
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GMNET: REVISITING GATING MECHANISMS FROM A
FREQUENCY VIEW

Anonymous authors
Paper under double-blind review

ABSTRACT

Lightweight neural networks, essential for on-device applications, often suffer
from a low-frequency bias due to their constrained capacity and depth. This lim-
its their ability to capture the fine-grained, high-frequency details (e.g., textures,
edges) that are crucial for complex computer vision tasks. To address this funda-
mental limitation, we perform the first systematic analysis of gating mechanisms
from a frequency perspective. Inspired by the convolution theorem, we show how
the interplay between element-wise multiplication and non-linear activation func-
tions within Gated Linear Units (GLUs) provides a powerful mechanism to se-
lectively amplify high-frequency signals, thereby enriching the model’s feature
representations. Based on these findings, we introduce the Gating Mechanism
Network (GmNet), a simple yet highly effective architecture that incorporates our
frequency-aware gating principles into a standard lightweight backbone. The effi-
cacy of our approach is remarkable: without relying on complex training strategies
or architectural search, GmNet achieves a new state-of-the-art for efficient models.

1 INTRODUCTION

Designing neural networks that are both highly accurate and computationally efficient is a central
challenge in modern vision task. Lightweight models are essential for on-device applications, but
their reduced capacity often limits their ability to capture the fine-grained details necessary for com-
plex recognition tasks. A growing body of research suggests this limitation stems from a spectral
bias, where standard neural network architectures preferentially learn simple, low-frequency global
patterns while struggling to capture high-frequency information corresponding to textures and edges
Rahaman et al. (2019); Tancik et al. (2020). This fundamental performance gap motivates the ex-
ploration of architectural innovations that can improve a model’s representational power without
sacrificing efficiency. This bias is particularly pronounced in efficient models whose limited capac-
ity hinders their ability to learn complex, high-frequency information. This limitation motivates our
analysis of Gated Linear Units (GLUs)—a computationally inexpensive mechanism already proven
effective in various high-performance models De et al. (2024); Liu et al. (2021); Gu & Dao (2023).
While their success is often attributed to adaptive information control, their impact on a network’s
spectral properties remains largely unexplored. We hypothesize that the element-wise multiplication
at the core of GLUs, which corresponds to convolution in the frequency domain, provides a direct
mechanism to modulate this spectral bias and enrich a model’s high-frequency learning.

To build intuition, we present an example that visually illustrates how GLUs alter a network’s re-
sponse to different frequency components of an image as shown in Fig. 1. We take a standard
convolution-based lightweight building block (the top one) and create a variant by incorporating
our proposed gating unit ( the bottom one). We first provide an input image decomposed into dif-
ferent frequency components from low to high. The visualizations show that the baseline model
primarily performs accurate on the low-frequency information, struggling capturing crucial textural
details which leads to an incorrect classification on the raw image. In sharp contrast, the model
with GLU demonstrates a more balanced spectral response, effectively learning from both low and
high-frequency components to form a richer representation. This simple experiment provides initial
illustration that gating mechanisms can directly counteract the low-frequency bias in many efficient
architectures.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The mechanism enabling this enhanced spectral response is rooted in the convolution theorem:
element-wise multiplication in the spatial domain is equivalent to convolution in the frequency do-
main. This operation allows the network to create complex interactions between different frequency

St
em

C
on

v 
La

ye
rs

C
on

v 
L

ay
er

s

𝜎

St
em

C
la

ss
ifi

er𝜎
⨀

C
on

v 
La

ye
rs

C
on

v 
L

ay
er

s
C

on
v 

La
ye

rs
C

on
v 

L
ay

er
s

C
on

v 
La

ye
rs

C
on

v 
L

ay
er

s

C
la

ss
ifi

er

× N

× N

R
aw

 Im
ag

e
Fr

eq
ue

nc
y

Tiger

❌

Tiger cat

✅

Tiger cat

✅

Tiger cat

✅

Tiger cat

✅

Tiger

❌

Figure 1: An illustration of how GLUs affect
neural networks in classifying different frequency
parts of an image. σ means activation function.
Starting with a raw image of a ‘Tiger cat’, we
break it down into different frequency bands. The
lowest frequency shows a recognizable outline,
the higher frequency retains the general shape of
the cat, but the highest frequency is almost un-
recognizable. Predictions of different components
are given in the left of different models. This ex-
ample demonstrates two points: 1. Although low-
frequency decomposed images closely resemble
the originals, accurate recognition of it does not
guarantee accurate recognition of the original im-
ages, and 2. GLUs improve the NNs’ ability to
learn higher frequency components effectively.

bands, enriching the feature hierarchy. How-
ever, as prior work has noted Wang et al.
(2020); Yin et al. (2019), naively amplifying
high frequencies can make a model overly sen-
sitive to noise. The key, therefore, is selec-
tive modulation. We contend that Gated Lin-
ear Units, by pairing the multiplication with a
data-dependent gate and a non-linear activation
function, provide exactly this control. They al-
low the model to learn when to integrate high-
frequency details and how much to trust them,
effectively amplifying useful signals while re-
maining robust to high-frequency noise.

To put these principles into practice, we intro-
duce the Gating Mechanism Network (GmNet),
a lightweight architecture designed to leverage
the spectral advantages of gating. By effec-
tively capturing information across the full fre-
quency spectrum, GmNet demonstrates that a
structurally-motivated design can lead to sub-
stantial practical gains. Compared to the ex-
isting methods Ma et al. (2024a;b) which also
involve gating designs, our design leverages a
self-reinforcing gating mechanism in which the
modulation and gating signals are derived from
a shared representation. This alignment ensures
that salient variations, particularly those associ-
ated with high-frequency components, are con-
sistently emphasized rather than suppressed. In
contrast, methods based on independent pro-
jections often act as generic filters, leading to
weaker sensitivity to subtle variations that are critical for classification. Consequently, our approach
is inherently more effective in preserving and enhancing high-frequency information. The results
are compelling: without relying on advanced training techniques, our GmNet-S3 model achieves
81.3% top-1 accuracy on ImageNet-1K. This surpasses EfficientFormer-L1 by a significant 4.0%
margin while simultaneously being 4x faster on an A100 GPU, showcasing a new state-of-the-art in
efficient network design.

We summarize the key contributions of this work as follows: (1) We provide the first systematic
analysis of Gated Linear Units (GLUs) from a frequency perspective, establishing a clear link be-
tween their core operations and their ability to modulate a network’s spectral response. (2) We
demonstrate that this spectral modulation can directly counteract the inherent low-frequency bias in
many lightweight architectures, enabling them to learn more balanced and detailed feature represen-
tations from both low and high frequencies. (3) Based on these insights, we introduce the Gating
Mechanism Network (GmNet), a simple yet powerful lightweight architecture that achieves a new
state-of-the-art in performance and efficiency, validating the practical benefits of our frequency-
based design principles.

