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ABSTRACT

Lightweight neural networks, essential for on-device applications, often suffer
from a low-frequency bias due to their constrained capacity and depth. This lim-
its their ability to capture the fine-grained, high-frequency details (e.g., textures,
edges) that are crucial for complex computer vision tasks. To address this funda-
mental limitation, we perform the first systematic analysis of gating mechanisms
from a frequency perspective. Inspired by the convolution theorem, we show how
the interplay between element-wise multiplication and non-linear activation func-
tions within Gated Linear Units (GLUs) provides a powerful mechanism to se-
lectively amplify high-frequency signals, thereby enriching the model’s feature
representations. Based on these findings, we introduce the Gating Mechanism
Network (GmNet), a simple yet highly effective architecture that incorporates our
frequency-aware gating principles into a standard lightweight backbone. The effi-
cacy of our approach is remarkable: without relying on complex training strategies
or architectural search, GmNet achieves a new state-of-the-art for efficient models.

1 INTRODUCTION

Designing neural networks that are both highly accurate and computationally efficient is a central
challenge in modern vision task. Lightweight models are essential for on-device applications, but
their reduced capacity often limits their ability to capture the fine-grained details necessary for com-
plex recognition tasks. A growing body of research suggests this limitation stems from a spectral
bias, where standard neural network architectures preferentially learn simple, low-frequency global
patterns while struggling to capture high-frequency information corresponding to textures and edges
Rahaman et al. (2019); Tancik et al. (2020). This fundamental performance gap motivates the ex-
ploration of architectural innovations that can improve a model’s representational power without
sacrificing efficiency. This bias is particularly pronounced in efficient models whose limited capac-
ity hinders their ability to learn complex, high-frequency information. This limitation motivates our
analysis of Gated Linear Units (GLUs)—a computationally inexpensive mechanism already proven
effective in various high-performance models De et al. (2024); Liu et al. (2021); Gu & Dao (2023).
While their success is often attributed to adaptive information control, their impact on a network’s
spectral properties remains largely unexplored. We hypothesize that the element-wise multiplication
at the core of GLUs, which corresponds to convolution in the frequency domain, provides a direct
mechanism to modulate this spectral bias and enrich a model’s high-frequency learning.

To build intuition, we present an example that visually illustrates how GLUs alter a network’s re-
sponse to different frequency components of an image as shown in Fig. 1. We take a standard
convolution-based lightweight building block (the top one) and create a variant by incorporating
our proposed gating unit ( the bottom one). We first provide an input image decomposed into dif-
ferent frequency components from low to high. The visualizations show that the baseline model
primarily performs accurate on the low-frequency information, struggling capturing crucial textural
details which leads to an incorrect classification on the raw image. In sharp contrast, the model
with GLU demonstrates a more balanced spectral response, effectively learning from both low and
high-frequency components to form a richer representation. This simple experiment provides initial
illustration that gating mechanisms can directly counteract the low-frequency bias in many efficient
architectures.
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The mechanism enabling this enhanced spectral response is rooted in the convolution theorem:
element-wise multiplication in the spatial domain is equivalent to convolution in the frequency do-
main. This operation allows the network to create complex interactions between different frequency
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Figure 1: An illustration of how GLUs affect
neural networks in classifying different frequency
parts of an image. σ means activation function.
Starting with a raw image of a ‘Tiger cat’, we
break it down into different frequency bands. The
lowest frequency shows a recognizable outline,
the higher frequency retains the general shape of
the cat, but the highest frequency is almost un-
recognizable. Predictions of different components
are given in the left of different models. This ex-
ample demonstrates two points: 1. Although low-
frequency decomposed images closely resemble
the originals, accurate recognition of it does not
guarantee accurate recognition of the original im-
ages, and 2. GLUs improve the NNs’ ability to
learn higher frequency components effectively.

bands, enriching the feature hierarchy. How-
ever, as prior work has noted Wang et al.
(2020); Yin et al. (2019), naively amplifying
high frequencies can make a model overly sen-
sitive to noise. The key, therefore, is selec-
tive modulation. We contend that Gated Lin-
ear Units, by pairing the multiplication with a
data-dependent gate and a non-linear activation
function, provide exactly this control. They al-
low the model to learn when to integrate high-
frequency details and how much to trust them,
effectively amplifying useful signals while re-
maining robust to high-frequency noise.

To put these principles into practice, we intro-
duce the Gating Mechanism Network (GmNet),
a lightweight architecture designed to leverage
the spectral advantages of gating. By effec-
tively capturing information across the full fre-
quency spectrum, GmNet demonstrates that a
structurally-motivated design can lead to sub-
stantial practical gains. Compared to the ex-
isting methods Ma et al. (2024a;b) which also
involve gating designs, our design leverages a
self-reinforcing gating mechanism in which the
modulation and gating signals are derived from
a shared representation. This alignment ensures
that salient variations, particularly those associ-
ated with high-frequency components, are con-
sistently emphasized rather than suppressed. In
contrast, methods based on independent pro-
jections often act as generic filters, leading to
weaker sensitivity to subtle variations that are critical for classification. Consequently, our approach
is inherently more effective in preserving and enhancing high-frequency information. The results
are compelling: without relying on advanced training techniques, our GmNet-S3 model achieves
81.3% top-1 accuracy on ImageNet-1K. This surpasses EfficientFormer-L1 by a significant 4.0%
margin while simultaneously being 4x faster on an A100 GPU, showcasing a new state-of-the-art in
efficient network design.

We summarize the key contributions of this work as follows: (1) We provide the first systematic
analysis of Gated Linear Units (GLUs) from a frequency perspective, establishing a clear link be-
tween their core operations and their ability to modulate a network’s spectral response. (2) We
demonstrate that this spectral modulation can directly counteract the inherent low-frequency bias in
many lightweight architectures, enabling them to learn more balanced and detailed feature represen-
tations from both low and high frequencies. (3) Based on these insights, we introduce the Gating
Mechanism Network (GmNet), a simple yet powerful lightweight architecture that achieves a new
state-of-the-art in performance and efficiency, validating the practical benefits of our frequency-
based design principles.

