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Abstract

Self-supervised representation learning (SSRL) has advanced considerably by
exploiting the transformation invariance assumption under artificially designed data
augmentations. While augmentation-based SSRL algorithms push the boundaries
of performance in computer vision and natural language processing, they are often
not directly applicable to other data modalities such as tabular and time-series data.
This paper presents an SSRL approach that can be applied to these data modalities
because it does not rely on augmentations or masking. Specifically, we show
that high-quality data representations can be learned by reconstructing random
data projections. We evaluate the proposed approach on real-world applications
with tabular and time-series data. We show that it outperforms multiple state-of-
the-art SSRL baselines and is competitive with methods built on domain-specific
knowledge. Due to its wide applicability and strong empirical results, we argue
that learning from randomness is a fruitful research direction worthy of attention
and further study.

1 Introduction

In recent times, self-supervised representation learning (SSRL) has witnessed remarkable success,
particularly in the fields of computer vision [19] and natural language processing [18]]. Even with
an abundance of raw data structured in tabular and time-series formats throughout the domains of
healthcare, finance, the natural sciences, and more, extending the success of SSRL to these data
modalities remains challenging [6].

The success of SSRL in computer vision and natural language processing primarily stems from
well-designed pretext tasks that create heuristics from unlabelled data allowing models to identify
and encode useful information. Pretext tasks are often highly customized to specific applications
based on a handful of underlying assumptions. Specifically, pretext tasks utilizing the transformation
invariance assumption across data augmentation views show leading performance in multiple research
domains. For computer vision, image representations are commonly guided to remain identical after
cropping, rotating, flipping, or corrupting, among others [[L1, [19]. Similarly, in natural language
processing, sentences with similar words and semantic meaning are expected to have the same
representation [45] 146]]. In these and other domains transformation invariance is encouraged explicitly
through contrastive or momentum objectives that aim to bring together representations before and
after transformation.
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Despite their strong performance in many domains, SSRL algorithms that enforce transformation
invariance are limited in that they do not support generic data types. Many well-known data
augmentation methods are tailored to specific modalities, and are restricted in their generality
across different domains. For instance, image rotation is not applicable in the tabular domain.

Beyond the issue of cross-modal applicability, a more subtle challenge emerges where even standard
augmentations clash with application-specific constraints. In tabular settings where relatively few op-
tions for augmentations are available, random noise addition or random swapping of features between
training examples can easily produce unrealistic examples. As a concrete example from particle
physics, consider energies and momenta of interacting particles collected experimentally [8]. Since
the incoming and outgoing energies are constrained by the laws of physics, only certain combinations
are possible to observe. Tabular augmentations would produce unphysical combinations, harming the
consistency of learned representations and leading to unpredictable failures on downstream tasks [35].
For time series with high periodicity, such as online monitoring data, random shifting augmentations
can create identical augmented views that are not useful for pretext tasks [17,51]

Instead of relying on transformation invariance, many self-supervised learning techniques involve
masking and reconstructing input data including masked image modelling [23,!47] for computer vision
and masked language modelling [[16, [32] for natural language processing. However, these methods
often require specific backbone architectures like transformers [41] to achieve good performance [6].

In this paper, we introduce a SSRL training scheme that neither requires domain-specific data
augmentations nor particular architectures as in masking approaches. Instead, the proposed learning
method is based on a surprising hypothesis that good data representations can be obtained by learning
to simultaneously reconstruct multiple randomly generated data projection functions. The hypothesis
comes from the conventional motivation of representation learning — capturing and extracting abstract
and valuable concepts that can support a range of downstream predictive tasks [[7, 27]]. In particular,
the downstream tasks could include arbitrary data projections. Formally, given random projection
functions G = {--- g®)(x) - - - } whose input domains are raw data features x € X', the motivation
above suggests that, for a good representation z of data x, there is another group of simple prediction
functions H = {---h(®)(z)--.} that can correctly predict the random function’s outputs. With
this insight, the representation learning task can be construed as a search for a combination of
representation z and prediction functions H that can reproduce random data projections. In short, we
conduct SSRL by learning from randomness (LFR).

The primary advantage of LFR is that random projection functions GG can easily be created for
any data modality. One straightforward instantiation is by taking a neural network with suitable
architecture for consuming the data, and randomly initializing its parameters. Hence, LFR applies
to all subfields of SSRL. Also, data augmentations are not used, so LFR avoids any concerns of
identical, unrealistic, or unsafe augmentations as discussed above.