2 RELATED WORK

Gated Linear Units. The Gated Linear Unit (GLU) Dauphin et al. (2017), and its modern variants
like SwiGLU Shazeer (2020), have become integral components in state-of-the-art deep learning
models. Originally developed for sequence processing, their ability to selectively control informa-
tion flow with minimal computational overhead has led to widespread adoption. In Natural Lan-
guage Processing, they are central to powerful Transformers such as Llama3 Dubey et al. (2024)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and state-space models like Mamba Gu & Dao (2023), where they are lauded for improving training
dynamics. This empirical success has spurred their integration into computer vision architectures;
models like gMLP Liu et al. (2021) have shown that replacing self-attention with simple gating-MLP
blocks can yield competitive performance. However, the prevailing understanding of these mecha-
nisms remains largely functional—they are viewed as adaptive ’information gates.’ A critical gap
exists in the analysis of their impact on a network’s fundamental learning properties. Specifically,
no prior work has systematically analyzed GLUs from a frequency perspective or connected their
operational mechanism to the well-documented problem of low-frequency bias in vision models.

Frequency Learning. Analyzing neural networks from a frequency perspective has revealed a
fundamental learning dynamic known as spectral bias: networks of various types consistently learn
simple, low-frequency patterns much faster than complex, high-frequency details Rahaman et al.
(2019); Yin et al. (2019); Tancik et al. (2020). While initially explored in regression tasks, this
bias presents a significant bottleneck for image classification, particularly in lightweight models.
Due to their constrained capacity, these models struggle to capture the high-frequency information
corresponding to textures and edges, limiting their overall performance. Furthermore, the use of
high-frequency components involves a delicate trade-off; while they are critical for accuracy, they
can also make models more susceptible to high-frequency noise, impacting robustness Wang et al.
(2020). Crucially, while prior work has adeptly characterized these phenomena, it has largely fo-
cused on analysis and diagnosis. A clear gap remains in proposing and studying specific, efficient
architectural mechanisms that can actively manage this accuracy-robustness trade-off and explicitly
counteract spectral bias within a model’s design.

Lightweight Networks. The design of lightweight networks has predominantly followed two
streams: pure convolution-based architectures like MobileOne Vasu et al. (2023b) and RepVit Wang
et al. (2024), and hybrid approaches incorporating self-attention, such as EfficientFormerV2 Li et al.
(2022). While these lines of work have successfully pushed the frontiers of computational efficiency,

𝜎
⨀

?
C
on
v

C
on
v
⨀𝜎

Res18 Res18-Ewp Res18-Gate

Figure 2: Block design of different vari-
ants of ResNet18 where ⊙ represents
the element-wise product and σ means
the activation function.

they are built upon operations that are now understood
to have a strong intrinsic low-frequency bias Tang et al.
(2022); Bai et al. (2022). This foundational bias is of-
ten exacerbated in the lightweight regime; the aggres-
sive optimization for fewer parameters and lower FLOPs
further restricts a model’s capacity to learn essential
high-frequency information. Consequently, the current
paradigm for efficient network design contains a signif-
icant blind spot: it has optimized for computational met-
rics while largely overlooking the spectral fidelity of the
learned representations. This leaves a clear opening for
new design principles that explicitly aim to correct this
low-frequency bias from the ground up.

3 REVISITING GATING MECHANISMS FROM A FREQUENCY VIEW

We begin by defining the components associated with different frequency bands and outlining the
details of our experimental setup. With decomposing the raw data z into the high-frequency part zh
and the low-frequency part zl where z = zh + zl. Denoting a threshold r and an image x, we have
the following equations:

z = F(x), zh, zl = θ(z; r) (1)
where z = F (x) is the 2D Discrete Fourier Transform of x and θ(; r) denotes a thresholding func-
tion that separates the low and high frequency components from z according to a hyperparameter,
radius r. We select three vision backbones including ResNet-18 He et al. (2016), MobileNetv2 San-
dler et al. (2018) and EfficientFormer-v2 Li et al. (2023) as representations to demonstrate the draw-
backs of the CNN networks and transformer-based architectures on capturing the high frequency
information and how the gating mechanism improve the capability of learning high-frequency com-
ponents. Modifications to the network blocks of ResNet-18 are depicted in Fig. 2. We evaluate the
classification performance on different frequency components of the input images at each training
epoch. Changes in accuracy over time provide insights into the learning dynamics within the fre-
quency domain Wang et al. (2020). To avoid the occasionality, we calculated the average over three
training runs.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Comparison among Res18, Res18-Ewp, Res18-Gate-ReLU6 and Res18-Gate-GELU. The
r represents the threshold of determining the boundary between low-frequency and high-frequency.
We plot the learning curves of Resnet18 and its variants for 100 epochs, together plotted with the
accuracy of different frequency components zi. We set r to 10. All curves of z are from the test set.
The legends can be found in the top of the figure. We also provide more results with different r and
different settings in the appendix.

3.1 EFFECT OF ELEMENT-WISE PRODUCT

Inspired by the convolution theorem, we first give an insight into why element-wise product can
encourage NNs to learn on various frequency components from a frequency view. The convolution
theorem states that for two functions u(x) and v(x) with Fourier transforms U and V ,

(u · v)(x) = F−1(U ∗ V ), (2)

where · and ∗ denote element-wise multiplication and convolution respectively, and F is the Fourier
transform operator defined as F [f(t)] = F (ω) =

∫ +∞
−∞ f(t)e−jωt dt. This indicates that element-

wise multiplication in the spatial domain corresponds to convolution in the frequency domain.

To see its implication more clearly, consider the simplest situation: the self-convolution of a func-
tion. If the support set of F(ω) is [−Ω,Ω], then the support set of F∗F(ω) will expand to [−2Ω, 2Ω].
In other words, self-convolution broadens the frequency spectrum. With this enriched frequency
content, neural networks have more opportunities to capture and learn from both high-frequency
and low-frequency components.

3.2 HOW ACTIVATION FUNCTION WORKS?

We begin by analyzing how an activation function’s smoothness influences the frequency charac-
teristics of the features it produces. There is a well-established principle in Fourier analysis that
connects a function’s smoothness to the decay rate of its Fourier transform’s magnitude. For a func-
tion f(t) that is sufficiently smooth (i.e., its n-th derivative f (n)(t) exists and is continuous), the
magnitude of its Fourier transform, |F (ω)|, is bounded and decays at a rate proportional to 1/|ω|n
for large ω. This is a direct consequence of the differentiation property of the Fourier transform:

F [f (n)(t)] = (jω)nF (ω), (3)

This property implies that the smoother a function is (i.e., the more continuous derivatives it has),
the more rapidly its high-frequency components decay.

Conversely, functions with discontinuities or sharp ”corners” where derivatives are undefined (such
as the kink in ReLU-like activations) are known to possess significant high-frequency energy. These
sharp features require a broad spectrum of high-frequency sinusoids to be accurately represented.
This leads to a Fourier transform that decays much more slowly. For example, a function with
a simple discontinuity will have a spectrum that decays only at a rate of 1/|ω|. Therefore, we
hypothesize that non-smooth activation functions will encourage the network to retain and utilize
more high-frequency information compared to their smooth counterparts like GELU and Swish,
which is infinitely differentiable.