2 RELATED WORK

Gated Linear Units. The Gated Linear Unit (GLU) Dauphin et al. (2017), and its modern variants
like SwiGLU Shazeer (2020), have become integral components in state-of-the-art deep learning
models. Originally developed for sequence processing, their ability to selectively control informa-
tion flow with minimal computational overhead has led to widespread adoption. In Natural Lan-
guage Processing, they are central to powerful Transformers such as Llama3 Dubey et al. (2024)
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and state-space models like Mamba Gu & Dao (2023), where they are lauded for improving training
dynamics. This empirical success has spurred their integration into computer vision architectures;
models like gMLP Liu et al. (2021) have shown that replacing self-attention with simple gating-MLP
blocks can yield competitive performance. However, the prevailing understanding of these mecha-
nisms remains largely functional—they are viewed as adaptive ’information gates.’ A critical gap
exists in the analysis of their impact on a network’s fundamental learning properties. Specifically,
no prior work has systematically analyzed GLUs from a frequency perspective or connected their
operational mechanism to the well-documented problem of low-frequency bias in vision models.

Frequency Learning. Analyzing neural networks from a frequency perspective has revealed a
fundamental learning dynamic known as spectral bias: networks of various types consistently learn
simple, low-frequency patterns much faster than complex, high-frequency details Rahaman et al.
(2019); Yin et al. (2019); Tancik et al. (2020). While initially explored in regression tasks, this
bias presents a significant bottleneck for image classification, particularly in lightweight models.
Due to their constrained capacity, these models struggle to capture the high-frequency information
corresponding to textures and edges, limiting their overall performance. Furthermore, the use of
high-frequency components involves a delicate trade-off; while they are critical for accuracy, they
can also make models more susceptible to high-frequency noise, impacting robustness Wang et al.
(2020). Crucially, while prior work has adeptly characterized these phenomena, it has largely fo-
cused on analysis and diagnosis. A clear gap remains in proposing and studying specific, efficient
architectural mechanisms that can actively manage this accuracy-robustness trade-off and explicitly
counteract spectral bias within a model’s design.

Lightweight Networks. The design of lightweight networks has predominantly followed two
streams: pure convolution-based architectures like MobileOne Vasu et al. (2023b) and RepVit Wang
et al. (2024), and hybrid approaches incorporating self-attention, such as EfficientFormerV2 Li et al.
(2022). While these lines of work have successfully pushed the frontiers of computational efficiency,
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Figure 2: Block design of different vari-
ants of ResNet18 where ⊙ represents
the element-wise product and σ means
the activation function.

they are built upon operations that are now understood
to have a strong intrinsic low-frequency bias Tang et al.
(2022); Bai et al. (2022). This foundational bias is of-
ten exacerbated in the lightweight regime; the aggres-
sive optimization for fewer parameters and lower FLOPs
further restricts a model’s capacity to learn essential
high-frequency information. Consequently, the current
paradigm for efficient network design contains a signif-
icant blind spot: it has optimized for computational met-
rics while largely overlooking the spectral fidelity of the
learned representations. This leaves a clear opening for
new design principles that explicitly aim to correct this
low-frequency bias from the ground up.

3 REVISITING GATING MECHANISMS FROM A FREQUENCY VIEW

We begin by defining the components associated with different frequency bands and outlining the
details of our experimental setup. With decomposing the raw data z into the high-frequency part zh
and the low-frequency part zl where z = zh + zl. Denoting a threshold r and an image x, we have
the following equations:

z = F(x), zh, zl = θ(z; r) (1)
where z = F (x) is the 2D Discrete Fourier Transform of x and θ(; r) denotes a thresholding func-
tion that separates the low and high frequency components from z according to a hyperparameter,
radius r. We select three vision backbones including ResNet-18 He et al. (2016), MobileNetv2 San-
dler et al. (2018) and EfficientFormer-v2 Li et al. (2023) as representations to demonstrate the draw-
backs of the CNN networks and transformer-based architectures on capturing the high frequency
information and how the gating mechanism improve the capability of learning high-frequency com-
ponents. Modifications to the network blocks of ResNet-18 are depicted in Fig. 2. We evaluate the
classification performance on different frequency components of the input images at each training
epoch. Changes in accuracy over time provide insights into the learning dynamics within the fre-
quency domain Wang et al. (2020). To avoid the occasionality, we calculated the average over three
training runs.
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Figure 3: Comparison among Res18, Res18-Ewp, Res18-Gate-ReLU6 and Res18-Gate-GELU. The
r represents the threshold of determining the boundary between low-frequency and high-frequency.
We plot the learning curves of Resnet18 and its variants for 100 epochs, together plotted with the
accuracy of different frequency components zi. We set r to 10. All curves of z are from the test set.
The legends can be found in the top of the figure. We also provide more results with different r and
different settings in the appendix.

3.1 EFFECT OF ELEMENT-WISE PRODUCT

Inspired by the convolution theorem, we first give an insight into why element-wise product can
encourage NNs to learn on various frequency components from a frequency view. The convolution
theorem states that for two functions u(x) and v(x) with Fourier transforms U and V ,

(u · v)(x) = F−1(U ∗ V ), (2)

where · and ∗ denote element-wise multiplication and convolution respectively, and F is the Fourier
transform operator defined as F [f(t)] = F (ω) =

∫ +∞
−∞ f(t)e−jωt dt. This indicates that element-

wise multiplication in the spatial domain corresponds to convolution in the frequency domain.

To see its implication more clearly, consider the simplest situation: the self-convolution of a func-
tion. If the support set of F(ω) is [−Ω,Ω], then the support set of F∗F(ω) will expand to [−2Ω, 2Ω].
In other words, self-convolution broadens the frequency spectrum. With this enriched frequency
content, neural networks have more opportunities to capture and learn from both high-frequency
and low-frequency components.

3.2 HOW ACTIVATION FUNCTION WORKS?

We begin by analyzing how an activation function’s smoothness influences the frequency charac-
teristics of the features it produces. There is a well-established principle in Fourier analysis that
connects a function’s smoothness to the decay rate of its Fourier transform’s magnitude. For a func-
tion f(t) that is sufficiently smooth (i.e., its n-th derivative f (n)(t) exists and is continuous), the
magnitude of its Fourier transform, |F (ω)|, is bounded and decays at a rate proportional to 1/|ω|n
for large ω. This is a direct consequence of the differentiation property of the Fourier transform:

F [f (n)(t)] = (jω)nF (ω), (3)

This property implies that the smoother a function is (i.e., the more continuous derivatives it has),
the more rapidly its high-frequency components decay.

Conversely, functions with discontinuities or sharp ”corners” where derivatives are undefined (such
as the kink in ReLU-like activations) are known to possess significant high-frequency energy. These
sharp features require a broad spectrum of high-frequency sinusoids to be accurately represented.
This leads to a Fourier transform that decays much more slowly. For example, a function with
a simple discontinuity will have a spectrum that decays only at a rate of 1/|ω|. Therefore, we
hypothesize that non-smooth activation functions will encourage the network to retain and utilize
more high-frequency information compared to their smooth counterparts like GELU and Swish,
which is infinitely differentiable.

