounds. Note
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that this adaptive tuning requires the knowledge of the time-
stamps of the received gradients since we need to compute
d≤tmax = maxτ≤tmin{dτ , t − τ} which, we recall, is the
maximum delay that has been perceived up to round t. The
following corollary provides a regret bound for Algorithm 2
with this adaptive tuning. The full proof of Corollary 4.2
can be found in Appendix C.

Corollary 4.2. Assume that f1, . . . , fT are α-exp-concave
and let β = 1

2 min{ 1
4GD , α}. Then, under Assumptions 2.3

and 2.4, Algorithm 2 with the adaptive learning rate ηt =
min{at, bt}+1, where at and bt are defined in Equations (5)
and (6), guarantees that

RegT = O
(
n

β
ln
(
1 +

βG2T

n

)
+D2 +min {C1, C2}

)
,

where C1 =
(
D
G + 1

) (
G2 + 1

β

)
ndmax ln

(
1 + βG2T

n

)
and C2 =

(
G2 +GD

) (√
dtot + 1

)
.

Corollary 4.2 shows Algorithm 2 with the adaptive learning
rate obtains regret O

(
min

{
dmaxn lnT,

√
dtot

})
. The main

advantage of an adaptive learning rate is that it requires
no prior knowledge of dtot or dmax, nor does it rely on a
doubling trick that would throw away information via resets.

4.1. Regret analysis

In this section, we provide a proof sketch of Theorem 4.1
and Corollary 4.2, while their full proofs are deferred to Ap-
pendix C. Specifically, using the exp-concavity property and
Lemma A.3, we decompose the overall regret as follows:

RegT (u) =

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−β
2

T∑
t=1

(
⟨gt, xt − u⟩

)2
, (7)

where we define x⋆1 = x1 and, for t ≥ 2,
x⋆t = argminx∈X

∑t−1
τ=1(⟨gτ , x⟩ +

β
2 (⟨gτ , x− xτ ⟩)2) +

ηt−1

2 ∥x∥22 to be the decisions assuming that all gradients
before round t are observed.

For the term Reg⋆T (u), following a standard FTRL analysis,
we are able to obtain that

Reg⋆T (u) ≤
ηT
2
∥u∥22 +

β

2

T∑
t=1

(⟨gt, u− xt⟩)2

+

T∑
t=1

min
{
GD, ∥gt∥2A−1

t−1

}
. (8)

where At−1 = ηt−1I+β
∑t−1
τ=1 gτg

⊤
τ . Applying Lattimore

& Szepesvári (2020, Lemma 19.4), the last sum on the

right-hand side of the above inequality satisfies

T∑
t=1

min
{
GD, ∥gt∥2A−1

t−1

}
= O

(
n

β
ln

(
1 +

βG2T

n

))
.

(9)

Now we consider the DriftT term. By applying the
Cauchy-Schwarz inequality followed by the stability lemma
(Lemma A.2) again, it follows that for all t ≥ 1,

DriftT ≤
T∑
t=1

∥gt∥A−1
t−1

∥xt − x⋆t ∥At−1

≤ 4

T∑
t=1

∥gt∥A−1
t−1

(∑
τ∈mt

∥gτ∥A−1
t−1

)
. (10)

By applying Lemma C.1, it holds that

DriftT = O
((

G2 +
1

β

)
ndmax ln

(
1 +

βG2T

n

))
.

(11)

At the same time, we can also prove that

DriftT = O

(
G2

T∑
t=1

|mt|
ηt−1

)
. (12)

Combing Equations (7) to (12) concludes the proof of The-
orem 4.1. To prove Corollary 4.2, we carefully consider the
adaptive learning rate tuning and separate the analysis into
two cases. In case aT ≤ bT at the end of the T rounds, we
utilize a delayed version of the elliptical potential lemma
(Lemma C.1) to achieve the logarithmic regret. On the other
hand, if bT < aT we split the regret analysis at the last
round τ⋆ at which aτ⋆ ≤ bτ⋆ . Then, we use again the loga-
rithmic bound up to round τ⋆ and the

√
dtot bound for the

remaining rounds. It suffices to observe that the first bound
is no worse than

√
dtot since aτ⋆ ≤ bτ⋆ to conclude the

proof.

5. Online linear regression with delayed labels
Here we consider the problem of online linear regression
(OLR) with delays. This setting essentially corresponds
to a variant of OCO where the domain is X = Rn and
loss functions are ft(x) = 1

2 (⟨zt, x⟩ − yt)
2 comparing any

point x ∈ Rn to a label yt ∈ R given some feature vector
zt ∈ Rn; to be precise, the predicted label by a given point
x corresponds to the inner product ⟨zt, x⟩. At each round t,
the learner first observes an n-dimensional feature vector zt
before performing its prediction xt, but the true label yt is
only revealed at a later round t+dt. A common assumption
on feature vectors and labels in this setting, analogous to
the ones we introduced in Section 2 for instance, is their
boundedness.
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Assumption 5.1. The feature vectors z1, . . . , zT and the
labels y1, . . . , yT are bounded, i.e., ∥zt∥2 ≤ Z and |yt| ≤ Y
for any t ∈ [T ], given Y, Z ≥ 0.

Algorithm 3 Delayed VAW forecaster with clipping

input learning rate rule {ηt}t≥1

initialize ρ1 = 0
1: for t = 1, 2, . . . do
2: Observe zt
3: Set xt = argmin

x∈Rn

∑
τ∈ot

−yτ ⟨zτ , x⟩+ ηt
2 ∥x∥

2
2

+ 1
2

∑
τ≤t
(
⟨zτ , x⟩

)2
4: Play x̃t = xt ·min

{
ρt

|⟨zt,xt⟩| , 1
}

5: Receive yτ for all τ ∈ ot+1 \ ot
6: Set ρt+1 = maxτ∈ot+1

|yτ |
7: end for

Note that the loss ft becomes exp-concave when the do-
main is also bounded. If this were the case, we could solve
this problem by designing a version of ONS that can han-
dle delayed labels. In OLR, however, the domain is un-
constrained as it corresponds to the whole n-dimensional
Euclidean space, which makes it particularly challenging
to simply adapt one of the techniques seen so far without
further assumptions. We instead design an algorithm for this
problem (see Algorithm 3) that corresponds to an adaptation
of the Vovk-Azoury-Warmuth (VAW) forecaster (Azoury
& Warmuth, 2001; Vovk, 2001) in order to handle delayed
labels. We can then prove that the regret guarantee for this
algorithm in the delayed OLR setting becomes as stated in
Theorem 5.2 below (whose proof is in Appendix D).

Theorem 5.2. In the OLR problem with delayed labels
under Assumption 5.1, Algorithm 3 guarantees for any 0 <
η0 ≤ η1 ≤ · · · ≤ ηT that

RegT (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+O

(
Y 2
(
σmax +min {M1,M2}

))
,

where M1 = ndmax ln
(
1 + Z2T

η0n

)
and M2 =

Z2
∑T
t=1

|mt|
ηt

.

The idea behind the regret analysis is once again to decom-
pose the regret into a cheating regret term and a drift term:

RegT (u) =

T∑
t=1

(
ft(x

⋆
t )− ft(u)

)
︸ ︷︷ ︸

Reg⋆
T (u)

+

T∑
t=1

(
ft(x̃t)− ft(x

⋆
t )
)

︸ ︷︷ ︸
DriftT

,

where (x̃t)t≥1 are the actions played by Algorithm 3, while
(x⋆t )t≥1 are the “cheating” iterates that assume to have
knowledge about all labels from past rounds. To bound

the cheating regret Reg⋆T (u), it is important to leverage the
curvature of the squared loss. Specifically, by definition,

Reg⋆T (u) =

T∑
t=1

⟨zt, x⋆t ⟩2 − ⟨zt, u⟩2

2
+

T∑
t=1

⟨−ytzt, x⋆t−u⟩ .

Then, we can study the second sum via the standard tools
for the regret analysis of FTRL with respect to the linear
losses x 7→ −yt⟨zt, x⟩, which yields

Reg⋆T (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
.

This is exactly the first line in the regret guarantee presented
in Theorem 5.2, and it corresponds to the part that does not
depend on delays.

On the other hand, the drift term DriftT requires much
more care and novel techniques. By the convexity of ft, we
have that DriftT ≤

∑T
t=1⟨∇ft(x̃t), x̃t − x⋆t ⟩. Here we

immediately observe the importance of the additional clip-
ping of xt to define the selected point x̃t, which is inspired
from the clipping ideas by Cutkosky (2019); Mayo et al.
(2022). Its scope is to guarantee that the predicted label
⟨zt, x̃t⟩ falls within the range of true labels; the reason for
this is to avoid the gradient of ft evaluated at x̃t to blow up,
otherwise obstructing an attempt to nicely bound DriftT .
We also remark that, differently form Mayo et al. (2022), we
do not require to clip the labels used in the iterates update
too. If we had knowledge of Y , we could use it to clip to the
interval [−Y, Y ], thus guaranteeing ft(x̃t) ≤ Y . However,
since we want to assume no prior knowledge of Y , the best
clipping we can do at any time t is via ρt. Doing so requires
to handle possible rounds when the label falls outside the
clipping interval, which in turn requires a careful analysis
that accounts for the feedback to be revealed only after some
delay (as ρt could possibly be updated much later in time).
We are then able to prove that

DriftT = O
(
Y 2σmax + Y 2 min

{
M1,M2

})
.

which is the delay-dependent part of the regret; the Y 2σmax

term, in particular, is the one due to clipping mistakes.

Given any γ > 0, we may now set η0 = γ and ηt =
γ(min{at, bt}+ 1) for all t ≥ 1, where

at = 2nd≤tmax ln

(
1 +

Z2T

γn

)
, bt = Z

√∑
s≤t|ms| .

(13)

By doing so, we obtain the following Corollary 5.3 which
provides a regret bound for Algorithm 3 with this adaptive
tuning, and whose proof is deferred to Appendix D.