To validate this hypothesis, we conduct an experiment to compare the frequency learning of a rep-
resentative smooth activation (GELU) against a non-smooth one (ReLU6) within a ResNet18 ar-
chitecture. As shown in Fig. 3, the model using the non-smooth ReLU6 activation consistently

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

View in color: MobileNetv2 Using Gate-GELU Using Gate-ReLU6 View in shape: Acc of 𝑧! Acc of 𝑧" Acc of 𝑧

A
cc
ur
ac
y

Figure 4: Comparison among different variants of MobileNetv2. Different architectures respond
differently to specific frequency component. To ensure an informative comparison, we select repre-
sentative frequency thresholds tailored to each model where we set r to 10. Additional results under
other threshold configurations and other based models are included in the supplementary material.

outperforms the GELU variant in learning from high-frequency components across different thresh-
olds. This result supports our hypothesis, illustrating a clear practical difference between these
two activation types. The superior performance of ReLU6 on high-frequency data suggests that
the slow spectral decay associated with non-smooth functions can be beneficial for tasks requir-
ing fine-grained detail. Conversely, the GELU variant shows a stronger relative performance on
low-frequency components, indicating its suitability for capturing broad, structural patterns. While
a more exhaustive study is needed, this experiment provides clear evidence for the link between
activation smoothness and a model’s spectral learning preferences.

4 GATING MECHANISM NETWORK (GMNET)

4.1 RETHINKING CURRENT LIGHTWEIGHT MODEL ARCHITECTURES FROM A FREQUENCY
PERSPECTIVE

Figure 5: GmNet architecture. Gm-
Net adopts a traditional hybrid archi-
tecture, utilizing convolutional layers to
down-sample the resolution and double
the number of channels at each stage.

Before introducing our proposed network, we first inves-
tigate the importance of capturing high-frequency infor-
mation in efficient architectures by modifying existing ef-
ficient models to incorporate Gated Linear Units (GLUs).
Specifically, we select one representative architecture: the
pure CNN-based MobileNetV2 Sandler et al. (2018). We
replace the activation functions in their MLP blocks with
a simple GLU. Detailed architectural modifications are
provided in the appendix.

As shown in Fig. 4, we present the testing accuracy
curves under the frequency threshold r = 10. Our re-
sults demonstrate that integrating GLUs improves clas-
sification accuracy on high-frequency components. No-
tably, this improvement in high-frequency classification
also correlates with a gain in overall performance. Fur-
thermore, we observe that using GELU as the activation
function within the GLUs enhances performance on low-
frequency components, though it has a relatively minor
effect on overall accuracy. These findings suggest that
effectively modeling high-frequency information is more
crucial for improving the performance of lightweight neu-
ral networks. It underscores the critical role of frequency-aware design in the lightweight networks.
Moreover, we also conduct similar experiments on the transformer-based model EfficientFormer-V2
Li et al. (2023) which can be found in the appendix.

4.2 ARCHITECTURE OF GMNET

To address the limitation of low-frequency bias for current lightweight network designs, our pro-
posed method named as GmNet integrates a simple gated linear unit into the block as illustrated in

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Fig. 9. GmNet offers both conceptual and practical advantages on encouraging the model to learn
from a broader range of frequency regions, especially the high-frequency domain.

GmNets employ an extremely streamlined model architecture, carefully designed to minimize both
parameter count and computational speed, making them particularly suitable for deployment in
resource-constrained environments. We incorporate two depth-wise convolution layers with ker-
nel sizes of 7 × 7 at the beginning and end of the block respectively to facilitate the integration of
low- and high-frequency information. At the core of the block, we have two 1×1 convolution layers
and a simple gated linear unit. We use the ReLU6 as the activation function.

GmNet uses a simplified GLU structure for two reasons: (1) to keep the model as lightweight as
possible, reducing computational load; and (2) ensuring that high-frequency signals can be better
enhanced without adding any additional convolutional or fully connected layers within the GLU.
Furthermore, our gate unit is more interpretable, aligning with our analysis of GLUs in the frequency
domain. Experimental results and ablation studies consistently demonstrate the superiority of our
model, validating its design in accordance with our GLU frequency domain studies. We also show
that the simplest structure achieves the optimal trade-off between efficiency and effectiveness.

5 EXPERIMENTS

In this section, we provide extensive experiments to show the superiority of our model and ample
ablation studies to demonstrate the effectiveness of components of our method.

5.1 RESULTS IN IMAGE CLASSIFICATION

Implementation details. We perform image classification experiments on the ImageNet-1K dataset,
Table 1: Comparison of Efficient Models on ImageNet-
1k. Latency is evaluated across various platforms.

Model Top-1 Params FLOPs Latency (ms)
(%) (M) (G) GPU Mobile

FasterNet-T0 Chen et al. (2023) 71.9 3.9 0.3 2.5 0.7
MobileV2-1.0 Sandler et al. (2018) 72.0 3.4 0.3 1.7 0.9
ShuffleV2-1.5 Ma et al. (2018) 72.6 3.5 0.3 2.2 1.3
EfficientFormerV2-S0 Li et al. (2023) 73.7 3.5 0.4 2.0 0.9
MobileNetv4-Conv-S Qin et al. (2024) 73.8 3.8 0.2 2.2 0.9
StarNet-S2 Ma et al. (2024a) 74.8 3.7 0.5 1.9 0.9
LSNet-T Wang et al. (2025) 74.9 11.4 0.3 2.9 1.8
GmNet-S1 75.5 3.7 0.6 1.6 1.0

EfficientMod-xxs Ma et al. (2024b) 76.0 4.7 0.6 2.3 18.2
Fasternet-T1 Chen et al. (2023) 76.2 7.6 0.9 2.5 1.0
EfficientFormer-L1 Li et al. (2022) 77.2 12.3 1.3 12.1 1.4
StarNet-S3 Ma et al. (2024a) 77.3 5.8 0.7 2.3 1.1
MobileOne-S2 Vasu et al. (2023b) 77.4 7.8 1.3 1.9 1.0
RepViT-M0.9 Wang et al. (2024) 77.4 5.1 0.8 3.0 1.1
EfficientFormerV2-S1 Li et al. (2023) 77.9 4.5 0.7 3.4 1.1
GmNet-S2 78.3 6.2 0.9 1.9 1.1

EfficientMod-xs Ma et al. (2024b) 78.3 6.6 0.8 2.9 22.7
StarNet-S4 Ma et al. (2024a) 78.4 7.5 1.1 3.3 1.1
SwiftFormer-S Shaker et al. (2023) 78.5 6.1 1.0 3.8 1.1
RepViT-M1.0 Wang et al. (2024) 78.6 6.8 1.2 3.6 1.1
UniRepLKNet-F Ding et al. (2024) 78.6 6.2 0.9 3.1 3.5
GmNet-S3 79.3 7.8 1.2 2.1 1.3

RepViT-M1.1 Wang et al. (2024) 79.4 8.3 1.3 5.1 1.2
MobileOne-S4 Vasu et al. (2023b) 79.4 14.8 2.9 2.9 1.8
FastViT-S12 Vasu et al. (2023a) 79.8 8.8 1.8 5.3 1.6
MobileNetv4-Conv-M Qin et al. (2024) 79.9 9.2 1.0 9.2 1.4
LSNet-B Wang et al. (2025) 80.3 23.2 1.3 6.2 3.6
EfficientFormerV2-S2 Li et al. (2023) 80.4 12.7 1.3 5.4 1.6
EfficientMod-s Ma et al. (2024b) 81.0 12.9 1.4 4.5 35.3
RepViT-M1.5 Wang et al. (2024) 81.2 14.0 2.3 6.4 1.7
LeViT-256 Graham et al. (2021) 81.5 18.9 1.1 6.7 31.4
GmNet-S4 81.5 17.0 2.7 2.9 1.9

adopting a standard input resolution of
224 × 224 for both training and evalua-
tion. We vary the block numbers, input
embedding channel numbers and chan-
nel expansion factors ‘ratio’ to build dif-
ferent sizes of GmNet. The details of
the setting of different variants of Gm-
Net can be found in the appendix. All
model variants are trained from scratch
for 300 epochs using the AdamW op-
timizer, starting with an initial learning
rate of 3 × 10−3 and a batch size of
2048. The supplementary materials pro-
vide a comprehensive overview of the
training setup. For performance assess-
ment, we convert our PyTorch models
into the ONNX format to measure la-
tency on a Mobile device (iPhone 14)
and a GPU (A100). Additionally, we
deploy the models on the mobile device
via CoreML-Tools to further evaluate la-
tency. Importantly, our training approach
does not incorporate advanced techniques
such as re-parameterization or knowledge
distillation. Results presented in Table 1
correspond to models trained without these enhancements.