We empirically evaluate the effectiveness of LFR on a wide range of representation learning tasks
within the tabular and time-series modalities where no standard pretext pipelines exist. The results
show that LFR outperforms both commonly used domain-agnostic SSRL algorithms as well as
domain-specific approaches that rely heavily on expert knowledge for their data augmentation
designs. The remarkable performance demonstrates that learning high-quality data representations
from randomness is a feasible and plausible alternative when the transformation invariance assumption
is hard to establish or enforce in a given application domain.

2 Background and Related Work

Self-supervised representation learning (SSRL) methods enable the extraction of informative and
compact representations from raw data without manual annotation or labelling. These methods rely
on large amounts of unlabeled data and pretext tasks to implicitly model the observed distribution and
optimize deep neural networks. Contrastive learning methods use heavy augmentation to generate
positive views — semantically similar examples which are optimized to have the same representation
as the original datapoint [15} 20,40, [11]]. To ensure the quality of learned representations, augmenta-
tions should be semantic-preserving [37, 16l]. However, finding suitable augmentations for different
application domains can be a challenging task, and researchers have invested considerable effort
into this area to enhance downstream performance. Augmentation strategies that work well for one



modality may not directly translate to others due to inherent differences, and the choice of suitable
augmentations can also be influenced by the specific application domain.

While masking approaches offer general applicability to all data modalities, the most effective
frameworks often rely on transformer-based backbones for optimal performance [30} 23| [14]. In this
work, we focus on a model-agnostic SSRL approach. Classic autoencoder-based methods provide an
alternative to SSRL without relying explicitly on transformation invariance [24} 143} 52]. However,
these methods tend to prioritize low-level reconstruction over capturing high-level abstractions
required for downstream tasks, resulting in suboptimal performance in practical applications [28].

Tabular SSRL methods are understudied in the tabular domain as designing effective semantic-
preserving augmentations is particularly challenging for structured data [49]. Unlike computer vision
tasks on photographic images, with tabular data small changes to individual features can drastically
change the content, and it is often difficult for a human to determine if two views should be considered
semantically equivalent. To generate positive views SubTab [38]] uses different feature subsets. More
recently, SCARF [3]] proposed to augment each record by corrupting a random subset of features.
Finally, STab [21] creates the contrastive views by imposing different regularization on the encoder
for the same input.

Time series Time series data often contains underlying patterns that are not easily identifiable
by humans, unlike images with recognizable features [29]]. Consequently, designing effective data
augmentation methods for time series data poses significant challenges and often requires domain
knowledge. For example, augmentations for wearable sensor signals include rotation to simulate
different sensor placements and jittering to simulate sensor noise [39]. Other researchers have
focused on bio-signals and introduced channel augmentations that preserve the semantic information
in the context [31}[13]]. Neighbourhood contrastive learning [48]] proposed leveraging patient identity
information in online patient monitoring and using near-in-time data sequences of the same patient as
semantically equivalent pairs. However, these augmentations are often specifically designed for the
dataset and downstream task [S1], and their performance may deteriorate when applied to other time
series data [[17]. Therefore, identifying the optimal augmentation pipeline for each dataset and task
requires extensive analysis [25]].

The current landscape of SSRL research highlights the need for a more versatile and effective approach
capable of addressing a wider range of modalities, applications, and architectures, especially the
understudied tabular and time-series modalities.

3 Representation Learning from Random Data Projectors

In this section, we present learning from randomness (LFR), an efficient and general SSRL algorithm.
We recap the representation learning problem setting as the following: given observed raw data
X ={---x; -}, where all data points share the same feature domain X', the representation learning
task is to learn a function fy(X) that produces a low-dimensional representation z; € Z for each
raw data input x;. The representation z; should carry useful information about x; such that for
an arbitrary downstream task g(X') it is possible to learn a simple prediction function h,(Z) that
replicates g(x;) as hy (fo(x;)) forall x; € X.

3.1 Pretext Task: Multi-objective Learning from Randomness

As mentioned in the problem statement above, the ultimate purpose of representation learning is to
support arbitrary downstream predictive tasks. In reality, there is usually a small subset of downstream
tasks which are considered important. It is not a priori clear that directly learning to predict purely
random tasks would lead to good representations for important tasks.