Corollary 5.3. In the OLR problem with delayed labels un-
der Assumption 5.1, Algorithm 3 with the adaptive learning

7
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rate ηt = γ(min{at, bt}+ 1), where at and bt are defined
in Equation (13) for any γ > 0 guarantees that

RegT ≤ γ∥u∥22
2

+nY 2 ln

(
1+

Z2T

γn

)
+O

(
min {Q1, Q2}

)
,

whereQ1 =
(
γ∥u∥22+Y 2

)
ndmax ln

(
1 + Z2T

γn

)
andQ2 =(

γZ∥u∥22 + (Z + 1)Y 2
)√

dtot .

To achieve this final result, we leverage similar ideas from
the adaptive tuning for delayed ONS in Corollary 4.2, as
mentioned above, together with a nontrivial relation be-
tween σmax and

√
dtot to handle the additive Y 2σmax term

from the clipping errors (see Lemma A.7). We remark that
here we used directly Z for the tuning, which requires its
knowledge since the first round; we could easily do without
this prior knowledge by using Zt = maxτ≤t∥zτ∥2 instead
because we always observe all the previous and the current
feature vectors by the beginning of round t.

6. Experiments
In this section, we evaluate the performance of the pro-
posed algorithms on three types of loss functions in the
delayed OCO setting.4 All experiments are conducted over
T = 10000 round and results are averaged over 20 inde-
pendent trials. To showcase the advantage of our algo-
rithms, we consider two delay regimes. For the first case,
each delay dt is independently and uniformly sampled from
the set {0, 1, . . . , 5}, thus leading to E[

√
dtot] = Θ(

√
T )

and E[σmax] ≤ E[dmax] ≤ 5. In the second case, we
define p = T−1/3 = 0.1. Then, for each t, dt is sam-
pled from the same distribution with probability 1 − p,
and it is set to be dt = T − t with probability p. In this
case, E[

√
dtot] = o(T ), E[dmax] ≥ T (1 − (1 − p)T ), and

E[σmax] = O(pT ). We compare our algorithms against
several baselines designed for delayed feedback settings.
Below, we describe how we construct losses, together with
the baseline algorithms we compare against. We provide
additional experiments in Appendix F.

Strongly convex loss. We consider the following strongly
convex losses ft(x) = 1

2 (⟨zt, x⟩ − yt)
2 + 1

2∥x∥
2
2. The

feasible set is the ball X = {x ∈ R5, ∥x∥2 ≤ 2}. Each co-
ordinate of the feature vector zt ∈ R5 at round t is uniformly
chosen from [−1, 1] while yt = ⟨zt,1⟩ + ϵt, where ϵt is
an i.i.d. standard Gaussian noise. We evaluate Algorithm 1
on this loss sequence and compare its performance with
DOGD-SC (Wan et al., 2022a), SDMD-RSC (Wu et al.,
2024, Algorithm 6), and BOLD-OGD which applies the
reduction proposed by Joulani et al. (2013) to OGD.

4The code for the experiments is available at
https://github.com/haoqiu95/DOCO.

Exp-concave loss. The loss functions we consider for exp-
concave ones are ft(x) = 1

2

(
⟨zt, x⟩ − yt

)2
. The other con-

figurations are the same as the experiments in the strongly
convex case. We evaluate our Algorithm 2 and compare
its performance with that of DOGD (Quanrud & Khashabi,
2015) and BOLD-ONS, which applies the reduction pro-
posed in Joulani et al. (2013) to ONS (Hazan et al., 2007).

Online linear regression. We still consider the loss func-
tion ft(x) = 1

2

(
⟨zt, x⟩ − yt

)2
for all t ∈ [T ], the same

one as used in the exp-concave setting. The only difference
is that the action space is now unconstrained (X = R5).
We empirically evaluate Algorithm 3 on this loss sequence
and compare the performance with DOGD (Quanrud &
Khashabi, 2015) and BOLD-VAW, which is again a combi-
nation of the reduction in Joulani et al. (2013) and the VAW
forecaster (Azoury & Warmuth, 2001; Vovk, 2001).

Experimental results. Figure 1 shows the mean cumula-
tive regret and its standard deviation over 20 rounds for the
instances with strong convexity, exp-concavity, and OLR
under the two previously mentioned delay regimes. For
strongly convex losses, we find that our algorithm per-
forms much better than DOGD-SC (Wan et al., 2022a)
and have similar performances compared to SDMD-RSC,
which is proven to only achieve O(dmax lnT ) regret (Wu
et al., 2024). However, we point out that this mismatch in
the empirical performance and the theoretical guarantee of
SDMD-RSC is due to a loose analysis of this algorithm.
In fact, we show that SDMD-RSC can also achieve the
same O(min{σmax lnT,

√
dtot}) regret via a refined analy-

sis. The proof is deferred to Appendix E.

For both exp-concave and OLR settings, our algorithms
consistently outperform DOGD, which does not leverage the
curvature of the loss function, as well as the reduction-based
algorithms proposed in Joulani et al. (2013), under both
delay regimes, showing the effectiveness of our algorithms
under different delay conditions.

7. Conclusions
In this paper, we study how to leverage the curvature
of the loss functions in online convex optimization with
delayed feedback so as to improve regret guarantees.
For strongly convex functions, we derive an algorithm
achieving O(min{σmax lnT,

√
dtot}) regret, improving

upon previous work (Wan et al., 2022a; Wu et al., 2024),
which only obtain O(dmax lnT ) regret. We also derive
O(min{dmaxn lnT,

√
dtot}) for exp-concave losses and

online linear regression, answering an open question pro-
posed in Wan et al. (2022a). It is still left open whether
O(min{σmaxn lnT,

√
dtot}) is achievable for exp-concave

losses.
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Figure 1. Comparison with relevant baselines. The shaded areas consider a range centered around the mean with half-width corresponding
to the empirical standard deviation over 20 repetitions.
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A. Auxiliary results
In this section, we show several auxiliary lemmas that will be helpful throughout the paper.

A.1. General results for the regret analysis

The following lemma is a standard result for the regret of FTRL.
Lemma A.1 (Orabona (2025, Lemma 7.1)). Let X ⊆ Rn be closed and non-empty. Denote by Ft(x) = ψt(x)+

∑t−1
τ=1 ℓτ (x).

Assume that argminx∈X Ft(x) is not empty and xt ∈ argminx∈X Ft(x). Then, for any u ∈ X ,

T∑
t=1

(
ℓt(xt)− ℓt(u)

)
= ψT+1(u)−min

x∈X
ψ1(x) +

T∑
t=1

[
Ft(xt)− Ft+1(xt+1) + ℓt(xt)

]
+ FT+1(xT+1)− FT+1(u) .

The next lemma bounds the distance between two FTRL iterates with different linear losses and possibly different regularizers.
It also shows a simplified upper bound in the case when the two iterates have the same regularizer.
Lemma A.2 (Stability lemma). Let X ⊆ Rn be closed and non-empty. Let A1, A2 ⪰ 0 be two positive semidefinite
matrices, b1, b2 ∈ Rn, and c1, c2 ∈ R. Define ψ1(x) = x⊤A1x + b⊤1 x + c1 and ψ2(x) = x⊤A2x + b⊤2 x + c2. Suppose
that z1 ∈ argminx∈X

{
⟨w1, x⟩+ ψ1(x)

}
and z2 ∈ argminx∈X

{
⟨w2, x⟩+ ψ2(x)

}
. Then, we have

∥z1 − z2∥2A1
+ ∥z1 − z2∥2A2

≤ ⟨w1 − w2, z2 − z1⟩+ (ψ1(z2)− ψ2(z2))− (ψ1(z1)− ψ2(z1)) .

Furthermore, if ψ1(x) = ψ2(x) = x⊤Ax+ b⊤x+ c with positive definite A ≻ 0, we have

∥z1 − z2∥A ≤ 1

2
∥w1 − w2∥A−1 .

Proof. Let h1(x) = ⟨w1, x⟩+ψ1(x) and h2(x) = ⟨w2, x⟩+ψ2(x) be twice-differentiable functions with HessiansA1+A
⊤
1

and A2 + A⊤
2 , respectively. Note that z1 ∈ argminx∈X h1(x) and z2 ∈ argminx∈X h2(x). By Taylor’s theorem and

first-order optimality conditions, we know that

(⟨w1, z2⟩+ ψ1(z2))− (⟨w1, z1⟩+ ψ1(z1)) = h1(z2)− h1(z1) ≥ ∥z1 − z2∥2A1
,

(⟨w2, z1⟩+ ψ2(z1))− (⟨w2, z2⟩+ ψ2(z2)) = h2(z1)− h2(z2) ≥ ∥z1 − z2∥2A2
.

Summing up the above two inequalities, we obtain

∥z1 − z2∥2A1
+ ∥z1 − z2∥2A2

≤ ⟨w1 − w2, z2 − z1⟩+ (ψ1(z2)− ψ2(z2))− (ψ1(z1)− ψ2(z1)) .

The second result is directly obtained by applying the Cauchy-Schwarz inequality when ψ1(x) = ψ2(x).

The following lemma is the quadratic bound of α-exp-concave functions.
Lemma A.3 (Hazan et al. (2007, Lemma 2)). Let f : X → R be an α-exp-concave function. Then, under Assumptions 2.3
and 2.4, we have that

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ β

2

(
⟨∇f(y), x− y⟩

)2
for any x, y ∈ X , where β = 1

2 min
{

1
4GD , α

}
.

The following lemma is the link of the Bregman divergences between 3 points.
Lemma A.4 (Wei et al. (2021, Lemma 10)). Let A be a convex set and x2 = argminx∈A {⟨g, x⟩+Dψ(x, x1)}. Then, for
any u ∈ A,

⟨x2 − u, g⟩ ≤ Dψ(u, x1)−Dψ(u, x2)−Dψ(x2, x1) .

The following lemma is the general bound on ⟨g, v⟩ − λ
2 ∥v∥

2, which related to the one achievable via the Fenchel-Young
inequality but strengthened thanks to a norm constraint on v.
Lemma A.5 (Flaspohler et al. (2021, Lemma 18)). Let ∥·∥ be a norm over Rn and let ∥·∥∗ be its dual norm. For any
constants λ, c, b > 0 and any g ∈ Rn,

sup
v∈Rn:∥v∥≤min{ c

λ ,b}

(
⟨g, v⟩ − λ

2
∥v∥2

)
≤ min

{
1

2λ
∥g∥2∗,

c

λ
∥g∥∗, b∥g∥∗

}
.

