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ABSTRACT

Genome language models (gLM) have the potential to encode how and when
genes are regulated without requiring labeled data. Most gLMs are pretrained
using genome sequence reconstruction tasks inspired by natural language process-
ing, such as masked language modeling (MLM) or next token prediction (NTP).
Recent studies have shown that these gLMs often fail to capture biological sig-
nal, showing limited gains over simple classifiers on raw sequence or randomly
initialized models on downstream genomic prediction tasks. To address these lim-
itations, we explored alternative pretraining tasks for gLMs. Evolutionary rate has
historically been the strongest predictor of function in genomics, but to date, there
has been limited investigation of pretraining tasks exploiting evolution. Here, we
introduce two evolution-based pretraining tasks that predict the rate of evolution
from genomic sequence: current evolution prediction and masked evolution mod-
eling. These tasks are designed so that they can be combined with NTP and MLM,
enabling a systematic assessment of predicting sequence only, evolutionary rate
only, or both. Using a novel suite of benchmarks that balance distinct aspects of
genome function, we show that training on both sequence and evolutionary rate
outperforms training on sequence alone. Moreover, for many tasks, training on
evolutionary rate alone outperforms training on sequence alone. These results
demonstrate that evolution-based pretraining offers a principled alternative or ad-
ditional task to sequence reconstruction, establishing evolution as a key training
target for genome-scale models.

1 INTRODUCTION

Genome language models (gLMs) are models pretrained in a self-supervised manner on genomic
sequences. Among other applications, gLMs promise to learn a foundational understanding of ge-
nomic “grammar”, or how and when genes are activated, repressed, or modulated by their regulatory
context. Learning this grammar would be particularly impactful for human gene regulation, where
our understanding remains incomplete due to the complexity of eukaryotic genomic architectures,
enabling advances in personalized medicine, drug discovery, synthetic biology, and related areas.
For this reason, since the first gLMs were proposed in 2021, there has been a rapid increase in the
number of proposed models, and the financial scale of these efforts has also grown (Dalla-Torre
et al., 2025; Nguyen et al., 2023; Ji et al., 2021; Schiff et al., 2024; Benegas et al., 2024; Albors
et al., 2025; Brixi et al., 2025). For example, the Arc Institute used over 2,000 NVIDIA H100 GPUs
to train Evo2, a gLM trained on over 9 trillion nucleotides from thousands of species 1

However, there has been little exploration of the pretraining tasks used to train gLMs. Most of these
models are pretrained using sequence reconstruction tasks inspired by natural language processing
such as predicting the next token given previous tokens (next token prediction (NTP)) (Figure 1A)
or predicting masked tokens from surrounding context (masked language modeling (MLM)) ((Fig-
ure 1B). While these models have demonstrated strong performance after fine-tuning on tasks like
predicting transcription factor binding, chromatin profile activity, and regulatory element identifica-
tion (Dalla-Torre et al., 2025), recent works have exposed that they underperform simple baselines in
the zero-shot setting (Marin et al., 2023; Tang et al., 2025) and cannot reliably outperform randomly-
initialized versions of their architectures (Vishniakov et al., 2024). Zero-shot performance is partic-

1Based on training described at https://arcinstitute.org/news/evo2
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ularly important in the context of biological understanding, where labels may not be known a priori.
Current zero-shot gLM performance suggests that current pretraining tasks may not strongly learn
genomic grammar; instead, gLM performance may be driven by technical factors such as overpa-
rameterization, a phenomenon previously reported for protein language models (Li et al., 2024)

In contrast to gLM pretraining, which relies solely on sequence reconstruction, many bioinformatic
methods for inferring genome function exploit comparative genomics. Comparative genomics uses
cross-species genome comparisons to identify the function of genomic elements through patterns of
shared ancestry. Large-scale repositories have sequences for thousands of species’ genomes (Lewin
et al., 2018), enabling the construction of whole genome alignments against the human genome.
These alignments allow the direct estimation of evolutionary rates at the single-base resolution. Es-
timating evolutionary rate is useful because it correlates with functional importance: functional sites
tend to be conserved, meaning they accumulate substitutions more slowly than neutrally evolving
ones. Crucially, evolutionary rate is a highly compressed summary of an MSA that may span hun-
dreds of genomes, yet preserves the essential signal of functional constraint. For this reason, evo-
lutionary rate remains one of the most powerful and widely applied predictors of genome function
today (Zhou & Troyanskaya, 2015; Consens et al., 2025; Pollard et al., 2010; Rentzsch et al., 2019;
Zhou et al., 2011; Benegas et al., 2024; Albors et al., 2025). Despite its effectiveness in detecting
function, evolutionary rate has not yet been widely investigated for training gLMs.