Compared with the state-of-the-art. The experimental results are presented in Table 1. With-
out any strong training strategy, GmNet delivers impressive performance compared to many
state-of-the-art lightweight models. With a comparable latency on GPU, GmNet-S1 outper-
forms MobileV2-1.0 by 3.5%. Notably, GmNet-S2 achieves 78.3% with only 1.9ms on the
A100 which is a remarkable achievements for the models under 1G FLOPS. GmNet-S3 out-
performs RepViT-M1.0 and StarNet-S4 by 1.9% and 0.9% in top-1 accuracy with 1.1 ms and

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.75 2.00 2.25 2.50 2.75 3.00 3.25
Latency (ms)

74

75

76

77

78

79

80

81

To
p-

1 
Ac

cu
ra

cy
 (%

)

StarNet-S2

StarNet-S3

StarNet-S4

MobileOne-S2

MobileOne-S4

EdgeViT-xs

Mobilev2-x1.4

RepViT-M0.9

GhostNet1.0

GhostNet1.3

LSNet-T

UniRepLKNet-F

EfficientFormerV2-S0
EfficientMod-xxs

EfficientMod-xs

Fasternet-T1

GmNet

Figure 6: Trade-off between Top-1 ac-
curacy and latency on A100.

1.4 ms faster on the GPU latency, respectively. The im-
provements on the speed are over 30%. Additionally,
with similar latency, GmNet-S3 delivers a 1.7% improve-
ment on the accuracy over MobileOne-S4. GmNet-S4
achieves 2x faster compared to RepViT-M1.5 on the GPU
and it surpasses MobileOne-S4 of 2.1% under the simi-
lar latencies of both GPU and Mobile. LeViT-256 Gra-
ham et al. (2021) matches the accuracy of GmNet-S4 but
runs twice as slow on a GPU and 16 times slower on
an iPhone 14 The strong performance of GmNet can be
largely attributed to the clear insights of gating mecha-
nisms and simplest architectures. Fig. 6 further illus-
trates the latency-accuracy trade-off across different mod-
els. GmNet variants achieve substantially lower latency
compared to related works, while maintaining competi-
tive or superior Top-1 accuracy. More comparisons and
results can be found in supplementary.

5.2 ABLATION STUDIES

More studies on different activation functions. To further explore the effect of different
activation functions, we trained various GmNet-S3 variants on ImageNet-1k. As illustrated
in Fig. 9, we replaced ReLU6 with GELU, ReLU or remove the activation function. To
better reflect the differences between different models, we set the radii to a larger range/

Table 2: The accuracies of classifying the raw data and their
low-/high-frequency components under different activation
functions on ImageNet-1k. We gradually increase the radii
by a step of 12. This result is the average of five testings.

Activation Identity ReLU GELU ReLU6

Raw data 70.5 78.3 78.4 79.3

Frequency Low High Low High Low High Low High

r = 12 9.79 12.6 12.0 45.9 12.7 41.5 14.8 51.7
r = 24 38.1 1.7 38.6 13.5 40.0 9.4 41.6 12.1
r = 36 52.9 0.7 56.2 4.9 58.7 3.9 55.2 4.7
r = 48 63.2 0.5 64.5 2.3 66.1 2.1 64.4 2.5
r = 60 66.6 0.9 69.4 1.0 70.7 1.1 71.1 1.4

As shown in the Table. 2, we can find
that, the increases on classifying the
high-frequency components are sig-
nificant comparing models using and
not using the activation functions.
For example, comparing results of
‘Identity’ and ‘ReLU’ with the im-
provement of 11% on the raw data,
improvement on high-frequencies is
over 3 times on average. ‘GELU’
and ’ReLU’ shows advances on low-
/high- frequency components respec-
tively compared to each other. This
aligns with our understanding of how
different types of activation functions
impact frequency response. Notably, the closer performance of models with Identity and
ReLU/GELU at low frequencies suggests the low-frequency bias of convolution-based networks.

Moreover, even considering the improvements on the raw data, model using the ReLU6 shows
obvious increase on the high-frequency components compared to the model using GELU es-
pecially when we set r to 12, 24, 36. Compared to the model with ReLU, ReLU6 is more
effective in preventing overfitting to high-frequency components since it has better performance
on low-frequencies. Considering performances of ReLU, GELU, and ReLU6, we can observe that
achieving better performance on high frequencies at the expense of lower frequencies does not
necessarily lead to overall improvement, and vice versa. To get a better performance on the raw
data, it is essential to enhance the model’s ability to learn various frequency signals.

Comparison with existing methods from the frequency perspective. As addressed in Table 2,
a model should achieves strong performance across different frequency components to deliver a
better overall performance. However, both pure convolutional architectures and transformers ex-
hibit a low-frequency bias, as discussed in Bai et al. (2022); Tang et al. (2022). Therefore, en-
hancing the performance of a lightweight model depends on its ability to more effectively cap-
ture high-frequency information. To address the advantages of GmNet on overcoming the low-
frequency bias, we test some existing models on different frequency components of different

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comparison of different GLU designs for GmNet-S3 on ImageNet-1K. Here, LN, DW,
and Pool represent layer normalization, depth-wise convolution with a kernel size of 3, and average
pooling with a 3×3 window, respectively. We underline all notable scores in classifying the different
frequency decompositions. Considering gaps of overall performances, an improvement which is
remarkable should exceed 1.0. This result is the average of five testings. We also provide more
variants of GLUs in the supplementary materials.

GLUs Top-1 Params GPU r = 12 r = 24 r = 36 r = 48 r = 60
(%) (M) (ms) Low High Low High Low High Low High Low High

σ(x) · LN(x) 78.9 7.8 2.9 12.1 47.6 41.6 10.9 56.4 5.2 64.7 2.4 69.8 1.2
σ(x) · DW(x) 79.0 8.0 2.4 12.3 49.0 42.7 9.6 58.1 4.6 65.7 2.3 71.2 1.1
σ(x) · (x− Pool(x)) 78.6 7.8 2.4 14.2 50.1 42.3 10.8 55.8 4.9 63.8 2.7 69.9 1.3
σ(x) · FC(x) 79.2 20.2 3.6 10.8 51.4 39.6 8.7 52.6 4.4 62.9 3.4 69.9 2.4
σ(x) · x 79.3 7.8 2.1 14.8 51.7 41.6 12.1 55.2 4.7 64.4 2.5 71.1 1.4

Table 3: Comparison with recent methods. We test models
on the high-/low-frequency components on the ImageNet-
1k. The highest values of each columns are highlighted.

