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Abstract
The resonate-and-fire (RF) neuron, introduced
over two decades ago, is a simple, efficient, yet bi-
ologically plausible spiking neuron model, which
can extract frequency patterns within the time do-
main due to its resonating membrane dynamics.
However, previous RF formulations suffer from
intrinsic shortcomings that limit effective learning
and prevent exploiting the principled advantage
of RF neurons. Here, we introduce the balanced
RF (BRF) neuron, which alleviates some of the
intrinsic limitations of vanilla RF neurons and
demonstrates its effectiveness within recurrent
spiking neural networks (RSNNs) on various se-
quence learning tasks. We show that networks
of BRF neurons achieve overall higher task per-
formance, produce only a fraction of the spikes,
and require significantly fewer parameters as com-
pared to modern RSNNs. Moreover, BRF-RSNN
consistently provide much faster and more stable
training convergence, even when bridging many
hundreds of time steps during backpropagation
through time (BPTT). These results underscore
that our BRF-RSNN is a strong candidate for fu-
ture large-scale RSNN architectures, further lines
of research in SNN methodology, and more effi-
cient hardware implementations.

1. Introduction
Artificial neural networks (ANNs) have become the main
method for solving machine learning problems in recent
years (Goodfellow et al., 2016; Wu & Feng, 2018; Abio-
dun et al., 2019). However, they require massive compu-
tation and energy, making them inefficient for large-scale
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real-world applications—particularly in the realm of edge
computing— due to the deep non-linear continuous esti-
mators to represent features of the data (Pfeiffer & Pfeil,
2018).

Spiking neural networks (SNNs) circumvent this drawback
by processing information through the precise timing of
action potentials, or spikes. SNNs can potentially be more
efficient compared to ANNs due to their event-driven prop-
erty, for which computation is only required when spikes are
propagated in the system (Paugam-Moisy & Bohté, 2012).
Furthermore, SNNs are self-recurrent, as the neurons have a
dynamic internal state that modulates their activity over time,
and are more biologically realistic than conventional ANNs.
Some examples of spiking neurons with ascending biolog-
ical plausibility include the leaky integrate-and-fire (LIF)
neuron, the adaptive leaky integrate-and-fire (ALIF) neu-
ron (Bellec et al., 2018), the Izhikevich neuron (Izhikevich,
2003), and the Hodgkin-Huxley (HH) neuron (Hodgkin &
Huxley, 1952). While the HH model is too computation-
ally expensive for practical application, it exhibits rich and
complex membrane dynamics that simpler models lack.

One mode of dynamics gaining interest in ML applications
in particular is the resonating behavior seen in oscillatory
neurons. Subthreshold oscillations of the membrane po-
tential have been observed in various mammalian nervous
systems, including the neurons in the frontal cortex (Llinas
et al., 1991), in the thalamus (Pedroarena & Llinás, 1997),
and in layer II of the medial entorhinal cortex (Alonso &
Llinás, 1989), which is crucial in spatial information pro-
cessing (Doeller et al., 2010). The resonate-and-fire (RF)
neuron proposed by Izhikevich (2001) models such damped
or sustained subthreshold oscillations of biological neurons:
the RF neuron fires when the frequency of the incoming
spikes matches that of the neuron’s damped oscillation. In-
coming signals with higher frequency leads to more firing
for a LIF neuron but less firing for an RF neuron with slow
oscillation. As the RF neuron is similarly computationally
efficient as the LIF neuron, it is a spiking neuron model
potentially suitable for large-scale SNNs (Izhikevich, 2001).

Previous works showed RF neurons implemented in the In-
tel Loihi 2 (Davies et al., 2018), a neuromorphic processor,
can be used to compute the short-time Fourier transform
(STFT) of signals (Frady et al., 2022; Shrestha et al., 2023).
Moreover, the RF neurons successfully converted raw data
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signals to spike trains (Shaaban et al., 2024), and further
input to SNNs with LIF neurons for detection and classi-
fication tasks (Hille et al., 2022; Lehmann et al., 2023).
RF neurons have also been implemented in the framework
of (feedforward) SNNs as harmonic oscillators for image
classification tasks (AlKhamissi et al., 2021), as well as in
optical flow estimation and audio classification tasks (Frady
et al., 2022). Still, the performance of the RF models did
not significantly exceed that of deep LIF SNNs (Frady et al.,
2022) or LSTM cells (AlKhamissi et al., 2021), and these
studies did not compare with state-of-art spiking neuron
models, such as ALIF. Considering the strengths of the RF
neuron, these results suggest that the full potential of the RF
neuron has yet to be explored.

Recent methodological advances in training recurrent SNNs
(RSNNs) have demonstrated their potential for effective
time series learning, particularly in combination with BPTT
(Bellec et al., 2018; Yin et al., 2021). Nonetheless, they do
face a “convergence dilemma”—it requires usually up to
many hundreds of epochs for RSNNs to converge properly
(Yin et al., 2021; Fang et al., 2021; Zhang et al., 2023).

Here we propose a novel spiking neuron model—the bal-
anced RF neuron—which overcomes both, the intrinsic lim-
itations of vanilla RF neurons as well as shortcomings that
arise during training of ALIF-RSNNs. As a result, our RF
variants achieve not only comparable and higher task per-
formance than the ALIF networks, but also remarkably fast
and stable convergence, reaching 95% of the mean final
accuracy within the first five epochs with up to seven times
less spikes than ALIF networks.

2. Resonate-and-Fire Neurons
The oscillatory behavior of the membrane potential in an RF
neuron is formulated with two linear differential equations:

ẋ = b x− ω y + I (1)
ẏ = ω x+ b y (2)

which is expressed as a single complex equation:

u̇ = (b+ i ω)u+ I (3)

with u = (x+ i y) ∈ C and I the injected current (Izhike-
vich, 2001). ω > 0 is the angular frequency of the neuron,
which describes how many radians the neuron progresses
per second. b < 0 is the dampening factor that exponen-
tially decays the oscillation. The smaller b is, the faster the
oscillation dampens to the resting state.

Izhikevich RF Neuron. We applied the Euler method
(Atkinson, 1989) to Equation 3 with step size (time scale) δ:

u(t) = u(t− δ) + δ ((b+ i ω)u(t− δ) + I(t)) (4)
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Figure 1. Membrane dynamics of two RF neurons. The four excita-
tory input spikes are in phase with the neuron’s angular frequency
ω = 10. The inhibitory spike at half-phase enhances the sensitivity
of the neuron to forthcoming excitatory input. Depending on its
parameterization, the neuron exhibits divergence behavior (top)
with b = −0.3 and δ = 0.01 or convergence behavior (bottom)
with b = −1. I(t) ∈ R and u1(t), u2(t) ∈ C refer to the injected
current and the membrane potential of the neuron, respectively.

which is used to simulate the RF neuron in Figure 1. It shows
the oscillatory behavior when similar frequency-timed input
is injected into an RF neuron with an angular frequency of
10 rad/s and a dampening factor of -1.