In this work, we provide a principled study of the effectiveness of predicting evolutionary rate as a
pretraining task. We introduce two novel evolutionary rate prediction pre-training tasks (Figure 1).
In current evolution prediction (CEP), the model learns to predict the evolutionary rate at each po-
sition given the sequence up to that position (Figure 1C). In masked evolution modeling (MEM),
the model learns to predict evolution rates at masked positions from the surrounding nucleotides
(Figure 1D). Notably, these tasks are compatible with NTP and MLM, respectively, and only re-
quire single sequences as inputs (Figure 1E-F). We use these tasks to study the effectiveness of
evolutionary-rate pretraining, by training evolutionary-rate aware gLMs that we call “Gamba” mod-
els. Critically, we also train models, using the same architectures and training data, with sequence
reconstruction tasks, and with both evolutionary-rate and sequence reconstruction, allowing us to
directly compare the pretraining strategies and to evaluate if they can synergize with each other.
We developed a biologically-aligned zero-shot benchmark, and we show that incorporating explicit
modeling of evolutionary rate through CEP or MEM consistently improves representation quality.
In particular, adding CEP or MEM to NTP or MLM yields up to >13% gains in balanced accuracy
on regulatory element classification over sequence-only pretraining. Notably, in some cases MEM-
only training outperforms MLM alone, highlighting the effectiveness of evolutionary rate prediction
as a standalone pretraining signal composable with sequence reconstruction.

2 RELATED WORKS

2.1 TRAINING GLMS WITH EVOLUTION

In principle, pretraining with multi-species sequence reconstruction implicitly captures evolution-
ary constraints. By encountering homologous genomic regions across species, gLMs can learn to
conserved patterns that reflect functional elements, analoguous to how protein language models
trained on single sequences from across species capture functional and structural constraints (Zhang
et al., 2024). Indeed, pretraining on evolutionarily diverse sequences improves the capabilities of
gLMs in modeling functional relevance (Dalla-Torre et al., 2025; Consens et al., 2025) as opposed
to human-only pretraining. However, genomes are significantly noisier than protein sequences, and
are dominated by “junk DNA” of unclear functional significance (Fagundes et al., 2022). It is un-
clear whether presenting models with genomes across species is as effective a strategy for implicitly
learning evolution in genomes as it has been for proteins. Furthermore, genomes are much longer
than proteins, making it more enticing to compress evolutionary information from related species
into a simple target, and unlike in protein modeling, we are often primarily interested in the human
genome. Thus, in our work, we assess the effectiveness of directly predicting evolution.

One way to directly incorporate evolutionary signal explicitly during pretraining is by reconstructing
MSAs instead of single sequences. GPN-MSA is a masked language model over MSAs (Benegas
et al., 2024) with strong performance on noncoding variant effect prediction tasks. GPN-STAR im-
proves performance on noncoding variant effect prediction further by using the phylogenetic tree
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inferred from the MSA to constrain attention between sequences (Ye et al., 2025). However, requir-
ing MSAs as inputs limits downstream applications (e.g., synthetic sequences, which will not have
natural homologs in other species). The closest approach to ours is PhyloGPN, which also predicts
evolutionary rate as a target (Albors et al., 2025). However, instead of predicting the rate at every
position (CEP) or at many masked positions (MEM), PhyloGPN predicts the rate at a single central
nucleotide per input. This is less efficient to train, and prior work also does not attempt to evaluate
if evolutionary rate-based pretraining can be composed with sequence reconstruction. In contrast,
we combine CEP with NTP and MEM with MLM, allowing us to conduct ablations using the same
architecture and training data to quantify the impact of training on evolutionary rate only, sequence
only, or both.

2.2 BIOINFORMATICS BASELINES INCORPORATING EVOLUTION

Bioinformatics baselines estimating evolutionary rate such as PhyloP scores, PHAST scores, and
CADD predictions often outperform state-of-the-art gLMs on zero-shot tasks such as variant effect
prediction (Pollard et al., 2010; Brixi et al., 2025; Zhou et al., 2011; Rentzsch et al., 2019). The
success of these scores in variant effect prediction suggests evolutionary rate may be an effective
pretraining signal for gLMs. Yet, to date, there has been little systematic evaluation of how this
signal compares to or can be combined with sequence-only pretraining tasks, as opposed to using
these methods as stand-alone baselines for gLMs.

2.3 EVALUATION SUITES FOR GLMS

A key challenge for genome language models is evaluating whether pretraining captures biologi-
cally meaningful signals across the diversity of genomic elements. Genomic elements operate under
different mechanisms, have varying degrees of knowledge and annotation associated with them, and
vary in relative abundance in the genome. An effective benchmark for assessing performance of
pre-trained gLMs should have coverage over all of these factors, while enabling fair comparisons
between models without requiring excessive compute. Existing benchmarks have made important
progress but typically address only part of this space: for example, many focus on binary classi-
fication of singular elements in isolation, and few include rare elements such as ultra-conserved
noncoding elements (UCNEs) (Visel et al., 2007; Grešová et al., 2023; Marin et al., 2023; Zhou
et al., 2023; Dimitrieva & Bucher, 2013). In addition, many evaluations require training auxil-
iary models on top of frozen embeddings, which complicates cross-model comparison and adds
computational cost (Tang et al., 2025; Marin et al., 2023). Randomly initialized baselines are also
rarely reported, making it difficult to deconvolve the effects of architecture and size from those of
pretraining (Vishniakov et al., 2024). To address these gaps, we introduce a benchmark suite that
spans distinct genomic elements of different regulatory mechanism, prior knowledge, and relative
abundance, supports multi-class discrimination, enables efficient zero-shot evaluation, and includes
randomly initialized baselines for fair comparison.