To demonstrate the possibility of learning from randomness, we propose the surprising pretext task
shown in Figure [I| The pretext task contains three components, namely a representation model
fo(X), a set of randomly generated data projection functions G' = {--- ¢®)(X)---}, and a set of
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simple predictors Hy = {---h,’(Z) - - } that aim to predict the outcome of each random projection
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Figure 1: Our proposed architecture for learning from randomness. An input x is encoded by fy into
a useful representation z, while also being fed to random projection functions g(*). Simple, learnable
predictor functions hff) try to match the outputs y*) from the projectors ¢(*), which is only possible
when z contains rich information about the input.

function respectively. Formally, we propose optimizing the high-level objective:
argmin 3 D |99 (x), B (folx)] + M (6) + Aa22(@), (1)
x,€EX k

where D[, -] is a divergence metric measuring the similarity between its inputs, the 2(-)’s denote
regularization terms, and the A\’s are the corresponding weights. To make this a non-trivial task, the

predictors h;k) should have limited capacity, such as being linear functions, or simple neural networks
with a few layers. This objective aligns with existing SSRL methods that use predictors [19}12].

Objective[I]is essentially a lower-bound of the maximum likelihood estimation (MLE) objective; we
(k)

%

Zi) p(z; | x;)dz;

aim to maximize the probability of observing data projections y

ZlogP(Yi | x;) = Zzlog/ » (ygk)
‘ ik Z;
S ZZ/ p(Zi | Xi)logp (ygk) ’ Zi) dz; = Zzlogp (ygk) ‘ Z; = fG(Xi)) ,
i k Zz; -

%

= ¢g™)(x;) given all datapoints,
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where p (z; | x;) is a Dirac delta distribution since the representation model is a deterministic function.

As an example of the connection between Objectives (I)) and (Z), when the p(ygk) | zi) are assumed
to be Gaussian distributions, the corresponding D in Objective|I|is the Euclidean distance. We discuss
other options for D below.

A straightforward training strategy for Objective|l|is joint training where we treat the representation
model fy and predictors Hg as a multi-objective autoencoder, updating all parameters in the same
backpropagation pass. However, in preliminary experiments this naive training strategy showed
fluctuating progress which prevented the model from converging to satisfactory solutions.

We tackle the training instability issue by adopting the classic Expectation-Maximization (EM)
method. Considering the MLE lower-bound (Objective [2]), optimizing the representation model fy
is an E-step that repositions the posterior distribution of data p(Z|X’) given fixed log-likelihood
estimation modules logp(ygk) | zi). For the M-step, the representation distribution is fixed and
we optimize the predictor heads Hg. Hence, in this work we train the proposed SSRL model by

alternating steps:

E-step: Optimize the representation model parameters 6 for one iteration
argmin 0 37D oM (), 1 (foloxi)) | + M1 (6), 3)
ik
M-step: Optimize the predictor model parameters ® for M iterations

argmin Y > D [g) (x:), b (fo(x:))] + 200 (@). @
® ik

Optimizing the predictor model for more iterations than the representation model brings the predictor
closer to its optimal performance with the latest representation model fy. Previous studies have
shown that optimizing the predictor to achieve optimality leads to improved performance [12,|19,136].



3.2 Divergence Measure: Batch-wise Barlow Twins

Now we return to options for the divergence D in Objective[I] While there are several common choices
of divergence used in machine learning such as Mean Squared Error (MSE), Cross Entropy (CE), or
the Contrastive [15] and Triplet [34] losses, they are often inadequate for enforcing identifications
between subtly different points as is crucial for representation learning tasks; MSE downweights the
importance of small errors, CE is ill suited for regression tasks, while the Contrastive and Triplet
losses introduce significant stochasticity.

The Barlow Twins loss [S0] has garnered much interest in the SSRL literature as it disentangles
learned representations through redundancy reduction. We also note its ability to scale to very
high-dimensional vectors [S0]. Thus, we introduce Batch-wise Barlow Twins (BBT), a variant that
measures representation differences between data instances from two sources, the random projector
¢*) and the predictor h(k), rather than disentangling the representation encoding. We define the BBT
loss as

2 2
k k
Lppr =3 3 [(1=e) +aY el )
P G#i
where the ¢;; are the entries of a cosine similarity matrix,

k y(k)TS’(‘k) k k k
o=ty = g (xy), § P = (fe(xi), ©)
(k) - (k)
‘yi H2 Yi H2

and ygk), yg’“ c R, Compared to the loss in [50]], Eq.has an extra summation over the ensemble

k. The main difference comes from the definition of the cosine similarity matrix; our cosine similarity
is an m X m matrix with m the batch size, whereas in Barlow Twins it is a d*) x d*) matrix.