Harmonic RF Neuron. In the harmonic RF (HRF) neu-
ron, the membrane potential changes based on the dynamics
of dampened harmonic oscillation (AlKhamissi et al., 2021).
Instead of using a complex representation, the membrane
potential is split into two states as follows:

u̇ = −2b u− ω2 v + I (5)
v̇ = u (6)

By applying Euler integration we get the equations for dis-
crete time steps:

u(t) = u(t− δ) + δ(−2b u(t− δ)

− ω2v(t− δ) + I(t))
(7)

v(t) = v(t− δ) + δu(t− δ). (8)

Here, b > 0 is the dampening factor, and ω > 0 is the
angular frequency.

3. Balanced RF Models
Initial exploration of the RF neurons in RSNN with a ran-
dom subset of 32 samples from the sequential MNIST
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dataset (Deng, 2012) showed excessive spiking, divergent
behavior, and the traditional hard and soft reset (Equa-
tion 23) hindering immediate resonance behavior.

Divergence is due to the approximation of the dynamic
system in discrete steps and is dependent on the combination
of ω, b, and the discrete-time scale δ, as shown in Figure 1
(top). The membrane potential diverges and continuously
produces spikes unrelated to the input signal, causing noise
and artificial signals that disrupt the original frequencies,
which may have hindered effective learning of the model.

Balanced Izhikevich RF Neuron. Considering the intrin-
sic limitations of the basic RF neuron, we introduce the
balanced RF (BRF) neuron with a variation in the threshold,
reset mechanism, and divergence boundary. To reduce con-
tinuous spiking of the neuron and induce spiking sparsity,
a refractory period, referred to as q(t), is implemented in
the threshold, increasing it after a neuron fires:

ϑ(t) = ϑc + q(t) (9)
z(t) = Θ (Re(u(t))− ϑ(t)) (10)

with ϑc the constant threshold and z(t) the output spiking.
The real part of the Equation 3 was considered for the thresh-
old mechanism, as it induces an immediate response. The
refractory period decays exponentially with time:

q(t) = γq(t− δ) + z(t− δ) (11)

The default refractory period constant is γ = 0.9.

Another limitation of the basic RF model was the traditional
reset mechanism, which reduces the amplitude but disrupts
the oscillation. Hence, we propose the smooth reset as an
alternative that temporarily increases the dampening of the
amplitude to decay faster after the neuron fires by means of
integrating the refractory period into the dampening term:

b(t) = bc − q(t) (12)

with bc the constant dampening factor.

The influence of implementing the refractory period and the
smooth reset can be seen in Figure 2. The single RF neuron
was simulated with ω = 10, b = −1, and the input signal
was frequency-timed. The combination of refractory period
and smooth reset significantly reduced the number of spikes,
while the output spikes effectively reflected the period of the
angular frequency of the neuron. The effect of implementing
both are highlighted in Figure 10 in Section A.8.

To alleviate the divergence problem, we propose to restrict
the parameter space to a subspace below the divergence
boundary—an analytically derived relation between δ, bc,
and ω that ensures convergence. For an RF neuron to con-
verge or show sustained oscillation, the magnitude of the
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Figure 2. Membrane potential u(t) and spiking response z(t) of
an RF neuron without refractory period (RP) or smooth reset (SR)
(orange) compared to both (blue) for the given input signal I(t).

membrane potential decreases or stays constant with time
given an incoming signal:

|u(t)| ≤ |u(t− δ)| (13)

After spike onset the magnitude converges—but does not
precisely become 0, |u(t−δ)| ≠ 0, thus both side is divisible
by |u(t− δ)|

|u(t)|
|u(t− δ)| ≤ 1 (14)

Furthermore, the explicit form of the subthreshold oscilla-
tory behavior of the membrane potential after an incoming
spike is derived in Section A.3 and given as:

u(t) = δ (1 + δ(bc + i ω))
t
δ−1 (15)

The refractory period and the reset are not considered in
the derivation, as post-spiking behavior is irrelevant for
modeling subthreshold behavior. The explicit form is further
implemented into the inequality above and simplified:

|1 + δ(bc + i ω)| ≤ 1

⇐⇒
√
(1 + δbc)2 + (δω)2 ≤ 1

Since the radicand is positive, both sides of the inequality
can be squared:

=⇒ (1 + δbc)
2 + (δω)2 − 1 ≤ 0 (16)

The condition for the neuron to show damped oscillation is
found by solving the quadratic inequality for bc, where bc is
in the following range of the solutions given a constant ω:

−1−
√
1− (δ ω)2

δ
< bc <

−1 +
√

1− (δ ω)2

δ
(17)

Furthermore, the neuron is a sustained oscillator if:

bc =
−1±

√
1− (δ ω)2

δ
(18)
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which leads us to another condition of the neuron, since
bc ∈ R<0 and ω ∈ R>0:√

1− (δ ω)2 > 0 ⇒ ω ≤ 1

δ
(19)

With a default δ = 0.01, the highest frequency that the
neuron can resonate at is the frequency corresponding to
an angular frequency of 100 rad/s. We define this angular
frequency as the upper boundary ωub. The upper bound of
bc that leads to sustained oscillation is implemented in this
paper as p(ω), also considered the divergence boundary:

p(ω) =
−1 +

√
1− (δ ω)2

δ
(20)

combined with a trainable b-offset b′ > 0 to ensure flexi-
bility and convergence: bc = p(ω)− b′, which is constant
throughout one sequence length. Figure 9 shows exemplary
divergence boundaries for various δ values. By combining
the derived dampening factor with the smooth reset, we
present the final equation of b(t) applied for optimization:

b(t) = p(ω)− b′ − q(t) (21)

Implementing the refractory period, smooth reset, and the
divergence boundary leads to efficient learning and sparse
spiking for all four datasets.

Balanced Harmonic RF Neuron. Similarly, we propose
the balanced HRF (BHRF) neuron with the refractory pe-
riod, smooth reset, and a tailored divergence boundary for b
depending on ω:

p(ω) =
ω2

200
(22)

For δ = 0.01 and bc = p(ω), the BHRF neuron shows
sustained oscillation.

Frequency Response of the BRF Neuron. The frequency
response plots shown in Figure 3 assess how well the RF neu-
ron responds to specific frequencies. A peak on a frequency
response plot indicates a high sensitivity of the neuron to the
respective input signal frequency (details in Section A.4).
The figure shows alignment of the response peak and ω of
the RF neuron, demonstrating the resonance property to
also be present in the discrete case. The slight offset of the
response peak and ω of the RF neuron is an artifact of the
numerical integration of the membrane dynamics’ differen-
tial equation and disappears with decreasing the temporal
step size δ.