To validate this hypothesis, we conduct an experiment to compare the frequency learning of a rep-
resentative smooth activation (GELU) against a non-smooth one (ReLU6) within a ResNet18 ar-
chitecture. As shown in Fig. 3, the model using the non-smooth ReLU6 activation consistently
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Figure 4: Comparison among different variants of MobileNetv2. Different architectures respond
differently to specific frequency component. To ensure an informative comparison, we select repre-
sentative frequency thresholds tailored to each model where we set r to 10. Additional results under
other threshold configurations and other based models are included in the supplementary material.

outperforms the GELU variant in learning from high-frequency components across different thresh-
olds. This result supports our hypothesis, illustrating a clear practical difference between these
two activation types. The superior performance of ReLU6 on high-frequency data suggests that
the slow spectral decay associated with non-smooth functions can be beneficial for tasks requir-
ing fine-grained detail. Conversely, the GELU variant shows a stronger relative performance on
low-frequency components, indicating its suitability for capturing broad, structural patterns. While
a more exhaustive study is needed, this experiment provides clear evidence for the link between
activation smoothness and a model’s spectral learning preferences.

4 GATING MECHANISM NETWORK (GMNET)

4.1 RETHINKING CURRENT LIGHTWEIGHT MODEL ARCHITECTURES FROM A FREQUENCY
PERSPECTIVE

Figure 5: GmNet architecture. Gm-
Net adopts a traditional hybrid archi-
tecture, utilizing convolutional layers to
down-sample the resolution and double
the number of channels at each stage.

Before introducing our proposed network, we first inves-
tigate the importance of capturing high-frequency infor-
mation in efficient architectures by modifying existing ef-
ficient models to incorporate Gated Linear Units (GLUs).
Specifically, we select one representative architecture: the
pure CNN-based MobileNetV2 Sandler et al. (2018). We
replace the activation functions in their MLP blocks with
a simple GLU. Detailed architectural modifications are
provided in the appendix.

As shown in Fig. 4, we present the testing accuracy
curves under the frequency threshold r = 10. Our re-
sults demonstrate that integrating GLUs improves clas-
sification accuracy on high-frequency components. No-
tably, this improvement in high-frequency classification
also correlates with a gain in overall performance. Fur-
thermore, we observe that using GELU as the activation
function within the GLUs enhances performance on low-
frequency components, though it has a relatively minor
effect on overall accuracy. These findings suggest that
effectively modeling high-frequency information is more
crucial for improving the performance of lightweight neu-
ral networks. It underscores the critical role of frequency-aware design in the lightweight networks.
Moreover, we also conduct similar experiments on the transformer-based model EfficientFormer-V2
Li et al. (2023) which can be found in the appendix.

4.2 ARCHITECTURE OF GMNET

To address the limitation of low-frequency bias for current lightweight network designs, our pro-
posed method named as GmNet integrates a simple gated linear unit into the block as illustrated in
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Fig. 9. GmNet offers both conceptual and practical advantages on encouraging the model to learn
from a broader range of frequency regions, especially the high-frequency domain.

GmNets employ an extremely streamlined model architecture, carefully designed to minimize both
parameter count and computational speed, making them particularly suitable for deployment in
resource-constrained environments. We incorporate two depth-wise convolution layers with ker-
nel sizes of 7 × 7 at the beginning and end of the block respectively to facilitate the integration of
low- and high-frequency information. At the core of the block, we have two 1×1 convolution layers
and a simple gated linear unit. We use the ReLU6 as the activation function.

GmNet uses a simplified GLU structure for two reasons: (1) to keep the model as lightweight as
possible, reducing computational load; and (2) ensuring that high-frequency signals can be better
enhanced without adding any additional convolutional or fully connected layers within the GLU.
Furthermore, our gate unit is more interpretable, aligning with our analysis of GLUs in the frequency
domain. Experimental results and ablation studies consistently demonstrate the superiority of our
model, validating its design in accordance with our GLU frequency domain studies. We also show
that the simplest structure achieves the optimal trade-off between efficiency and effectiveness.

5 EXPERIMENTS

In this section, we provide extensive experiments to show the superiority of our model and ample
ablation studies to demonstrate the effectiveness of components of our method.

5.1 RESULTS IN IMAGE CLASSIFICATION

Implementation details. We perform image classification experiments on the ImageNet-1K dataset,
Table 1: Comparison of Efficient Models on ImageNet-
1k. Latency is evaluated across various platforms.

Model Top-1 Params FLOPs Latency (ms)
(%) (M) (G) GPU Mobile

FasterNet-T0 Chen et al. (2023) 71.9 3.9 0.3 2.5 0.7
MobileV2-1.0 Sandler et al. (2018) 72.0 3.4 0.3 1.7 0.9
ShuffleV2-1.5 Ma et al. (2018) 72.6 3.5 0.3 2.2 1.3
EfficientFormerV2-S0 Li et al. (2023) 73.7 3.5 0.4 2.0 0.9
MobileNetv4-Conv-S Qin et al. (2024) 73.8 3.8 0.2 2.2 0.9
StarNet-S2 Ma et al. (2024a) 74.8 3.7 0.5 1.9 0.9
LSNet-T Wang et al. (2025) 74.9 11.4 0.3 2.9 1.8
GmNet-S1 75.5 3.7 0.6 1.6 1.0

EfficientMod-xxs Ma et al. (2024b) 76.0 4.7 0.6 2.3 18.2
Fasternet-T1 Chen et al. (2023) 76.2 7.6 0.9 2.5 1.0
EfficientFormer-L1 Li et al. (2022) 77.2 12.3 1.3 12.1 1.4
StarNet-S3 Ma et al. (2024a) 77.3 5.8 0.7 2.3 1.1
MobileOne-S2 Vasu et al. (2023b) 77.4 7.8 1.3 1.9 1.0
RepViT-M0.9 Wang et al. (2024) 77.4 5.1 0.8 3.0 1.1
EfficientFormerV2-S1 Li et al. (2023) 77.9 4.5 0.7 3.4 1.1
GmNet-S2 78.3 6.2 0.9 1.9 1.1

EfficientMod-xs Ma et al. (2024b) 78.3 6.6 0.8 2.9 22.7
StarNet-S4 Ma et al. (2024a) 78.4 7.5 1.1 3.3 1.1
SwiftFormer-S Shaker et al. (2023) 78.5 6.1 1.0 3.8 1.1
RepViT-M1.0 Wang et al. (2024) 78.6 6.8 1.2 3.6 1.1
UniRepLKNet-F Ding et al. (2024) 78.6 6.2 0.9 3.1 3.5
GmNet-S3 79.3 7.8 1.2 2.1 1.3