3.3 Diversity Encouragement on Random Data Projectors

Learning from randomness aims to extract useful representations from random projection functions
g (X) € G which mimic arbitrary downstream tasks. In practice we create multiple data projections
by randomly initializing neural networks of various architectures. Functions generated this way
can often capture similar information to each other when diversity is not specifically encouraged,
which limits the generalization capabilities of the representations learned by fy. While increasing the
number of random projection functions could mitigate the diversity problem by brute force, such an
approach is computationally wasteful because it would maintain many similar projectors.

We propose a solution that picks K diverse projectors from N > K randomly generated candidates.
The underlying hypothesis is that one sufficiently large batch of data can reveal the behavioral
differences between candidate random projectors. Presuming there is a batch of data X € R™*, for
each of the N randomly generated projectors g(*) (X) € G we produce the normalized outputs

. . , . O]
YO = g®(x) /g (X)), Y® e R ©)
We then compute the cosine similarity over the batch of outputs for each projector as
AR — y(k)(y(k))'l', Ak ¢ gmxm ®)

By flattening the matrix A(*) and again normalizing, we obtain a vector a(¥) ¢ R™" %1 which acts as
the signature of the k’th projector with respect to the batch. Finally, to select K target models from
the NV candidates, we search for a subset that maximizes the following binary constraint optimization

problem involving matrices A made from K stacked vectors a(%),

argmax |det(B)| st B= AAT, A= [a(k) ’ k € [0,N], s = I,ZSk/ = K}, 9)
S k!

where the 1’s in the binary vector s € {0, 1} indicate the chosen projectors. While this problem
is known to be NP-hard, approximate methods such as the Fast Determinantal Point Process [[10]]
can find good solutions in reasonable time. It is worth noting that our diversity encouragement
solution does not involve gradient computations, and can be run once as a pre-processing step without
occupying computation resources during the SSRL training phase.

We summarize the full LFR algorithm in Appendix



4 Experiments and Evaluation

4.1 Datasets

We consider both time series and tabular data types in various domains to show the wide applicability
of learning from randomness. Datasets are further detailed in Appendix [B.1}

Time series We utilized two standard time-series datasets, Human Activity Recognition (HAR) [2]
and Epileptic Seizure Recognition [1]]. Both datasets were pre-processed using the same methods
as in TS-TCC [[L7]. As a larger scale test we also include the MIMIC-III dataset, a standard in the
medical domain for tasks involving electronic health record data. We utilized the pre-processed
version of the MIMIC-III Benchmark dataset [22], and focused on the length-of-stay task [48] which
is framed as a 10-class classification problem, where each class represents a different duration of stay.

Tabular We used three tabular UCI datasets in our experiments: Adult Income (Income) [26]], First
Order Theorem Proving (Theorem) [9]], and HEPMASS [4]. For Income, a binary classification
problem, we followed the data preprocessing steps in [38]]. The Theorem dataset is framed a a 6-class
classification problem. The much larger HEPMASS dataset is another binary classification task
which includes 7 million training and 3.5 million testing events, each with 27 features.

4.2 TImplementations

Evaluation All the downstream tasks in our study are treated as classification problems. To evaluate
the quality of the pre-trained representations, we employed supervised classifiers that are specific to
each dataset. For the MIMIC-III dataset we utilized a MLP classifier [48]. For tabular datasets, we
used logistic regression, similar to the approach in STab [21]]. For the remaining datasets, a linear
classifier was employed. We experimented with both downstream evaluation where the classifiers
were trained on frozen representations, and finetuning where the classifier and representation model
are jointly trained. For finetuning on the larger datasets MIMIC-III and HEPMASS, we chose a
semi-supervised approach where we randomly selected 10% of labeled data from these datasets,
and we used a subset of the baseline methods. These decisions were driven by the computational
resources required when dealing with extensive data and finetuning large representation models.
Conversely, for smaller datasets, we conducted finetuning using the complete set of available labeled
data, enabling us to evaluate the model’s performance across the entirety of the datasets.

Metrics were then computed on the test set. Accuracy is our primary metric, except for MIMIC-III
where we adopted linearly weighted Cohen’s Kappa as in [48]], with higher values indicating better
agreement. To ensure the robustness of our results, we conducted multiple random runs and report
the mean and standard deviation, using 5 runs for tabular datasets and 3 runs for time-series.