The RF neuron can also be considered a narrow band pass
filter, for which only a specific range of frequencies are
filtered depending on its angular frequency ω. Combined
with the discrete time scale δ and dampening parameter b′,
they determine how narrow and sensitive the band pass filter
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Figure 3. RF neuron frequency response plots for exemplary
omega ω and b-offset b′ combinations with δ = 0.001.

is. It should be noted that RF neurons are naturally sensitive
to the lower order subharmonics of their angular frequency,
that is (with decaying sensitivity) 1

2ω,
1
3ω,

1
4ω and so forth.

We focused on the BRF neuron and the BHRF remained
preliminary in its exploration, as the BRF responses were
more sensitive to the input frequencies than BHRF responses
shown in Figure 8.

4. Network Implementation
We implement the RF, BRF, and BHRF neurons within
RSNNs and applied them to simulations with several bench-
mark datasets1. The essential formulations of the BRF and
the BHRF neuron are summarized in Algorithm 1 and Al-
gorithm 2, respectively. Note that for the algorithmic for-
mulation we change the notation to time-discrete tensor
operations and superscript the time index, whereas the tran-
sition from t to t+ 1 is considered as a time delay of δ.

We trained the networks with BPTT with the double-
Gaussian function (Equation 39, Yin et al., 2021) as the
surrogate gradient (Bellec et al., 2018; Neftci et al., 2019).
Further details of the networks are described in Section A.6.

Algorithm 1 BRF Forward Pass
bt = p(ω)− b′ − qt−1

ut = ut−1 + δ((bt + iω)ut−1 + xt)
ϑt = ϑc + qt−1

zt = Θ(Re(ut)− ϑt)
qt = γqt−1 + zt

ϑc = 1, γ = 0.9, and p(ω) =
−1+

√
1−(δω)2

δ

(Re, Θ, p are applied component-wise.)

1Source code avaliable at https://github.com/
AdaptiveAILab/brf-neurons
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Figure 4. Overview of the datasets. Examplary MNIST image and its corresponding sequential and permuted representations. Common
pixel row outlined in red on MNIST and S-MNIST sample. ECG sample after level cross encoding. SHD sample after preprocessing.

5. Experiments
The MNIST dataset consists of grayscale 28×28 pixel
hand-written digit images for classification. The sequential-
MNIST (S-MNIST), which converts the image to a se-
quence of 1 × 784, is a prominent benchmark dataset that
enable comparison between sequential models with 54,000
images for training, 6,000 for validation, and 10,000 for
testing. In the permuted S-MNIST variant (PS-MNIST),
the pixel positions were first permuted randomly and then
input to the network sequentially.

Electrocardiogram (ECG) recordings of the heart are rep-
resented in voltage over time and consist of cyclic activity
with six characteristic waveforms: P, PQ, QR, RS, ST, and
TP. The QT database consisted of ECG recordings with per-
time step labels classified by experts in the field (Laguna
et al., 1997). There were 105 recordings, each recorded for

Algorithm 2 BHRF Forward Pass
bt = p(ω)− b′ − qt−1

ut = ut−1 + δ(−2btut−1 − ω2vt−1 + xt)
vt = vt−1 + δut−1

ϑt = ϑc + qt−1

zt = Θ(ut − ϑt)
qt = γqt−1 + zt

ϑc = 1, γ = 0.9, and p(ω) = ω2

200

(Re, Θ, p are applied component-wise.)

15 minutes with two electrodes. We left out 24 signals, as
they were sudden death recordings without annotation. For
the preprocessing shown in Figure 4, refer to Section A.7.

The Spiking Heidelberg dataset (SHD) is a benchmark
audio-to-spike dataset specifically generated for SNNs
(Cramer et al., 2020). It contains 10,420 recordings of
spoken digits from 0 to 9 in English and German. The
recordings were made with high fidelity and then converted
into spike trains for 700 channels through a precise artifi-
cial inner ear model (Cramer et al., 2020). The spike trains
were further processed with a discrete time scale of 4e-3 s to
obtain sequence length of 250 with zero-padding. This pre-
processing was conducted to make the dataset comparable
to Yin et al. (2021). We used 7,341 sequences for training,
815 for validation, and 2,264 for inference.

6. Results
The results, the network architecture, the number of pa-
rameters, and the number of produced spikes between the
best-performing BRF-, RF- and BHRF-RSNN and the base-
line ALIF-RSNNs (see Section A.2) or other state-of-the-art
(SoTa) models, are compared for each classification task
in Table 1. The BRF- and BHRF-RSNN hyperparameters
for each dataset are shown in Table 3 in Section A.12. The
BHRF and BRF models outperformed the RSNN SoTa for
four and three tasks respectively. Complementing accuracy,
we also find much enhanced sparseness in the BRF and
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Table 1. Results between vanilla RF, BRF, BHRF, ALIF (Yin et al., 2021), and other SoTa models: DCLS-Delays (DCLS-D) (Hammouamri
et al., 2023) and RadLIF (Bittar & Garner, 2022) on various sequential classification tasks. Architecture represents the number of neurons
in each layer. The average accuracy over five runs shown for the RF, BRF and BHRF models, excluding PS-MNIST BHRF. SOPs: average
spike operations. *RSNN-SoTa **SNN-SoTa

Task Model Architecture No. params. (↓) Test Acc. (↑) SOPs (↓) SOPs/step (↓) SOP Ratio (↓)

S-MNIST

ALIF* 4,64,(256)2,10 156,126 98.7 % 70,810.8 90.32 1.00×
RF 1,256,10 68,874 98.0±0.4% 29,034.8 37.03 0.41×

BRF 1,256,10 68,874 99.0±0.1% 15,462.6 19.72 0.22×
BHRF 1,256,10 68,874 99.1±0.1% 21,565.7 25.51 0.30×

PS-MNIST

ALIF* 4,64,(256)2,10 156,126 94.3 % 59,772.1 76.24 1.00×
RF 1,256,10 68,874 9.9±0.8% 66,474.2 84.79 1.11×

BRF 1,256,10 68,874 95.0±0.2% 27,839.7 35.51 0.46×
BHRF 1,256,10 68,874 95.2 % 24,564.2 33.33 0.41×

ECG
ALIF* 4,36,6 1,776 85.9 % 35,011.2 26.93 1.00×

RF 4,36,6 1,734 85.5±0.7% 11981.9 9.22 0.34×
BRF 4,36,6 1,734 85.8±0.7% 6,307.7 4.85 0.18×

BHRF 4,36,6 1,734 87.0±0.4% 6,233.8 4.80 0.18×

SHD

DCLS-D** 700,(256)2,20 ≈200,000 95.1±0.2% - - -
RadLIF* 700,(1024)3,20 3,893,288 94.62% - - -

ALIF 700,(128)2,20 142,120 90.4 % 24,690.0 98.76 1.00×
RF 700,128,20 108,820 89.2±0.6% 4750.2 19.00 0.19×

BRF 700,128,20 108,820 91.7±0.8% 3,502.6 14.01 0.14×
BHRF 700,128,20 108,820 92.7±0.7% 4,139.5 16.56 0.17×

BHRF networks while using substantially fewer parameters
compared to the ALIF networks. Note that RF model shown
in Table 1 did not include a reset. Adding either a hard or
soft reset to the vanilla RF neuron dramatically affects its
task performance as shown in Figure 11 in Section A.9.