12
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A.2. Results for delay-related quantities

The following three lemmas quantify the relationship between σmax, dmax, and dtot.
Lemma A.6 (Masoudian et al. (2022, Lemma 3)). Let dmax(S) = maxτ∈S dτ and S̄ = [T ] \ S for any S ⊆ [T ]. Then,

σmax ≤ min
S⊆[T ]

(
|S|+ dmax(S̄)

)
.

Lemma A.7. Let dtot(S) =
∑
τ∈S dτ and S̄ = [T ] \ S for any S ⊆ [T ]. Then,

σmax ≤ 2
√
2 min
S⊆[T ]

(
|S|+

√
dtot(S̄)

)
.

Proof. First, observe that dtot(S) =
∑T
t=1|mt ∩ S| for any S ⊆ [T ]. Also note that the bound trivially holds if σmax = 0;

hence, assume σmax ≥ 1 without loss of generality. Let t∗ be any round such that |mt∗ | = σmax. Consider any S ⊆ [T ],
and define A = mt∗ ∩ S and B = mt∗ ∩ S̄. If |A| ≥ (

√
2− 1)|mt∗ |, then

|S|+
√
dtot(S̄) ≥ |S| ≥ |A| ≥ (

√
2− 1)σmax .

Otherwise, we have that |B| > (2−
√
2)|mt∗ |. Hence, denote B = {t1, . . . , t|B|} such that t1 < · · · < t|B| and observe

that |mti+1 ∩B| ≥ i for any ti ∈ B. We can consequently prove that

|S|+
√
dtot(S̄) ≥

√
dtot(S̄) =

√√√√ T∑
t=1

|mt ∩ S̄| ≥
√∑
t∈B

|mt+1 ∩B| ≥

√√√√ |B|∑
i=1

i ≥ |B|√
2
> (

√
2− 1)σmax ,

which concludes the proof as 1√
2−1

≤ 2
√
2 .

Lemma A.8. Let σSmax = maxτ∈[T ]|mτ ∩ S| and S̄ = [T ] \ S for any S ⊆ [T ]. Then,

σmax = min
S⊆[T ]

(
|S|+ σS̄max

)
.

Proof. First, it trivially holds that
σmax ≥ min

S⊆[T ]

(
|S|+ σS̄max

)
.

We now only need to show the inequality in the other direction. Consider any S ⊆ [T ] and let t∗ be any round such that
|mt∗ | = σmax. Then,

|S|+ σS̄max ≥ |S|+ |mt∗ ∩ S̄| = |S|+ |mt∗ \ S| ≥ |mt∗ | = σmax ,

which concludes the proof.

The following lemma further illustrates the relationship between σmax and
√
dtot in a more concrete way.

Lemma A.9. There exists a delay sequence (dt)t∈[T ] such that σmax ≥
√
1.5 · dtot. In addition, there also exists a delay

sequence such that σmax = 1 and
√
dtot =

√
T .

Proof. Given a positive integer N > 5, consider the sequence (dt)t∈[T ], where dt = N − t for all t ≤ N and dt = 0 for

all t > N . In this case, σmax = σN−1 = N − 1 and
√
1.5 · dtot =

√
3N(N−1)

4 ≤ N − 1. On the other hand, consider the

sequence where dt = 1 for all t ∈ [T ]. In this case, σmax = 1 and
√
dtot =

√
T .

On a similar note, we show another similar result depicting the relationship between dmax and
√
dtot.

Lemma A.10. There exists a delay sequence (dt)t∈[T ] such that dmax = T and
√
dtot =

√
T . In addition, there also exists

a delay sequence such that dmax = 1 and
√
dtot =

√
T .

Proof. Consider the sequence (dt)t∈[T ] where one round t0 ≤ T/2 with dt0 = T − t0 and all the other rounds dt = 0 for
t ̸= t0, then we can choose t0 = 1 and have dmax = T and

√
dtot =

√
T . On the other hand, consider the sequence where

dt = 1 for all t ∈ [T ], then dmax = 1 and
√
dtot =

√
T .
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B. Omitted details in Section 3
In this section, we show the omitted details in Section 3. For completeness, we restate the theorem and provide its proof.

Theorem 3.1. Assume that f1, . . . , fT are λ-strongly convex with respect to the Euclidean norm ∥·∥2. Then, under
Assumption 2.3, Algorithm 1 guarantees that

RegT = O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

Proof. First of all, define

Ft(x) =
∑
τ∈ot

⟨gτ , x⟩+
λ

2

t−1∑
τ=1

∥x− xτ∥22 and F ⋆t (x) =

t−1∑
τ=1

(
⟨gτ , x⟩+

λ

2
∥x− xτ∥22

)
for any t ≥ 1. Observe that xt ∈ argminx∈X Ft(x) and additionally define x⋆t ∈ argminx∈X F

⋆
t (x) for t ≥ 2, while

x⋆1 = x1 (since F ⋆1 (x) = F1(x)). The sequence (x⋆t )t≥1 represents the “cheating” sequence that uses the gradients from all
rounds up to t− 1, including those from rounds in mt that are yet to be received because of the delays. As mentioned in
Section 3, we decompose the regret as follows:

RegT (u) =

T∑
t=1

(
ft(xt)− ft(u)

)
≤

T∑
t=1

(
⟨gt, xt − u⟩ − λ

2
∥xt − u∥22

)

=

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−λ
2

T∑
t=1

∥xt − u∥22 , (14)

where the first inequality follows from the λ-strong convexity of ft. Next, we analyze the cheating term Reg⋆T (u) and the
drift term DriftT individually, and their respective upper bounds will then be combined to derive the final regret bound.

To analyze Reg⋆T (u), first define ψt(x) = λ
2

∑t−1
τ=1∥x − xτ∥22 for t ≥ 1. We can therefore rewrite both Ft(x) =∑

τ∈ot⟨gτ , x⟩ + ψt(x) and F ⋆t (x) =
∑t−1
τ=1⟨gτ , x⟩ + ψt(x). Hence, applying Lemma A.1, we can bound Reg⋆T (u) as

follows:

Reg⋆T (u) =

T∑
t=1

⟨gt, x⋆t − u⟩

= ψT+1(u)−min
x∈X

ψ1(x) +

T∑
t=1

[
F ⋆t
(
x⋆t
)
− F ⋆t+1

(
x⋆t+1

)
+ ⟨gt, x⋆t ⟩

]
+ F ⋆T+1

(
x⋆T+1

)
− F ⋆T+1(u)

≤ ψT+1(u) +

T∑
t=1

[(
F ⋆t (x

⋆
t ) + ⟨gt, x⋆t ⟩

)
−
(
F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩

)
− ψt+1(x

⋆
t+1) + ψt(x

⋆
t+1)

]
, (15)

where the last inequality holds because F ⋆T+1(x
⋆
T+1) ≤ F ⋆T+1(u) by optimality of x⋆T+1, together with the non-negativity

of ψ1.

Focus on the difference between the terms F ⋆t (x
⋆
t ) + ⟨gt, x⋆t ⟩ and F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩ within the sum in the right-hand

side of Equation (15). Applying Lemma A.2 for z1 = x⋆t+1 with A1 = λt
2 I and w1 =

∑
τ≤t gτ , and z2 = x⋆t with

A2 = λ(t−1)
2 I and w2 =

∑
τ≤t−1 gτ , we have that

(2t− 1)
λ

2
∥x⋆t − x⋆t+1∥22 = ∥x⋆t − x⋆t+1∥2A1

+ ∥x⋆t − x⋆t+1∥2A2

≤ ⟨gt, x⋆t − x⋆t+1⟩+
λ

2
∥x⋆t − xt∥22 −

λ

2
∥x⋆t+1 − xt∥22

≤ ∥gt∥2∥x⋆t − x⋆t+1∥2 +
λ

2
∥x⋆t − xt∥22 ,

14
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where we used the Cauchy-Schwarz inequality in the last step. By straightforward calculations, we can show that the above
inequality implies that

∥x⋆t − x⋆t+1∥2 ≤ 2∥gt∥2
λ(2t− 1)

+
∥x⋆t − xt∥2√

2t− 1
≤ 2∥gt∥2
λ(2t− 1)

+ ∥x⋆t − xt∥2 . (16)

We can leverage this inequality to show that(
F ⋆t (x

⋆
t ) + ⟨gt, x⋆t ⟩

)
−
(
F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩

)
≤ ⟨gt, x⋆t − x⋆t+1⟩ (F ⋆t (x

⋆
t ) ≤ F ⋆t+1(x

⋆
t+1))

≤ ∥gt∥2∥x⋆t − x⋆t+1∥2 (Cauchy-Schwarz)

≤ 2∥gt∥22
λ(2t− 1)

+ ∥gt∥2∥x⋆t − xt∥2 , (Equation (16))

where the first inequality is due to the optimality of x⋆t with respect to F ⋆t . Plugging the above into the bound on Reg⋆T (u)
from Equation (15), we obtain

Reg⋆T (u) ≤ ψT+1(u) +

T∑
t=1

[
2∥gt∥22
λ(2t− 1)

+ ∥gt∥2∥x⋆t − xt∥2 + ψt(x
⋆
t+1)− ψt+1(x

⋆
t+1)

]

=
λ

2

T∑
t=1

∥xt − u∥22 +
T∑
t=1

[
2∥gt∥22
λ(2t− 1)

+ ∥gt∥2∥x⋆t − xt∥2 −
λ

2
∥x⋆t+1 − xt∥22

]

≤ λ

2

T∑
t=1

∥xt − u∥22 +
G2

λ

T∑
t=1

2

2t− 1
+G

T∑
t=1

∥x⋆t − xt∥2

≤ λ

2

T∑
t=1

∥xt − u∥22 +
G2

λ
ln(2T + 1) +G

T∑
t=1

∥x⋆t − xt∥2 , (17)

where the equality is due to the definition of ψt, while the second inequality follows from ∥gt∥2 ≤ G by Assumption 2.3.