3 METHODS

3.1 CURRENT EVOLUTION PREDICTION AND MASKED EVOLUTION MODELING

We propose two pretraining tasks that predict evolutionary rate given genomic sequence as input:
current evolution prediction (CEP) and masked evolution modeling (MEM) (Figure 1). While a
variety of scores estimate evolutionary rate, we used PhyloP scores (Pollard et al., 2010), a widely-
adopted score (Perez et al., 2025) in phylogenetics that measures evolutionary conservation and
acceleration at a single-nucleotide resolution. PhyloP scores quantify whether a nucleotide position
is evolving slower (conserved; positive score) or more rapidly (accelerated; negative score) than
expected compared to a neutral evolutionary model, and they are computed from a multiple sequence
alignment (MSA) along with its corresponding phylogenetic tree.

While PhyloP scores are calculated from an MSA, we pretrained our models to predict PhyloP scores
from single unaligned sequences. CEP and MEM predict PhyloP scores from different sequence
contexts, paralleling the dominant sequence reconstructing pretraining tasks for gLMs. First, CEP
predicts the PhyloP score at the i-th position using only the sequence context up to and including
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Figure 1: Comparison of evolutionary-rate based and existing sequence-only pretraining methods.
A-C show tasks with bidirectional sequence context, while D-F show tasks with autoregressive con-
text. A) Masked language model (MLM). B) Masked evolution modeling (MEM). C) MLM com-
bined with MEM. D) Next token prediction (NTP). E) Current evolution prediction (CEP) F) NTP
combined with CEP.

that position. Formally, given a sequence x = x1, x2, ..., xi , the model outputs a predicted PhyloP
score ŷi at the i-th position. This setup mimics next token prediction, except instead of predicting
the “next” token i+ 1, the current rate at i is predicted (Figure 1C). Second, MEM predicts PhyloP
scores given bidirectional context. During training, a subset of positions in the input sequence
(15%) is randomly selected and masked. The model is then trained to reconstruct the PhyloP scores
at these masked positions, using the entire sequence as context (Figure 1D). This allows the model
to leverage bidrectional context from both upstream and downstream sequence.

Because CEP and MEM operate on the same inputs used for NTP and MLM, respectively, our
conservation prediction tasks can be combined with sequence reconstruction tasks. CEP can be
combined with NTP in the autoregressive setting (Figure 1E), and MEM can be combined with
MLM in the bidrectional setting (Figure 1F).

3.1.1 LOSS FUNCTIONS

Gamba models predict a mean and log variance for the evolutionary rate at each position, and are
trained with a Gaussian negative log likelihood (GNLL) loss:

LGNLL =
1

N

N∑
i=1

[
1
2

(
log

(
max(σ2

i , ϵ)
)
+

(yi − µi)
2

max(σ2
i , ϵ)

)]
+ const.

where yi is the true conservation score, µi is the predicted mean, log σ2
i is the predicted log variance

and N is the number of supervised positions in the batch. For the sequence prediction tasks (NTP
and MLM), we used a standard cross entropy (CE) loss on the predicted sequence logits over the 4
nucleotides (A, T, C, and G), which seeks to maximize the predicted likelihood of the true nucleotide
at each position. We combined evolutionary rate prediction and sequence reconstruction by simply
adding the two losses: L = LGNLL + LCE.

3.2 THE GAMBA MODEL ARCHITECTURES

The autoregressive Gamba (ArGamba) models are based on the Jamba architecture, a hybrid Trans-
former–Mamba model with mixture-of-experts (MoE) routing (Lieber et al., 2024). Jamba inter-
leaves Transformer (Vaswani et al., 2017) and Mamba (Gu & Dao, 2023) blocks to combine the
global modeling capacity of attention with the efficient long-range processing of state space models.
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The bidirectional Gamba (BiGamba) models are based on the Caduceus architecture (Schiff et al.,
2024). Caduceus is a bidirectional, Mamba state space model adapted to be reverse-complement
equivariant, an inductive bias that captures the double-stranded nature of DNA. For both Gamba
models, we evaluated three pretraining tasks:

• Sequence-only: Models trained to reconstruct genomic sequences only. For ArGamba, we
trained models with NTP; and for BiGamba, we trained models with MLM.

• Evolution-only: Models trained to predict PhyloP score only. For ArGamba, we trained
models with CEP; and for BiGamba, we trained models with MEM.

• Sequence and evolution: Models trained to both reconstruct sequence and predict PhyloP
scores. For ArGamba, this is NTP + CEP; and for BiGamba, this is MLM + MEM.

For all PhyloP-score prediction tasks, the conservation head consists of a linear layer that maps the
final hidden representation at each position to a 2-dimensional output: the predicted mean and log
variance of a Gaussian distribution over conservation scores. For all sequence reconstruction tasks,
a linear head maps the final hidden state to the nucleotide vocabulary. Models trained on both tasks
use both heads.

3.3 PRETRAINING DATA

We trained Gamba on the human reference genome (hg38), obtained from Basenji (link) (Kelley
et al., 2018). We excluded repetitive and structurally ambiguous regions using RepeatMasker anno-
tations (Fernandes et al., 2020) and low-quality read centromere data, both obtained from the UCSC
genome browser (Perez et al., 2025). This is consistent with recent gLMs such as GPN-MSA and
Evo2 that address signal-to-noise ratio in the genome by adopting structured training regimes that
over-sample informative regions while down-weighting repetitive elements (Benegas et al., 2024;
Brixi et al., 2025), but we exclude repetitive and low-quality regions entirely to improve compu-
tational efficiency for our experiments. Chromosomes 3 and 16 are held out for validation, while
chromosomes 2 and 22 are reserved for testing. We further exclude regions containing more than
10% ambiguous bases (“N”) within any 1000 bp window. After filtering, the training corpus is
reduced from ∼3 billion base pairs (bp) to ∼ 1 billion bp.