We also compare the theoretical energy efficiency of the
RF and ALIF models by computing their respective total
spiking operations (SOPs) (see Equation 41) and SOPs per
sequence step. As both measures were considerably smaller
for the BRF and BHRF models, this implies they require less
computation to achieve better or comparable performance.
This may be due to the resonating spiking behavior of the
neuron, needing fewer spikes to represent its frequency, as
well as the refractory period and smooth reset that hinders
continuous spiking. A particularly large difference was seen
in the SHD task, where the BRF model spiked only 14% of
the ALIF model.

Compared to the standard RF model without reset, our
balanced variants achieved significantly sparser activity
while obtaining higher performance. Especially for the PS-
MNIST, the standard RF model stayed at chance, while our
balanced RF variations outperformed RSNN-SoTA. This
is due to the damping factor and angular frequency combi-
nation leading to a highly diverging behavior. It especially
affects the PS-MNIST dataset, as it requires a wider range
of resonant frequencies to counter the increased randomness
in the signal. For example, neurons with ω = 70 rad/s and
bc = −1 leads to higher magnitude towards the end of the

sequence. Having many of such neurons causes the whole
system to diverge and become unstable. On a different note,
the performance of the BRF model depends on the initializa-
tion of the parameters and it generally under-performs when
the angular frequencies are too far from the frequencies
underlying the dataset.

Overall, we find that RSNNs comprised of either BRF and
BHRF neurons exceeded performance for all classification
tasks compared to the baseline ALIF-RSNN. Compared to
standard RF neurons, the smooth reset, refractory period,
and divergence boundary significantly improved the stability
and efficiency of the RF parameters, possibly exploiting the
model’s resonant properties. We study this in detail below.

Convergence. The RF, BRF, and ALIF model learning
curves are presented in Figure 5. We reduced the ALIF
model to the same size and number of trainable parame-
ters as the BRF model. For the S-MNIST and PS-MNIST
tasks, the ALIF networks only learn effectively when the
truncated BPTT (TBPTT) with truncation step 50 is applied.
Nonetheless, the fully back-propagated BRF networks con-
verge significantly faster than the TBPTT ALIF networks,
also evident from the quantitative convergence results (Ta-
ble 2).

A similar pattern of fast and stable convergence is observed
for the ECG dataset and SHD. The convergence between RF
and BRF for SHD and ECG are similar because the vanilla
RF neurons resonate with lower frequencies, affected less
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Figure 5. Top row: S-MNIST, PS-MNIST, ECG, and SHD learning curve between BRF, RF and ALIF model. Each curve averaged per
epoch (solid line) with standard deviation (shaded area) over five runs. The dot on the accuracy curves depict the point at which 95 % of
the final accuracy was reached. Bottom row: S-MNIST, PS-MNIST, ECG, and SHD initial and optimized BRF parameter combinations:
angular frequency ω and b-offset b′ for all runs. Dashed line is the divergence boundary. RF models are simulated without reset. For
convergence with traditional reset see Section A.9.

Table 2. Quantitative convergence results. The average number
of epochs after which 95%, 98%, and 100% of the final test
accuracy on the learning curve was reached, respectively.

Task Model 95% (↓) 98% (↓) 100% (↓)

S-MNIST

ALIF 105 162 276
RF 134 172 263

BRF 3 29 246
BHRF 5 12 119

PS-MNIST
ALIF 143 200 265
BRF 10 39 282

BHRF 6 19 123

ECG

ALIF 51 157 282
RF 8 29 112

BRF 6 32 75
BHRF 15 38 109

SHD
ALIF 14 15 16
RF 2 4 5

BRF 2 3 7
BHRF 3 5 8

by diverging behavior. Note that the RF model shown in
Figure 5 did not include a reset. Adding either soft or hard
reset leads to slower and more unstable learning, as shown
in Figure 11 in Section A.9. Figure 5 highlights the variation
in training of RF networks depending on the dataset, which
is alleviated by the BRF network.

While numerically large, the learning rates of the (B)RF-
RSNNs led to stable and fast convergence for most datasets.
This is in contrast to standard SNNs where large learning
rates lead to poor performance. Here, the double-Gaussian
surrogate gradient function (Yin et al., 2021) we used may
have contributed by ensuring gradient flow even for neurons
far from firing. Combined with the high learning rate, this
may have enabled non-spiking neurons to effectively shift
their angular frequencies.

The ECG task was learned most effectively for the BRF and
BHRF networks with a small batch size and high learning
rate. A smaller batch size can better capture detailed vari-
ations within the dataset, notably the timing of the input
spikes, which may have been important for per-step wave
classification.

Ongoing investigations (Higuchi et al., 2024) suggest that
the shape of the error landscape may be a major contributor
to the fast and stable convergence of the BRF model (see
Figure 13 in Section A.11).

Parameter analysis. We also compared the trainable BRF
parameters ω and b′ between the initial and trained networks
to obtain an intuition of the functioning of the neuron, as
shown in Figure 5. We see that optimization substantially
shifted the parameters, demonstrating that the gradients in
the B(H)RF networks were effectively propagated.
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Figure 6. Raster plot of network activity for an SHD sample with
label 10 after training. The BRF neurons are sorted by their angular
frequency. Black dots denote output spikes.

For the S-MNIST task, plotting ω-bc (Figure 5) shows clus-
ters around ω values of 18 to 28 rad/s and around ω of
40 rad/s with a wide range of bc. The dampening factor
close to zero indicates near-sustained oscillation behavior,
preserving resonance amplitude for an extended duration.
The clustered variety in bc values suggests that short- and
long-term memory are essential for effective learning of
the S-MNIST task in B(H)RF networks. Additionally, the
distribution of ω for S-MNIST task showed a bimodal distri-
bution with the highest peak at 23.3 to 25.3 rad/s and the
second peak at 40.8 to 42.8 rad/s.

The MNIST digits all contain some form of diagonal line
with a width of 3 to 6 pixels, most prominently observed in
digit 1. When converted into a sequence row-by-row, the
lines are distributed among the sequence with a periodic
signal of about 25 pixels. Considering the pixels as discrete
time steps of δ = 0.01, the theoretical period T frequently
observed in the signal is T = 0.25 s. Thus, the most fre-
quent theoretical angular frequency ω′ underlying the signal
is around ω′ = 2π/0.25 s = 25.13 rad/s which is close
to the most frequently learned angular frequencies of the
BRF neuron. This simple calculation thus suggests that the
BRF neurons were able to learn meaningful frequencies that
underlie the S-MNIST dataset. For the PS-MNIST, we see
more spread of ω and bc parameters, as the specific char-
acteristic frequency structure from S-MNIST is essentially
obscured by the permutation.