Observe that, given such a bound on the cheating term, we now have to consider three different terms as shown in
Equation (17). While the second one is a desirable logarithmic term, and the first one is negligible since it will be canceled
when plugging this bound on Reg⋆T (u) into Equation (14), the third one needs some further analysis. Interestingly enough,
this latter term involves a difference between x⋆t and xt, in an analogous way as in the drift term DriftT . We indeed show
that we can handle both terms in the same way.

We thus move to the analysis of the DriftT term. One can immediately observe that, by Cauchy-Schwarz and by
Assumption 2.3,

DriftT =

T∑
t=1

⟨gt, xt − x⋆t ⟩ ≤
T∑
t=1

∥gt∥2∥x⋆t − xt∥2 ≤ G

T∑
t=1

∥x⋆t − xt∥2 . (18)

While it immediately follows that ∥x⋆1 − x1∥2 = 0 by definition of x⋆1, we require some additional effort when studying the
other norms ∥x⋆t − xt∥2 for t ≥ 2. To this end, we rely once more on Lemma A.2 for z1 = x⋆t with w1 =

∑
τ≤t−1 gτ and

z2 = xt with w2 =
∑
τ∈ot gτ , using A = (t− 1)λ2 I , and show that

λ(t− 1)

2
∥x⋆t − xt∥22 = ∥x⋆t − xt∥2A ≤ 1

4

∥∥∥∥∥∑
τ∈mt

gτ

∥∥∥∥∥
2

A−1

=
1

2λ(t− 1)

∥∥∥∥∥∑
τ∈mt

gτ

∥∥∥∥∥
2

2

.

We can thus rewrite this inequality in the following way:

∥x⋆t − xt∥2 ≤ 1

λ(t− 1)

∥∥∥∥∥∑
τ∈mt

gτ

∥∥∥∥∥
2

≤ 1

λ(t− 1)

∑
τ∈mt

∥gτ∥2 ≤ G|mt|
λ(t− 1)

, (19)

where we used once again that ∥gτ∥2 ≤ G by Assumption 2.3. The above considerations consequently imply that the sum
of interest for bounding DriftT satisfies

T∑
t=1

∥x⋆t − xt∥2 ≤ G

λ

T∑
t=2

|mt|
t− 1

. (20)
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The sum on the right-hand side of the above inequality can be immediately bounded as

T∑
t=2

|mt|
t− 1

≤ σmax

T∑
t=2

1

t− 1
≤ σmax ln(2T ) (21)

by definition of σmax. Furthermore, by using the fact that
∑
τ≤t|mτ | ≤ (t − 1)2 since mτ ⊆ [τ − 1] for any τ , we can

prove at the same time that

T∑
t=2

|mt|
t− 1

=

T∑
t=2

|mt|√
(t− 1)

2
≤

T∑
t=2

|mt|√∑
τ≤t |mτ |

≤ 2

√√√√ T∑
t=1

|mt| ≤ 2
√
dtot , (22)

where the second inequality is due to Orabona (2025, Lemma 4.13).

Combining all the results gathered so far, we can finally derive the overall regret bound as follows. In particular, for any
u ∈ X , we have

RegT (u) ≤ Reg∗T (u) + DriftT − λ

2

T∑
t=1

∥xt − u∥22 (Equation (14))

≤ G2

λ
ln(2T + 1) +G

T∑
t=1

∥x⋆t − xt∥2 + DriftT (Equation (17))

≤ G2

λ
ln(2T + 1) + 2G

T∑
t=1

∥x⋆t − xt∥2 (Equation (18))

≤ G2

λ
ln(2T + 1) +

2G2

λ

T∑
t=2

|mt|
t− 1

(Equation (20))

≤ G2

λ
ln(2T + 1) +

2G2

λ
min

{
σmax ln(2T ), 2

√
dtot

}
(Equations (21) and (22))

= O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

C. Omitted details from Section 4
In this section, we show the omitted details from Section 4. To do so, we first introduce the following useful lemma that will
be crucial in the regret analysis of Algorithm 2. It essentially corresponds to the standard elliptical potential lemma, but here
adapted to the presence of delays.

Lemma C.1. Let ϕ > 0, L > 0, and 0 < η0 ≤ η1 ≤ · · · ≤ ηN . For any t ∈ [N ], let at ∈ Rn such that ∥at∥2 ≤ L and
define At = ηtI + ϕ

∑
τ≤t aτa

⊤
τ . Then, it holds that

N∑
t=1

∥at∥A−1
t−1

(∑
τ∈mt

∥aτ∥A−1
t−1

)
≤ 2nd≤Nmax

ϕ

(
ϕL2

η0
+ 1

)
ln

(
1 +

ϕL2N

η0n

)
,

and that
N∑
t=1

∥at∥A−1
t

(∑
τ∈mt

∥aτ∥A−1
t

)
≤ 2nd≤Nmax

ϕ
ln

(
1 +

ϕL2N

η0n

)
.

Proof. Define Bt = 1
ϕAt and Ct = Bt − ηt−η0

ϕ I ⪯ Bt for any t ∈ [N ]. By the AM-GM inequality, we first show that

N∑
t=1

∥at∥A−1
t−1

∑
τ∈mt

∥aτ∥A−1
t−1

≤
N∑
t=1

(
|mt|
2

∥at∥2A−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2A−1
t−1

)
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≤
N∑
t=1

(
|mt|
2

∥at∥2A−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2A−1
τ−1

)

=
1

ϕ

N∑
t=1

(
|mt|
2

∥at∥2B−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2B−1
τ−1

)
,

where we also used the fact that Aτ−1 ⪯ At−1 for any τ < t. Now observe that

N∑
t=1

|mt| · ∥at∥2B−1
t−1

≤ d≤Nmax

N∑
t=1

∥at∥2B−1
t−1

since |mt| ≤ d≤Nmax for t ≤ N . Similarly, we can show that

N∑
t=1

∑
τ∈mt

∥aτ∥2B−1
τ−1

=

N∑
t=1

dt∥at∥2B−1
t−1

≤ d≤Nmax

N∑
t=1

∥at∥2B−1
t−1

as for any τ ∈ [N ] there are no more than dτ rounds t such that τ ∈ mt. Putting these results together, we obtain that

N∑
t=1

(
|mt|
2

∥at∥2B−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2B−1
τ−1

)
≤ d≤Nmax

N∑
t=1

∥at∥2B−1
t−1

≤ d≤Nmax

N∑
t=1

∥at∥2C−1
t−1

.

By the fact that ∥at∥2C−1
t−1

≤ ϕL2

η0
, we can use Lemma 19.4 in Lattimore & Szepesvári (2020) and show that

N∑
t=1

∥at∥2C−1
t−1

≤
(
ϕL2

η0
+ 1

) N∑
t=1

min
{
1, ∥at∥2C−1

t−1

}
≤ 2n

(
ϕL2

η0
+ 1

)
ln

(
1 +

L2N

η0n

)
.

Concatenating all the above results concludes the proof of the first inequality.

For the second inequality, similar steps suffice to prove it, but with a different observation that now ∥at∥2C−1
t

≤

min
{
1, ∥at∥2C−1

t−1

}
because

∥at∥2C−1
t

≤ a⊤t

(
υI + ata

⊤
t

)−1

at = a⊤t

(
1

υ
I − ata

⊤
t

υ2 + υ∥at∥22

)
at =

∥at∥22
υ

− ∥at∥42
υ2 + υ∥at∥22

=
∥at∥22

υ + ∥at∥22
≤ 1 ,

where we used the Sherman-Morrison formula in the first equality with υ = η0/ϕ, and since ∥at∥C−1
t

≤ ∥at∥C−1
t−1

given
that Ct−1 ⪯ Ct.

For completeness, we restate Theorem 4.1, the main result of Section 4.1, and provide its proof.

Theorem 4.1. Assume that f1, . . . , fT are α-exp-concave and let β = 1
2 min{ 1

4GD , α}. Then, under Assumptions 2.3
and 2.4, Algorithm 2 with 0 < η0 ≤ η1 ≤ · · · ≤ ηT guarantees that

RegT = O
(n
β
ln
(
1 +

βG2T

η0n

)
+ ηTD

2 +min {B1, B2}
)
,

where B1 =
(
G2

η0
+ 1

β

)
ndmax ln

(
1 + βG2T

η0n

)
and B2 = G2

∑T
t=1

|mt|
ηt−1

.

Proof. First, in a similar way as in the proof of Theorem 3.1, we define

Ft(x) =
∑
τ∈ot

⟨gτ , x⟩+ ψt(x) and F ⋆t (x) =

t−1∑
τ=1

⟨gτ , x⟩+ ψ⋆t (x),

17
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where ψt(x) =
ηt−1

2 ∥x∥22 +
β
2

∑
τ∈ot (⟨gτ , x− xτ ⟩)2 and ψ⋆t (x) =

ηt−1

2 ∥x∥22 +
β
2

∑t−1
τ=1 (⟨gτ , x− xτ ⟩)2. Observe that

xt ∈ argminx∈X Ft(x), and define x⋆t ∈ argminx∈X F
⋆
t (x) for t ≥ 1 to be the predictions following a similar update rule

while using all the information up to round t− 1. Similarly to the regret decomposition for the strongly convex case shown
in Appendix B, we decompose the regret as follows:

RegT (u) =

T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

(
⟨gt, xt − u⟩ − β

2
⟨xt − u, gt⟩2

)

=

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−β
2

T∑
t=1

(⟨xt − u, gt⟩)2 , (23)

where the inequality holds thanks to Lemma A.3.