Methods Top-1 r = 12 r = 24 r = 36
(%) High Low High Low High Low

MobileOne-S2 Vasu et al. (2023b) 77.4 35.0 11.6 6.5 36.9 2.4 53.5
EfficientMod-xs Ma et al. (2024b) 78.3 45.4 12.9 9.4 40.6 3.5 54.6
StarNet-S4 Ma et al. (2024a) 78.4 43.3 13.8 9.4 41.3 3.4 54.8
GmNet-S3 79.3 51.7 14.8 12.1 41.6 4.7 55.2

radii. We select three kinds of typi-
cal lightweight methods for compari-
son including pure conv-based model
MobileOne-S2 Vasu et al. (2023b),
attention-based model EfficientMod-
xs Ma et al. (2024b) and model
also employing GLUs-like structure
StarNet-S4 Ma et al. (2024a). As
shown in Table 3, accuracies of low-
frequency components are close among different models considering the overall performance. How-
ever, it shows that GmNet-S3 clearly surpass the other models in high frequency components. For
example, GmNet-S3 has a 6.3% improvement compared to EfficientMod-xs when r = 12 and 2.7%
increase when r = 24. For StarNet, which also uses a GLU-like structure with dual-channel FC, it
struggles to effectively emphasize high-frequency signals. The simplest GLUs design can achieve a
better balance between the efficiency and the effectiveness.

Study on designs of the GLU. In GmNet, the gated linear unit adopts the simplest design, which
can be defined as σ(x) · x. For comparison, we modify the GLU design and conduct experiments
to test performance on raw data as well as on decompositions at different frequency levels. As
shown in the Table 11, the simplest design achieve the best performance both on effectiveness and
efficiency for the overall performance. For the decomposed frequency components, we observe
clear differences among various GLU designs. The GLU of σ(x) · x demonstrates significantly
higher accuracy in classifying high-frequency components. For example, for r = 12 and r = 24,
the GLU with σ(x) · x shows an improvement of 4.1 over the LN design and 2.5 over the DW
design. This indicates that the simplest GLU design is already effective at introducing reliable
high-frequency components to enhance the model’s ability to learn them. Designs aimed at
smoothing information show a notable improvement in some low-frequency components. For
instance, with similar overall performance, the GLUs using σ(x) ·DW(x) and σ(x) ·LN(x) achieve
better results on low-frequency components when the radii are set to 24, 36, and 48. The model
using a linear layer in GLUs offers performance comparable to GmNet-S3 and is adept at learning
low-frequency features. However, its placement at a high-dimensional stage is problematic. This
design choice leads to an excessive number of parameters and a significant increase in latency.
Moreover, depth-wise convolution is more effective than layer normalization in encouraging neural
networks to learn from low-frequency components which is also more efficient. For the design with
the average pooling, it does not perform better in classifying high-frequency signals. This may be
because x− pool(x) acts as an overly aggressive high-pass filter, which does not retain the original
high-frequency signals in x well and instead introduces more high-frequency noise.

Bandwidths analysis of convolution kernels. As discussed in the Tang et al. (2022), the convo-
lution layer may play roles of ’smoothing’ the feature which means it has a low-frequency bias.
Experiments on studying weights of the convolution layer is insightful to give more evidences
of how GLUs effect the learning of different frequency components Wang et al. (2020); Tang
et al. (2022); Bai et al. (2022). In this paper, we propose using the bandwidths of convolution

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: The histogram illustrates the distribution of bandwidths of convolution kernels. Band-
widths represents the capability of a convolution kernel for capturing various frequency informa-
tion. We use weights of the convolution layer which under the GLU in the first block (left) and the
last block (right) of the GmNet-S3. All modals are trained on the raw data of the ImageNet-1k. In
general, the further the distribution shifts to the right, the stronger the convolutional kernel’s ability
to capture signals of different frequencies.

kernels to represent their ability of responding to different frequency components. Specifically,
a wider bandwidth indicates that the kernel can process a broader range of frequencies, allowing
it to capture diverse frequency components simultaneously and thereby preserve rich information
from the feature. As illustrated in Figure 7, the distributions of the ReLU model suggest that its
convolution kernels tend to focus on a narrow range of frequency components leading to relatively
lower bandwidths. It indirectly reflects an overemphasis on high-frequency components. Although
the model using GELU exhibits a better distribution in the top convolutional layers, it still has a
low-frequency bias, leading to a distribution shift in the bottom convolutional layers. Compared to
other activations, the enhanced bandwidth distribution of the model using ReLU6 demonstrates bet-
ter generalization for this task. The properties of the convolution kernels align with results in Table 2.

Quantitative spectral evidences. To further explore the effect of different activation
functions, we provide the quantitative spectral evidence. Based on the GmNet-S3 vari-
ants, we computed high/low-frequency energy ratios across multiple layers and model vari-
ants as shown in Table 5. Firstly, we extract the layers before/after the gate and com-
pute their high/low-frequency energy ratios to show the spectral changes. Also, to demon-
strate how different activation functions affect the model’s frequency response, we com-
pute the high/low-frequency energy ratios of the first DW-Conv layers in each stages.

Table 5: High/Low Frequency Ratio Comparison. We com-
puted the spectral changes from the layer before to the layer
after the gate which are defined as f and g respectively. We
also compute the high/low-frequency energy ratios of the
first 7×7 DW-Conv layers of each stage.

High/Low Frequency Ratio Changes before/after the gate variants

Stage Layer Pair ReLU6 (H/L) GELU (H/L) ReLU (H/L)

0.1 f → g 0.1195 → 0.1200 0.0575 → 0.0040 0.5172 → 0.5674
1.1 f → g 0.0989 → 0.1429 0.0423 → 0.0022 0.1422 → 0.1751
2.1 f → g 0.0386 → 0.0706 0.0252 → 0.0013 0.0018 → 0.0030
3.1 f → g 0.0019 → 0.0281 0.0106 → 0.0003 0.0032 → 0.0341

High/Low Frequency Ratio Comparison at DW-Conv layers

Stage Layer GELU (H/L) ReLU (H/L) ReLU6 (H/L)

0.1 1st DW-Conv 0.1203 1.1553 0.7057
1.1 1st DW-Conv 0.0695 0.3040 0.2452
2.1 1st DW-Conv 0.0381 0.0024 0.0697
3.1 1st DW-Conv 0.0057 0.0088 0.0142

We define the low frequencies as
the central 1/4 region of the 2D
spectrum. Table 5 shows that a con-
sistent spectral pattern distinguishing
smooth and non-smooth activations.
For GELU, the transition from f to g
typically increases the low-frequency
response, and across all stages GELU
yields the lowest high/low ratios.
This aligns with its smooth func-
tional form, which naturally biases
the network toward low-frequency
representations. In contrast, ReLU
and ReLU6 systematically amplify
high-frequency components. In the
early stages (Stage 0 and 1), ReLU
exhibits the strongest high-frequency
response, reflecting its non-smooth activation behavior and its tendency to preserve or enhance
sharp transitions. In deeper layers (Stage 2 and 3), ReLU6 produces the highest high/low ratios,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

suggesting that its clipped nonlinearity becomes more influential as depth increases—potentially
explaining why the ReLU6-based model obtains the best overall performance. These effects are
stable across stages, blocks, and models, and they directly support our hypothesis: smooth activa-
tions such as GELU favor low-frequency features, whereas non-smooth activations (ReLU/ReLU6)
amplify high-frequency content. This yields a clear falsifiable prediction—if a smooth activation
were ever to systematically exceed ReLU/ReLU6 in high-frequency ratios under comparable
settings, our hypothesis would be invalidated—which strengthens the explanatory robustness of the
spectral analysis presented in Sec. 3.2.