Inspecting spike train ECG samples (Figure 4), we observe
distinguishable periodic spikes with 300 time step intervals,
corresponding to a theoretical angular frequency of ω′ =
2.09 rad/s, and indeed a cluster at about 2 rad/s is present
in the ω-bc plot. The theoretical and optimized angular
frequencies align, demonstrating learning of the dynamical
signal by the network.

Weight Sparsity. We explored the effect of pruning re-
current weights in an ablation study for the S-MNIST and
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Figure 7. Test accuracy over pruning probability for (a) S-MNIST
and (b) PS-MNIST. 1.0 pruning indicate no recurrent weights.

PS-MNIST tasks between comparable BRF and ALIF net-
works, as detailed in Table 3 and results are shown in Fig-
ure 7. While the BRF neuron provides consistent perfor-
mance throughout pruning, the ALIF model performs poorly
when lacking recurrent weights. This demonstrates that ex-
plicit recurrencies are not necessary for the BRF networks
with resonating properties to learn reasonably well, while
these connections are crucial for the ALIF networks. More-
over, the BRF networks’ accuracy has a smaller standard
deviation throughout compared to the ALIF networks, also
showing that the BRF network performance is not affected
by the specific pruned weights as much as the ALIF net-
works.

7. Discussion
The results from our BRF-RSNN implementation lead to
considerable insight into the workings of the RF neurons.
Importantly, the learning curve and parameter analyses of
the datasets show that the BRF networks learn meaning-
ful parameters by favorably tuning the resonating behavior,
modeling the complex dynamics not yet observed in large-
scale simulations. We observe favorable oscillatory behavior
of the membrane potential and increasing frequency of peri-
odic spikes with higher angular frequency in the raster plot
for all datasets. For SHD, output spikes are present towards
the end of the sequence, even with the zero padding of the
input signal. As most signals are still periodic, it suggests
controlled oscillation and spiking that maintains relevant
frequencies until the end of the sequence.

Note that we conducted the experiments without biases for
all RF models to investigate how many spikes are needed to
keep the network dynamics alive and to solve the tasks. As
a result, a few of the BRF neurons in the network learned to
fire consistently throughout the sequence as seen in Figure 6
and thus effectively “imitated” a bias injecting constant
current into the network. In contrast, ALIF networks need
explicit biases to perform well. The BRF networks are thus
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more flexible in modeling behavior that cannot be learned
by the integrator neurons alone.

The neurons learn their own favored frequencies and, conse-
quently, focus on individual time scales. This can be loosely
seen as a homeostatic regulatory process maximizing local
information gain in the realms of distributed, collective task
solving within the recurrent networks.

Further exploration of the post-trained models against var-
ious noise types and numerical quantization (Stromatias
et al., 2015; Park et al., 2021), shows consistently high
robustness of the BRF networks compared to the ALIF
networks, detailed in Section A.10, Figure 12. The BRF
networks are slightly more robust than the RF networks
for some noise variants, despite the constant low SOP of
the BRF networks. Hardware implementations are prone
to such noises (Stromatias et al., 2015), which suggests the
BRF neurons to be suitable for hardware applications. We
further aim to realize inference with these neurons on Loihi
2, which provides support for RF neuron variations (Davies
et al., 2018; Shrestha et al., 2023).

Concerning the network dimension, we found that adding
additional resonator neurons into the single hidden layer
beyond a certain capacity did not significantly improve the
performance further.

One drawback of our BRF- and BHRF-RSNNs is the dif-
ficulty in finding an optimal initial parameterization of the
angular frequencies and the dampening factor offset, since
both determine the models’ performance. The analyses
of the parameters suggest the possibility of applying the
Fourier transform on the datasets a-priori to approximate
the range of angular frequencies the BRF neurons require
to optimally learn the data.

It should be noted that the computational complexity of
BRF-RSNNs is similar to single-layered ALIF models.
However, due to the faster convergence the training can
be stopped much earlier, which effectively results in a dras-
tically reduced training time. Implementation-wise, another
speed-up can be achieved by using forward gradient in-
jection (Otte, 2024) for modeling the surrogate gradient
functions in combination with automatic model optimiza-
tion routines such as TorchScript in PyTorch (some results
are presented in Section A.13).

8. Conclusion
We introduced BRF- and BHRF-RSNNs as a principled
resonating spiking neuron model that solves the training
difficulties encountered for networks comprised of standard
RF neurons while demonstrating the effectiveness of internal
resonating state as a form of long-term memory. Our BRF-
and BHRF-RSNNs with smaller network architectures and

sparser spiking outperformed deep baseline models. The
learning curves showed that the BRF networks converged
much faster than the ALIF networks. Furthermore, the
stable convergence hints at good reproducibility of the BRF
model’s performance. The BRF parameter analyses indicate
the network to learn frequencies underlying the input signals
and showed resilience against sparser recurrent connectivity
compared to the ALIF network.

Possible future research may be to scale up the simulations
to much larger and more complex problems, such as the
CIFAR (Krizhevsky & Hinton, 2009) or the Google Speech
Command dataset (Warden, 2018). It is of particular interest
to apply the BRF model to raw audio processing tasks,
because of its ability to extract periodic pattern within the
time domain.

Another line of research could be to combine BRF neurons
with online learning approaches, such as e-prop (Bellec
et al., 2020), which would broaden its range of applications
due to memory efficiency and faster processing of longer
sequences. Additionally, trainable refractory period decays
for flexible adaptive thresholding could be introduced, as
well as trainable simulated variable time constants to foster
multi-temporal resolution processing.

This study marks an initial exploration to investigate the
working of stable resonating neurons in the context of recur-
rent spiking neural network. Our models show comparable
results and/or exceeds the state-of-the-art for RSNNs. We
see many possible approaches to extending our work, as
we kept the implementation to its simplest form. The pre-
sented work thus provides a foundation for further research
of possible BRF-RSNN variants.
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Sebastian Otte was supported by a Feodor Lynen fellowship
of the Alexander von Humboldt Foundation.

Impact Statement
The aim of this work is to advance the field of machine
learning, with a specific focus on spiking neural networks
(SNNs) to augment the effectiveness and energy efficiency
of AI systems, making them more sustainable. It is worth
noting that, like most developments in machine learning
research, our work may have various societal consequences,
but none of which we think needs special consideration
here.

9



Balanced Resonate-and-Fire Neurons

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V.,
Umar, A. M., Linus, O. U., Arshad, H., Kazaure, A. A.,
Gana, U., and Kiru, M. U. Comprehensive review of arti-
ficial neural network applications to pattern recognition.
IEEE access, 7:158820–158846, 2019.

AlKhamissi, B., ElNokrashy, M., and Bernal-Casas, D.
Deep spiking neural networks with resonate-and-fire neu-
rons. arXiv preprint arXiv:2109.08234, 2021.

Alonso, A. and Llinás, R. R. Subthreshold na+-dependent
theta-like rhythmicity in stellate cells of entorhinal cortex
layer ii. Nature, 342(6246):175–177, 1989.