Let us begin the analysis of the “linearized” regret by first focusing on the cheating term Reg⋆T (u). Let F ′
t (x) = F ⋆t (x) +

⟨gt, x⟩ and define x′t ∈ argminx∈X F
′
t (x). Leveraging Lemma A.1 with ℓt(·) = ⟨gt, ·⟩, we show that

Reg⋆T (u) =

T∑
t=1

⟨gt, x⋆t − u⟩

= ψ⋆T+1(u)−min
x∈X

ψ⋆1(x) +

T∑
t=1

[
F ⋆t (x⋆t )− F ⋆t+1

(
x⋆t+1

)
+ ⟨gt, x⋆t ⟩

]
+ F ⋆T+1

(
x⋆T+1

)
− F ⋆T+1(u)

≤ ψ⋆T+1(u) +

T∑
t=1

[(
F ⋆t (x

⋆
t ) + ⟨gt, x⋆t ⟩

)
−
(
F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩

)
− ψ⋆t+1(x

⋆
t+1) + ψ⋆t (x

⋆
t+1)

]
≤ ψ⋆T+1(u) +

T∑
t=1

[
F ′
t (x

⋆
t )− F ′

t (x
′
t) + ψ⋆t (x

⋆
t+1)− ψ⋆t+1(x

⋆
t+1)

]
(definition of F ′

t and x′t)

≤ ψ⋆T+1(u) +

T∑
t=1

(F ′
t (x

⋆
t )− F ′

t (x
′
t)) , (24)

where in the first inequality we used the facts that F ⋆T+1(x
⋆
T+1) ≤ F ⋆T+1(u) and that ψ⋆1 is nonnegative, while the last

inequality is due to ψ⋆t (x
⋆
t+1) ≤ ψ⋆t+1(x

⋆
t+1). Applying now Lemma A.2, we have ∥x⋆t − x′t∥At−1

≤ ∥gt∥A−1
t−1

, where

At−1 = ηt−1I + β
∑t−1
τ=1 gτg

⊤
τ . This further means that

F ′
t (x

⋆
t )− F ′

t (x
′
t) ≤ ⟨∇F ′

t (x
⋆
t ), x

⋆
t − x′t⟩ (convexity of F ′

t )
= ⟨∇F ⋆t (x⋆t ) + gt, x

⋆
t − x′t⟩ (definition of F ′

t )
≤ ⟨gt, x⋆t − x′t⟩ (first-order optimality)

≤ min
{
∥gt∥2∥x⋆t − x′t∥2 , ∥gt∥A−1

t−1
∥x⋆t − x′t∥At−1

}
(Cauchy-Schwarz inequality)

≤ min
{
GD, ∥gt∥A−1

t−1
∥x⋆t − x′t∥At−1

}
(Assumptions 2.3 and 2.4)

≤ min
{
GD, ∥gt∥2A−1

t−1

}
. (25)

We now focus on the sum of terms on the right-hand side of Equation (24). Because ηt is non-decreasing by assumption, we
have

T∑
t=1

(F ′
t (x

⋆
t )− F ′

t (x
′
t)) ≤

T∑
t=1

min
{
GD, ∥gt∥2A−1

t−1

}
(Equation (25))

≤
T∑
t=1

min

{
GD,

1

β
∥gt∥2( η0

β I+
∑

τ<t gτg
⊤
τ )−1

}
(ηt−1I ⪰ η0I)

18
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≤ max

{
GD,

1

β

} T∑
t=1

min
{
1, ∥gt∥2( η0

β I+
∑

τ<t gτg
⊤
τ )−1

}
≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
, (26)

where the last inequality follows by Lattimore & Szepesvári (2020, Lemma 19.4). Combining the previous inequalities, we
can show that Reg⋆T (u) satisfies

Reg⋆T (u) ≤ ψ⋆T+1(u) +

T∑
t=1

(F ′
t (x

⋆
t )− F ′

t (x
′
t)) (Equation (24))

≤ ψ⋆T+1(u) +
β

2

T∑
t=1

(⟨gt, u− xt⟩)2 +
(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
(Equation (26))

=
ηT
2
∥u∥22 +

β

2

T∑
t=1

(⟨gt, u− xt⟩)2 +
(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
, (27)

where we simply replace ψ⋆T+1 with its definition in the last step.

We thus move to the analysis of the DriftT term. Using the Cauchy-Schwarz inequality, we have

DriftT =

T∑
t=1

⟨gt, xt − x⋆t ⟩ ≤
T∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1 . (28)

Applying Lemma A.2, we obtain that

F ⋆t (xt)− F ⋆t (x
⋆
t ) ≥

1

2
∥xt − x⋆t ∥

2
At−1

and Ft(x
⋆
t )− Ft(xt) ≥

1

2
∥xt − x⋆t ∥

2
Aot

,

where Aot = ηt−1I + β
∑
τ∈ot gτg

⊤
τ . Summing the above inequalities, and replacing F ⋆t and Ft with their definitions, it

follows that

1

2
∥xt − x⋆t ∥

2
Aot

+
1

2
∥xt − x⋆t ∥

2
At−1

≤
t−1∑
τ=1

⟨gτ , xt⟩ −
∑
τ∈ot

⟨gτ , x⋆t ⟩+
t−1∑
τ=1

⟨gτ , x⋆t ⟩ −
∑
τ∈ot

⟨gτ , xt⟩

+
β

2

(
t−1∑
τ=1

(⟨gτ , xt − xτ ⟩)2 −
t−1∑
τ=1

(⟨gτ , x⋆t − xτ ⟩)2 +
∑
τ∈ot

(⟨gτ , x⋆t − xτ ⟩)2 −
∑
τ∈ot

(⟨gτ , xt − xτ ⟩)2
)

≤
∑
τ∈mt

⟨gτ , xt − x⋆t ⟩+
β

2

(∑
τ∈mt

(⟨gτ , xt − xτ ⟩)2 −
∑
τ∈mt

(⟨gτ , x⋆t − xτ ⟩)2
)

=
∑
τ∈mt

⟨gτ , xt − x⋆t ⟩+
β

2

(∑
τ∈mt

⟨gτ , xt − x⋆t ⟩ · ⟨gτ , xt + x⋆t − 2xτ ⟩

)

≤
∑
τ∈mt

|⟨gτ , xt − x⋆t ⟩|+
β

2

∑
τ∈mt

|⟨gτ , xt − x⋆t ⟩| |⟨gτ , xt + x⋆t − 2xτ ⟩|

≤ (1 + 2GDβ)
∑
τ∈mt

|⟨gτ , xt − x⋆t ⟩| (Assumptions 2.3 and 2.4)

≤ (1 + 2GDβ)

(∑
τ∈mt

∥gτ∥A−1
t−1

)
∥xt − x⋆t ∥At−1

(Cauchy-Schwarz inequality)

≤ 5

4

(∑
τ∈mt

∥gτ∥A−1
t−1

)
∥xt − x⋆t ∥At−1

(β ≤ 1
8GD )
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≤ 2

(∑
τ∈mt

∥gτ∥A−1
t−1

)
∥xt − x⋆t ∥At−1 .

Rearranging the terms, we can obtain that ∥xt − x⋆t ∥At−1
≤ 4

∑
τ∈mt

∥gτ∥A−1
t−1

. Plugging this inequality into DriftT , we
have

DriftT ≤
T∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
(Equation (28))

≤ 4

T∑
t=1

∥gt∥A−1
t−1

(∑
τ∈mt

∥gτ∥A−1
t−1

)

≤ 8d≤Tmaxn

(
G2

η0
+

1

β

)
ln

(
1 +

βTG2

nη0

)
, (29)

where the last inequality is due to Lemma C.1. On the other hand, we can also bound DriftT in a different way:

DriftT ≤
T∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1

≤ 4

T∑
t=1

∥gt∥A−1
t−1

(∑
τ∈mt

∥gτ∥A−1
t−1

)

≤ 4G2
T∑
t=1

|mt|
ηt−1

, (30)

where in the last step we use the fact that ∥gs∥2A−1
t−1

≤ G2

ηt−1
for any s ∈ [T ], also due to Assumption 2.3. Combining all

bounds together, we finally obtain that

RegT (u) ≤ Reg⋆T (u) + DriftT − β

2

T∑
t=1

(⟨xt − u, gt⟩)2 (Equation (23))

≤ ηT
2
∥u∥22 +

(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
+ DriftT (Equation (27))

≤ ηT
2
∥u∥22 +

(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
+ 4min

{
2d≤Tmaxn

(
G2

η0
+

1

β

)
ln

(
1 +

βG2T

η0n

)
, G2

T∑
t=1

|mt|
ηt−1

}
(Equations (29) and (30))

= O
(
n

β
ln

(
1 +

βG2T

η0n

)
+ ηTD

2 +min {B1, B2}
)
, (Assumption 2.4)

where

B1 =

(
G2

η0
+

1

β

)
ndmax ln

(
1 +

βG2T

η0n

)
and B2 = G2

T∑
t=1

|mt|
ηt−1

are defined as in the theorem statement, and we used the fact that GD ≤ 1
β .

The following corollary is a restatement of Corollary 4.2, which shows that via an adaptive tuning of the learning rate used
by Algorithm 2, we are able to guarantee O(min{dmax lnT,

√
dtot}) regret.

Corollary 4.2. Assume that f1, . . . , fT are α-exp-concave and let β = 1
2 min{ 1

4GD , α}. Then, under Assumptions 2.3
and 2.4, Algorithm 2 with the adaptive learning rate ηt = min{at, bt}+ 1, where at and bt are defined in Equations (5)
and (6), guarantees that

RegT = O
(
n

β
ln
(
1 +

βG2T

n

)
+D2 +min {C1, C2}

)
,
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where C1 =
(
D
G + 1

) (
G2 + 1

β

)
ndmax ln

(
1 + βG2T

n

)
and C2 =

(
G2 +GD

) (√
dtot + 1

)
.