Contribution breakdown. We show the ablation study of different block designs and adjust the

Table 6: Contribution breakdown under matched FLOPs and
parameters (mean ± std).

Variant Params (M) FLOPs (G) Top-1 Acc (%)

Baseline 7.82 1.24 71.5 ± 0.2
+ 7×7 DWConv 7.82 1.28 78.1 ± 0.1
+ Gate (Identity) 7.82 1.24 69.2 ± 0.3
+ Gate (ReLU) 7.82 1.24 78.0 ± 0.2
+ Gate (GELU) 7.82 1.24 77.9 ± 0.1
+ Gate (ReLU6) 7.82 1.24 78.5 ± 0.1
+ ReLU6 7.82 1.24 77.9 ± 0.1
Full GmNet 7.82 1.24 79.2 ± 0.1

dimensions/number of blocks under
strictly matched FLOPs, parameter
count, and training settings, and
report the mean ± std over three
random seeds. We replace the 7×7
dwconv with a linear layer and
replace the GLU with a ReLU as the
baseline block. The results are shown
in Table C. Overall, Table demon-
strates that the performance gains
introduced by gating mechanism are
distinct improvements beyond what
other components alone can offer.

Downstream tasks. We further provide the results of downstream tasks of Ob-
ject Detection, Instance Segmentation and Semantic Segmentation. Firstly, we con-
ducted experiments on GmNet-S3 on MSCOCO 2017 with the Mask RCNN

Table 7: Object detection & Instance segmentation& Semantic seg-
mentation. The latency is tested on iPhone 14 by Core ML Tools.

Backbone Latency↓ Object Detection↑ Instance Segmentation↑ Semantic ↑
(ms) APbox APbox

50 APbox
75 APmask APmask

50 APmask
75 mIoU

EfficientFormer-L3 12.4 41.4 63.9 44.7 38.1 61.0 40.4 43.5
RepViT-M1.5 6.9 41.6 63.2 45.3 38.9 60.5 41.5 43.6

GmNet-S3 5.2 42.2 63.4 46.7 40.1 61.2 42.9 44.6

framework for object
detection and instance
segmentation. Our method
shows better performance
compared to the existing
methods RepViT-M1.5
Wang et al. (2024) and
EfficientFormer-L3 Li
et al. (2022) with better efficiency in terms of latency, APbox and APmask under similar model
sizes. Specifically, GmNet-S3 outperforms RepViT-M1.5 significantly by 2.4 APmask

75 and 1.4
APbox

75 . Meanwhile, GmNet-S3 has 1.7 ms faster on the Mobile latency and more than 2 times faster
than EfficientFormer-L3. For the semantic segmentation, we conduct experiments on ADE20K to
verify the performance of GmNet-S3. Following the existing methods, we integrate GmNet into the
Semantic FPN framework. With significant improvements on the speed, GmNet-S3 still match the
performance on semantic segmentation task with RepV-T-M1.5 and EfficientFormer-L3.

6 CONCLUSION

This paper tackled the prevalent low-frequency bias in lightweight networks through a novel
frequency-based analysis of gating mechanisms. We found that in a Gated Linear Unit (GLU),
element-wise multiplication introduces valuable high-frequency information, while the paired acti-
vation function provides crucial control to filter for useful signals over noise. Our resulting model,
the Gating Mechanism Network (GmNet), validates this approach by setting a new state-of-the-
art in efficient network design. This work demonstrates that a frequency-aware methodology is a
promising path toward creating future models that are both efficient and representationally robust.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 STATEMENTS

7.1 ETHICS STATEMENT

In our paper, we strictly follow the ICLR ethical research standards and laws. To the best of our
knowledge, our work abides by the General Ethical Principles.

7.2 REPRODUCIBILITY STATEMENT

We adhere to ICLR reproducibility standards and ensure the reproducibility of our work. All datasets
we employed are publicly available. We will provide the code to reviewers and area chairs in the
supplementary material.

REFERENCES

Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu. Improving vision
transformers by revisiting high-frequency components. In European Conference on Computer
Vision, pp. 1–18. Springer, 2022.

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary Chan.
Run, don’t walk: chasing higher flops for faster neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12021–12031, 2023.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Xiaohan Ding, Yiyuan Zhang, Yixiao Ge, Sijie Zhao, Lin Song, Xiangyu Yue, and Ying Shan.
Unireplknet: A universal perception large-kernel convnet for audio video point cloud time-series
and image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5513–5524, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 12259–12269,
2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934–12949, 2022.

Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 16889–16900, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in neural
information processing systems, 34:9204–9215, 2021.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Xu Ma, Xiyang Dai, Yue Bai, Yizhou Wang, and Yun Fu. Rewrite the stars. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5694–5703, 2024a.

Xu Ma, Xiyang Dai, Jianwei Yang, Bin Xiao, Yinpeng Chen, Yun Fu, and Lu Yuan. Efficient
modulation for vision networks. arXiv preprint arXiv:2403.19963, 2024b.

Danfeng Qin, Chas Leichner, Manolis Delakis, Marco Fornoni, Shixin Luo, Fan Yang, Weijun
Wang, Colby Banbury, Chengxi Ye, Berkin Akin, et al. Mobilenetv4: universal models for the
mobile ecosystem. In European Conference on Computer Vision, pp. 78–96. Springer, 2024.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, and
Fahad Shahbaz Khan. Swiftformer: Efficient additive attention for transformer-based real-time
mobile vision applications. In Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 17425–17436, 2023.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Ling Tang, Wen Shen, Zhanpeng Zhou, Yuefeng Chen, and Quanshi Zhang. Defects of convolutional
decoder networks in frequency representation. arXiv preprint arXiv:2210.09020, 2022.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit:
A fast hybrid vision transformer using structural reparameterization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5785–5795, 2023a.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Mo-
bileone: An improved one millisecond mobile backbone. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 7907–7917, 2023b.

Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Repvit: Revisiting mobile
cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15909–15920, 2024.

Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Lsnet: See large, focus small.
arXiv preprint arXiv:2503.23135, 2025.

Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency component helps explain
the generalization of convolutional neural networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8684–8694, 2020.

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
perspective on model robustness in computer vision. Advances in Neural Information Processing
Systems, 32, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 PSEUDO-CODES OF MODEL ARCHITECTURES

In our modified ResNet18, featured in Fig. 2, we adjust the activation function as the different
variants. As an example, we provide the pseudo-codes of Res18-Gate-ReLU in the Algorithm 1

Algorithm 1 Pseudo-codes of Res18-Gate-ReLU

def Block(x, in planes, planes)
out = Conv2d(x, in planes, planes, 3, 1, 1)
out = BatchNorm2d(x)
out = ReLU(out) * out
out = Conv2d(out, planes, planes, 3, 1, 1)
out = BatchNorm2d(out)
out += self.shortcut(x)
out = ReLU(out)
return out

For the proposed GmNet, featured in Fig. 4, we provide the pseudo-code of GmNet in the Algorithm
2. Also, for ease of reproduction, we include a separate file in the supplementary materials dedicated
to our GmNet.