RepViT-M1.1 Wang et al. (2024) 79.4 8.3 1.3 5.1 1.2
MobileOne-S4 Vasu et al. (2023b) 79.4 14.8 2.9 2.9 1.8
FastViT-S12 Vasu et al. (2023a) 79.8 8.8 1.8 5.3 1.6
MobileNetv4-Conv-M Qin et al. (2024) 79.9 9.2 1.0 9.2 1.4
LSNet-B Wang et al. (2025) 80.3 23.2 1.3 6.2 3.6
EfficientFormerV2-S2 Li et al. (2023) 80.4 12.7 1.3 5.4 1.6
EfficientMod-s Ma et al. (2024b) 81.0 12.9 1.4 4.5 35.3
RepViT-M1.5 Wang et al. (2024) 81.2 14.0 2.3 6.4 1.7
LeViT-256 Graham et al. (2021) 81.5 18.9 1.1 6.7 31.4
GmNet-S4 81.5 17.0 2.7 2.9 1.9

adopting a standard input resolution of
224 × 224 for both training and evalua-
tion. We vary the block numbers, input
embedding channel numbers and chan-
nel expansion factors ‘ratio’ to build dif-
ferent sizes of GmNet. The details of
the setting of different variants of Gm-
Net can be found in the appendix. All
model variants are trained from scratch
for 300 epochs using the AdamW op-
timizer, starting with an initial learning
rate of 3 × 10−3 and a batch size of
2048. The supplementary materials pro-
vide a comprehensive overview of the
training setup. For performance assess-
ment, we convert our PyTorch models
into the ONNX format to measure la-
tency on a Mobile device (iPhone 14)
and a GPU (A100). Additionally, we
deploy the models on the mobile device
via CoreML-Tools to further evaluate la-
tency. Importantly, our training approach
does not incorporate advanced techniques
such as re-parameterization or knowledge
distillation. Results presented in Table 1
correspond to models trained without these enhancements.

Compared with the state-of-the-art. The experimental results are presented in Table 1. With-
out any strong training strategy, GmNet delivers impressive performance compared to many
state-of-the-art lightweight models. With a comparable latency on GPU, GmNet-S1 outper-
forms MobileV2-1.0 by 3.5%. Notably, GmNet-S2 achieves 78.3% with only 1.9ms on the
A100 which is a remarkable achievements for the models under 1G FLOPS. GmNet-S3 out-
performs RepViT-M1.0 and StarNet-S4 by 1.9% and 0.9% in top-1 accuracy with 1.1 ms and
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Figure 6: Trade-off between Top-1 ac-
curacy and latency on A100.

1.4 ms faster on the GPU latency, respectively. The im-
provements on the speed are over 30%. Additionally,
with similar latency, GmNet-S3 delivers a 1.7% improve-
ment on the accuracy over MobileOne-S4. GmNet-S4
achieves 2x faster compared to RepViT-M1.5 on the GPU
and it surpasses MobileOne-S4 of 2.1% under the simi-
lar latencies of both GPU and Mobile. LeViT-256 Gra-
ham et al. (2021) matches the accuracy of GmNet-S4 but
runs twice as slow on a GPU and 16 times slower on
an iPhone 14 The strong performance of GmNet can be
largely attributed to the clear insights of gating mecha-
nisms and simplest architectures. Fig. 6 further illus-
trates the latency-accuracy trade-off across different mod-
els. GmNet variants achieve substantially lower latency
compared to related works, while maintaining competi-
tive or superior Top-1 accuracy. More comparisons and
results can be found in supplementary.

5.2 ABLATION STUDIES

More studies on different activation functions. To further explore the effect of different
activation functions, we trained various GmNet-S3 variants on ImageNet-1k. As illustrated
in Fig. 9, we replaced ReLU6 with GELU, ReLU or remove the activation function. To
better reflect the differences between different models, we set the radii to a larger range/

Table 2: The accuracies of classifying the raw data and their
low-/high-frequency components under different activation
functions on ImageNet-1k. We gradually increase the radii
by a step of 12. This result is the average of five testings.

Activation Identity ReLU GELU ReLU6

Raw data 70.5 78.3 78.4 79.3

Frequency Low High Low High Low High Low High

r = 12 9.79 12.6 12.0 45.9 12.7 41.5 14.8 51.7
r = 24 38.1 1.7 38.6 13.5 40.0 9.4 41.6 12.1
r = 36 52.9 0.7 56.2 4.9 58.7 3.9 55.2 4.7
r = 48 63.2 0.5 64.5 2.3 66.1 2.1 64.4 2.5
r = 60 66.6 0.9 69.4 1.0 70.7 1.1 71.1 1.4

As shown in the Table. 2, we can find
that, the increases on classifying the
high-frequency components are sig-
nificant comparing models using and
not using the activation functions.
For example, comparing results of
‘Identity’ and ‘ReLU’ with the im-
provement of 11% on the raw data,
improvement on high-frequencies is
over 3 times on average. ‘GELU’
and ’ReLU’ shows advances on low-
/high- frequency components respec-
tively compared to each other. This
aligns with our understanding of how
different types of activation functions
impact frequency response. Notably, the closer performance of models with Identity and
ReLU/GELU at low frequencies suggests the low-frequency bias of convolution-based networks.

Moreover, even considering the improvements on the raw data, model using the ReLU6 shows
obvious increase on the high-frequency components compared to the model using GELU es-
pecially when we set r to 12, 24, 36. Compared to the model with ReLU, ReLU6 is more
effective in preventing overfitting to high-frequency components since it has better performance
on low-frequencies. Considering performances of ReLU, GELU, and ReLU6, we can observe that
achieving better performance on high frequencies at the expense of lower frequencies does not
necessarily lead to overall improvement, and vice versa. To get a better performance on the raw
data, it is essential to enhance the model’s ability to learn various frequency signals.

Comparison with existing methods from the frequency perspective. As addressed in Table 2,
a model should achieves strong performance across different frequency components to deliver a
better overall performance. However, both pure convolutional architectures and transformers ex-
hibit a low-frequency bias, as discussed in Bai et al. (2022); Tang et al. (2022). Therefore, en-
hancing the performance of a lightweight model depends on its ability to more effectively cap-
ture high-frequency information. To address the advantages of GmNet on overcoming the low-
frequency bias, we test some existing models on different frequency components of different
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Table 4: Comparison of different GLU designs for GmNet-S3 on ImageNet-1K. Here, LN, DW,
and Pool represent layer normalization, depth-wise convolution with a kernel size of 3, and average
pooling with a 3×3 window, respectively. We underline all notable scores in classifying the different
frequency decompositions. Considering gaps of overall performances, an improvement which is
remarkable should exceed 1.0. This result is the average of five testings. We also provide more
variants of GLUs in the supplementary materials.