Proof. The adaptive learning rate is given by η0 = 1 and ηt = min{at, bt}+ 1 for all t ≥ 1, where we recall that

at =
2

GD

(
G2 +

1

β

)
nd≤tmax ln

(
1 +

βG2T

n

)
and bt =

G

D

√√√√ t∑
s=1

|ms|+ |mt|+ 1 ,

Note that ηt is non-decreasing since at and bt are non-decreasing. When aT ≤ bT , we have

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βGT

n

)
+D2 +

(
2D

G
+ 8

)(
G2 +

1

β

)
ndmax ln

(
1 +

βG2T

n

)
, (31)

where ∥u∥2 ≤ D by Assumption 2.4. When aT ≥ bT , we instead have

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

n

)
+D2 +GD


√√√√ T∑

t=1

|mt|+ 1


+

τ⋆∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
+

T∑
t=τ⋆+1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
,

where τ⋆ is last round aτ⋆ ≤ bτ⋆ . Hence, we have

τ⋆∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1 ≤ 8

(
G2 +

1

β

)
nd≤τ

⋆

max ln

(
1 +

βG2T

n

)
(Equation (29))

≤ 8G2

√√√√ τ⋆∑
t=1

|mt|+ |mτ⋆ |+ 1

≤ 8G2


√√√√ T∑

t=1

|mt|+ 1

 (32)

Regarding the remaining rounds until T , we can also show that

T∑
t=τ⋆+1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
≤ 4G2

T∑
t=τ⋆+1

|mt|
ηt−1

(Equation (30))

≤ 4G2
T∑

t=τ⋆+1

D|mt|

G
√∑t−1

s=1 |ms|+ |mt−1|+ 1

≤ 8G2
T∑

t=τ⋆+1

D|mt|

G
√∑t

s=τ⋆+1 |ms|

≤ 8GD

√√√√ T∑
t=τ⋆+1

|mt|

≤ 8GD

√√√√ T∑
t=1

|mt|, (33)

where the last inequality is due to Orabona (2025, Lemma 4.13). Combining the above three inequalities together, we have

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

n

)
+D2 +

(
8G2 + 9GD

)
√√√√ T∑

t=1

|mt|+ 1

 .
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Finally, we obtain

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

n

)
+D2

+min

{(
2D

G
+ 8

)(
G2d≤Tmax +

d≤Tmax

β

)
n ln

(
1 +

βG2T

n

)
,
(
8G2 + 9GD

) (√
dtot + 1

)}
.

= O
(
1

β
ln

(
1 +

βG2T

n

)
+D2 +min {C1, C2}

)
,

where

C1 =

(
D

G
+ 1

)(
G2 +

1

β

)
ndmax ln

(
1 +

βG2T

n

)
and

C2 =
(
G2 +GD

) (√
dtot + 1

)
as in the theorem statement.

D. Omitted details from Section 5
Here we present the omitted details from Section 5. For completeness, we restate the main result (Theorem 5.2) and provide
its proof.

Theorem 5.2. In the OLR problem with delayed labels under Assumption 5.1, Algorithm 3 guarantees for any 0 < η0 ≤
η1 ≤ · · · ≤ ηT that

RegT (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+O

(
Y 2
(
σmax +min {M1,M2}

))
,

where M1 = ndmax ln
(
1 + Z2T

η0n

)
and M2 = Z2

∑T
t=1

|mt|
ηt

.

Proof. We begin by defining

Ft(x) =
∑
τ∈ot

−yτ ⟨zτ , x⟩+ ψt(x) and F ∗
t (x) =

t−1∑
τ=1

−yτ ⟨zτ , x⟩+ ψt(x),

where ψt(x) = 1
2

∑t
τ=1 (⟨zτ , x⟩)

2
+ ηt

2 ∥x∥
2
2 for t ∈ [T ], and we let ψT+1 = ψT . Observe that xt ∈ argminx∈Rn Ft(x),

and define x⋆t ∈ argminx∈Rn F ⋆t (x) for t ≥ 1 to be the predictions following a similar update rule while using all the
information up to round t− 1, including the labels yτ for rounds τ ∈ mt that the algorithm is missing because of the delays.

Similarly to the regret decomposition for the strongly convex case shown in Appendix B, we rewrite the regret as follows:

RegT (u) =

T∑
t=1

(
ft(x̃t)− ft(u)

)
=

T∑
t=1

(
ft(x

⋆
t )− ft(u)

)
︸ ︷︷ ︸

Reg⋆
T (u)

+

T∑
t=1

(
ft(x̃t)− ft(x

⋆
t )
)

︸ ︷︷ ︸
DriftT

, (34)

where Reg⋆T (u) is the cheating regret for the iterates x⋆1, . . . , x
⋆
T , while DriftT is a drift term that quantifies the influence

of the missing labels on the regret because of the delayed feedback. Note that, contrarily to other regret analyses in this
work, here DriftT is also affected by the clipping in the definition of x̃t.

Let us first analyze the cheating regret Reg⋆T (u). By the definition of the loss ft(x) = 1
2

(
⟨zt, x⟩ − yt

)2
, we can rewrite the

regret in the following way:

Reg⋆T (u) =

T∑
t=1

(
ft(x

⋆
t )− ft(u)

)
=

1

2

T∑
t=1

(
⟨zt, x⋆t ⟩

)2
+

T∑
t=1

(
−yt⟨zt, x⋆t ⟩+ yt⟨zt, u⟩

)
− 1

2

T∑
t=1

(
⟨zt, u⟩

)2
. (35)
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We can now move our focus on the central sum, which essentially corresponds to the regret of the same sequence(
x⋆t
)
t≥1

against the comparator u ∈ Rn, but with respect to the linear losses x 7→ −yt⟨zt, x⟩. Additionally define
F ′
t (x) = F ⋆t (x) − yt⟨zt, x⟩ for notational convenience. Hence, we analyze the above-mentioned term by applying

Lemma A.1, which yields

T∑
t=1

(
−yt⟨zt, x⋆t ⟩+ yt⟨zt, u⟩

)
= ψT+1(u)− min

x∈Rn
ψ1(x) +

T∑
t=1

[
F ⋆t (x

⋆
t )− F ⋆t+1(x

⋆
t+1)− yt⟨zt, x⋆t+1⟩

]
+ F ⋆T+1(x

⋆
T+1)− F ⋆T+1(u)

≤ ψT+1(u) +

T∑
t=1

[
F ⋆t (x

⋆
t )− F ⋆t+1(x

⋆
t+1)− yt⟨zt, x⋆t+1⟩

]
= ψT+1(u) +

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
⋆
t+1)

)
−

T∑
t=1

(
ψt+1(x

⋆
t+1)− ψt(x

⋆
t+1)

)
= ψT (u) +

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
⋆
t+1)

)
− 1

2

T∑
t=1

(
⟨zt, x⋆t ⟩

)2
≤ ψT (u) +

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
′
t)
)
− 1

2

T∑
t=1

(
⟨zt, x⋆t ⟩

)2
, (36)

where we let x′t ∈ argminx∈Rn F ′
t (x); in particular, the first inequality is due to the fact that F ⋆T+1(x

⋆
T+1) ≤ F ⋆T+1(u) and

that ψ1 is non-negative, whereas the last equality follows by definition of ψt and x⋆1 = 0.

Consider now any term F ′
t (x

⋆
t ) − F ′

t (x
′
t) in the sum after the last inequality and let At = ηtI +

∑t
τ=1 zτz

⊤
τ . Applying

Lemma A.2 for z1 = x′t and z2 = x⋆t with A = At, we derive that

∥x⋆t − x′t∥At ≤
|yt|
2

∥zt∥A−1
t
. (37)

We can now use this fact to show that

F ′
t (x

⋆
t )− F ′

t (x
′
t) ≤ ⟨∇F ′

t (x
⋆
t ), x

⋆
t − x′t⟩ (convexity of F ′

t )
= ⟨∇F ⋆t (x⋆t )− ytzt, x

⋆
t − x′t⟩ (definition of F ′

t )
≤ yt⟨zt, x′t − x⋆t ⟩ (first-order optimality)
≤ |yt|∥zt∥A−1

t
∥x⋆t − x′t∥At

(Cauchy-Schwarz inequality)

≤ |yt|2

2
∥zt∥2A−1

t
(Equation (37))

≤ Y 2

2
∥zt∥2A−1

t
, (38)

where the last step is a consequence of |yt| ≤ Y by Assumption 5.1. Further notice that ∥zt∥2A−1
t

≤ ∥zt∥2A−1
t−1

since

At−1 ⪯ At, as well as

∥zt∥2A−1
t

≤ z⊤t
(
ηtI + ztz

⊤
t

)−1
zt = z⊤t

(
1

ηt
I − ztz

⊤
t

η2t + ηt∥zt∥22

)
zt =

∥zt∥22
ηt

− ∥zt∥42
η2t + ηt∥zt∥22

=
∥zt∥22

ηt + ∥zt∥22
≤ 1 ,

using the Sherman-Morrison formula at the first equality. Therefore, we show that the sum of the terms involving F ′
t is

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
′
t)
)
≤ Y 2

2

T∑
t=1

∥zt∥2A−1
t

(Equation (38))

≤ Y 2

2

T∑
t=1

min
{
1, ∥zt∥2A−1

t−1

}
23



Exploiting Curvature in Online Convex Optimization with Delayed Feedback

≤ nY 2 ln

(
1 +

Z2T

η0n

)
, (39)

using Lemma 19.4 in Lattimore & Szepesvári (2020) at the last step. Then, combining together all these observations, we
can bound Reg⋆T (u) from above and obtain that

Reg⋆T (u) ≤
T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
′
t)
)
+ ψT (u)−

1

2

T∑
t=1

(
⟨zt, u⟩

)2
(Equations (35) and (36))

≤ nY 2 ln

(
1 +

Z2T

η0n

)
+ ψT (u)−

1

2

T∑
t=1

(
⟨zt, u⟩

)2
(Equation (39))

=
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
. (definition of ψT ) (40)

Let us now consider the drift term DriftT from the decomposition in Equation (34). Define T = {t ∈ [T ] : ft(x̃t) >
ft(x

⋆
t )} to be the rounds when x̃t is worse than x⋆t with respect to the square loss ft. Moreover, recall the definition of

ρt = maxτ∈ot |yτ | as the threshold used for clipping in the definition of x̃t. By the convexity of ft, we immediately have
that

DriftT ≤
∑
t∈T

(
ft(x̃t)− ft(x

⋆
t )
)
≤
∑
t∈T

⟨∇ft(x̃t), x̃t − x⋆t ⟩ =
∑
t∈T

(
⟨zt, x̃t⟩ − yt

)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
. (41)

Now, we distinguish the two following cases for any t ∈ T :

• ft(x̃t) ≤ ft(xt): thus, if ⟨zt, x̃t⟩ ≤ yt it must be the case that ⟨zt, xt⟩ ≤ ⟨zt, x̃t⟩, otherwise if ⟨zt, x̃t⟩ > yt then
⟨zt, xt⟩ ≥ ⟨zt, x̃t⟩; in either case we have that(

⟨zt, x̃t⟩ − yt
)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
≤
(
⟨zt, x̃t⟩ − yt

)(
⟨zt, xt⟩ − ⟨zt, x⋆t ⟩

)
≤
(
|ρt|+ |yt|

)
|⟨zt, xt − x⋆t ⟩| (triangle inequality, definition of x̃t)