For evolutionary rate prediction, we processed PhyloP scores from the Zoonomia 241-mammal
alignment (Consortium, 2020). The complete hg38 human reference genome is initialized with
zeros, and true PhyloP values are indexed where available; positions without a score remain zero.
All values are rounded to two decimal places.

4 RESULTS

To assess whether pretraining by predicting evolutionary rate improves gLMs, we evaluated mod-
els across three biologically aligned zero-shot tasks, two of which are new. We compare ArGamba
and BiGamba against several representative gLMs. The Nucleotide Transformer suite provides both
a human-reference-only model and a multi-species model (Nguyen et al., 2023), enabling assess-
ment of whether evolutionary information can be captured implicitly by training on multi-species
genomes and how this compares against our strategy (Dalla-Torre et al., 2025). To match ArGamba
pretraining, we included HyenaDNA, which also uses single-nucleotide tokenization and autoregres-
sive training. To match BiGamba pretraining, we included Caduceus, which is trained on the human
reference genome alone (Schiff et al., 2024). We also report results for PhyloGPN, which explicitly
predicts evolutionary signals from sequence and is therefore the most comparable to our evolution-
ary rate-based pretraining tasks (Albors et al., 2025). For model context lengths and parameter sizes
see Supplementary Table A1.

4.1 PREDICTING EVOLUTIONARY RATE AS A PRETRAINING TASK IMPROVES
REPRESENTATIONS

We designed a zero-shot evaluation to measure whether pretrained gLM representations can separate
different genomic elements within the genome. Specifically, we evaluated the ability of a model’s
representation space to separate different categories of genomic regions with varying complexity and
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Figure 2: The global representation task. A) Examples of genomic categories. B) balanced accuracy
by model size. C) Gain in balanced accuracy via pretraining by model size.

rarity (enhancers, UCNE, repeats, exons, introns, noncoding regions, coding regions, 2kb upstream
of the transcription start site (TSS), 5’UTR, 3’UTR, promoters) (Supplementary A).

For this task, sequences of up to 2048 bp for Gamba, 6000 bp for the Nucleotide Transformer
models, 131k bp for Caduceus, and 161k bp for HyenaDNA, were extracted with the region of
interest (ROI) corresponding to the genomic element placed at the center (MLM-style models) or end
(autoregressive models). Embeddings were obtained from the final hidden layer, and separation was
evaluated using leave-one-out cross-validation with a 1-nearest neighbor classifier, which measures
if genomic elements are clustered in embedding space (Figure 2A, Table A2).

We also report the 1-nearest neighbour classifier results for two non-gLM baselines, one sequence-
based and one evolutionary rate-based. First, the sequence-based baseline evaluates if pretrained
representations can outperform raw sequence alone. Because our downstream tasks require compar-
ing sequences of different lengths, we implemented a k-mer model with k = 6. The evolutionary
rate baseline evaluates whether pretraining on evolutionary rate can outperform using evolutionary
rate directly. To produce sequence-level vectors of evolutionary rate scores, we summarized phyloP
scores into six features: mean, variance, and the counts and means of positive and negative positions.

Pretraining tasks that combine evolutionary rate and sequence prediction provided the largest gains
in accuracy compared to randomly initialized versions of the models. While HyenaDNA achieved
the highest accuracy on this task, this performance appears to be largely due to inductive bias, as pre-
training reduces the performance of the randomly initialized model (a phenomenon for this model
also previously documented by Vishniakov et al. (2024)). Therefore, we focus on improvement
over random initialization to disentangle the effects of pretraining from architecture. The largest
improvements are achieved by ArGamba NTP+CEP and BiGamba MLM+MEM, with more than
16.5% improvement over random initialization (Figure 2B, Table A2). BiGamba MEM-only out-
performs BiGamba MLM-only, suggesting that, in some cases, evolutionary rate alone can provide
a stronger training signal than sequence alone. This effect is not observed for ArGamba NTP-only
vs. ArGamba CEP-only, implying that it may depend on bidirectional context.

BiGamba MLM+MEM performs comparably to Caduceus (40.37% compared to 42.98%) despite
using half the parameters and a much shorter context length (2048 bp vs. 131,000 bp). Finally, while
we observe that training Nucleotide Transformer on multiple species (in their work, 850 genomes)
over the human genome alone induces an improvement on representing genomic elements, similar to
the improvement that our evolutionary rate pretraining tasks induce over training on human genome
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sequence alone, our proposed task does not increase the size of the training data corpus, making
it more compute efficient. Together, these comparisons underscore the efficiency of evolutionary
rate-based objectives.