Model architectures Regarding the model architectures, we adopted similar backbone encoders as
previous works. For the HAR and Epilepsy datasets, we utilized the same 3-block convolutional layers
as TS-TCC [44]. For the MIMIC-III dataset, we employed the Temporal Convolutional Network used
by NCL [48]. For the Tabular datasets, we used 4-layer MLPs, following the approach in SCARF [3]].
To avoid domain-specific projector design, in each case the random projectors reuse the architecture
from the encoder, but are scaled down. Complete details are in Appendix [B.2]

Table 1: Baseline methods

Category Method Description
Autoencoder [33] Encoder/decoder with low dimensional latents trained via the reconstruction loss.
Domain-agnostic DIET [5] Self-supervised learning method that predicts the datum index as a pretext task.
DACL [42] Self-supervised learning method that uses mix-up as data augmentation across modalities.
Domain-specific SimCLR [11] Contrastive learning method with both positive and negative pairs.
augmentations  SimSiam [12] Self-supervised learning with Siamese networks and only positive pairs.
Time series TS-TCC [17] Contrastive learning method that uses a correlation-based similarity to capture temporal
relationships, and time-series augmentations to generate positive and negative views.
Tabular SCAREF [3] Adaptation of SimCLR to tabular domains, using random corruption for dual views.
STab [21] An augmentation-free framework for tabular self-supervised learning akin to SimSiam.
Positive pairs are created by different regularizations in the forward pass.
Supervised LogReg Supervised training with logistic regression.
P Supervised Supervised training with a classification layer added to the encoder used in other methods.
Ablation Random Init As an ablation baseline we report the accuracy using a randomly initialized encoder [17].




Baseline methods Table|l|summarizes all baselines used in our experiments. It is worth noting that
while our proposed framework LFR is domain-agnostic, popular SSRL methods such as SimCLR and
SimSiam require domain-specific augmentations to achieve optimal performance. Specifically, the
default augmentations used for view creation in SimCLR and SimSiam are designed for natural image
classification, and may not be suitable for other modalities. In our experiments with tabular datasets,
we compare our approach to SCARF [3], which is a version of SimCLR adapted to tabular data that
uses random corruptions as augmentations, as well as STab [21]] which is similar to SimSiam. For
more detailed information on the implementations and augmentations, please refer to Appendix [B.3]
and Information on the computing resources used is in Appendix

4.3 Performance Comparison

The performance of LFR and baselines across multiple modalities and domains using downstream
evaluation is shown in Table|2] Our experiments show that for time series and tabular data where
there are no standardized augmentation pipelines, LFR had the strongest performance among the
SSRL methods, outperforming other self-supervised learning methods in most cases including the
domain-agnostic ones such as DACL. For instance, on the HAR and Epilepsy datasets, LFR was
the best performing method, beating the time-series specific self-supervised learning method TS-
TCC. Similarly, for the Income and Theorem datasets, LFR outperformed the tabular data specific
self-supervised learning baselines SCARF and STab. Although on the HEPMASS dataset LFR was
not the best, it still performed well, comparable to the autoencoder and SCARF. Interestingly, for
the Income dataset, LFR even outperformed supervised training. For time series and tabular data,
augmentation-based methods like SimSiam tend to underperform. For example, SimSiam was worse
than a randomly initialized encoder in HAR and Income.

Table 2: Performance comparison across various application domains with downstream evaluation.
Results of the best self-supervised learning methods are in bold.

Time series Tabular
HAR Epilepsy MIMIC-III Income Theorem HEPMASS

Log Reg 57.5+Na 80.9+Nna  47.8+Na  84.8+NA 45.3+N4a 90.7+NA
Supervised  96.0+06 98.3+0.1 48.8+00 81.54+02 53.8+05 91.5+00
Random Init 80.7+23 89.1+01 42.4+11 83.1+02 44.9+08 84.3+1.3
Autoencoder 77.2+07 90.8+13 44.9+05 85.0+01 50.0+04 90.7+0.0
DIET 88.6+13 96.8 £03 33.8+52 82.2 +04 47.1 +o05 -

SimSiam 65.1+08 97.4+00 41.0+19 79.2+19 40.9+09 85.3+3.1

% SimCLR 87.8+04 97.4+02 44.1x0.1 - - -

§SCARF - - - 84.2+01 48.5 10 90.1x01

s STab - - - 84.2+03 50.7+07 83.6+17
TS-TCC 91.2+08 97.6+02 38.5+13 - - -
DACL 90.7+04 97.5+15 409+06 79.8+07 47.6+t10 88.7+038

LFR (Ours) 93.1+05 97.9+02 46.6+03 85.2+01 51.6+07 90.1+02

Table 3: Performance comparison across various application domains with finetuning. Results of the
best self-supervised learning methods are in bold.