GLUs Top-1 Params GPU r = 12 r = 24 r = 36 r = 48 r = 60
(%) (M) (ms) Low High Low High Low High Low High Low High

σ(x) · LN(x) 78.9 7.8 2.9 12.1 47.6 41.6 10.9 56.4 5.2 64.7 2.4 69.8 1.2
σ(x) · DW(x) 79.0 8.0 2.4 12.3 49.0 42.7 9.6 58.1 4.6 65.7 2.3 71.2 1.1
σ(x) · (x− Pool(x)) 78.6 7.8 2.4 14.2 50.1 42.3 10.8 55.8 4.9 63.8 2.7 69.9 1.3
σ(x) · FC(x) 79.2 20.2 3.6 10.8 51.4 39.6 8.7 52.6 4.4 62.9 3.4 69.9 2.4
σ(x) · x 79.3 7.8 2.1 14.8 51.7 41.6 12.1 55.2 4.7 64.4 2.5 71.1 1.4

Table 3: Comparison with recent methods. We test models
on the high-/low-frequency components on the ImageNet-
1k. The highest values of each columns are highlighted.

Methods Top-1 r = 12 r = 24 r = 36
(%) High Low High Low High Low

MobileOne-S2 Vasu et al. (2023b) 77.4 35.0 11.6 6.5 36.9 2.4 53.5
EfficientMod-xs Ma et al. (2024b) 78.3 45.4 12.9 9.4 40.6 3.5 54.6
StarNet-S4 Ma et al. (2024a) 78.4 43.3 13.8 9.4 41.3 3.4 54.8
GmNet-S3 79.3 51.7 14.8 12.1 41.6 4.7 55.2

radii. We select three kinds of typi-
cal lightweight methods for compari-
son including pure conv-based model
MobileOne-S2 Vasu et al. (2023b),
attention-based model EfficientMod-
xs Ma et al. (2024b) and model
also employing GLUs-like structure
StarNet-S4 Ma et al. (2024a). As
shown in Table 3, accuracies of low-
frequency components are close among different models considering the overall performance. How-
ever, it shows that GmNet-S3 clearly surpass the other models in high frequency components. For
example, GmNet-S3 has a 6.3% improvement compared to EfficientMod-xs when r = 12 and 2.7%
increase when r = 24. For StarNet, which also uses a GLU-like structure with dual-channel FC, it
struggles to effectively emphasize high-frequency signals. The simplest GLUs design can achieve a
better balance between the efficiency and the effectiveness.

Study on designs of the GLU. In GmNet, the gated linear unit adopts the simplest design, which
can be defined as σ(x) · x. For comparison, we modify the GLU design and conduct experiments
to test performance on raw data as well as on decompositions at different frequency levels. As
shown in the Table 11, the simplest design achieve the best performance both on effectiveness and
efficiency for the overall performance. For the decomposed frequency components, we observe
clear differences among various GLU designs. The GLU of σ(x) · x demonstrates significantly
higher accuracy in classifying high-frequency components. For example, for r = 12 and r = 24,
the GLU with σ(x) · x shows an improvement of 4.1 over the LN design and 2.5 over the DW
design. This indicates that the simplest GLU design is already effective at introducing reliable
high-frequency components to enhance the model’s ability to learn them. Designs aimed at
smoothing information show a notable improvement in some low-frequency components. For
instance, with similar overall performance, the GLUs using σ(x) ·DW(x) and σ(x) ·LN(x) achieve
better results on low-frequency components when the radii are set to 24, 36, and 48. The model
using a linear layer in GLUs offers performance comparable to GmNet-S3 and is adept at learning
low-frequency features. However, its placement at a high-dimensional stage is problematic. This
design choice leads to an excessive number of parameters and a significant increase in latency.
Moreover, depth-wise convolution is more effective than layer normalization in encouraging neural
networks to learn from low-frequency components which is also more efficient. For the design with
the average pooling, it does not perform better in classifying high-frequency signals. This may be
because x− pool(x) acts as an overly aggressive high-pass filter, which does not retain the original
high-frequency signals in x well and instead introduces more high-frequency noise.

Bandwidths analysis of convolution kernels. As discussed in the Tang et al. (2022), the convo-
lution layer may play roles of ’smoothing’ the feature which means it has a low-frequency bias.
Experiments on studying weights of the convolution layer is insightful to give more evidences
of how GLUs effect the learning of different frequency components Wang et al. (2020); Tang
et al. (2022); Bai et al. (2022). In this paper, we propose using the bandwidths of convolution
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Figure 7: The histogram illustrates the distribution of bandwidths of convolution kernels. Band-
widths represents the capability of a convolution kernel for capturing various frequency informa-
tion. We use weights of the convolution layer which under the GLU in the first block (left) and the
last block (right) of the GmNet-S3. All modals are trained on the raw data of the ImageNet-1k. In
general, the further the distribution shifts to the right, the stronger the convolutional kernel’s ability
to capture signals of different frequencies.

kernels to represent their ability of responding to different frequency components. Specifically,
a wider bandwidth indicates that the kernel can process a broader range of frequencies, allowing
it to capture diverse frequency components simultaneously and thereby preserve rich information
from the feature. As illustrated in Figure 7, the distributions of the ReLU model suggest that its
convolution kernels tend to focus on a narrow range of frequency components leading to relatively
lower bandwidths. It indirectly reflects an overemphasis on high-frequency components. Although
the model using GELU exhibits a better distribution in the top convolutional layers, it still has a
low-frequency bias, leading to a distribution shift in the bottom convolutional layers. Compared to
other activations, the enhanced bandwidth distribution of the model using ReLU6 demonstrates bet-
ter generalization for this task. The properties of the convolution kernels align with results in Table 2.

Quantitative spectral evidences. To further explore the effect of different activation
functions, we provide the quantitative spectral evidence. Based on the GmNet-S3 vari-
ants, we computed high/low-frequency energy ratios across multiple layers and model vari-
ants as shown in Table 5. Firstly, we extract the layers before/after the gate and com-
pute their high/low-frequency energy ratios to show the spectral changes. Also, to demon-
strate how different activation functions affect the model’s frequency response, we com-
pute the high/low-frequency energy ratios of the first DW-Conv layers in each stages.

Table 5: High/Low Frequency Ratio Comparison. We com-
puted the spectral changes from the layer before to the layer
after the gate which are defined as f and g respectively. We
also compute the high/low-frequency energy ratios of the
first 7×7 DW-Conv layers of each stage.