Atkinson, K. E. An introduction to numerical analysis, john
wiley and sons. New York, 19781, 1989.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and
Maass, W. Long short-term memory and learning-to-
learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D.,
Legenstein, R., and Maass, W. A solution to the learn-
ing dilemma for recurrent networks of spiking neurons.
Nature communications, 11(1):3625, 2020.

Bittar, A. and Garner, P. N. A surrogate gradient spiking
baseline for speech command recognition. Frontiers in
Neuroscience, 16:865897, 2022.

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. The
heidelberg spiking data sets for the systematic evaluation
of spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 33(7):2744–2757, 2020.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Doeller, C. F., Barry, C., and Burgess, N. Evidence for grid
cells in a human memory network. Nature, 463(7281):
657–661, 2010.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 2641–2651, 2021. doi: 10.1109/ICCV48922.
2021.00266.

Frady, E. P., Sanborn, S., Shrestha, S. B., Rubin, D. B. D.,
Orchard, G., Sommer, F. T., and Davies, M. Efficient
neuromorphic signal processing with resonator neurons.
Journal of Signal Processing Systems, 94(10):917–927,
2022.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Hammouamri, I., Khalfaoui-Hassani, I., and Masquelier, T.
Learning delays in spiking neural networks using dilated
convolutions with learnable spacings. arXiv preprint
arXiv:2306.17670, 2023.

Higuchi, S., Bohte, S. M., and Otte, S. Understanding the
convergence in balanced resonate-and-fire neurons, 2024.
arXiv preprint arXiv:2406.00389.

Hille, J., Auge, D., Grassmann, C., and Knoll, A. Resonate-
and-fire neurons for radar interference detection. In Pro-
ceedings of the International Conference on Neuromor-
phic Systems 2022, pp. 1–4, 2022.

Hinton, G., Srivastava, N., and Swersky, K. Neural networks
for machine learning lecture 6a overview of mini-batch
gradient descent. Cited on, 14(8):2, 2012.

Hodgkin, A. L. and Huxley, A. F. A quantitative description
of membrane current and its application to conduction
and excitation in nerve. The Journal of physiology, 117
(4):500, 1952.

Izhikevich, E. M. Resonate-and-fire neurons. Neural net-
works, 14(6-7):883–894, 2001.

Izhikevich, E. M. Simple model of spiking neurons.
IEEE Transactions on neural networks, 14(6):1569–1572,
2003.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images, 2009.

Laguna, P., Mark, R., Goldberger, A., and Moody, G. A
database for evaluation of algorithms for measurement of
qt and other waveform intervals in the ecg. Computers in
Cardiology, 24(1):673–676, 1997.

10

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Balanced Resonate-and-Fire Neurons

Lehmann, H. M., Hille, J., Grassmann, C., and Issakov,
V. Direct signal encoding with analog resonate-and-fire
neurons. IEEE Access, 2023.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. Advances
in neural information processing systems, 31, 2018.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate
and beyond. In Proceedings of the Eighth International
Conference on Learning Representations (ICLR 2020),
April 2020.

Llinas, R. R., Grace, A. A., and Yarom, Y. In vitro neurons
in mammalian cortical layer 4 exhibit intrinsic oscillatory
activity in the 10-to 50-hz frequency range. Proceedings
of the National Academy of Sciences, 88(3):897–901,
1991.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E. Dying relu
and initialization: Theory and numerical examples. arXiv
preprint arXiv:1903.06733, 2019.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Otte, S. Flexible and efficient surrogate gradient modeling
with forward gradient injection, 2024. arXiv preprint
arXiv:2406.00177.

Park, S., Lee, D., and Yoon, S. Noise-robust deep spiking
neural networks with temporal information. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp.
373–378. IEEE, 2021.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.
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A. Appendix
A.1. Traditional soft and hard reset

The traditional soft and hard reset mechanisms were formulated respectively:

u(t) = u′(t)− (1 + i) z(t)ϑ (23)

u(t) = [1− (1 + i) z(t)]u′(t) (24)

for which u′(t) represents the membrane potential before reset.

A.2. Baseline ALIF neuron

The formulation of the baseline ALIF neuron (Yin et al., 2021) is as follows with ϑ = 0.01 and β = 1.8:

ϑt = ϑ+ β a(t) (25)

a(t) = ρ a(t− δ) + (1− ρ) z(t− δ) (26)

u′(t) = αu(t− δ) + (1− α) I(t) (27)

z(t) = Θ (u′(t)− ϑt) (28)

u(t) = u′(t)− z(t)ϑt (29)

where ρ = e−
δ
τa ∈ (0, 1) is the adaptive threshold decay constant, τa the time constant and α = e−

δ
τm ∈ (0, 1) the

membrane potential decay constant. a(t) is the accumulative activity of the spiking behavior of the neuron. The membrane
potential u(t) is soft reset with the adaptive threshold ϑt when the neuron fires (z(t) = 1).

A.3. Explicit form of the Izhikevich RF neuron

We can reform the membrane equation to u(t) = (1 + δ (b+ i ω))u(t− δ) + δ I(t). Consider discrete time step δ with t =
0, δ, 2δ, 3δ, , T δ. Assume a spike injected only at t = δ with I(δ) = 1 and initial membrane potential u(0) = 0, then:

u(δ) = δ (30)
u(2δ) = δ (1 + δ (b+ i ω)) (31)
u(3δ) = (1 + δ (b+ i ω))(δ (1 + δ (b+ i ω))) (32)

= δ (1 + δ (b+ i ω))2 (33)

u(4δ) = (1 + δ (b+ i ω))(δ (1 + δ (b+ i ω))2) (34)

= δ (1 + δ (b+ i ω))3 (35)
· · · (36)

u(t) = δ (1 + δ (b+ i ω))
t
δ−1 (37)

A.4. Frequency response plot generation

The subthreshold responses were explored with randomly chosen angular frequency ω ∈ [0, 100) and b′ ∈ (0, 10) for the
RF neurons. Spiking input signals with frequencies relative to the angular frequencies of {0.1, 0.2 · · · , 100} were input to
the neurons over 20 seconds with a discrete-time scale of δ = 0.001. The positive spikes were input in-phase of the period
corresponding to the angular frequency:

T =
2π

angular frequency
(38)

The mean absolute magnitude of the membrane potential over the whole sequence was calculated and plotted to get the
response of the neuron per tested frequency signal. Similarly conducted for the HRF neurons.
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Figure 8. HRF neuron frequency response plots for exemplary omega ω and b-offset b′ combinations with δ = 0.001.