Time series Tabular

HAR  Epilepsy MIMIC-III Income Theorem HEPMASS

Supervised 96.0 +0.6 98.3 +01 48.8 +00 81.5+0253.8+05 91.5+00
Autoencoder 93.9 +£13 95.1 +20 49.2 +06 85.2 +0.1 53.9 +05 90.8 +00
DIET 95.6 +05 97.8 01 484 +o01 852 +01 52.4 +09 -
SimSiam 93.4 +06 97.9 £02 494 +03 852 +01 52.5+08 90.7 00
SimCLR 937 +1.1 97.8 02 48.6 038 - - -
£ SCARF - - - 85.1 £02 53.8 +08 90.9 +00

ised

superv

? STab - - - 85.3 +02 53.0 £07 91.1 400
LFR 947 + 14 98.2 +02 49.6 01 85.3 +01 54.3 t04 90.8 +00




Finetuning results are shown in Table[3] Through the finetuning process, all methods exhibit more
comparable performance across the datasets. LFR still achieved the best performance on a majority
of the datasets we used, although with overlapping error bars to other methods in those cases.

Overall, these experimental results reflect our hypothesis — it is feasible to learn high-quality data
representations across all domains tested by predicting random data projections. LFR shows com-
paratively good performance on domains where semantic-preserving augmentations are difficult to
create.

4.4 Ablation Study

Embedding dimensions The dimensionality —a 16
of embeddings may have a strong effect on the
richness of learned representations. On the The-
orem dataset we evaluated the performance of
LFR and baseline SSRL approaches across la-
tent dimension sizes. Figure [2] shows that in-
creasing the latent dimension improved the ac-
curacy of each approach up to about 256. LFR
consistently outperformed all the other baselines
across all the latent dimension settings.

w

e 256 [~} 512]

u
o

/7 7 / 2
LTI T T T T[] =
ANNNNNNNNNNNG

IS\

Accuracy
»
o
=

[\ \

NSNS

[\ \

[ [ L / [/d
NN SNUNSNSNSN N 4 B
[N\ ol
01 11 1 1 | | -
ANNNNNNNNNNG
1
[ I

s

o
N\ 4
1/ /o

CARF STa

w
«

|

%)
o

imSiam Autoencoder DIET

=

LF

o

Figure 2: Effect of embedding dimension on LFR
and self-supervised learning baselines.

5 Conclusion and Future Work

This paper presents a novel self-supervised representation learning framework that is modality-
agnostic, application-agnostic, and architecture-agnostic. Our proposed framework utilizes random
projectors to learn representations from unlabelled data, demonstrating excellent performance across
various modalities and applications, particularly in situations where robust augmentation pipelines
are not yet established.

The LFR technique is best suited to situations where the data cannot be reasonably augmented (due
to the lack of domain knowledge). Although surprising, this situation occurs frequently in critical
application domains, such as healthcare as we have highlighted with the MIMIC-III dataset. For
general applications, however, if one knows the application domain well with adequate intuition
around sensible data augmentations, using contrastive-learning-based SSRL is still likely to outper-
form random projectors. Overall, we treat LFR as a great complement to SSRL literature to fill the
gap of data augmentation-free SSRL that satisfies the needs of many crucial applications.

While LFR encourages the use of SSRL across modalities and domains without the need for expert
knowledge to craft augmentations, the limited human input to the learning process may increase the
risk of sensitive features being misused, leading to privacy or fairness concerns. We recommend
human oversight of self-supervised methods to monitor for appropriate use of data.
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A Algorithm

We summarize the LFR algorithm in Algorithm [I] which uses the subroutine in Algorithm 2]

Algorithm 1 LFR: Learning From Randomness

Require: Dataset D = (z;);-,, number of random projectors K
Ensure: Encoder fj
1: Initialize encoder fy
2: Initialize 10 - K different random projectors and select K diverse projectors g, ..., g’ using
DPP as introduced in Section 33|