Algorithm 2 Pseudo-codes of GmNet

def Block(x, dim, mlp ratio)
input = x
x = DWConv2d(x, dim, dim, 7, 1, 3, group=dim)
x = BatchNorm2d(x)
x = Conv2d(x, dim, mlp ratio*dim, 1)
x = ReLU6(x) * x
x = Conv2d(x, mlp ratio*dim, dim, 1)
x = BatchNorm2d(x)
x = DWConv2d(x, dim, dim, 7, 1, 3, group=dim)
x = input + drop path(layer scale(x))
return x

A.1.2 TRAINING RECIPES

We first provide the detailed training settings of variants of ResNet18 in Table 9.

A.1.3 GMNET VARIANTS

We provide the setting of variants of GmNet in Table. 8.

Variant C1 depth ratio Params FLOPs
GmNet-S1 40 [2, 2, 10, 2] [3, 3, 3, 2] 3.7 M 0.6 G
GmNet-S2 48 [2, 2, 8, 3] [3, 3, 3, 2] 6.2 M 0.9 G
GmNet-S3 48 [3, 3, 8, 3] [4, 4, 4, 4] 7.8 M 1.2 G
GmNet-S4 68 [3, 3, 11, 3] [4, 4, 4, 4] 17.0 M 2.7 G

Table 8: Configurations of GmNet. We vary the embedding width, depth, and gating ratio to con-
struct different model sizes of GmNet.

We also provide a detailed training configures of GmNet in this section as shown in the Table 10.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

config value
image size 32
optimizer SGD
base learning rate 0.1
weight decay 5e-4
optimizer momentum 0.9
batch size 128
learning rate schedule cosine decay
training epochs 100

Table 9: Res18 variants training setting

config value
image size 224
optimizer AdamW
base learning rate 3e− 3
weight decay 0.03
optimizer momentum β1, β2 = 0.9, 0.999
batch size 2048
learning rate schedule cosine decay
warmup epochs 5
training epochs 300
AutoAugment rand-m1-mstd0.5-inc1
label smoothing 0.1
cutmix 0.4
color jitter 0.
drop path 0.(S1/S2), 0.02(S3/ S4)

Table 10: GmNet training setting

A.2 MORE GLUS DESIGNS.

In this section, we present additional block designs to demonstrate the efficiency and effectiveness
of our proposed architecture. As shown in Table 11, we conducted experiments incorporating fully
connected (FC) layers into the Gated Linear Units (GLUs). Adding an extra FC layer to one branch
of the GLUs may slightly improve performance. However, this modification significantly increases
the number of parameters and reduces the model’s latency.

Moreover, this enhanced architecture does not perform better in classifying different frequency com-
ponents. The reason is that features processed by an FC layer cannot effectively emphasize various
frequency components. While adding more parameters and employing different training methods
might enhance the capability to learn different frequency components, in lightweight models, the
simplest GLU design often delivers better performance. This observation is consistent with findings
from many recent studies on lightweight models.

A.3 MORE COMPARISONS OF THE MAIN RESULTS.

We provide more comparisons of the main results in Fig. 8. We plot a larger latency-acc trade-off
figure to include more methods including EdgeViT, MobileNetV2 and GhostNet.

A.4 RESULTS ON CUB-100.

We evaluated GmNet-S1 on the CUB-100 dataset. The results are competitive, as shown in Table 12.
Compared to ShuffleNet-V2, GmNet-S1 achieves better performance with a smaller model size.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: Top-1 accuracy vs Latency on A100. Our models have significantly smaller latency com-
pared to related works.

Table 11: Comparison of different GLU designs for GmNet-S3 on ImageNet-1K.

GLUs Top-1 Params GPU r = 12 r = 24 r = 36 r = 48 r = 60

(%) (M) (ms) Low High Low High Low High Low High Low High

σ(x) · FC(x) 79.2 20.2 3.6 10.8 51.4 39.6 8.7 52.6 4.4 62.9 3.4 69.9 2.4
σ(FC(x)) · x 79.6 20.2 3.4 9.4 48.9 35.0 9.1 51.1 3.6 62.1 3.1 68.7 2.4
σ(x) · x 79.3 7.8 2.1 14.8 51.7 41.6 12.1 55.2 4.7 64.4 2.5 71.1 1.4

A.5 PERFORMANCE WITH SWIGLU AND SILU

We have conducted experiments with the SiLU variant on CIFAR-10 to illustrate the learning dy-
namics in Fig. 14. Following the reviewer’s advice, we adapted both SwiGLU and SiLU to GmNet-
S3 and trained the models under the same settings. The results in Table 13 show that both activations
improve performance compared to the baseline configuration, which removes activations inside the
GLU. However, their gains remain consistently smaller than those achieved by our proposed design,
confirming that the proposed GmNet block is better aligned with the frequency characteristics and
architectural constraints of lightweight models.

A.6 PERFORMANCE OF CHANGING RELU6 TO RELU.

Table 14 shows the performance change when replacing ReLU6 with ReLU across multiple GmNet
variants. The degradation is consistent across all model sizes.

A.7 STUDIES ON ALIASING AND ROBUSTNESS

We train Res18-Gate-ReLU and Res18-Gate-GELU on CIFAR-10 following the setting of ? to
show how different activation functions affect robustness. We conducted an adversarial robustness
ablation under PGD attacks. As shown below, the ReLU-based GLU—which emphasizes higher-
frequency components—exhibits slightly lower PGD accuracy:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Variant Params (M) Top-1 Acc (%)
ShuffleNet-V2 3.5 76.0
GmNet-S1 3.1 81.5

Table 12: Results on CUB-100.

Model / Activation Top-1 Acc (%)
Baseline (Identity) 70.5
+ SiLU 77.9
+ SwiGLU 77.2
+ Proposed (ReLU6-GLU) 79.3

Table 13: Results of using SiLU and SwiGLU in GmNet-S3.

• Res18-Gate-ReLU: 45.7% PGD accuracy
• Res18-Gate-GELU: 46.7% PGD accuracy

Clean accuracy remains similar for both variants (82.2% vs. 82.8%), but the ∼1% drop in PGD
robustness for the ReLU gate is consistent with prior findings that stronger high-frequency reliance
increases vulnerability to aliasing and adversarial perturbations.

A.8 EXPERIMENTS ON CONVNEXT

To show the generalization of gating structure, we adapted our GLU to ConvNeXt-Tiny and trained
the model using the same setting as GmNet on ImageNet-1k. As shown in Table 15, GLU improves
the performance without introducing any additional computational cost.

The improvement is smaller compared to GmNet, which may result from the fact that large CNNs are
less affected by activation-induced frequency bias. Block design should be architecture-dependent.

A.9 MORE RESULTS ON EFFORMERV2 AND MOBILENETV2.

Figure 9: The illustration of modifications of MobileNetV2 and EfficientFormer-V2.

