
Hardness of Learning Neural Networks under the
Manifold Hypothesis

Bobak T. Kiani∗ Jason Wang† Melanie Weber‡

Abstract

The manifold hypothesis presumes that high-dimensional data lies on or near a
low-dimensional manifold. While the utility of encoding geometric structure has
been demonstrated empirically, rigorous analysis of its impact on the learnabil-
ity of neural networks is largely missing. Several recent results have established
hardness results for learning feedforward and equivariant neural networks under
i.i.d. Gaussian or uniform Boolean data distributions. In this paper, we investigate
the hardness of learning under the manifold hypothesis. We ask which minimal
assumptions on the curvature and regularity of the manifold, if any, render the
learning problem efficiently learnable. We prove that learning is hard under in-
put manifolds of bounded curvature by extending proofs of hardness in the SQ
and cryptographic settings for Boolean data inputs to the geometric setting. On
the other hand, we show that additional assumptions on the volume of the data
manifold alleviate these fundamental limitations and guarantee learnability via a
simple interpolation argument. Notable instances of this regime are manifolds
which can be reliably reconstructed via manifold learning. Looking forward, we
comment on and empirically explore intermediate regimes of manifolds, which
have heterogeneous features commonly found in real world data.4

1 Introduction

High-dimensional data is often thought to have low-dimensional structure, which may stem, for
instance, from symmetries in the underlying system. This observation has given rise to the manifold
hypothesis, which presumes that high-dimensional data lies on or near a low-dimensional manifold.
Empirical studies have confirmed this hypothesis across domains [20, 77, 37, 65]. A plethora of
algorithms for geometric data analysis [44, 8, 80, 21] and, more recently, machine learning [30,
15, 23] seek to leverage such structure. While these methods have shown empirical promise, few
formal results on the benefits of encoding geometric structure have been established. Here, we
study the impact of the manifold hypothesis on the computational complexity of learning algorithms
for neural networks. Specifically, we investigate, under which geometric assumptions feedforward
neural networks are efficiently learnable.

The computational hardness of learning shallow, fully-connected neural networks under i.i.d. Gaus-
sian data distributions has been established by [36, 26, 48, 32], who show that the complexity of
learning even single hidden layer neural networks grows at least exponentially with the input size.
Some of this analysis utilizes the correlational statistical query (CSQ) framework, of which learn-
ability via gradient decent is a notable instance. Recently, [57] have shown similar hardness results

∗John A. Paulson School of Engineering and Applied Sciences, Harvard University; e-mail:
bkiani@g.harvard.edu.

†Harvard College, Harvard University; e-mail: jasonwang1@college.harvard.edu.
‡John A. Paulson School of Engineering and Applied Sciences, Harvard University; e-mail:

mweber@g.harvard.edu
4Code is made public at https://github.com/Weber-GeoML/manifold-learning-complexity

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:bkiani@g.harvard.edu
mailto:jasonwang1@college.harvard.edu
mailto:mweber@g.harvard.edu
https://github.com/Weber-GeoML/manifold-learning-complexity

for equivariant neural networks, a class of geometric architectures that explicitly encode symme-
tries. Both lines of work indicate that additional assumptions on the neural network architecture or
the data geometry are needed to establish learnability. Here, we focus on the latter.

A separate body of literature investigates nonlinear, low-dimensional structure in data. Approaches
for estimating intrinsic dimension [44, 63, 87] and curvature [1, 86, 46] from data seek to char-
acterize the geometry of low-dimensional manifolds. Manifold Learning aims to identify low-
dimensional structure by reconstructing low-dimensional manifolds from data. Methods such as
Multi-Dimensional Scaling [62], Isomap [89] or Diffusion Maps [31] have shown empirical suc-
cess in learning low-dimensional data manifolds. For some of these approaches, formal guarantees
on their reliability with respect to the geometric characteristics and sample size of the data are
known [9]. More generally, the manifold learning problem and its complexity have been formally
studied in [43, 42, 3]. However, the impact of data geometry on the complexity of learning neural
networks in downstream tasks remains open.

In this paper, we ask: Which assumptions on the data geometry guarantee learnability of neural
networks? We show that the manifold hypothesis on its own does not guarantee learnability. In
particular, we give hardness results for a class of low-dimensional manifolds in the statistical query
(SQ) model or under cryptographic hardness assumptions. Our work follows an established line
of proof techniques in the SQ literature [32, 48, 26], extending hardness results for neural network
training in the Boolean and Gaussian input models to more general geometries. We further show that
additional assumptions on the volume and curvature of the data manifold alleviate the fundamental
limitations and guarantee learnability through a rather simple interpolation argument. In particular,
manifolds which can be reliably reconstructed via manifold learning are in this regime. We fur-
ther discuss geometric regimes in which our results do not directly apply, and in which provable
learnability remains an open question. We illustrate our learnability results through computational
experiments on neural network training in the learnable and provably hard regimes. We further com-
plement our theoretical analysis with a brief computational study of the intrinsic dimension of image
data manifolds, with the goal of testing the geometric assumptions in our framework.

2 Background

2.1 Basic Notation

We denote scalars, vectors, and matrices as v,v, and V respectively. We consider ambient spaces
Rn equipped with the usual inner product ⟨·, ·⟩ and associated ℓ2 norm ∥·∥. Submanifolds M ⊂ Rn

considered in this study have intrinsic dimension d ≤ n and are compact and connected (unless
otherwise stated). The tangent space TpM at a point p ∈ M denotes the d-dimensional linear
subspace of Rn spanned by velocity vectors of smooth curves incident at p. Given a subset S ⊂ Rn,
we denote by d(z, S) = infp∈S ∥z − p∥ the distance of a point z to S. We denote Vold as the d-
dimensional volume measure inherited from the d-dimensional Hausdorff measure and denote ωd(r)
and σd(r) as the volume of the d-dimensional ball and d-dimensional sphere of radius r respectively.
For a point p ∈ M in a given manifold M, VolM(p, r) denotes the volume of the ball of radius r
around the point p with respect to the Riemannian distance metric.

2.2 Learning Setting

We consider the task of learning feedforward neural networks f : Rn → R composed of L hidden
layers f (ℓ) : Rdℓ → Rdℓ−1 taking the form

f(x) = v⊤f (L)
(
f (L−1)

(
· · ·
(
f (1) (x)

)
· · ·
))

,

f (ℓ)(h) = ReLU (Wℓh) + bℓ,
(1)

where v ∈ RdL , Wℓ ∈ Rdℓ×dℓ−1 and b ∈ Rdℓ are trainable weights. The input dimension d0 is set
to the ambient dimension n and the output is scalar-valued. Throughout we will consider the setting
where the weight entries and hidden widths are bounded by O(poly(n)). When guaranteeing that
a class of networks is learnable, we will assume that the number of layers L = O(1) is constant
with respect to the input dimension. Our formal hardness results will apply for single hidden layer
networks (L = 1).