3: Initialize K predictors hj, ..., b, one for each projector.
4: for epochyy in training epochs do
5: for each mini-batch B do > Train encoder
6: Train-Network(B, fo, h’;, g’“)
7: Update parameters of fy with gradient descent using Lpgr as introduced in Section[3.2]
8: end for
9: for epoch,, in predictor epochs do
10: for each mini-batch B do > Train predictor
11: Train-Network(B, fy, h(’;, g’“)
12: Update parameters of all h’(; with gradient descent using LppT
13: end for
14: end for
15: end for

Algorithm 2 Train-Network subroutine

1: procedure TRAIN-NETWORK(DB, fs, h’;, ")

2 Compute representations: Z = fy(B)

3 for k = 1to K do

4 Compute output representations: h’(;(Z )

5: Compute representation from projector k: g*(2)
6 Compute loss LppT

7 end for

8: end procedure

B Implementation Details

B.1 Dataset Summary

Table ] provides a summary of all datasets used in our experiments, along with the corresponding
downstream tasks and evaluation metrics.

Table 4: Dataset description.

Dataset Modality Data Domain Train Size Test Size Downstream Task Metric

HAR Time series Mobile sensors 7352 2947 Multi-class classification (6) Accuracy
Epilepsy  Time series Brain EEG 9200 2300 Binary classification Accuracy
MIMIC-III Time series Online Monitoring 2,568,619 563,742 Multi-class classification(10) Cohen’s Kappa
Income Tabular Census 30162 15060 Binary classification Accuracy
Theorem  Tabular Logic Reasoning 3059 1530 Multi-class classification (6) Accuracy

HEPMASS Tabular Particle Physics 7,000,000 3,500,000 Multi-class classification (2) Accuracy
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Table 5: Details on LFR architectural parameters

Dataset Projectors Projector Initialization Encoder Architecture Projector Architecture
HAR/Epilepsy 6 Pytorch Default Three-block CNN Two-block CNN
Income/Theorem 6 Pytorch Default Four-layer MLP Two-layer MLP
HEPMASS 6 Pytorch Default Four-layer MLP Two-layer MLP
MIMIC-IIT 10 Pytorch Default Five-block temporal CNN Three-block temporal CNN

B.2 Neural Network Architectures

HAR/Epilepsy: For LFR, we used a three-block convolutional network from [44] [17] as the

)

representation model fy. For the predictors R , we used a single linear layer. For the random

projectors ¢), we adopted a similar architecture to the representation model but with slightly
decreased complexity, a two-block convolutional network with 16 and 32 channels, followed by two
sequential linear layers with a hidden dimension of 256. For all other self-supervised methods, we
used the same representation model for a fair comparison. For SimCLR [11]] and SimSiam [[L1], we
used the same predictors as LFR, and a 3-layer ReLU network of hidden dimension 512 as a projector.
The first two linear layers are followed by a batchnorm layer. To create the contrastive view for
SimCLR [11] and SimSiam [[L1]], we adopted the same augmentations as designed in TS-TCC [[17]].

MIMIC-III: For all methods, we followed the encoder structure from [48] as the representaion
model/encoder, with the exception that we used flattened temporal convolutional network (TCN)
features followed by a linear layer, which produced the embedding size of 64. We also disabled the
L2 normalization in the encoder. For the random projectors in LFR, we adopted a three-block TCN
with kernel size of 2, followed by a linear layer with output channel size of 64 for each layer. The
two-layer ReLU predictor is shared in LFR, SImCLR and SimSiam with a hidden dimension of 256.
We used the same projector and augmentation as in HAR/Epilepsy for SimCLR and SimSiam.

Income/Theorem: For LFR, we followed the setup in [21} 3] and used a 4-layer ReL.U network
with a hidden dimension of 256 as the representation model, with a single linear layer predictor.
The random projector networks had a similar architecture but were less complex, using a 2-layer
ReLU network with a hidden dimension of 256. For the contrastive baselines, we employed the same
encoder and predictor for a fair comparison, and followed [3]] by using a 2-layer ReLU network with
a hidden dimension of 256 as projectors. To generate the contrastive views, we used the SCARF [3]]
augmentation technique to randomly corrupt features with values sampled from their empirical
distribution, ensuring that our SimCLR baseline was identical to SCARF.

HEPMASS: For the HEPMASS dataset, we used the same network architecture as for the In-
come/Theorem datasets but with the output latent dimension of the encoder set to 16.