High/Low Frequency Ratio Changes before/after the gate variants

Stage Layer Pair ReLU6 (H/L) GELU (H/L) ReLU (H/L)

0.1 f → g 0.1195 → 0.1200 0.0575 → 0.0040 0.5172 → 0.5674
1.1 f → g 0.0989 → 0.1429 0.0423 → 0.0022 0.1422 → 0.1751
2.1 f → g 0.0386 → 0.0706 0.0252 → 0.0013 0.0018 → 0.0030
3.1 f → g 0.0019 → 0.0281 0.0106 → 0.0003 0.0032 → 0.0341

High/Low Frequency Ratio Comparison at DW-Conv layers

Stage Layer GELU (H/L) ReLU (H/L) ReLU6 (H/L)

0.1 1st DW-Conv 0.1203 1.1553 0.7057
1.1 1st DW-Conv 0.0695 0.3040 0.2452
2.1 1st DW-Conv 0.0381 0.0024 0.0697
3.1 1st DW-Conv 0.0057 0.0088 0.0142

We define the low frequencies as
the central 1/4 region of the 2D
spectrum. Table 5 shows that a con-
sistent spectral pattern distinguishing
smooth and non-smooth activations.
For GELU, the transition from f to g
typically increases the low-frequency
response, and across all stages GELU
yields the lowest high/low ratios.
This aligns with its smooth func-
tional form, which naturally biases
the network toward low-frequency
representations. In contrast, ReLU
and ReLU6 systematically amplify
high-frequency components. In the
early stages (Stage 0 and 1), ReLU
exhibits the strongest high-frequency
response, reflecting its non-smooth activation behavior and its tendency to preserve or enhance
sharp transitions. In deeper layers (Stage 2 and 3), ReLU6 produces the highest high/low ratios,
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suggesting that its clipped nonlinearity becomes more influential as depth increases—potentially
explaining why the ReLU6-based model obtains the best overall performance. These effects are
stable across stages, blocks, and models, and they directly support our hypothesis: smooth activa-
tions such as GELU favor low-frequency features, whereas non-smooth activations (ReLU/ReLU6)
amplify high-frequency content. This yields a clear falsifiable prediction—if a smooth activation
were ever to systematically exceed ReLU/ReLU6 in high-frequency ratios under comparable
settings, our hypothesis would be invalidated—which strengthens the explanatory robustness of the
spectral analysis presented in Sec. 3.2.

Contribution breakdown. We show the ablation study of different block designs and adjust the

Table 6: Contribution breakdown under matched FLOPs and
parameters (mean ± std).

Variant Params (M) FLOPs (G) Top-1 Acc (%)

Baseline 7.82 1.24 71.5 ± 0.2
+ 7×7 DWConv 7.82 1.28 78.1 ± 0.1
+ Gate (Identity) 7.82 1.24 69.2 ± 0.3
+ Gate (ReLU) 7.82 1.24 78.0 ± 0.2
+ Gate (GELU) 7.82 1.24 77.9 ± 0.1
+ Gate (ReLU6) 7.82 1.24 78.5 ± 0.1
+ ReLU6 7.82 1.24 77.9 ± 0.1
Full GmNet 7.82 1.24 79.2 ± 0.1

dimensions/number of blocks under
strictly matched FLOPs, parameter
count, and training settings, and
report the mean ± std over three
random seeds. We replace the 7×7
dwconv with a linear layer and
replace the GLU with a ReLU as the
baseline block. The results are shown
in Table C. Overall, Table demon-
strates that the performance gains
introduced by gating mechanism are
distinct improvements beyond what
other components alone can offer.

Downstream tasks. We further provide the results of downstream tasks of Ob-
ject Detection, Instance Segmentation and Semantic Segmentation. Firstly, we con-
ducted experiments on GmNet-S3 on MSCOCO 2017 with the Mask RCNN

Table 7: Object detection & Instance segmentation& Semantic seg-
mentation. The latency is tested on iPhone 14 by Core ML Tools.

Backbone Latency↓ Object Detection↑ Instance Segmentation↑ Semantic ↑
(ms) APbox APbox

50 APbox
75 APmask APmask

50 APmask
75 mIoU

EfficientFormer-L3 12.4 41.4 63.9 44.7 38.1 61.0 40.4 43.5
RepViT-M1.5 6.9 41.6 63.2 45.3 38.9 60.5 41.5 43.6

GmNet-S3 5.2 42.2 63.4 46.7 40.1 61.2 42.9 44.6

framework for object
detection and instance
segmentation. Our method
shows better performance
compared to the existing
methods RepViT-M1.5
Wang et al. (2024) and
EfficientFormer-L3 Li
et al. (2022) with better efficiency in terms of latency, APbox and APmask under similar model
sizes. Specifically, GmNet-S3 outperforms RepViT-M1.5 significantly by 2.4 APmask

75 and 1.4
APbox

75 . Meanwhile, GmNet-S3 has 1.7 ms faster on the Mobile latency and more than 2 times faster
than EfficientFormer-L3. For the semantic segmentation, we conduct experiments on ADE20K to
verify the performance of GmNet-S3. Following the existing methods, we integrate GmNet into the
Semantic FPN framework. With significant improvements on the speed, GmNet-S3 still match the
performance on semantic segmentation task with RepV-T-M1.5 and EfficientFormer-L3.

6 CONCLUSION

This paper tackled the prevalent low-frequency bias in lightweight networks through a novel
frequency-based analysis of gating mechanisms. We found that in a Gated Linear Unit (GLU),
element-wise multiplication introduces valuable high-frequency information, while the paired acti-
vation function provides crucial control to filter for useful signals over noise. Our resulting model,
the Gating Mechanism Network (GmNet), validates this approach by setting a new state-of-the-
art in efficient network design. This work demonstrates that a frequency-aware methodology is a
promising path toward creating future models that are both efficient and representationally robust.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 PSEUDO-CODES OF MODEL ARCHITECTURES

In our modified ResNet18, featured in Fig. 2, we adjust the activation function as the different
variants. As an example, we provide the pseudo-codes of Res18-Gate-ReLU in the Algorithm 1

Algorithm 1 Pseudo-codes of Res18-Gate-ReLU

def Block(x, in planes, planes)
out = Conv2d(x, in planes, planes, 3, 1, 1)
out = BatchNorm2d(x)
out = ReLU(out) * out
out = Conv2d(out, planes, planes, 3, 1, 1)
out = BatchNorm2d(out)
out += self.shortcut(x)
out = ReLU(out)
return out

For the proposed GmNet, featured in Fig. 4, we provide the pseudo-code of GmNet in the Algorithm
2. Also, for ease of reproduction, we include a separate file in the supplementary materials dedicated
to our GmNet.