2

We consider learnability in the distribution-specific probably approximately correct (PAC) setting
where the goal is to produce an algorithm which can learn a target function given polynomial time
and samples [68].
Definition 2.1 (Efficiently PAC Learnable). A concept class C consisting of functions c : X →
Y is efficiently PAC-learnable over distribution D on X ⊆ Rn, if there exists an algorithm such
that for any ϵ > 0 and δ > 0, and for any target concept c∗ ∈ C, the algorithm takes at most
m = poly(1/ϵ, 1/δ, n) samples drawn i.i.d. from (x, c∗(x)) with x ∼ D, and returns a function f

satisfying ∥f − c∗∥D :=
√
Ex∈D[(f(x)− c∗(x))2] ≤ ϵ with probability at least 1 − δ in time at

most poly(1/ϵ, 1/δ, n).

Note, that the above is a distribution specific instance of PAC learning as we require the algorithm
to work only for a given distribution and not all distributions. In Section 3.2, we will also show a
hard class of functions which is likely not efficiently PAC learnable. Hardness results are proven in
the restricted statistical query (SQ) setting, a query complexity based model for proving hardness
capturing most algorithms in practice [55, 78]. Given a joint distribution D on input/output space
X × Y , any SQ algorithm is composed of a set of queries. Each query takes as input a function
g : X × Y → [−1, 1] and tolerance parameter τ > 0, and returns a value SQ(g, τ) in the range:∣∣E(x,y)∼D [g(x, y)]− SQ(g, τ)

∣∣ ≤ τ. (2)

Gradient based algorithms can be queried by, for example, setting g(x, y) = C ∂
∂θ (NNθ(x)− y)

2

to estimate the gradient of a neural network NNθ with respect to parameter θ for the MSE loss
(constant C chosen so that outputs of g are bounded in [−1, 1] forming a valid query). Hardness is
quantified in the number of queries needed to learn a function c∗ drawn from function class C.

Manifold smoothness restrictions. To conform to practical settings where input features are nor-
malized (e.g. image pixel values in the range [0, 1]), input distributions are assumed to be supported
on smooth d-dimensional sub-manifolds M ⊂ [0, 1]n of the n-dimensional hypercube. For any
given manifold M, we will assume that data distributions DM supported on that manifold have
a smooth density f with respect to the volume measure and are appropriately bounded such that
ρmax := maxx∈M f(x)

minx∈M f(x) = O(poly(n)).

We will also place curvature restrictions on the manifold by bounding its reach, a global smoothness
quantity introduced by [41] and commonly studied in the manifold learning community [1, 3, 43,
47]. Informally, it is the largest number D, such that any point in ambient space at distance less than
D has a unique nearest neighbor in the manifold M. It is defined more formally from descriptions
of the medial axis (Figure 1).
Definition 2.2 (Reach from medial axis). Given a closed subset S ⊂ Rn, the medial axis Med(S)
of S consists of the set of points with no unique nearest neighbor:

Med(S) = {z ∈ Rn : ∃p ̸= q ∈ S, ∥p− z∥ = ∥q − z∥ = d(z, S)}. (3)

The reach Rch (S) of S is the minimal distance from S to Med(S):

Rch (S) = inf
z∈Med(S)

dist(z, S). (4)

Medial Axis

Figure 1: Example of a
one-dimensional mani-
fold and its medial axis.
Its reach is given by
the minimum distance
of the medial axis to the
manifold.

Bounds on the reach imply corre-
sponding bounds on the radius of cur-
vature (related to the geodesic and
normal curvature) at any point in
the manifold since Rch (M)

−1 ≥
∥γ′′

γ(t),γ′(t)(t)∥ for any unit-speed
geodesic γ : R → M where
∥γ′

γ(t)(t)∥ = 1 for all t ∈ R [3]. We
will encounter a second classical cur-
vature notion, Ricci curvature, which
is a local, intrinsic curvature notion
that characterizes the volume growth of geodesic balls (see sec. B.1 for a more formal definition).
Positive lower bounds on the Ricci curvature imply that the manifold has a bounded diameter, a fact
that we will use below.

3

2.3 Related works

Here, we briefly summarize the most relevant prior work to our study and reserve Appendix A
for a more detailed discussion. Our study lies at the intersection of research in manifold learning
complexity and neural network learnability. In manifold learning, various works have analyzed the
complexity of learning tasks over input manifolds. In one line of work, estimation of smooth man-
ifolds in Hausdorff loss has been shown to require sample complexity of O(ϵ−d/2 log(1/ϵ)), which
is independent of the ambient dimension n [14, 47, 58]; later works also provided algorithms that
run in time linear in n [4, 38]. In a learning setting similar to our work, [3] provide upper and lower
bounds on the complexity of manifold reconstruction in SQ settings. In a separate context, [71, 43]
show that the sample complexity for determining whether a dataset is within a class of manifolds of
specified intrinsic dimension, curvature, and volume bounds grows exponentially with the intrinsic
dimension and polynomially in the reach and volume. [71] also categorizes the sample complexity
for binary classification over smooth cuts on a data manifold where smoothness is defined by the
condition number of the classification boundary of the manifold (a quantity closely related to reach).

The hardness of learning neural networks has a long history that we detail further in Appendix A.
Under the i.i.d. Gaussian input model, superpolynomial [48] and exponential [36] lower bounds
for learning single hidden layer networks in CSQ settings have been shown. For uniformly ran-
dom Boolean inputs, [32] reduce the problem of learning single hidden layer neural networks to a
cryptographically hard problem, a technique, which we also use in Appendix C.3. They also show
how to “Booleanize” Gaussian inputs to show hardness for three hidden layer networks, which was
later extended to SQ and cryptographic hardness of learning two hidden layer networks in [26]. [57]
used similar techniques to give hardness results for equivariant neural networks. To the best of our
knowledge, the hardness of learning feedforward neural networks under more general data geome-
tries, such as under the manifold hypothesis, has not been studied previously. Various works have
found efficient learning algorithms under i.i.d. input assumptions when the weights of the networks
are restricted in their rank, condition number, positivity, and other criteria [90, 27, 7, 36]. We con-
sider the generic setting where weight matrices are bounded in width and magnitude by O(poly(n)),
but otherwise unrestricted.