We first show the illustration of the modifications for both models in . Moreover, we plot the testing
curves with different settings of thresholds. As shown in Fig. 13, the overall performance trend is
consistent with the charts and figures presented in the main text. The model using ReLU6 shows

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Variant ReLU6 → ReLU
GmNet-S1 75.5 → 74.7
GmNet-S2 78.3 → 77.4
GmNet-S3 79.3 → 78.3
GmNet-S4 81.5 → 80.5

Table 14: Performance degradation when replacing ReLU6 with ReLU.

Model Top-1 Acc (%) Params (M) FLOPs (G)
ConvNeXt 82.5 28.6 4.46
ConvNeXt + GLU 83.0 28.6 4.46

Table 15: Comparison between ConvNeXt-Tiny and its GLU-enhanced variant.

better performance on the high-frequency components where the overall performance also surpasses
other models. Meanwhile, the model using GELU performs better on low-frequencies. The extra
results demonstrate the effect of GLU on helping model learning various frequency information and
the improvements on high-frequency information have more impact on the final performance.

A.10 EXTRA EXPERIMENTS ON GATING MECHANISMS.

In this section, we present additional experimental results demonstrating how different activation
functions affect frequency learning. Firstly, we have conducted experiments with different settings
of r of Fig. 3 in the main paper. We have set r to {4, 7} respectively. The results are shown in Fig.,
the performances are aligned with our analysis in Sec. 3 which indicates that the results shown in
Fig. 3 are not accidental.

Specifically, we conduct experimearents using another smooth activation function, Swish (SiLU),
and a non-smooth function, ReLU6.

As shown in Figures 14a and 14b, ReLU6 performs similarly to GELU. Although ReLU6 may intro-
duce more high-frequency components, it does not perform as well as ReLU for two main reasons:
(1) ReLU6 caps the activation values. It can reduce the model’s sensitivity to high-frequency com-
ponents where those components are often associated with higher activation values. (2) The use of
low-resolution images can adversely affect the performance in classifying high-frequency compo-
nents, as finer details are lost, making it harder for the model to learn these features. Figures 14c and
14d present comparisons between SiLU (Swish) and ReLU, as well as between SiLU and GELU,
respectively. The Res18-Gate-SiLU performs better on lower-frequency components, specifically in
the range r ∈ (0, r1). This indicates that SiLU has a greater smoothing effect on the information,
encouraging the model to learn more effectively from lower frequencies.

Moreover, we investigated the impact of different training strategies to understand their effects on
model performance. Specifically, as plotted in the Fig. 15, we replaced the optimizer with Adam,
setting its learning rate to 0.001. While the training curves showed noticeable variations compared
to the baseline setup, the overall performance differences among the model variants remained con-

Figure 10: Additional results under different threshold configurations of different variants of
ResNet18.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

View in color: EformerV2 Using Gate-GELU Using Gate-ReLU6 View in shape: Acc of 𝑧! Acc of 𝑧" Acc of 𝑧

A
cc
ur
ac
y

Figure 11: Additional results under different threshold configurations of different variants of Mo-
bileNetv2.

View in color: EformerV2 Using Gate-GELU Using Gate-ReLU6 View in shape: Acc of 𝑧! Acc of 𝑧" Acc of 𝑧

A
cc
ur
ac
y

Figure 12: Additional results under different threshold configurations of different variants of
Efficientformer-V2.

Figure 13: Additional results under different threshold configurations of different variants of Mo-
bileNetv2 and EfficientFormer-v2 (Eformerv2).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Comparison between Res18-Gate-GELU and Res18-Gate-ReLU6.

(b) Comparison between Res18-Gate-ReLU and Res18-ReLU6.

(c) Comparison between Res18-Gate-GELU and Res18-Gate-SiLU.

(d) Comparison between Res18-Gate-ReLU and Res18-Gate-SiLU.

Figure 14: Learning curves of Resnet18 and its variants for 100 epoch. The radii are set to
{0, 6, 12, 18,+∞}

sistent. This consistency indicates that the observed behaviors are robust to changes in optimization
strategies.

We also conduct experiments on setting the redii to different sets. As shown in Figs. 16 and 17, we
set radii to [0, 4, 8, 12,+∞] and [0, 8, 16, 24,+∞] respectively. When the frequency intervals are
too small, the differences between the methods become less pronounced, especially in the lower-
frequency components. When the frequency intervals are too large, all models struggle to classify
higher-frequency components. Although differences between models become more pronounced in
the lower-frequency components, such as between GELU and ReLU activations, to better understand
the training dynamics, it is necessary to examine the differences in the high-frequency components
as well. Therefore, we decide to display the results of setting radii to [0, 6, 12, 24,+∞] in the main
body of the paper to have a better understand of the training dynamic of different variants. These re-
sults provide valuable insights into the functionality of the gating mechanisms. They suggest that the
interaction between the element-wise product and the activation functions is a general phenomenon.

A.11 THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT for polishing grammar and improving readability. All research ideas and analyses
were conducted by the authors, who take full responsibility for the content.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Comparison between Res18 and Res18-Ewp.

(b) Comparison between Res18-Gate-ReLU and Res18-Ewp.

(c) Comparison between Res18-Gate-ReLU and Res18-Gate-GELU.

Figure 15: Learning curves of Resnet18 and its variants for 100 epochs with optimizer of Adam.
The learning rate is set to 0.001. Radii are set to {0, 6, 12, 18,+∞}

(a) Comparison between Res18 and Res18-Ewp.

(b) Comparison between Res18-Gate-ReLU and Res18-Ewp.

(c) Comparison between Res18-Gate-ReLU and Res18-Gate-GELU.

Figure 16: Learning curves of Resnet18 and its variants for 100 epochs with optimizer of SGD. Radii
are set to {0, 4, 8, 12,+∞}. When the frequency intervals are too small, the differences between
the methods become less pronounced, especially in the lower-frequency components. However, it
remains evident that the different variants have distinct effects on learning the various frequency
components.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Comparison between Res18 and Res18-Ewp.

(b) Comparison between Res18-Gate-ReLU and Res18-Ewp.

(c) Comparison between Res18-Gate-ReLU and Res18-Gate-GELU.

Figure 17: Learning curves of Resnet18 and its variants for 100 epochs with optimizer of SGD.
Radii are set to {0, 8, 16, 24,+∞}. When the frequency intervals are too large, all models struggle
to classify higher-frequency components. Although differences between models become more pro-
nounced in the lower-frequency components, such as between GELU and ReLU activations, to better
understand the training dynamics, it is necessary to examine the differences in the high-frequency
components as well.

21


	Introduction
	Related Work
	Revisiting Gating Mechanisms from A Frequency View
	Effect of Element-wise Product
	How Activation Function Works?

	Gating Mechanism Network (GmNet)
	Rethinking Current Lightweight Model Architectures From A Frequency Perspective
	Architecture of GmNet

	Experiments
	Results in Image Classification
	Ablation Studies

	Conclusion
	Statements
	Ethics Statement
	Reproducibility Statement

	Appendix
	Implementation Details
	Pseudo-codes of Model Architectures 
	Training Recipes
	GmNet Variants

	More GLUs designs.
	More comparisons of the main results.
	Results on CUB-100.
	Performance with SwiGLU and SiLU
	Performance of changing ReLU6 to ReLU.
	Studies on aliasing and robustness
	Experiments on ConvNeXt
	More results on Efformerv2 and MobileNetV2.
	Extra experiments on gating mechanisms.
	The Usage of Large Language Models (LLMs)