Algorithm 2 Pseudo-codes of GmNet

def Block(x, dim, mlp ratio)
input = x
x = DWConv2d(x, dim, dim, 7, 1, 3, group=dim)
x = BatchNorm2d(x)
x = Conv2d(x, dim, mlp ratio*dim, 1)
x = ReLU6(x) * x
x = Conv2d(x, mlp ratio*dim, dim, 1)
x = BatchNorm2d(x)
x = DWConv2d(x, dim, dim, 7, 1, 3, group=dim)
x = input + drop path(layer scale(x))
return x

A.1.2 TRAINING RECIPES

We first provide the detailed training settings of variants of ResNet18 in Table 9.

A.1.3 GMNET VARIANTS

We provide the setting of variants of GmNet in Table. 8.

Variant C1 depth ratio Params FLOPs
GmNet-S1 40 [2, 2, 10, 2] [3, 3, 3, 2] 3.7 M 0.6 G
GmNet-S2 48 [2, 2, 8, 3] [3, 3, 3, 2] 6.2 M 0.9 G
GmNet-S3 48 [3, 3, 8, 3] [4, 4, 4, 4] 7.8 M 1.2 G
GmNet-S4 68 [3, 3, 11, 3] [4, 4, 4, 4] 17.0 M 2.7 G

Table 8: Configurations of GmNet. We vary the embedding width, depth, and gating ratio to con-
struct different model sizes of GmNet.

We also provide a detailed training configures of GmNet in this section as shown in the Table 10.
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config value
image size 32
optimizer SGD
base learning rate 0.1
weight decay 5e-4
optimizer momentum 0.9
batch size 128
learning rate schedule cosine decay
training epochs 100

Table 9: Res18 variants training setting

config value
image size 224
optimizer AdamW
base learning rate 3e− 3
weight decay 0.03
optimizer momentum β1, β2 = 0.9, 0.999
batch size 2048
learning rate schedule cosine decay
warmup epochs 5
training epochs 300
AutoAugment rand-m1-mstd0.5-inc1
label smoothing 0.1
cutmix 0.4
color jitter 0.
drop path 0.(S1/S2), 0.02(S3/ S4)

Table 10: GmNet training setting

A.2 MORE GLUS DESIGNS.

In this section, we present additional block designs to demonstrate the efficiency and effectiveness
of our proposed architecture. As shown in Table 11, we conducted experiments incorporating fully
connected (FC) layers into the Gated Linear Units (GLUs). Adding an extra FC layer to one branch
of the GLUs may slightly improve performance. However, this modification significantly increases
the number of parameters and reduces the model’s latency.

Moreover, this enhanced architecture does not perform better in classifying different frequency com-
ponents. The reason is that features processed by an FC layer cannot effectively emphasize various
frequency components. While adding more parameters and employing different training methods
might enhance the capability to learn different frequency components, in lightweight models, the
simplest GLU design often delivers better performance. This observation is consistent with findings
from many recent studies on lightweight models.

A.3 MORE COMPARISONS OF THE MAIN RESULTS.

We provide more comparisons of the main results in Fig. 8. We plot a larger latency-acc trade-off
figure to include more methods including EdgeViT, MobileNetV2 and GhostNet.

A.4 RESULTS ON CUB-100.

We evaluated GmNet-S1 on the CUB-100 dataset. The results are competitive, as shown in Table 12.
Compared to ShuffleNet-V2, GmNet-S1 achieves better performance with a smaller model size.
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Figure 8: Top-1 accuracy vs Latency on A100. Our models have significantly smaller latency com-
pared to related works.

Table 11: Comparison of different GLU designs for GmNet-S3 on ImageNet-1K.

GLUs Top-1 Params GPU r = 12 r = 24 r = 36 r = 48 r = 60

(%) (M) (ms) Low High Low High Low High Low High Low High

σ(x) · FC(x) 79.2 20.2 3.6 10.8 51.4 39.6 8.7 52.6 4.4 62.9 3.4 69.9 2.4
σ(FC(x)) · x 79.6 20.2 3.4 9.4 48.9 35.0 9.1 51.1 3.6 62.1 3.1 68.7 2.4
σ(x) · x 79.3 7.8 2.1 14.8 51.7 41.6 12.1 55.2 4.7 64.4 2.5 71.1 1.4

A.5 PERFORMANCE WITH SWIGLU AND SILU

We have conducted experiments with the SiLU variant on CIFAR-10 to illustrate the learning dy-
namics in Fig. 14. Following the reviewer’s advice, we adapted both SwiGLU and SiLU to GmNet-
S3 and trained the models under the same settings. The results in Table 13 show that both activations
improve performance compared to the baseline configuration, which removes activations inside the
GLU. However, their gains remain consistently smaller than those achieved by our proposed design,
confirming that the proposed GmNet block is better aligned with the frequency characteristics and
architectural constraints of lightweight models.

A.6 PERFORMANCE OF CHANGING RELU6 TO RELU.

Table 14 shows the performance change when replacing ReLU6 with ReLU across multiple GmNet
variants. The degradation is consistent across all model sizes.

A.7 STUDIES ON ALIASING AND ROBUSTNESS

We train Res18-Gate-ReLU and Res18-Gate-GELU on CIFAR-10 following the setting of ? to
show how different activation functions affect robustness. We conducted an adversarial robustness
ablation under PGD attacks. As shown below, the ReLU-based GLU—which emphasizes higher-
frequency components—exhibits slightly lower PGD accuracy:
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Variant Params (M) Top-1 Acc (%)
ShuffleNet-V2 3.5 76.0
GmNet-S1 3.1 81.5

Table 12: Results on CUB-100.

Model / Activation Top-1 Acc (%)
Baseline (Identity) 70.5
+ SiLU 77.9
+ SwiGLU 77.2
+ Proposed (ReLU6-GLU) 79.3

Table 13: Results of using SiLU and SwiGLU in GmNet-S3.

• Res18-Gate-ReLU: 45.7% PGD accuracy
• Res18-Gate-GELU: 46.7% PGD accuracy

Clean accuracy remains similar for both variants (82.2% vs. 82.8%), but the ∼1% drop in PGD
robustness for the ReLU gate is consistent with prior findings that stronger high-frequency reliance
increases vulnerability to aliasing and adversarial perturbations.

A.8 EXPERIMENTS ON CONVNEXT

To show the generalization of gating structure, we adapted our GLU to ConvNeXt-Tiny and trained
the model using the same setting as GmNet on ImageNet-1k. As shown in Table 15, GLU improves
the performance without introducing any additional computational cost.