3 Learnability results

Our main results prove the existence of a learnable and hard to learn class of input data manifolds
illustrated in Figure 2. The learnable setting is the class of efficiently sampleable manifolds, which
form the basis for algorithms that can provably reconstruct manifolds [9, 28, 70, 42]. As expected,
we find that a simple interpolation argument guarantees learnability of neural networks over these
manifolds. Below and in Appendix B.3, we comment on instances of data geometries commonly
assumed in machine learning and data science applications that place manifolds within this regime.

The provably hard setting are manifolds without bounds on volume but with bounds on curvature
quantified globally by the reach. When the bound on the reach grows no faster than o(

√
n) (n

denoting the input size), we construct input data manifolds that feature curvature no larger than the
stated bounds but for which learning neural networks is exponentially hard. Our proofs construct
curves that cover exponentially many quadrants of the Boolean cube, which allows us to extend
classical hardness results for learning Boolean functions expressible by neural networks.

Within the manifold regimes we study, our results are relatively tight with respect to bounds on
the reach, since whenever the reach grows as ω(

√
n), such manifolds fall within the first class

of efficiently sampleable manifolds. We leave as an open question the learnability of manifolds
whose reach grows exactly as Θ(

√
n) (see Appendix C.4 for more details). Looking beyond our

setting, real-world data manifolds feature heterogeneous properties that may not conform to the
global bounds on curvature, intrinsic dimension, etc. that we set in our study. Better characterizing
these heteregeneous features is a first step to extending our learnability results to more realistic
settings. We conduct some preliminary empirical analysis in analyzing this heterogeneity in our
experiments (Section 4.2).

4

(Learnable)
Efficiently Sampleable Regime

Example: Positive Bounded Ricci
Curvature Manifold

(Potentially Learnable)
Heterogeneous Regime

Example: Manifolds with varying intrinsic
dimension (e.g. as in real world data)

(Provably Hard)
Bounded Curvature, Unbounded
Volume Regime

Example: Space filling manifold

Figure 2: Learnability of neural networks depends
on the regularity and smoothness properties of the
input data manifold. In the efficiently sampleable
regime corresponding to manifolds which can be ap-
proximated well with samples, neural networks are
learnable via simple interpolation arguments. In the
regime where manifolds are bounded solely by their
curvature and intrinsic dimension, we show classes
of manifolds that obstruct the learnability of algo-
rithms. Real-world data likely lives in an inter-
mediate regime with heterogeneous properties (e.g.
manifolds with varying intrinsic dimension; see Sec-
tion 4.2).

3.1 Sampleable regime

In the manifold reconstruction literature, the goal is to draw samples from a distribution P (typically
supported on a given manifold M) and find a manifold M′ which closely approximates the sam-
ple distribution or target manifold in some appropriate error metric such as the Haussdorf distance
[89, 9, 2, 43, 28, 70, 42]. Runtime and sample complexity for these algorithms are generally at least
linear in the volume of the manifold, polynomial in smoothness parameters such as the reach, and
exponential in the intrinsic dimension, though the dependence on the ambient dimension can often
be removed [42]. Manifold reconstruction algorithms offer a direct means for learning data from a
target neural network f∗ as one can apply such algorithms to the graph of the function consisting of
points (x, f∗(x)) ∈ X × R. As we will show here, guarantees of learning in the manifold recon-
struction literature directly imply guarantees for learning neural networks via a simple interpolation
argument. However, caution must be taken in assuming this situation holds in practice. For this
procedure to be efficient, the volume of the manifold should be at worst polynomial in the intrinsic
dimension d and not growing significantly with the ambient dimension n. Some empirical evidence
suggests that manifolds of real-world data may not be in this regime [74, 16].

Essential to many of the manifold reconstruction algorithms is the requirement that one can effi-
ciently cover the manifold with samples [28, 43, 9]. This requirement comes in various technical
forms and we frame our results here assuming the ability to form an epsilon net with samples.
Definition 3.1 ((ϵ, δ)-net). Given a distribution DM over a manifold M, a subset S ⊂ M of points
forms an (ϵ, δ)-net if with probability at least 1− δ over draws x ∼ DM, there exists a point x′ ∈ S
where ∥x− x′∥ ≤ ϵ.

We denote a sequence of manifolds indexed by ambient dimensions as efficiently sampleable if for
a fixed intrinsic dimension d, one can draw polynomially many samples in n and error 1/ϵ to form
an epsilon net over the manifold M.
Definition 3.2 (Efficiently sampleable manifold). Let {Mn} denote a sequence of manifolds in
ambient dimension n with fixed intrinsic dimension d = O(1). Let {DMn

} be a corresponding
sequence of distributions over points on the manifolds. We denote this sequence of manifolds as
efficiently sampleable if with at most Õ(poly(n, 1/ϵ)) samples drawn i.i.d. from DMn , one can
form an (ϵ, δ)-net of the manifold Mn for any δ = Ω(poly(n)−1).

Note that classical manifold learning algorithms typically implicitly assume efficiently sampleable
manifolds as they assume that the algorithms run efficiently or have runtimes that depend polyno-
mially on the manifold’s volume Vol(M) (see Example B.8 for details). With standard regularity
assumptions on the manifold, such a volume assumption typically implies that an epsilon net can be
formed efficiently with Õ(Vol(M)/ϵd) samples by a coupon collector argument (see, e.g., Proposi-
tion 3.5).
Remark 3.3. Given a target function f∗ with inputs on a manifold M ⊆ X , we could treat the graph
of the function Mf∗ = {(x, f∗(x)) : x ∈ M} as a manifold in X × R. Then, one can apply
manifold reconstruction algorithms directly to the graph Mf∗ , which lies in an ambient space of

5

dimension n + 1. This likely works in practice, though it runs into some technical issues due to
discontinuities introduced by ReLU activations. We apply a more direct method here.
Proposition 3.4. Let n-dimensional inputs be drawn from a sequence of efficiently sampleable man-
ifolds Mn with intrinsic dimension d = O(1) and distributions DMn

over the manifold. Denote
Hn as the function class of constant depth ReLU networks on n inputs with weights bounded in
magnitude by B = O(poly(n)) and O(poly(n)) width. Then, one can learn f∗ ∈ Hn up to error ϵ
in runtime and sample complexity O(poly(n,B, 1/ϵ)).