4.2 PREDICTING EVOLUTION IMPROVES VARIANT EFFECT PREDICTION

However, the genomic categories in our previous benchmark provide only a coarse-grained view of
function, while researchers are often interested in fine-grained effects (e.g., distinguishing between
different kinds of functions mediated by a genomic element, as opposed to just identifying the
broader type of genomic element). To evaluate fine-grained predictive ability, we tested variant
effect prediction (VEP) (Zhou & Troyanskaya, 2015), an established benchmark that ranks genomic
sequences based upon their pathogenicity, or their propensity to cause disease (Figure 3A). Previous
works have employed the ClinVar dataset for this purpose, as it curates benign and pathogenic
variants of human genomic sequences (Benegas et al., 2024; Landrum et al., 2014).

We rank variants in two ways (Figure 3B). First, as done by GPN-MSA (Benegas et al., 2024),
variant effect scores are taken as the ratio of the likelihoods of the reference nucleotide and the
mutated nucleotide, averaged across the forward and reverse strands. Second, we explore using
PhyloP predictions instead of sequence to rank variants. For Gamba models also trained to predict
the evolutionary rate, we used the average predicted PhyloP score of the forward and reverse strands.
This strategy is consistent with previous work that uses PhyloP scores to predict pathogenic variants
(Brixi et al., 2025; Benegas et al., 2024; Pollard et al., 2010).

Models trained to predict evolutionary rate consistently outperform sequence-only models (Ta-
ble A4). While sequence log-likelihood AUCs for all models remain close to random (except the
Caduceus model, performance previously reported by Albors et al. (2025)), adding CEP or MEM
as a task in pretraining improves predictive power using sequence. In contrast, using predicted Phy-
loP scores yields stronger performance than sequence likelihood across MEM-only, MLM+MEM,
CEP-only, and NTP+CEP models (Figure 3C, Table A4). Joint training on sequence and Phy-
loP scores provides the best discrimination of benign versus pathogenic variants. For example,
ArGamba NTP+CEP outperforms ArGamba CEP-only in both predicted PhyloP AUC (0.696 vs.
0.677) and correlation (0.398 vs. 0.358), suggesting that sequence prediction enhances evolutionary
rate learning. A similar trend is observed with BiGamba.

Among the neural network models we trained, BiGamba MLM+MEM performs best, with a pre-
dicted PhyloP score AUC of 0.7397 and a Pearson correlation of 0.4628 to true PhyloP scores.
Although true PhyloP scores remain the strongest single predictor (AUC 0.9121), gLMs explicitly
pretrained on evolutionary rate (MEM or CEP) substantially close the gap relative to sequence-only
models.
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Figure 4: UCNE detection. A) UCNEs and flanking regions. B) UMAPs of pretrained representa-
tions of UCNEs and their flanking regions.

4.3 IDENTIFICATION OF ULTRACONSERVED NONCODING ELEMENTS SIGNIFICANTLY
BENEFITS FROM EXPLICIT PRETRAINING ON EVOLUTION

Finally, we evaluated whether gLMs can identify ultraconserved noncoding elements (UCNEs) from
sequence alone. UCNEs are rare noncoding regions that are highly conserved across very diverged
species, specifically defined as noncoding regions longer than 200 bp with ≥95% sequence iden-
tity between humans and chickens (Dimitrieva & Bucher, 2013) (Figure 4A). Despite their extreme
conservation, their biological roles remain poorly understood, and to date, sequence-based deter-
minants of UCNEs have not been identified, meaning that UCNEs are generally only identified
through MSAs, not single sequences. Hence, we reasoned that successful discrimination of UCNEs
from single sequences would provide a test of whether gLMs can reveal insight into novel biology.

We evaluated each model’s ability to discriminate between ultraconserved noncoding elements (UC-
NEs) and their flanking regions 2kb upstream. We chose to use the flanking regions of UCNEs as
our negative class as we expect these regions to share sequence characteristics that are not determi-
nants of UCNEs due to their shared genomic context (e.g., GC content). We also experimented with
exons as our negative class, which like UCNEs are also highly conserved, which yielded similar re-
sults in the ranking of models as using flanking context (Supplementary Table ??). We evaluated the
embeddings from each model on binary classification between UCNEs and flanking regions using
leave-one-out cross-validation with a 1-nearest neighbor classifier. We only evaluate UCNEs that
have no homologs, and are found in the held out chromosomes of our datasets (n = 916). Therefore
for the Gamba models, evaluation is restricted to the held-out set; for all other models, we evaluate
the same UCNEs which may or may not be held out (as each model is trained using their own unique
data split).

As shown in Table A3 and Figure 4B, models pretrained to predict evolutionary rate consistently
outperform their sequence-only counterparts. ArGamba NTP+CEP achieves 77.6% balanced accu-
racy, a +13.7% improvement over ArGamba NTP-only; while BiGamba MLM+MEM reaches the
best overall accuracy of 81.7%, a +15.5% gain over BiGamba MLM-only. Nucleotide Transformer
human-reference and Nucleotide Transformer multi-species perform comparably, suggesting the
gains in accuracy in separating UCNEs from flanking regions is specific to explicitly modeling evo-
lutionary rate (Figure 4B). These results indicate that explicit evolutionary rate prediction provides
sharper contrast between UCNEs and surrounding non-functional regions. Models trained with
evolutionary rate-based pretraining (CEP-only, MEM-only) perform competitively but fall short of
their hybrid counterparts, highlighting that the strongest performance arises from jointly modeling
sequence and evolutionary rate.
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5 CONCLUSION

We demonstrated that predicting evolutionary rates from the nucleotide sequence improves the per-
formance of genome language model representations. We introduced two evolutionary rate-based
pretraining tasks, used them to train the Gamba family of models, and demonstrated their advan-
tages over traditional sequence reconstruction tasks. Our results show that evolutionary rate-only
models outperform sequence-only baselines on several benchmarks, underscoring the strength of
evolutionary signal as a training target.