≤ 2Y |⟨zt, xt − x⋆t ⟩| (Assumption 5.1)
≤ 2Y ∥zt∥A−1

t
∥xt − x⋆t ∥At

. (Cauchy-Schwarz) (42)

• ft(x̃t) > ft(xt): here it must be the case that x̃t ̸= xt, yt⟨zt, x̃t⟩ ≥ 0, and |yt| > ρt (otherwise, clipping would have
only decreased the square loss ft); since t ∈ T implies that |⟨zt, x⋆t ⟩ − yt| ≤ |⟨zt, x̃t⟩ − yt|, it follows that(

⟨zt, x̃t⟩ − yt
)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
≤ |⟨zt, x̃t⟩ − yt|

(
|⟨zt, x̃t⟩ − yt|+ |⟨zt, x⋆t ⟩ − yt|

)
(triangle inequality)

≤ 2
(
⟨zt, x̃t⟩ − yt

)2
= 2
(
|yt| − |⟨zt, x̃t⟩|

)2
(yt⟨zt, x̃t⟩ ≥ 0)

= 2
(
|yt| − ρt

)2
(|⟨zt, x̃t⟩| = ρt)

< 2|yt|2 . (0 ≤ ρt < |yt|) (43)

Given the above remarks, let T1 = {t ∈ T : ft(x̃t) ≤ ft(xt)} be the subset of rounds in T when clipping does not worsen
the value of ft, and let T2 = T \ T1 be the remaining rounds in T . Then,

DriftT ≤
∑
t∈T

(
⟨zt, x̃t⟩ − yt

)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
≤ 2Y

∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

+ 2
∑
t∈T2

|yt|2 . (44)

At this point, for any round t ∈ T1 we are interested in understanding the behavior of ∥zt∥A−1
t
∥xt − x⋆t ∥At

. Applying
Lemma A.2, we have that

∥xt − x⋆t ∥2At
≤ 1

2

∑
τ∈mt

yτ ⟨zτ , x⋆t − xt⟩ ≤
1

2

∑
τ∈mt

|yτ |∥zτ∥A−1
t
∥x⋆t − xt∥At

≤ Y

2

∑
τ∈mt

∥zτ∥A−1
t
∥x⋆t − xt∥At

,
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where the second inequality follows by Cauchy-Schwarz, while the last one comes from Assumption 5.1. By rearranging
terms in the previous inequality, we obtain that

∥xt − x⋆t ∥At
≤ Y

2

∑
τ∈mt

∥zτ∥A−1
t
. (45)

Recall that we define d≤tmax = maxτ≤tmin{dτ , t− τ} as the maximum delay that has been perceived up to round t. Hence,
we can now bound the sum relative to rounds in T1 from above as

2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

≤ Y 2
∑
t∈T1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t

(Equation (45))

≤ Y 2
T∑
t=1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t
.

If we now adopt Lemma C.1, we have that

T∑
t=1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t

≤ 2nd≤Tmax ln

(
1 +

Z2T

η0n

)
,

while at the same time we have
T∑
t=1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t

≤ Z2
T∑
t=1

|mt|
ηt

,

where we used the fact that ∥zs∥A−1
t

≤ Z2

ηt
for any s ∈ [T ]. Thus, we have that

2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

≤ Y 2 min

{
2nd≤Tmax ln

(
1 +

Z2T

η0n

)
, Z2

T∑
t=1

|mt|
ηt

}
. (46)

If we instead consider the sum over rounds in T2, it is possible to further bound it from above and relate it to the
rounds for which the corresponding label does not belong to our estimate for the label range given by ρt. Indeed,
if we let R = {t ∈ [T ] : |yt| > ρt} and given our previous remarks about T2, we have that T2 ⊆ R. Now let
q1 = min{⌈log2 ρt⌉ : ρt > 0, t ∈ [T + 1]} and q2 = ⌈log2 ρT+1⌉. For convenience, define Ij = [2j , 2j+1) for any
j ∈ {q1, . . . , q2}. Then, for any t ∈ R, there exists jt ∈ {q1, . . . , q2} such that |yt| ∈ Ijt . Moreover, if we denote by
νj ∈ [T + 1] as the first time when ρνj ∈ Ij for any j ∈ {q1, . . . , q2}, we can further show that any t ∈ R has to be such
that t ∈ mνjt−1; if it were not the case, yt would have been observed before time νjt which is a contradiction because
|yt| > ρτ for any τ < νjt . All things considered, we can derive that

2
∑
t∈T2

|yt|2 ≤ 2
∑
t∈R

|yt|2 ≤ 2

q2∑
j=q1

∑
t∈mνj−1

|yt|2 ≤ 2

q2∑
j=q1

22j |mνj−1|

≤ σmax

q2∑
j=q1

22j+1 ≤ 8

3
σmax4

q2 ≤ 32

3
σmaxρ

2
T+1 ≤ 11Y 2σmax . (47)

Combining all the results gathered so far, we can finally derive the overall regret bound as follows:

RegT (u) ≤ Reg⋆T (u) + DriftT

≤ ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+ DriftT (Equation (40))

≤ ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+ 11Y 2σmax + 2Y

∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At (Equations (44) and (47))

(48)
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≤ ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+ 11Y 2σmax

+ Y 2 min

{
2ndmax ln

(
1 +

Z2T

η0n

)
, Z2

T∑
t=1

|mt|
ηt

}
. (Equation (46))

The following corollary is a restatement of Corollary 5.3, which shows that we can further achieve a
O(min{dmax lnT,

√
dtot}) regret guarantee via an adaptive tuning of the learning rate of Algorithm 3 similar to the

one adopted for Algorithm 2.

Corollary 5.3. In the OLR problem with delayed labels under Assumption 5.1, Algorithm 3 with the adaptive learning rate
ηt = γ(min{at, bt}+ 1), where at and bt are defined in Equation (13) for any γ > 0 guarantees that

RegT ≤ γ∥u∥22
2

+ nY 2 ln

(
1 +

Z2T

γn

)
+O

(
min {Q1, Q2}

)
,

where Q1 =
(
γ∥u∥22 + Y 2

)
ndmax ln

(
1 + Z2T

γn

)
and Q2 =

(
γZ∥u∥22 + (Z + 1)Y 2

)√
dtot .

Proof. By performing a similar analysis as in the proof of Theorem 5.2 up to Equation (46), for any time threshold τ⋆ ∈ [T ]
we can actually separately analyze the time ranges {1, . . . , τ⋆} and {τ⋆ + 1, . . . , T} in an analogous way as in the proof of
Corollary 4.2, and have a bound of the following form:

2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

≤ Y 2

(
2nd≤τ

⋆

max ln

(
1 +

Z2T

η0n

)
+ Z2

T∑
t=τ⋆+1

|mt|
ηt

)
. (49)

Then, we use an adaptive tuning of the learning rate in a similar way as performed for the proof of Corollary 4.2. In
particular, we define

at = 2nd≤tmax ln

(
1 +

Z2T

γn

)
and bt = Z

√√√√ t∑
s=1

|ms| ,

and, for any γ > 0, we set η0 = γ and ηt = γ
(
min{at, bt}+ 1

)
for any t ≥ 1. First, when aT ≤ bT we have that

RegT (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

γn

)
+ Y 2

(
11σmax + 2ndmax ln

(
1 +

Z2T

γn

))
(Equations (46) and (48))

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ Y 2dmax

(
11 + 2n ln

(
1 +

Z2T

γn

))
(σmax ≤ dmax)

≤ γ∥u∥22
2

+ nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2dmax +

(
γ∥u∥22 + 2Y 2

)
ndmax ln

(
1 +

Z2T

γn

)
≤ γ∥u∥22

2
+ nY 2 ln

(
1 +

Z2T

γn

)
+
(
γ∥u∥22 + 13Y 2

)
ndmax ln

(
1 +

Z2T

γn

)
.

On the contrary, when aT > bT , we let τ⋆ be the last round such that aτ⋆ ≤ bτ⋆ and show that

RegT (u) ≤
∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + Y 2

(
2nd≤τ

⋆

max ln

(
1 +

Z2T

γn

)
+ Z2

T∑
t=τ⋆+1

|mt|
ηt

)
(Equations (48) and (49))

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + ZY 2

(√√√√ τ⋆∑
t=1

|mt|+ Z

T∑
t=τ⋆+1

|mt|
ηt

)
(aτ⋆ ≤ bτ⋆ )
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≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax +

ZY 2

γ


√√√√ τ⋆∑

t=1

|mt|+
T∑

t=τ⋆+1

|mt|√∑t
s=1|ms|


(definition of ηt)

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + ZY 2


√√√√ τ⋆∑

t=1

|mt|+ 2

√√√√ T∑
t=τ⋆+1

|ms|


(Orabona (2025, Lemma 4.13))

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + 2ZY 2

√
2dtot

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 2(11 + Z)Y 2

√
2dtot (Lemma A.7)

≤ γ∥u∥22
2

(
1 + Z

√
dtot

)
+ nY 2 ln

(
1 +

Z2T

γn

)
+ 2(11 + Z)Y 2

√
2dtot . (definition of ηT )

Considering the conditions in each of the two cases together with the definitions of at and bt, this concludes the proof.

E. Online mirror descent for delayed OCO with strongly convex losses
In this section, we prove that the following online mirror descent (OMD) algorithm achieves a regret guarantee whose
dependence on the delays is of order min

{
σmax lnT,

√
dtot

}
, similarly to Algorithm 1. To be precise, an OMD-based

algorithm which handles delays was initially proposed by Wu et al. (2024) in their Algorithm 6. However, Wu et al. (2024)
only manage to show that this algorithm achieves regret O

(
dmax(G

2+D)
λ lnT + dmaxG

λ2

)
under Assumptions 2.3 and 2.4.

Here, we report its pseudocode in Algorithm 4 and we provide an improved regret analysis for it. Not only do we provide a
significantly better guarantee, but we also manage to lift Assumption 2.4 and only require the boundedness of the gradient
norms via Assumption 2.3. The key to achieve these improvements simultaneously is a fundamentally different and more
careful regret analysis.