Proof. From the efficiently sampleable property of the manifold, we form an (ϵ′, δ)-net using
Õ(poly(n, 1/ϵ)) many samples where for all but a δ-fraction of the manifold any point is within
ϵ′ of a given point within the net. Any network of L layers and O(poly(n)) bounded width and
weight magnitude has the Lipschitz property that [92]

∥f∗(x)− f∗(x′)∥ ≤ ∥x− x′∥
L∏

ℓ=1

∥W (ℓ)∥2 (5)

≤ ∥x− x′∥
L∏

ℓ=1

∥W (ℓ)∥F

≤ O(B′nL)∥x− x′∥,
where B′ = O(poly(n,B)) is a bound on the Frobenius norm of the weight matrices. Therefore,
we can interpolate the value of f∗ for any x ∈ Mn from a sample by setting ϵ′ = O(ϵB′−1n−L).
For the δ-fraction that is not in this net, note that |f(x)| ≤ O(poly(n)) for all x in the hypercube so
setting δ = o(|f(x)|−1) will guarantee that the contribution from these points decays. Finally, since
L = O(1) and B = O(poly(n)) by assumption, we have the resulting polynomial complexity.

Restrictions on the curvature or convexity properties of a manifold can often render the manifold
efficiently sampleable. To illustrate that many manifolds implicitly fall within the regime of effi-
ciently sampleable manifolds, we give an example below. Additional examples can be found in Ap-
pendix B.3.
Proposition 3.5 (Bounded Ricci curvature (Isoperimetric setting, see [52, 17] for motivation)). The
set of distributions PM over complete manifolds with bounded Ricci curvature Ric (M) ≥ (d−1)K
for a constant K > 05 are efficiently sampleable.

Proof. The bound on the Ricci curvature guarantees that the diameter of the manifold is at most
2π/

√
K and the manifold is contained within a d-dimensional ball of radius 1/

√
K [69] (see also

Theorem 6.3.3 of [75]). Thus, we can form an (ϵ, δ)-net over the manifold M by inducing it from
an ϵ-cover on the ball of radius 1/

√
K (see Definition B.1 for definition). To achieve an ϵ-cover

of such a ball in d dimensions, it suffices to have Nϵ = O(1/ϵd) points (see, e.g., Lemma 5.2
of [91]). We denote the balls in the cover as b1, . . . , bNϵ . Let τ denote a sampling ratio where
we will take τ−2 = O(poly(n)) samples to form the (ϵ, δ)-net. By a coupon-collector argument
(see Lemma B.5), τ−2 samples suffices to guarantee with high probability that any ball bi with
probability at least PM(bi) ≥ τ has a sample within it. δ then is at most the probability that a
randomly drawn sample falls within a ball bi with probability PM(bi) < τ . Therefore,

δ ≤
∑

i:PM(bi)<τ

PM(bi) ≤ Nϵτ. (6)

Thus, setting τ = δ/Nϵ suffices to achieve δ = Ω(poly(n)−1).

We remark that the efficiently sampleable setting does not necessarily require that the manifold be
fully connected. In fact, it is straightforward to extend proofs of learnability such as in Proposi-
tion 3.5 to settings where there are multiple such disconnected manifolds as long as the number of
disconnected components does not grow superpolynomially in n.

5Here, the factor (n − 1) accounts for the standard scaling of the Ricci curvature for a sphere of radius
1/

√
K which has Ricci curvature (n− 1)K.

6

3.2 Hard regime with bounded curvature

The learnability of the networks in the manifold learning setting relied crucially on the fact that such
settings implicitly place bounds on the volume of such manifolds. Here, we lift that restriction and
consider a setting where manifolds are smooth and bounded only in their curvature and intrinsic
dimension. More formally, we consider studying inputs drawn from manifolds with bounded reach
(see Definition 2.2).

In this section, we construct a sequence of manifolds {Mn} with sufficiently bounded reach that
are exponentially hard to learn in the SQ model. These manifolds resemble space filling curves
which wrap around exponentially many quadrants of the Boolean cube (see Appendix C.1). Given
a bound on the reach Rch (Mn}) = O(nα) for α < 0.5, the space filling curve wraps around
2n

1−2α

= 2n
Ω(1)

quadrants allowing one to extend standard hardness results for learning Boolean
functions to data supported on this manifold.

Theorem 3.6. Let DMn
denote the uniform distribution over manifolds Mn constructed in Defini-

tion C.4 where Rch (Mn) = O(nα) for α < 0.5. Any SQ algorithm A capable of learning the class
of linear width single hidden layer ReLU neural networks under this sequence of distributions up
to mean squared error sufficiently small (ϵ/8 suffices) with queries of tolerance τ must use at least
Ω(τ22n

Ω(1)

) queries.

Proof sketch. We first form manifolds conforming to the stated bounds on the reach and intrinsic
dimension while also “looping” around exponentially many quadrants of the hypercube. This is
done by forming space-filling curves whose paths follow the indexing of a Gray code [51]. Inputs
on this manifold are real-valued, but by carefully selecting a portion of the input dimensions, we
obtain inputs that with high probability are approximately distributed as uniform over Boolean inputs
{0, 1}nb . We then extend previous proofs of the hardness of learning networks approximating parity
functions under i.i.d. Boolean inputs proven in [32, 26] to our setting. See Appendix C for complete
proofs.

Remark 3.7. In Theorem C.12, we show an equivalent proof of hardness in the cryptographic setting
following the techniques in [32]. Namely, in Appendix C.3, we show that the class of functions in
Theorem 3.6 is also hard to learn conditional on cryptographic assumptions related to the hardness
of learning a class of pseudorandom functions.

The above result is relatively tight with respect to the bound on the reach. Namely, whenever the
reach Rch (Mn) = ω(nα) is growing faster than

√
n, one can show that the volume of such mani-

folds is at most O(poly(n)) and fitting within the regime of efficiently sampleable manifolds studied
in the previous subsection.

Proposition 3.8. Given a sequence of manifolds {Mn} of intrinsic dimension d (fixed and indepen-
dent of n) and reach bounded by Rch (Mn) = ω(n0.5), the volume of the manifolds grows at most
Vold(Mn) = O(poly(n)).

We refer the reader to Appendix C.4 for further details and formal proofs of this tightness.

4 Experiments

4.1 Empirical verification of main findings

To verify that neural networks are learnable in the sampleable regime (Section 3.1) and hard to learn
in the bounded curvature regime (Section 3.2), we train neural networks over input data manifolds
taken from these regimes to confirm the formal theoretical results. We consider target networks,
which are single hidden layer neural networks of O(n) width and train overparameterized neural
networks of larger width. For the sampleable regime, we draw inputs from a d-dimensional hy-
persphere supported over d orthogonal dimensions in the n-dimensional ambient space. This is an
instance of a complete manifold of bounded curvature as in Proposition 3.5. For the hard to learn
regime, we draw inputs from the 1-dimensional manifold constructed in Appendix C.1 with reach
R = 0.5. Target functions in this hard regime correspond to the parity functions described in our
proofs in Appendix C.