The improvement is smaller compared to GmNet, which may result from the fact that large CNNs are
less affected by activation-induced frequency bias. Block design should be architecture-dependent.

A.9 MORE RESULTS ON EFFORMERV2 AND MOBILENETV2.

Figure 9: The illustration of modifications of MobileNetV2 and EfficientFormer-V2.

We first show the illustration of the modifications for both models in . Moreover, we plot the testing
curves with different settings of thresholds. As shown in Fig. 13, the overall performance trend is
consistent with the charts and figures presented in the main text. The model using ReLU6 shows
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Variant ReLU6 → ReLU
GmNet-S1 75.5 → 74.7
GmNet-S2 78.3 → 77.4
GmNet-S3 79.3 → 78.3
GmNet-S4 81.5 → 80.5

Table 14: Performance degradation when replacing ReLU6 with ReLU.

Model Top-1 Acc (%) Params (M) FLOPs (G)
ConvNeXt 82.5 28.6 4.46
ConvNeXt + GLU 83.0 28.6 4.46

Table 15: Comparison between ConvNeXt-Tiny and its GLU-enhanced variant.

better performance on the high-frequency components where the overall performance also surpasses
other models. Meanwhile, the model using GELU performs better on low-frequencies. The extra
results demonstrate the effect of GLU on helping model learning various frequency information and
the improvements on high-frequency information have more impact on the final performance.

A.10 EXTRA EXPERIMENTS ON GATING MECHANISMS.

In this section, we present additional experimental results demonstrating how different activation
functions affect frequency learning. Firstly, we have conducted experiments with different settings
of r of Fig. 3 in the main paper. We have set r to {4, 7} respectively. The results are shown in Fig.,
the performances are aligned with our analysis in Sec. 3 which indicates that the results shown in
Fig. 3 are not accidental.

Specifically, we conduct experimearents using another smooth activation function, Swish (SiLU),
and a non-smooth function, ReLU6.

As shown in Figures 14a and 14b, ReLU6 performs similarly to GELU. Although ReLU6 may intro-
duce more high-frequency components, it does not perform as well as ReLU for two main reasons:
(1) ReLU6 caps the activation values. It can reduce the model’s sensitivity to high-frequency com-
ponents where those components are often associated with higher activation values. (2) The use of
low-resolution images can adversely affect the performance in classifying high-frequency compo-
nents, as finer details are lost, making it harder for the model to learn these features. Figures 14c and
14d present comparisons between SiLU (Swish) and ReLU, as well as between SiLU and GELU,
respectively. The Res18-Gate-SiLU performs better on lower-frequency components, specifically in
the range r ∈ (0, r1). This indicates that SiLU has a greater smoothing effect on the information,
encouraging the model to learn more effectively from lower frequencies.

Moreover, we investigated the impact of different training strategies to understand their effects on
model performance. Specifically, as plotted in the Fig. 15, we replaced the optimizer with Adam,
setting its learning rate to 0.001. While the training curves showed noticeable variations compared
to the baseline setup, the overall performance differences among the model variants remained con-

Figure 10: Additional results under different threshold configurations of different variants of
ResNet18.
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Figure 11: Additional results under different threshold configurations of different variants of Mo-
bileNetv2.
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Figure 12: Additional results under different threshold configurations of different variants of
Efficientformer-V2.

Figure 13: Additional results under different threshold configurations of different variants of Mo-
bileNetv2 and EfficientFormer-v2 (Eformerv2).
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(a) Comparison between Res18-Gate-GELU and Res18-Gate-ReLU6.

(b) Comparison between Res18-Gate-ReLU and Res18-ReLU6.

(c) Comparison between Res18-Gate-GELU and Res18-Gate-SiLU.

(d) Comparison between Res18-Gate-ReLU and Res18-Gate-SiLU.

Figure 14: Learning curves of Resnet18 and its variants for 100 epoch. The radii are set to
{0, 6, 12, 18,+∞}

sistent. This consistency indicates that the observed behaviors are robust to changes in optimization
strategies.

We also conduct experiments on setting the redii to different sets. As shown in Figs. 16 and 17, we
set radii to [0, 4, 8, 12,+∞] and [0, 8, 16, 24,+∞] respectively. When the frequency intervals are
too small, the differences between the methods become less pronounced, especially in the lower-
frequency components. When the frequency intervals are too large, all models struggle to classify
higher-frequency components. Although differences between models become more pronounced in
the lower-frequency components, such as between GELU and ReLU activations, to better understand
the training dynamics, it is necessary to examine the differences in the high-frequency components
as well. Therefore, we decide to display the results of setting radii to [0, 6, 12, 24,+∞] in the main
body of the paper to have a better understand of the training dynamic of different variants. These re-
sults provide valuable insights into the functionality of the gating mechanisms. They suggest that the
interaction between the element-wise product and the activation functions is a general phenomenon.

A.11 THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT for polishing grammar and improving readability. All research ideas and analyses
were conducted by the authors, who take full responsibility for the content.
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(a) Comparison between Res18 and Res18-Ewp.

(b) Comparison between Res18-Gate-ReLU and Res18-Ewp.

(c) Comparison between Res18-Gate-ReLU and Res18-Gate-GELU.

Figure 15: Learning curves of Resnet18 and its variants for 100 epochs with optimizer of Adam.
The learning rate is set to 0.001. Radii are set to {0, 6, 12, 18,+∞}

(a) Comparison between Res18 and Res18-Ewp.

(b) Comparison between Res18-Gate-ReLU and Res18-Ewp.

(c) Comparison between Res18-Gate-ReLU and Res18-Gate-GELU.

Figure 16: Learning curves of Resnet18 and its variants for 100 epochs with optimizer of SGD. Radii
are set to {0, 4, 8, 12,+∞}. When the frequency intervals are too small, the differences between
the methods become less pronounced, especially in the lower-frequency components. However, it
remains evident that the different variants have distinct effects on learning the various frequency
components.
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(a) Comparison between Res18 and Res18-Ewp.

(b) Comparison between Res18-Gate-ReLU and Res18-Ewp.

(c) Comparison between Res18-Gate-ReLU and Res18-Gate-GELU.

Figure 17: Learning curves of Resnet18 and its variants for 100 epochs with optimizer of SGD.
Radii are set to {0, 8, 16, 24,+∞}. When the frequency intervals are too large, all models struggle
to classify higher-frequency components. Although differences between models become more pro-
nounced in the lower-frequency components, such as between GELU and ReLU activations, to better
understand the training dynamics, it is necessary to examine the differences in the high-frequency
components as well.
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