A.5. Divergence Boundary

The discrete-time scale δ has a large impact on the divergence behavior. Figure below shows the curve of divergence
boundary for time scales above and below the default δ = 0.01. The membrane potential converges if the combination of
ω and bc is below the line. When considering the ω range of 0 to 100 rad/s, the slope of the sustained oscillation curve
becomes flatter with smaller δ. The more precise the oscillation is modeled, the less likely the system will diverge. Indeed,
the discrete approximation of the continuous differential equation becomes more precise by computing smaller time scales.
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Figure 9. Divergence boundary depending on δ ∈ {0.002, · · · , 0.02}

A.6. Experimental Setup

The fully recurrent RF-RSNN with m input, h hidden BRF or BHRF, and C leaky integrator (LI) output neurons was
computed using PyTorch (Paszke et al., 2017). The backpropagation through time (BPTT) algorithm with minibatch size B
was used with the Adam (Kingma & Ba, 2014), RAdam (Liu et al., 2020), or the RMSprop (Hinton et al., 2012) depending on
the network and task. The input from the current sequence step xt ∈ MB×m and the output spiking of the recurrent hidden
neurons from the previous time step zt−1 ∈ MB×h were combined by implementing a fully connected linear layer. This
combined signal xt ∈ MB×h corresponded to the familiar injected current I(t) but was written in matrix form to represent
all hidden neurons in the minibatch. Although not explicit in the Algorithms, win,rec ∈ Mh×(m+h) and wout ∈ MC×h

represent the strength of the connections between the input-to-hidden, hidden-to-hidden, and hidden-to-output neurons,
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which were optimized. No biases were trained or used in the network. The B(H)RF neurons with ω and b′ ∈ Rh were
updated over the time sequence of B data samples with ut, (vt),bt,qt,ϑt ∈ MB×h. The LI membrane potential time
decay constant τm,out ∈ RC

>0 was also learned. The negative log-likelihood (NLL) or the cross-entropy (CE) loss was
implemented as our criterion depending on the simulations.

For the ALIF implementation, the adaptive threshold time decay constant τa ∈ Rh
>0 is additionally learned with the

membrane potential time decay constant τm ∈ Rh
>0.

In the case of average sequence loss with NLL, the logarithmic softmax function was computed for all output neurons
per time step ŷt = log(softmax(ut

out)), which was further propagated into the loss function: Lt = criterion(ŷt,yt) =
1
B

∑C
c=1 −ytc ŷ

t
c where yt ∈ MB×C is the target label at time step t represented as one-hot vectors. The mean loss was

computed as L = 1
T

∑T
t=1 Lt with sequence length T. In the case of label-last loss, only the loss from the last time step was

propagated backwards.

The backward pass of the BPTT algorithm was internally computed with the automatic differentiation engine in PyTorch
(Paszke et al., 2017). For the non-differentiable Heaviside function in the B(H)RF and ALIF neurons, the multi-Gaussian
function (Yin et al., 2021) was manually implemented as the surrogate gradient (Neftci et al., 2019):

∂Θ

∂u
=def (1 + h)g(u, ϑ, σ)− 2hg(u, ϑ, sσ) (39)

with
g(x, µ, σ) = e−

1
2 (

x−µ
σ )

2

(40)

with h=0.15, s=6, σ=0.5 similar to Yin et al. (2021). The negative gradient values were motivated by the leaky rectified
and exponential linear unit that prevented the “dying-ReLU” problem (Lu et al., 2019). With these values, the multi-Gaussian
surrogate gradient function promoted the neurons to spike despite an initial low membrane potential, which contributed to
effective learning.

The best model was the model saved with the highest average test loss over the first five runs by early stopping on the
validation loss. The loss and accuracy of the train, validation, and test set were logged into Tensorboard (Abadi et al., 2016)
for analysis of the learning pattern. After obtaining the best model, the spiking operations (SOPs) were computed based on
the five saved models by taking the total number of output spikes over the whole dataset zsum with respect to the number of
data samples N :

SOPs =
zsum
N

(41)

The results were compared with the baseline ALIF-RSNN.

For simulating the models and performing the experiments, we used multiple systems with different deep learning accelerators
including NVIDIA GeForce RTX 2060, NVIDIA GeForce RTX 2080 Ti, NVIDIA GeForce RTX 3090, and NVIDIA A100,
with PyTorch 2.0.1 on Python 3.10.4 and CUDA 11.7.

A.7. ECG-QT database preprocessing

The preprocessed QT data were extracted from Yin et al. (2021) to gain comparable results. The original sequences were
segmented into smaller intervals, each containing 1300 ms of the recordings. Then, the two ECG signals were normalized
and encoded into two separate spike trains via level-cross encoding. The positive gradients above and negative gradients
below the threshold led to spikes with the threshold L = 0.3:

s+ =

{
1 if xt − xt−1 ≥ L

0 otherwise
(42)

s− =

{
1 if xt − xt−1 ≤ −L

0 otherwise
(43)

The target labels were segmented correspondingly and predicted for each time step. Figure 4 color: blue, red, green, cyan,
olive and purple corresponds to the label: P, PQ, QR, RS, ST. Five hundred fifty-seven segments were used for training, 61
for validation, and 141 for testing.
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A.8. Effect of refractory period and smooth reset

Refractory period (RP) and smooth reset (SmR) both result in reduced spiking operations, with their effects varying
depending on the dataset. The SOP of the BRF neuron consistently yields the lowest SOP. It suggests the flexibility of the
BRF neuron to learn various types of data efficiently, compared to the RF neuron. ECG optimized with RP spikes less than
with SmR, whereas SHD spikes more with SmR; however even more efficient in both cases is the BRF with the combination
of RP and SmR. PS-MNIST diverges with: no reset, RP, SmR, and combination of RP and SmR. Thus, it shows significantly
high SOP for these variants. It also highlights the stability brought out by the divergence boundary (DB). S-MNIST trained
with RP results in unstable performance and SOP.
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Figure 10. SOP result in RF networks with divergence boundary (DB), refractory period (RP), and smooth reset (SmR). Mean SOP over 5
runs plotted with standard deviation. DB, RP & SmR denote the complete BRF neuron.

A.9. Reset variation and performance

To explore the impact of the standard reset mechanisms (mentioned in Section A.1) on the resonator network, RF models
with smooth, soft, and hard reset are optimized for ECG and SHD, as shown in Figure 11. Note that the traditional reset
mechanisms applied to S-MNIST and PS-MNIST failed to converge. The figures show performance drop and slower
convergence with the soft and hard reset, presumably due to the altered phase of the oscillation and the difficulty in
continuous resonant spiking, as spikes may occur with twice the period of the original signal. Further facilitated by the
result without reset, in which the convergences are on-par with the BRF neurons where the phase itself is preserved. As
mentioned in the main text, the system did not diverge for the RF without reset for ECG and SHD in particular, due to the
small angular frequencies leading to smaller error accumulation over time.