7

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 M
SE

ambient dim. (n)
20
50
100
200

(a) Learnable Setting

0 5000 10000 15000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 M
SE ambient dim. (n)

10
20
50

(b) Hard to Learn Setting

Figure 3: (a) Learning is successful when inputs are drawn from a d = 10 intrinsic dimensional
hypersphere living in ambient space of dimension n – an instance of the bounded positive curvature
model in Proposition 3.5. Target functions are single hidden layer networks taken from the class of
hard to learn functions in the Gaussian i.i.d. input model [36], which are no longer hard to learn in
the input distribution considered here. (b) When the ambient dimension is large, learning algorithm
struggles to learn a single hidden layer neural network drawn from the class of functions in the
setting of Theorem 3.6 where the input data manifold has intrinsic dimension d = 1 and reach
R = 0.5. The network trained to learn this target function is over-parameterized with respect to the
target. Data is aggregated over five random realizations.

The results in Figure 3 empirically confirm our main findings. When inputs are drawn from the
d-dimensional hypersphere (Figure 3a), the trained neural network achieves low test error with a
fixed training set of size 1000 for all n. Here, target functions are drawn from those in [36] who
provided a class of hard to learn functions in the i.i.d. Gaussian input model. Once the input model
is changed to the d-dimensional hypersphere, this class of functions is no longer hard to learn (see
Appendix E for similar results over random targets).

In contrast, when inputs are drawn from the hard to learn manifold (Figure 3b), learning is only
possible when the ambient dimension is small. Here, target functions are randomly chosen parity
functions over the inputs (see Appendix E). At each step of training, we provide the algorithm
with a fresh batch of i.i.d. samples. In Figure 8, we replicate these results when training networks
overparameterized in depth (i.e. three hidden layers as opposed to one) as well. We refer the reader
to Appendix E for further details.

4.2 Empirical study of geometry of data manifolds

We empirically investigate the intrinsic dimension of real-world data manifolds as a first step towards
testing the manifold regularity assumptions of our framework on real data. Largely, our results cor-
roborate findings in other works highlighting the heterogeneous nature of real-world data manifolds
[77, 87, 16].

Experimental Setup. We estimate intrinsic dimension using samples generated by a diffusion
model, closely following the approach of [87]. The use of a diffusion model allows us to generate
arbitrarily dense samples in a neighborhood of a given point from the data manifold. Given these
samples, we perform PCA on the collection of score vectors {si} of the diffusion model at each
of these samples, which point towards the direction of de-noising and hence towards the manifold
itself. Estimating the rank of such a collection of score vectors recovers an estimate of the normal
and intrinsic dimensions. We defer a detailed description of our approach, its implementation, and
hyperparameter choices to Appendix E.1.

Data set #0 #1 #2 #3 #4 #5 #6 #7 #8 #9
MNIST (28 x 28) 102 66 120 109 73 101 109 72 114 104
KMNIST (28 x 28) 180 199 134 169 135 128 149 191 205 199
FMNIST (28 x 28) 429 177 596 275 225 233 312 125 201 418

Table 1: Estimated intrinsic dimension shown for each of the ten classes in MNIST, KMNIST,
FMNIST.

8

0 100 200 300 400 500 600 700 800
Dimension

0
50

100
150
200
250
300
350

Sin
gul

ar V
alu

e

MNIST Intrinsic Dimension

Digit 0: 102
Digit 1: 66
Digit 2: 120
Digit 3: 109
Digit 4: 73
Digit 5: 101
Digit 6: 109
Digit 7: 72
Digit 8: 114
Digit 9: 104

0 100 200 300 400 500 600 700 800
Dimension

0
50

100
150
200
250
300
350

Sin
gul

ar V
alu

e

Kuzushiji MNIST Intrinsic Dimension

: 180
: 199
: 134
: 169
: 135
: 128
: 149
: 191
: 205
: 199

0 100 200 300 400 500 600 700 800
Dimension

0
50

100
150
200
250
300
350

Sin
gul

ar V
alu

e

Fashion MNIST Intrinsic Dimension

T-Shirt/Top: 429
Trouser: 177
Pullover: 596
Dress: 275
Coat: 225
Sandal: 233
Shirt: 312
Sneaker: 125
Bag: 201
Ankle Boot: 418

Figure 4: Sample spectrum of the singular values of a collection of score vectors given by a trained
diffusion model pointing towards the direction of de-noising an image.

Results. Estimated intrinsic dimensions for three image data manifolds are given in Table 3. Score
spectra for the three manifolds are shown in Figure 4 confirming that the score vectors do indeed
cluster in a linear subspace spanning the normal dimensions. Furthermore, our approach gives a sim-
ilar estimate for the intrinsic dimension of MNIST as reported in [87]. To the best of our knowledge,
FMNIST and KMNIST were not investigated in prior work. Comparing estimated intrinsic dimen-
sion across classes indicates significant heterogeneity of the real data manifolds, which would place
them in the potentially learnable regime in our proposed framework. This may seem surprising
as images drawn from different classes can have different properties and symmetries. However, it
corroborates our initial hypothesis that real-world data may not conform to global bounds on intrin-
sic dimension. Furthermore, we find that upon re-sizing the images to a smaller scale, the ambient
dimension decreases faster in comparison to the intrinsic dimension for some datasets (see Table 3
in Appendix) lending some limited evidence to the underlying assumption in the manifold hypothe-
sis that bounds on intrinsic dimension do not grow in tandem with ambient dimension. Additional
experimental results and further discussion can be found in Appendix E.3.

5 Discussion

In this paper we have investigated whether regularity assumptions on the data geometry can ren-
der feedforward neural networks efficiently learnable. We show that bounding curvature in low-
dimensional data manifolds, a common assumption in high-dimensional learning, does not suffice
to alleviate the fundamental hardness of learning such architectures. However, we establish learning
guarantees under geometric assumptions common in the manifold reconstruction literature that al-
low manifolds to be efficiently covered with O(poly(n)) samples. Our results contribute to a recent
body of literature that seeks to establish learnability guarantees and provable hardness results for
neural network architectures [12, 26, 36, 57, 48, 90].