Taken together, our findings establish evolution as a key training signal for gLMs and point toward
pretraining strategies that more closely align model learning with the underlying biology of the
genome. Our results suggest gLMs could further benefit from incorporating additional comparative
genomics signals into self-supervised training. Although in our work, we use PhyloP scores derived
from 240 mammalian species from the Zoonomia project (Consortium, 2020), future would could
experiment with alternative scores, including PhastCons scores (Zhou et al., 2011), which capture
evolutionary rates over broader contexts, and phyloP scores from alternative MSAs, such as verte-
brate alignments, which have been shown to outperform the 240-mammalian–derived PhyloP scores
on variant effect prediction (Benegas et al., 2024), possibly because they even further expand the
diversity of species taken into account for the PhyloP score calculation.

Our study has several key limitations. First, as we were primarily interested in studying the value
of evolutionary rate as a pretraining task, we trained models with much fewer parameters, lower
context sizes, and less training data (e.g. by removing repeats instead of downweighing them) than
current SOTA gLMs. This means that the Gamba models we present in this work are likely not
as performant as they could be, and future work in scaling them is necessary to make them more
competitive in downstream applications. Second, several design decisions could make our proposed
pretraining tasks more effective. While we predict evolutionary rate only at masked positions in our
MEM task, which we chose to do to make it more similar to MLM, it would in principle be more
efficient to predict evolutionary rate at all positions. Similarly, we used a balanced loss between
sequence reconstruction and evolutionary rate prediction, but future work could optimize parameters
trading off between the losses.

In sum, we demonstrate the potential of combining comparative genomics and deep learning to un-
derstand genomes. Despite being a fundamental strategy for many bioinformatics methods used to
understand genomes, comparative genomics has not yet been thoroughly investigated for training
gLMs. By demonstrating that predicting evolutionary rate can be combined with sequence recon-
struction strategies currently employed to train gLMs to further learn signal, we hope to spur future
investigation in incorporating evolutionary signal into gLMs.

6 RESOURCE AVAILABILITY

Code and model weights are made available at (links redacted for double-blind review).
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nomic benchmarks: a collection of datasets for genomic sequence classification. BMC Genomic
Data, 24(1):25, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. DNABERT: pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in genome. Bioinformat-
ics, 37(15):2112–2120, August 2021. ISSN 1367-4803, 1367-4811. doi: 10.1093/bioinformatics/
btab083. URL https://academic.oup.com/bioinformatics/article/37/15/
2112/6128680.

David R Kelley, Yakir A Reshef, Maxwell Bileschi, David Belanger, Cory Y McLean, and Jasper
Snoek. Sequential regulatory activity prediction across chromosomes with convolutional neural
networks. Genome research, 28(5):739–750, 2018.

Melissa J Landrum, Jennifer M Lee, George R Riley, Wonhee Jang, Wendy S Rubinstein, Deanna M
Church, and Donna R Maglott. ClinVar: public archive of relationships among sequence variation
and human phenotype. Nucleic acids research, 42(D1):D980–D985, 2014.

Harris A Lewin, Gene E Robinson, W John Kress, William J Baker, Jonathan Coddington, Keith A
Crandall, Richard Durbin, Scott V Edwards, Félix Forest, M Thomas P Gilbert, et al. Earth
biogenome project: Sequencing life for the future of life. Proceedings of the National Academy
of Sciences, 115(17):4325–4333, 2018.

Francesca-Zhoufan Li, Ava P Amini, Yisong Yue, Kevin K Yang, and Alex X Lu. Feature reuse and
scaling: Understanding transfer learning with protein language models. bioRxiv, pp. 2024–02,
2024.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Frederikke Isa Marin, Felix Teufel, Marc Horlacher, Dennis Madsen, Dennis Pultz, Ole Winther,
and Wouter Boomsma. Bend: Benchmarking DNA language models on biologically meaningful
tasks. arXiv preprint arXiv:2311.12570, 2023.

10

https://academic.oup.com/bioinformatics/article/37/15/2112/6128680
https://academic.oup.com/bioinformatics/article/37/15/2112/6128680


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. HyenaDNA: Long-
range genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36:43177–43201, 2023.

Gerardo Perez, Galt P Barber, Anna Benet-Pages, Jonathan Casper, Hiram Clawson, Mark Diekhans,
Clay Fischer, Jairo Navarro Gonzalez, Angie S Hinrichs, Christopher M Lee, et al. The UCSC
genome browser database: 2025 update. Nucleic acids research, 53(D1):D1243–D1249, 2025.

Rouaı̈da Cavin Périer, Viviane Praz, Thomas Junier, Claude Bonnard, and Philipp Bucher. The
eukaryotic promoter database (EPD). Nucleic acids research, 28(1):302–303, 2000.