All supervised baselines use the same representation model as the SSL methods, with the final layer
being a linear classification layer. We summarize all architectural related settings of LFR in Table 3]

B.3 Details of Training Settings

Table [6] summarizes all the training settings used for LFR, while Table [7] outlines the evaluation
settings used for downstream tasks. We used a Logistic Regression classifier for all tabular datasets
including Income, Theorem, and HEPMASS, while for MIMIC-III we used a MLP network to
predict the length of stay following [48]]. For the remaining datasets, we followed prior works such as
TS-TCC [17], SimSiam [11], and BYOL [27]] by using a linear classifier for classification tasks.

Table 6: Details on LFR Training Settings

Dataset Optimizer Batch Size Learning Rate Optimizer Parameters  Epochs

HAR/Epilepsy Adam 128 3e-4 £=(0.9,0.999), wd=3e-4 Train epochs = 200, Predictor epochs = 5
Income/Theorem Adam 128 le-3 5=(0.9,0.999), wd=0 Train epochs = 100, Predictor epochs = 1
HEPMASS Adam 512 le-6 $=(0.9,0.999), wd=0 Train epochs = 20, Predictor epochs = 1
MIMIC-IIT Adam 4096 le-3 5=(0.9,0.999), wd=5e-4 Train steps = 600, Predictor steps = 5
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Table 7: Details on Linear Evaluation Settings of SSL methods

Dataset Optimizer Batch size Learning Rate Optimizer Parameters  Epochs
HAR/Eplipsey Adam 128 3e-4 $=(0.9,0.999), wd=3e-4 100
MIMIC-III Adam 4096 le-4 5=(0.9,0.999), wd=5e-4 300

Baseline training settings: All self-supervised baselines adopt the same training setting as LFR
unless stated otherwise. For DIET with MIMIC-III, we used batch size 512 and trained for 2000 steps
with 10 warmup epochs. We reserved 5000 epochs for training the autoencoder on MIMIC-IIT with
500 warmup epochs. For other self-supervised methods with MIMIC-III, we also added 60 warmup
epochs. We summarize the training settings of supervised baselines in Table 8]

Table 8: Details on Supervised Training Settings

Dataset Optimizer Batch size Learning Rate Optimizer Parameters Epochs Augmentations

HAR/Eplipsey Adam 128 3e-4 5=(0.9,0.999), wd=3e-4 500 None

Income/Theorem Adam 128 le-3 £=(0.9,0.999), wd=0 100 None

MIMIC-1II Adam 4096 5e-6 (3=(0.9,0.999), wd=5e-4 10 Same as SimCLR and SimSiam

B.4 Reproducibility Notes

TS-TCC: Our results for TS-TCC on the HAR and Epilepsy datasets had several discrepancies
with the values reported in the original TS-TCC paper [[17]. We discovered that in the official
implementation of TS-TCC, the input data was augmented once and then kept the same throughout
training, rather than being randomly augmented in each forward pass. We fixed this bug and were able
to achieve better results. Additionally, we increased the number of training epochs for our supervised
baseline, which also led to improved performance. Lastly, we noticed that in the original TS-TCC
implementation, the random initialization ablation was evaluated using a randomly initialized linear
classification head that was not trained, whereas we evaluated with a trained linear classification layer
and saw a significant increase in accuracy for this ablation.

STab: The original STab paper [21] did not provide information about the random DropConnect
ratio or training hyperparameters used in their experiments. In our implementation, we used the same
training hyperparameters as other SSL methods and tested DropConnect ratios of 0.1, 0.2, 0.4, 0.6,
and 0.8, with the results shown in Figure[3] We selected the best-performing ratio for each experiment
and reported the corresponding results. We ended up selecting 0.1 for Income and 0.8 for Theorem.

B.5 Computational Resources and Time Spent

The time series experiments with HAR and Epilepsy were conducted on a Tesla V100 GPU with 32
GB of memory, except for TS-TCC which was conducted on a TITAN V with 12 GB of memory.The
experiments took a total of 102 GPU hours, including all baseline experiments. The MIMIC-III
experiments were conducted with a NVIDIA A100 GPU with 40GB of memory, except for TS-TCC
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Figure 3: STab accuracy as a function of dropout rate
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which was again conducted on a TITAN V with 12 GB of memory, and cost 608 GPU hours, including
all baseline experiments. The tabular dataset experiments with Income, Theorem, and HEPMASS
were conducted on a NVIDIA TITAN V GPU with 12 GB of memory. The experiments took a total
of 70 GPU hours, including all baseline experiments.
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