While our results establish guarantees for a wide range of data manifolds, including manifolds that
can be provably reconstructed via manifold learning, there are geometric regimes in which the ques-
tion of learnability remains open. We hypothesize that the heterogeneity of real data manifolds
might place them in this more uncertain regime and find some evidence of this heterogeneity in our
experiments. A further theoretical and empirical investigation of this class of data manifolds is an
important direction for future work.

The experimental results on estimating the intrinsic dimension of data manifolds are merely a start-
ing point for understanding realistic assumption on data geometry in machine learning architectures.
In future work we hope to look at a wider range of synthetic and real data sets, as well as a wider
range of geometric characteristics and estimation techniques.

Broadly, our results indicate that assumptions beyond global smoothness of data manifolds are
needed to guarantee learnability of neural networks in real-world settings. To circumvent hard-
ness results, the particular form of the networks and their weights can be changed to for example
incorporate symmetries via equivariant architectures or place restrictions on weights such as bounds
on condition number or rank [27, 7]. Furthermore, some datasets live in a discrete input space (e.g.,
language data) which does not conform directly to Riemannian analysis. In these settings, adapta-
tions of the manifold hypothesis to analysis via graphs and other combinatorial objects presents an
interesting direction for future work [81, 15].

9

Acknowledgement

The authors thank Andrew Cheng and Adityanarayanan Radhakrishnan for insightful discussions.
BTK and MW were supported by the Harvard Data Science Initiative Competitive Research Fund
and NSF award 2112085. JW acknowledges support from the Harvard College Research Program
(HCRP).

References
[1] E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, and L. Wasserman. Estimating the reach

of a manifold. 2019.

[2] E. Aamari and A. Knop. Statistical query complexity of manifold estimation. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 116–122, 2021.

[3] E. Aamari and A. Knop. Adversarial manifold estimation. Foundations of Computational
Mathematics, pages 1–97, 2022.

[4] E. Aamari and C. Levrard. Stability and minimax optimality of tangential delaunay complexes
for manifold reconstruction. Discrete & Computational Geometry, 59:923–971, 2018.

[5] E. Abbe, E. B. Adsera, and T. Misiakiewicz. Sgd learning on neural networks: leap complexity
and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learning Theory,
pages 2552–2623. PMLR, 2023.

[6] Y. Bahri, E. Dyer, J. Kaplan, J. Lee, and U. Sharma. Explaining neural scaling laws. arXiv
preprint arXiv:2102.06701, 2021.

[7] A. Bakshi, R. Jayaram, and D. P. Woodruff. Learning two layer rectified neural networks in
polynomial time. In Conference on Learning Theory, pages 195–268. PMLR, 2019.

[8] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural computation, 15(6):1373–1396, 2003.

[9] M. Bernstein, V. De Silva, J. C. Langford, and J. B. Tenenbaum. Graph approximations to
geodesics on embedded manifolds. Technical report, Citeseer, 2000.

[10] R. L. Bishop. A relation between volume, mean curvature and diameter. In Euclidean Quantum
Gravity, pages 161–161. World Scientific, 1964.

[11] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning
dnf and characterizing statistical query learning using fourier analysis. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing, pages 253–262, 1994.

[12] A. Blum and R. Rivest. Training a 3-node neural network is np-complete. Advances in neural
information processing systems, 1, 1988.

[13] A. Bogdanov and A. Rosen. Pseudorandom functions: Three decades later. In Tutorials on the
Foundations of Cryptography: Dedicated to Oded Goldreich, pages 79–158. Springer, 2017.

[14] J.-D. Boissonnat and A. Ghosh. Manifold reconstruction using tangential delaunay complexes.
In Proceedings of the twenty-sixth annual symposium on Computational geometry, pages 324–
333, 2010.

[15] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learn-
ing: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[16] B. C. Brown, A. L. Caterini, B. L. Ross, J. C. Cresswell, and G. Loaiza-Ganem. Verifying the
union of manifolds hypothesis for image data. In The Eleventh International Conference on
Learning Representations, 2022.

[17] S. Bubeck and M. Sellke. A universal law of robustness via isoperimetry. Journal of the ACM,
70(2):1–18, 2023.

10

[18] S. Buchanan, D. Gilboa, and J. Wright. Deep networks and the multiple manifold problem.
arXiv preprint arXiv:2008.11245, 2020.

[19] F. Camastra and A. Vinciarelli. Estimating the intrinsic dimension of data with a fractal-based
method. IEEE Transactions on pattern analysis and machine intelligence, 24(10):1404–1407,
2002.

[20] G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–
308, 2009.

[21] L. Cayton et al. Algorithms for manifold learning. eScholarship, University of California,
2008.

[22] M. Chen, K. Huang, T. Zhao, and M. Wang. Score approximation, estimation and distribu-
tion recovery of diffusion models on low-dimensional data. arXiv preprint arXiv:2302.07194,
2023.

[23] R. T. Chen and Y. Lipman. Riemannian flow matching on general geometries. arXiv preprint
arXiv:2302.03660, 2023.

[24] S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, and A. Zhang. Sampling is as easy as learning the
score: theory for diffusion models with minimal data assumptions. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

[25] S. Chen, Z. Dou, S. Goel, A. R. Klivans, and R. Meka. Learning narrow one-hidden-layer relu
networks. arXiv preprint arXiv:2304.10524, 2023.

[26] S. Chen, A. Gollakota, A. Klivans, and R. Meka. Hardness of noise-free learning for two-
hidden-layer neural networks. Advances in Neural Information Processing Systems, 35:10709–
10724, 2022.

[27] S. Chen and S. Narayanan. A faster and simpler algorithm for learning shallow networks.
arXiv preprint arXiv:2307.12496, 2023.

[28] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point samples. In
SODA, volume 5, pages 1018–1027, 2005.

[29] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha. Deep learning
for classical japanese literature, 2018.

[30] T. Cohen and M. Welling. Group equivariant convolutional networks. In ICML, 2016.

[31] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis,
21(1):5–30, 2006. Special Issue: Diffusion Maps and Wavelets.

[32] A. Daniely and G. Vardi. From local pseudorandom generators to hardness of learning. In
Conference on Learning Theory, pages 1358–1394. PMLR, 2021.

[33] S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 537–546,
2008.

[34] V. De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

[35] L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[36] I. Diakonikolas, D. M. Kane, V. Kontonis, and N. Zarifis. Algorithms and sq lower bounds
for pac learning one-hidden-layer relu networks. In Conference on Learning Theory, pages
1514–1539. PMLR, 2020.