Katherine S Pollard, Melissa J Hubisz, Kate R Rosenbloom, and Adam Siepel. Detection of non-
neutral substitution rates on mammalian phylogenies. Genome research, 20(1):110–121, 2010.

Philipp Rentzsch, Daniela Witten, Gregory M Cooper, Jay Shendure, and Martin Kircher. CADD:
predicting the deleteriousness of variants throughout the human genome. Nucleic acids research,
47(D1):D886–D894, 2019.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov. Ca-
duceus: Bi-directional equivariant long-range DNA sequence modeling. Proceedings of machine
learning research, 235:43632, 2024.

Ziqi Tang, Nirali Somia, Yiyang Yu, and Peter K Koo. Evaluating the representational power of
pre-trained DNA language models for regulatory genomics. Genome Biology, 26(1):203, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Axel Visel, Simon Minovitsky, Inna Dubchak, and Len A Pennacchio. VISTA enhancer browser—a
database of tissue-specific human enhancers. Nucleic acids research, 35(suppl 1):D88–D92,
2007.

Kirill Vishniakov, Karthik Viswanathan, Aleksandr Medvedev, Praveen K Kanithi, Marco AF Pi-
mentel, Ronnie Rajan, and Shadab Khan. Genomic foundationless models: Pretraining does not
promise performance. bioRxiv, pp. 2024–12, 2024.

Chengzhong Ye, Gonzalo Benegas, Carlos Albors, Jianan Canal Li, Sebastian Prillo, Peter D. Fields,
Brian Clarke, and Yun S. Song. Predicting functional constraints across evolutionary timescales
with phylogeny-informed genomic language models. bioRxiv, 2025. doi: 10.1101/2025.09.21.
677619. URL https://www.biorxiv.org/content/early/2025/09/21/2025.
09.21.677619.

Zhidian Zhang, Hannah K Wayment-Steele, Garyk Brixi, Haobo Wang, Dorothee Kern, and Sergey
Ovchinnikov. Protein language models learn evolutionary statistics of interacting sequence motifs.
Proceedings of the National Academy of Sciences, 121(45):e2406285121, 2024.

Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning–
based sequence model. Nature methods, 12(10):931–934, 2015.

You Zhou, Yongjie Liang, Karlene H Lynch, Jonathan J Dennis, and David S Wishart. PHAST: a
fast phage search tool. Nucleic acids research, 39(suppl 2):W347–W352, 2011.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. DNABERT-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

11

https://www.biorxiv.org/content/early/2025/09/21/2025.09.21.677619
https://www.biorxiv.org/content/early/2025/09/21/2025.09.21.677619


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A APPENDIX

GENOMIC REGION SELECTION

We assembled a diverse set of genomic categories from established resources to evaluate model
performance across simple, complex, and rare regulatory elements.

Promoters are regulatory regions in the non-coding genome that serve as the binding site for the
transcriptional protein complexes that initiate transcription of a gene from DNA to RNA. Promoter
annotations were obtained from the Eukaryotic Promoter Database (EPD) (Périer et al., 2000).

Enhancers are non-coding regulatory regions that increase gene expression, by increasing the like-
lihood of transcription, typically in a manner that depends on cell and tissue context (Visel et al.,
2007). Enhancers were sourced from the VISTA Enhancer Browser (Visel et al., 2007), which ex-
perimentally validate putative enhancers in developing mouse embryos as driving gene expression
in specific tissues.

Ultra-conserved noncoding elements (UCNEs) were taken from UCNEbase (Dimitrieva & Bucher,
2013), and are defined as sets of non-coding regions in the genome longer than 200 bp with ≥95%
sequence identity between humans and chickens.

Repeats encompass a broad class of genomic elements, short or long, that appear multiple times in
the genome, or otherwise are considered low complexity DNA regions (Fernandes et al., 2020). In
some cases, repeats are caused by transposable elements, mobile genetic elements that can move
themselves and duplicate in the genome despite being largely non-functional for the host species.
Repeats were extracted from the UCSC RepeatMasker track (Fernandes et al., 2020).

Protein-coding exons, introns, upstream transcription start site (2kb upstream of TSS), 5’UTRs,
3’UTRs, and coding versus noncoding regions were derived from the GENCODE human genome
annotations (GTF format) (Frankish et al., 2021). All regions from the GENCODE human genome
annotations were filtered to canonical transcripts: a single, representative transcript identified at
every gene (usually with the highest coverage of conserved exons, highest expression, longest coding
sequence, etc.) (Dyer et al., 2025). Introns are regions within genes that are spliced out, and do
not encode for proteins, but can play important roles in mRNA processing. Exons are regions
within genes that remain after splicing, but can be non-coding, meaning they do not get translated
to proteins, if they are UTRs. 5’UTRs and 3’UTRs are specific classes of exons involved in splicing
and regulation of translation as well as RNA stability. The region defined as 2kb upstream of the
Transcription Start Site (TSS) is considered a functionally rich region which may contain sequences
involved in transcription initiation, including promoters.

ARGAMBA & BIGAMBA TRAINING

Models were trained for roughly seven epochs on either a single NVIDIA L40S (48GB) or NVIDIA
RTX A6000 (48GB). We used the Adam optimizer with a learning rate schedule defined by a linear
warmup followed by inverse square root decay, implemented via a LambdaLR scheduler.