A.10. Noise robustness

Noise robustness of post-trained models are further investigated with the methods applied by Stromatias et al. (2015) and
Park et al. (2021). Hardware implementations of SNNs pose limitations to the performance due to restricted precision or
noise in the signal. Here, four different type of restrictions and noise are explored. Quantization reduces the bit precision
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Figure 11. Convergence comparison of ECG and SHD over RF reset mechanisms.
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Figure 12. S-MNIST noise robustness studies conducted on saved best performing models. Solid line denote performance and dotted line
the spiking operations (SOP) for each network.

representation (Figure 12 top left). Noise in the input signal from the dataset are simulated with Gaussian noise with
increasing standard deviation (Figure 12 top right). For spike deletion (Park et al., 2021) level, a percentage of the spikes
are removed from the network at each sequence step (Figure 12 bottom left). Synaptic noise added Gaussian noise to the
weights.
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Overall the vanilla RF network without reset and the BRF network performed better when faced with various noise than the
ALIF network. Especially for the noise introduced in the input, the RF and BRF network maintained their performance,
while the ALIF network failed already with a small standard deviation in noise. For the BRF network, this is achieved
despite the high spiking sparsity of the BRF network compared to the RF or ALIF network. The RF network is more robust
against spike deletion than the BRF or ALIF network. This may be an effect of redundant spiking for the RF networks,
which highlights a trade-off of spike deletion robustness and high spiking sparsity.

A.11. Error landscape

BRF-RSNN landscape has smooth and convex-like structure, whereas landscape of RF- and especially, ALIF-RSNN, has a
rough surface with a narrow valley. Such smooth landscape represent high generalization and straightforward optimization,
accounting for the fast convergence.

We further found that the spectral radius of the membrane state transition mapping computed over one discrete time step
results in unity or below by implementing the divergence boundary, thus effectively stabilizing the gradient and preserving
its magnitude (Higuchi et al., 2024). This indicates that the divergence boundary contributes to fast and smooth learning.
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Figure 13. Error landscape plots for RF, BRF, and ALIF network on the S-MNIST dataset adopted from Higuchi et al. (2024). Top: error
surface plots. x and y axis correspond to α and β, i.e. parameter deviations, and the z axis to f(α, β), i.e. error (Li et al., 2018). Bottom:
error contour plots. Note that the value range and corresponding coloring differ between the diagrams to enhance visualization.
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A.12. Hyperparameters

Table 3. Hyperparameters applied for the best-performing BRF, HBRF, and ALIF model with label-last loss (S-MNIST) and average
sequence loss (PS-MNIST, ECG, SHD) and truncation step of 50 for TBPTT (in pruning). Same hyperparameters applied for BRF- and
RF-BPTT models, where b = b′ for RF-RSNN.

S-MNIST BRF-RSNN BHRF-RSNN ALIF-RSNN
BPTT TBPTT BPTT BPTT TBPTT

Network 1 + 256 (fully recurrent) + 10 1 + 256 (fully recurrent) + 10 1 + 256 (fully recurrent) + 10
Learning rate (Lr) 0.1 0.006 0.1 0.001
Loss function NLL CE NLL
Minibatch size 256 256 256
Lr scheduling LinearLR LinearLR LinearLR
Optimizer Adam RAdam Adam
Epochs 300 400 300
Parameter

initialization
ω : U(15, 50), b′ : U(0.1, 1),

τm,out : N (20, 5)
ω : U(15, 35), b′ : U(0.1, 1),
α : Sigmoid(N (0, 0.1))

τm : N (20, 5), τa : N (200, 50),
τm,out : N (20, 5)

PS-MNIST BRF-RSNN BHRF-RSNN ALIF-RSNN
BPTT TBPTT BPTT BPTT TBPTT

Network 1 + 256 (fully recurrent) + 10 1 + 256 (fully recurrent) + 10 1 + 256 (fully recurrent) + 10
Learning rate (Lr) 0.1 0.006 0.1 0.001
Loss function NLL NLL NLL
Minibatch size 256 256 256
Lr scheduling LinearLR LinearLR LinearLR
Optimizer Adam RAdam Adam
Epochs 300 200 300
Parameter

initialization
ω : U(15, 85), b′ : U(0.1, 1),

τm,out : N (20, 1)
ω : U(10, 50), b′ : U(1, 6),
α : Sigmoid(N (0, 0.1))

τm : N (20, 5), τa : N (200, 50),
τm,out : N (20, 5)

ECG-QT BRF-RSNN BHRF-RSNN ALIF-RSNN

Network 4 + 36 (fully recurrent) + 6 4 + 36 (fully recurrent) + 6 4 + 36 (fully recurrent) + 6
Learning rate (Lr) 0.1 0.3 0.05
Loss function NLL NLL NLL
Minibatch size 16 4 64
Lr scheduling LinearLR LinearLR LinearLR
Optimizer Adam RAdam Adam
Epochs 400 300 400
Parameter

initialization
ω : U(3, 5), b′ : U(0.1, 1),

τm,out : N (20, 1)
ω : U(7, 11), b′ : U(0.1, 1),
α : Sigmoid(N (0, 0.1))

τm : N (20, 0.5), τa : N (7, 0.2),
τm,out : N (20, 0.5)

Sub-seq. length 0 0 10

SHD BRF-RSNN BHRF-RSNN ALIF-RSNN

Network 700 + 128 (fully recurrent) + 20 700 + 128 (fully recurrent) + 20 700 + 128 (fully recurrent) + 20
Learning rate (Lr) 0.075 0.1 0.075
Loss function NLL NLL NLL
Minibatch size 32 32 32
Lr scheduling LinearLR LinearLR LinearLR
Optimizer Adam RMSprop Adam
Epochs 20 20 20
Parameter

initialization
ω : U(5, 10), b′ : U(2, 3),

τm,out : N (20, 5)
ω : U(3, 10), b′ : U(0.1, 1),
α : Sigmoid(N (0, 0.1))

τm : N (20, 5), τa : N (150, 10),
τm,out : N (20, 5)

Sub-seq. length 0 0 10

Due to the BHRF-RSNN being in the preliminary phase of its exploration, we initially used the sigmoid function for the
leaky integrator decay constant α, as it ensured the decay to be in the range of 0 and 1.
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A.13. Learning speed-up with forward gradient injection (FGI) and TorchScript

As a further exploration, we apply forward gradient injection (FGI) from Otte (2024) for modeling the surrogate gradient
functions. Let x be a computation node, f a non-differentiable function (e.g. step function), g′ a function that we want to use
as derivative for f , and sg the stop gradient operator. Instead of overriding the backward() method, we can just write:

h = x · sg(g′(x)) (44)
y = h− sg(h) + sg(f(x)) (45)

With FGI + TorchScript we achieve speed-ups by a factor of more than two for all dataset as shown in Table 4, while
maintaining performance.

Table 4. BRF-RSNN training speed up with model optimization methods over standard backward() baseline.

Optimization Gradient S-MNIST PS-MNIST ECG SHD
Time (hrs) Ratio Time (hrs) Ratio Time (hrs) Ratio Time (min) Ratio

- backward() 23.8 1× 31.0 1× 8.5 1× 40.9 1×
TorchScript backward() 11.3 2.1× 13.8 2.2× 4.1 2.1× 16.4 2.5×
TorchScript FGI 10.2 2.3× 12.8 2.4× 3.5 2.4× 14.0 2.9×
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