[37] J. J. DiCarlo, D. Zoccolan, and N. C. Rust. How does the brain solve visual object recognition?
Neuron, 73(3):415–434, 2012.

11

[38] V. Divol. Minimax adaptive estimation in manifold inference. Electronic Journal of Statistics,
15(2):5888–5932, 2021.

[39] P. Erdős and A. Rényi. On a classical problem of probability theory. Magyar Tud. Akad. Mat.
Kutató Int. Közl, 6(1):215–220, 1961.

[40] E. Facco, M. d’Errico, A. Rodriguez, and A. Laio. Estimating the intrinsic dimension of
datasets by a minimal neighborhood information. Scientific reports, 7(1):12140, 2017.

[41] H. Federer. Curvature measures. Transactions of the American Mathematical Society,
93(3):418–491, 1959.

[42] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, and H. Narayanan. Fitting a putative manifold
to noisy data. In Conference On Learning Theory, pages 688–720. PMLR, 2018.

[43] C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis. Journal of the
American Mathematical Society, 29(4):983–1049, 2016.

[44] K. Fukunaga and D. R. Olsen. An algorithm for finding intrinsic dimensionality of data. IEEE
Transactions on computers, 100(2):176–183, 1971.

[45] O. Ganea, G. Bécigneul, and T. Hofmann. Hyperbolic neural networks. Advances in neural
information processing systems, 31, 2018.

[46] N. Garcia Trillos and M. Weber. Continuum limits of Ollivier’s Ricci curvature on data clouds:
pointwise consistency and global lower bounds. arXiv preprint arXiv:2307.02378, 2023.

[47] C. R. Genovese, M. Perone Pacifico, V. Isabella, L. Wasserman, et al. Minimax manifold
estimation. Journal of machine learning research, 13:1263–1291, 2012.

[48] S. Goel, A. Gollakota, Z. Jin, S. Karmalkar, and A. Klivans. Superpolynomial lower bounds
for learning one-layer neural networks using gradient descent. In International Conference on
Machine Learning, pages 3587–3596. PMLR, 2020.

[49] O. Goldreich. Candidate one-way functions based on expander graphs. Studies in Complex-
ity and Cryptography. Miscellanea on the Interplay between Randomness and Computation:
In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai
Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan,
Salil Vadhan, Avi Wigderson, David Zuckerman, pages 76–87, 2011.

[50] V. V. Goncharov and G. E. Ivanov. Strong and weak convexity of closed sets in a hilbert space.
Operations Research, Engineering, and Cyber Security: Trends in Applied Mathematics and
Technology, pages 259–297, 2017.

[51] F. Gray. Pulse code communication. United States Patent Number 2632058, 1953.

[52] M. Gromov. Isoperimetric inequalities in riemannian manifolds. Asymptotic Theory of Finite
Dimensional Spaces, 1200:114–129, 1986.

[53] J. S. Judd. Learning in networks is hard. In Proc. of 1st International Conference on Neural
Networks, San Diego, California, June 1987. IEEE, 1987.

[54] N. Kambhatla and T. Leen. Fast non-linear dimension reduction. Advances in neural informa-
tion processing systems, 6, 1993.

[55] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

[56] B. Kégl. Intrinsic dimension estimation using packing numbers. Advances in neural informa-
tion processing systems, 15, 2002.

[57] B. Kiani, T. Le, H. Lawrence, S. Jegelka, and M. Weber. On the hardness of learning under
symmetries. In The Twelfth International Conference on Learning Representations, 2024.

12

[58] A. K. Kim and H. H. Zhou. Tight minimax rates for manifold estimation under hausdorff loss.
2015.

[59] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[60] D. E. Knuth. The art of computer programming, volume 3. Pearson Education, 1997.

[61] M. Kossaczká and J. Vybı́ral. Entropy numbers of finite-dimensional embeddings. Exposi-
tiones Mathematicae, 38(3):319–336, 2020.

[62] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-
esis. Psychometrika, 29(1):1–27, 1964.

[63] E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. Advances in
neural information processing systems, 17, 2004.

[64] H. Liu, M. Chen, T. Zhao, and W. Liao. Besov function approximation and binary classifi-
cation on low-dimensional manifolds using convolutional residual networks. In International
Conference on Machine Learning, pages 6770–6780. PMLR, 2021.

[65] Y. Ma and Y. Fu. Manifold learning theory and applications. CRC press, 2011.

[66] A. Maloney, D. A. Roberts, and J. Sully. A solvable model of neural scaling laws. arXiv
preprint arXiv:2210.16859, 2022.

[67] T. Minka. Automatic choice of dimensionality for pca. Advances in neural information pro-
cessing systems, 13, 2000.

[68] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,
2018.

[69] S. B. Myers. Riemannian manifolds with positive mean curvature. 1941.

[70] H. Narayanan and S. Mitter. Sample complexity of testing the manifold hypothesis. Advances
in neural information processing systems, 23, 2010.

[71] H. Narayanan and P. Niyogi. On the sample complexity of learning smooth cuts on a manifold.
In COLT, 2009.

[72] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. 2019.

[74] W. Peng, T. Varanka, A. Mostafa, H. Shi, and G. Zhao. Hyperbolic deep neural networks: A
survey. IEEE Transactions on pattern analysis and machine intelligence, 44(12):10023–10044,
2021.

[75] P. Petersen. Riemannian geometry, volume 171. Springer, 2006.

[76] J. Pidstrigach. Score-based generative models detect manifolds. Advances in Neural Informa-
tion Processing Systems, 35:35852–35865, 2022.

[77] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. The intrinsic dimension of
images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

[78] L. Reyzin. Statistical queries and statistical algorithms: Foundations and applications. arXiv
preprint arXiv:2004.00557, 2020.

13

[79] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pages 234–241. Springer, 2015.

[80] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

[81] P. Rubin-Delanchy. Manifold structure in graph embeddings. Advances in neural information
processing systems, 33:11687–11699, 2020.

[82] D. Scieur, T. Kerdreux, A. d’Aspremont, S. Pokutta, et al. Strong convexity of sets in rieman-
nian manifolds. arXiv e-prints, pages arXiv–2312, 2023.

[83] U. Sharma and J. Kaplan. A neural scaling law from the dimension of the data manifold. arXiv
preprint arXiv:2004.10802, 2020.

[84] J. Skilling. Programming the hilbert curve. In AIP Conference Proceedings, volume 707, pages
381–387. American Institute of Physics, 2004.

[85] L. Song, S. Vempala, J. Wilmes, and B. Xie. On the complexity of learning neural networks.
Advances in neural information processing systems, 30, 2017.