TRAINING DATA

Chromosome sizes and centromere annotations were downloaded from the UCSC Genome Browser
(Perez et al., 2025). The full human genome sequence (hg38.ml.fa) was obtained from the Basenji
Barnyard resource (Kelley et al., 2018), and repeat elements were collected from the UCSC Repeat-
Masker track (Fernandes et al., 2020). PhyloP scores were downloaded from the 241-mammalian
alignment hub provided by the Comparative Genomics Lab at UCSC (Pollard et al., 2010). Chro-
mosomes 2 and 22 were held out for test, and chromosomes 16 and 3 for validation.

SUPPLEMENTARY FIGURES & TABLES
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Table A1: All models evaluated with parameter counts (in millions) and context lengths (in 1,000
bp).

Model Params (M) Context (kbp)

ARGAMBA NTP-ONLY 66.5 2
ARGAMBA CEP-ONLY 66.5 2
ARGAMBA NTP+CEP 66.5 2
BIGAMBA NTP-ONLY 3.9 2
BIGAMBA MEM-ONLY 3.9 2
BIGAMBA MLM+MEM 3.9 2
NT multi-species 498.3 6
NT human-ref 480.4 6
PhyloGPN 83.2 0.481
HyenaDNA 6.6 160
Caduceus 7.7 131
K-mer (k=6) 0.0 2
PhyloP (6D) 0.0 2

Table A2: Representation performance (balanced accuracy) across genomic categories (vista en-
hancer, UCNE, repeats, exons, introns, noncoding regions, coding regions, 2kb upstream of the
TSS, 5’UTR, 3’UTR, promoters) sampled from the whole genome. The final column reports rel-
ative improvement over random initialization. Random initialization baseline follows Vishniakov
et al. (2024). Models in blue are our models pretrained to predict PhyloP scores, models in orange
are our models pretrained on sequence alone, models in purple are pretrained on both tasks. Bolded
entries in the pretrained column indicate the best performing model. Bolded entries in the Improve-
ment column indicate the largest relative performance increase.

Model Random Init (%) Pretrained (%) Improvement (+%)
NUCLEOTIDE TRANSFORMER
(HUMAN-REF)

25.09 35.69 +10.60

NUCLEOTIDE TRANSFORMER
(MULTI-SPECIES)

21.76 36.24 +14.48

HYENADNA 69.15 66.99 -2.16
PHYLOGPN 19.89 31.07 +11.18
CADUCEUS 29.89 42.97 +13.08
GAMBA NTP-ONLY 37.46 53.83 +16.37
GAMBA CEP-ONLY 37.54 48.56 +11.02
GAMBA NTP+CEP 37.65 54.67 +17.02
BI-GAMBA MLM-ONLY 24.70 36.40 +11.70
BI-GAMBA MEM-ONLY 24.23 39.90 +15.66
BI-GAMBA MLM+MEM 23.42 40.37 +16.96
K-mer model (k = 6) N/A 29.57 N/A
PhyloP (6D) N/A 36.62 N/A
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Table A3: UCNE identification task: binary classification of UCNEs versus length-matched up-
stream flanking regions. Accuracy is reported as balanced accuracy. Models in orange are our
models pre-trained on sequence alone, models in blue are our models pre-trained to predict Phy-
loP scores + sequence, and models in purple are pre-trained to predict PhyloP scores alone, with
BiGamba MLM+MEM showing the largest gain over its sequence-only counterpart. Percent im-
provement over non-evolutionary rate pretrained model is included in brackets

Model Accuracy (%)
ARGAMBA NTP-ONLY 63.9
ARGAMBA CEP-ONLY 77.3
ARGAMBA NTP+CEP 77.6 (+13.7)
BIGAMBA MLM-ONLY 66.2
BIGAMBA MEM-ONLY 76.0
BIGAMBA MLM+MEM 81.7 (+15.5)
PHYLOGPN 75.4
NUCLEOTIDE TRANSFORMER (MULTI-SPECIES) 74.6
NUCLEOTIDE TRANSFORMER (HUMAN-REF) 74.9
HYENADNA 49.1
CADUCEUS 71.0

Table A4: Variant effect prediction (VEP) on ClinVar. We report AUCs for log-likelihood and
predicted conservation scores, as well as Pearson correlation with true conservation scores where
applicable. Models in orange are our models pre-trained on sequence alone, models in blue are our
models pre-trained to predict PhyloP scores + sequence, and models in purple are pre-trained to
predict PhyloP scores alone.

Model Log-likelihood AUC Pred. cons. AUC Cons. corr. (Pearson)
ARGAMBA NTP-ONLY 0.501 – –
ARGAMBA CEP-ONLY – 0.677 0.358
ARGAMBA NTP+CEP 0.512 0.696 0.398
BIGAMBA MLM-ONLY 0.501 – –
BIGAMBA MEM-ONLY – 0.737 0.455
BIGAMBA MLM+MEM 0.528 0.740 0.463
CADUCEUS 0.640 – –
HYENADNA (1M SEQ-LEN) 0.501 – –
NUCLEOTIDE TRANSFORMER (MULTI-SPECIES) 0.597 – –
NUCLEOTIDE TRANSFORMER (HUMAN) 0.510 – –
PhyloP Score – 0.9121 –
PhyloGPN – 0.960 –
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