Algorithm 4 Delayed OMD for strongly convex functions

input strong convexity parameter λ > 0, learning rates ηt = 2
tλ for all t ∈ [T ]

initialize x1 ∈ X
1: for t = 1, 2, . . . do
2: Play xt
3: Receive gτ = ∇fτ (xτ ) for all τ ∈ ot+1 \ ot
4: Update xt+1 = argmin

x∈X

∑
τ∈ot+1\ot

⟨gτ , x⟩+ 1
ηt
∥x− xt∥22.

5: end for

Theorem E.1. Assume that f1, . . . , fT are λ-strongly convex functions with respect to the Euclidean norm ∥·∥2. Then,
under Assumption 2.3, Algorithm 4 guarantees

RegT = O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

Proof. We begin with a decomposition of the regret that, similarly to the proof of Theorem 3.1, leverages the strong
convexity of losses f1, . . . , fT and attempts to isolate the discrepancy in the information available to the learner because of
the delayed gradients. However, this decomposition differs from the one in Theorem 3.1 since the algorithm updates its
predictions differently via mirror descent. Our approach follows the idea of framing such an information discrepancy via
optimism (Flaspohler et al., 2021). For notational convenience, define g̃1 = 0 and g̃t+1 = g̃t +

∑
τ∈ot+1\ot gτ − gt for any

t ≥ 1. Note that, by definition, each g̃t is equal to

g̃t =

t−1∑
τ=1

(
g̃τ+1 − g̃τ

)
=

t−1∑
s=1

( ∑
τ∈os+1\os

gτ − gs

)
=
∑
s∈ot

gs −
t−1∑
s=1

gs = −
∑
s∈mt

gs (50)
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and consequently g̃T+1 = 0 since mT+1 = ∅. This definition of g̃t allows to rewrite the “linearized” regret as

T∑
t=1

⟨gt, xt − u⟩ =
T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
+

T∑
t=1

⟨g̃t − g̃t+1, xt⟩ (51)

and to have that, for every round t,〈 ∑
τ∈ot+1\ot

gτ , xt − xt+1

〉
= ⟨gt − g̃t + g̃t+1, xt − xt+1⟩ = ⟨gt − g̃t, xt − xt+1⟩+ ⟨g̃t+1, xt − xt+1⟩ . (52)

Moreover, according to the standard regret analysis of OMD (Lemma A.4), we know that〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
≤ 1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

〈 ∑
τ∈ot+1\ot

gτ , xt − xt+1

〉
. (53)

The above observations then make it possible to bound the first sum in the right-hand side of Equation (51) as

T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
≤

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)

+

T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − xt+1

〉
(Equation (53))

=

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

⟨g̃t+1, xt − xt+1⟩ (Equation (52))

=

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

⟨g̃t+1 − g̃t, xt⟩

+ ⟨g̃1, x1⟩ − ⟨g̃T+1, xT+1⟩

=

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

⟨g̃t+1 − g̃t, xt⟩ , (54)

where the second equality follows by carefully rearranging the terms in the sum
∑T
t=1⟨g̃t+1, xt − xt+1⟩, while the last

equality is due to g̃1 = g̃T+1 = 0 by definition.

At this point, we can rewrite the regret in the following way:

RegT (u) =

T∑
t=1

(
ft(xt)− ft(u)

)
≤

T∑
t=1

⟨gt, xt − u⟩ − λ

2

T∑
t=1

∥xt − u∥22

=

T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
+

T∑
t=1

⟨g̃t − g̃t+1, xt⟩ −
λ

2

T∑
t=1

∥xt − u∥22 (Equation (51))
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≤
T∑
t=1

∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22
ηt

+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩ −
λ

2

T∑
t=1

∥xt − u∥22

(Equation (54))

=

T∑
t=1

(
∥u− xt∥22 − ∥u− xt+1∥22

ηt
− λ

2

T∑
t=1

∥xt − u∥22

)
+

T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)

=
λ

2

T∑
t=1

((
∥xt − u∥22 − ∥xt+1 − u∥22

)
t− ∥xt − u∥22

)
+

T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)
(definition of ηt)

= −λT
2

∥xT+1 − u∥22 +
T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)

≤
T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)
, (55)

where the first inequality holds because of the λ-strong convexity of ft.

We now focus on the right-hand side of Equation (55). Applying Lemma A.2, we can bound from above the distance
between subsequent iterates:

∥xt − xt+1∥2 ≤ ηt∥gt + g̃t+1 − g̃t∥2 = ηt

∥∥∥∥∥∥
∑

τ∈ot+1\ot

gτ

∥∥∥∥∥∥
2

≤ Gηt
(
|ot+1| − |ot|

)
, (56)

where the last inequality follows by jointly using the triangle inequality, the bound on the gradient norm (Assumption 2.3),
and the fact that ot ⊆ ot+1.

What remains to analyze now is the distance ∥gt − g̃t∥2, and a direct calculation allows us to show that

∥gt − g̃t∥2 =

∥∥∥∥∥gt + ∑
τ∈mt

gτ

∥∥∥∥∥
2

≤ G(|mt|+ 1) , (57)

again by using the triangle inequality and Assumption 2.3.

Applying Lemma A.5 with Equation (56), we show that the each term of the sum in the right-hand side of Equation (55)
satisfies

⟨gt − g̃t, xt − xt+1⟩ −
∥xt − xt+1∥22

ηt
≤ min

{
Gηt∥gt − g̃t∥2(|ot+1| − |ot|) , ηt∥gt − g̃t∥22

}
. (58)

Therefore, starting from Equation (55), we are able to derive the final regret bound:

RegT (u) ≤
T∑
t=1

ηt∥gt − g̃t∥2∥gt + g̃t+1 − g̃t∥2 (Equations (55) and (58))

=
2G

λ

T∑
t=1

∥gt − g̃t∥2(|ot+1| − |ot|)
t

(definition of ηt)

≤ 2G2

λ

T∑
t=1

(|mt|+ 1)(|ot+1| − |ot|)
t

. (Equation (57))

Crucially, what remains to analyze is the sum in the right-hand side of the above inequality. We can first show that

T∑
t=1

(|mt|+ 1)(|ot+1| − |ot|)
t

≤ (σmax + 1)

T∑
t=1

|ot+1| − |ot|
t

(definition of σmax)
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≤ (σmax + 1)

T∑
t=1

|ot+1| − |ot|
|ot+1|

(ot+1 ⊆ [t])

= (σmax + 1)

T∑
t=1

(|ot+1| − |ot|)∑t
s=1(|os+1| − |os|)

≤ (σmax + 1)(1 + lnT ) , (59)

where the last inequality follows by Orabona (2025, Lemma 4.13) and the fact that
∑T
t=1(|ot+1| − |ot|) = |oT+1| = T .

Second, we can also bound such a sum in an alternative way:

T∑
t=1

(|mt|+ 1)(|ot+1| − |ot|)
t

=

T∑
t=1

|mt|(|ot+1| − |ot|)
t

+

T∑
t=1

(|ot+1| − |ot|)
t

≤
T∑
t=1

|mt|(|ot+1| − |ot|)
t

+

T∑
t=1

(|ot+1| − |ot|)∑t
s=1(|os+1| − |os|)

(definition of ot)

≤
T∑
t=1

|mt|(|ot+1| − |ot|)
t

+ lnT + 1

≤
T∑
t=1

|mt|(t− |mt+1| − (t− 1− |mt|))
t

+ lnT + 1 (|ot|+ |mt| = t− 1 for all t)

=

T∑
t=1

|mt|(1 + |mt| − |mt+1|)
t

+ lnT + 1

=

T∑
t=1

|mt|
t

+ |m1|2 −
|mT ||mT+1|

t
+

T∑
t=2

(
|mt|2

t
− |mt−1||mt|

t− 1

)
+ lnT + 1

=

T∑
t=1

|mt|
t

+

T∑
t=2

(
|mt|2

t
− |mt−1||mt|

t− 1

)
+ lnT + 1 (definition of mt)

≤
T∑
t=1

|mt|
t

+

T∑
t=2

(
(|mt−1|+ 1)|mt|

t− 1
− |mt−1||mt|

t− 1

)
+ lnT + 1

(mt+1 ⊆ mt ∪ {t} for all t)

≤
T∑
t=1

|mt|
t

+ lnT + 1

≤ 2
√
dtot + lnT + 1 ,

where the last inequality follows by Equation (22). Combing the above two inequalities, we finally obtain

RegT (u) ≤
2G2

λ
(1 + lnT ) +

2G2

λ
min

{
σmax(1 + lnT ) , 2

√
dtot

}
= O

(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

F. Additional experiments
We consider a real-world dataset mg scale from the LIBSVM repository (Chang & Lin, 2011). This dataset has 1385
samples and each sample has 6 features with values in [−1, 1] and a label in [0, 2]. The experimental setup, including
constructions of losses and delays, follows what already done for the experiments in Section 6. Figure 2 shows a similar
behaviour of the algorithms as already shown in Section 6.

We also designed a non-stationary environment as follows. The generation processes for the feature vectors, as well as the
definition of the loss function, remain the same as the environment in Section 6. However, we modified the generation of the
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Figure 2. Comparison with relevant baselines. The shaded areas consider a range centered around the mean with half-width corresponding
to the empirical standard deviation over 20 repetitions.

label yt:
yt =

〈
zt, θt

〉
+ ϵt , (60)

where the latent vector θt alternates every 30 rounds between the two vectors 1 and 0. This periodic change introduces
non-stationarity, reflecting scenarios where the optimal action shifts over time. The delay dt is independently sampled
from a distribution that alternates every 30 rounds between a geometric distribution with success probability T−1/3 and
a uniform distribution over the set {0, 1, . . . , 5}. Additionally, we also modify the noise term ϵt inspired by Xu & Zeevi
(2023). Specifically, we flatten an abstract art piece by Jackson Pollock and take consecutive grayscale values in [0, 1] as the
noise ϵt. Figure 3 shows that our algorithms again perform the best among all the benchmark algorithms.
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Figure 3. Comparison with relevant baselines. The shaded areas consider a range centered around the mean with half-width corresponding
to the empirical standard deviation over 20 repetitions. The top plots correspond to T = 1000, while the bottom plots correspond to
T = 10000.
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