[86] D. Sritharan, S. Wang, and S. Hormoz. Computing the riemannian curvature of image patch
and single-cell rna sequencing data manifolds using extrinsic differential geometry. Proceed-
ings of the National Academy of Sciences, 118(29):e2100473118, 2021.

[87] J. Stanczuk, G. Batzolis, T. Deveney, and C.-B. Schönlieb. Your diffusion model secretly
knows the dimension of the data manifold. arXiv preprint arXiv:2212.12611, 2022.

[88] B. Tahmasebi and S. Jegelka. The exact sample complexity gain from invariances for kernel
regression, 2023.

[89] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319–2323, 2000.

[90] S. Vempala and J. Wilmes. Gradient descent for one-hidden-layer neural networks: Polynomial
convergence and sq lower bounds. In Conference on Learning Theory, pages 3115–3117.
PMLR, 2019.

[91] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

[92] A. Virmaux and K. Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

[93] M. Weber, M. Zaheer, A. S. Rawat, A. Menon, and S. Kumar. Robust large-margin learning in
hyperbolic space. In Advances in Neural Information Processing Systems 34, 2020.

[94] N. Whiteley, A. Gray, and P. Rubin-Delanchy. Statistical exploration of the manifold hypothe-
sis, 2023.

[95] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[96] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep
sets. Advances in neural information processing systems, 30, 2017.

14

A Extended Related Works

Hardness of learning neural networks. The first results showing the hardness of learning neural
networks are those of [53, 12] proving that proper learning of neural networks is an NP complete
task. As mentioned earlier, a number of works prove hardness results for learning feedforward
ReLU networks under the Gaussian i.i.d. data model [48, 36, 85, 26, 32]. Many of these works
prove hardness results in the statistical query model [78, 55]. Similar hardness results, also in the
SQ model, have also been shown for classes of symmetric or equivariant neural networks [57].
These results show that additional assumptions on the network class are needed to prove learnability
results. Such assumptions which lead to provable learnability include those on the condition number
or positivity of weights [7, 36], polynomial approximation guarantees [90], or bounds on width
[27, 25]. When the target is not necessarily a feedforward network, [5] show that single hidden
layer ReLU networks can efficiently learn functions with low so-called leap complexity categorized
by the growth in the degrees of polynomials over a linear subspace for i.i.d. Gaussian or uniform
Boolean inputs.

Intrinsic dimension estimation. There are many algorithms, dating back decades, which estimate
the intrinsic dimension of a given set of data points including approaches based on PCA [44, 67],
nearest neighbor methods [63], and others [19, 56]. In the context of modern large image datasets
such as Imagenet, [77] perform estimates of the intrinsic dimension which are noticeably smaller
than the input dimension. Various works study scaling laws arguing that the intrinsic dimension
may be a useful indicator of the complexity of a dataset correlating to the rate at which neural
network performance scale with increased data or training [83, 6]. These works estimate the intrinsic
dimension via a maximum likelihood estimator calculating the intrinsic dimension in relation to the
distances of a point to its nearest neighbors [63, 40]. In later work which estimates the intrinsic
dimension using diffusion models, [87] empirically show that this MLE estimator can underestimate
the intrinsic dimension for various toy datasets where the intrinsic dimension is known. For this
reason, our experiments follow the approach in [87].

Learning algorithms over data manifolds. Among the earliest algorithms for learning over data
manifolds are those for dimensionality reduction and representation learning [44, 8, 54, 33, 80].
As mentioned earlier, a number of works provide algorithms and statistical analysis for manifold
reconstruction or learning where the goal is to construct a manifold that closely fits a target [21, 3,
42]. Perhaps closest to our work are studies of the hardness of learning functions defined over input
manifolds. [71] categorize the sample complexity for binary classification over smooth cuts on a data
manifold where smoothness is defined by the condition number of the classification boundary of the
manifold (a quantity closely related to the reach). When no restrictions are placed on the probability
distribution of data on the manifold, they show that the VC dimension is unbounded when this
condition number exceeds the reach of the manifold. For nicer distributions where there is an upper
bound on the density of the distribution on the manifold, a covering number argument shows that
the sample complexity is dependent on the intrinsic dimension, reach, and condition number but
independent of the ambient dimension. [64] show that for a certain class of convolutional networks
trained on data lying in a low-dimensional manifold, the sample complexity depends weakly on the
ambient dimension. [88] study the sample complexity of learning a target dataset over inputs taken
from manifolds in kernel settings where the target function is invariant over some group operation
acting on the input data manifold. The goal of their work was to quantify the gains in sample
complexity from enforcing invariance and their sample complexity bounds depend on the volume of
the manifold and dimension of the quotient space.

In recent years, various works have empirically tested and analyzed various aspects and implications
of the manifold hypothesis. [16] argue that manifolds of data may have many connected components
of potentially varying intrinsic dimension and provide some empirical estimates of intrinsic dimen-
sion by image class supporting this argument. Our empirical analysis of the intrinsic dimension
also supports this point. [18] consider the task of learning a binary classification task where the
two classes are two separate disconnected one dimensional manifolds (curves) on the sphere. Under
regularity conditions on the extrinsic curvature and Riemannian distance properties of the curves,
they prove that sufficiently wide and deep feedforward networks can learn to separate the manifolds.
Their proofs are based on a neural tangent kernel approach. [66] theoretically and empirically study
kernel models trained under settings where the latent dimension of the data can be varied. They

15

show that the rate of decay in the spectrum of the kernel is more strongly related to the scaling of the
loss as opposed to the intrinsic dimension of the data with some discussion of potential connections
between the two measures. [94] propose a statistical model of real-world data where low dimen-
sional features and manifold structures can naturally emerge. [71] categorize the sample complexity
for binary classification over smooth cuts on a data manifold where smoothness is defined by the
condition number of the classification boundary of the manifold (a quantity closely related to reach).
When no restrictions are placed on the probability distribution of data on the manifold, they show
that the VC dimension is unbounded when this condition number exceeds the reach of the manifold.
For nicer distributions where there is an upper bound on the density of the distribution on the man-
ifold, a covering number argument shows that the sample complexity is dependent on the intrinsic
dimension, reach, and condition number but independent of the ambient dimension.

Generative modeling. From the perspective of generative modeling, various works have recently
considered the task of sampling from low-dimensional manifolds embedded in high dimensional
space. [76] consider distributions supported over a data manifold of low intrinsic dimension. They
provide sufficient conditions for score-based generative models to identify the support of the learned
distribution matching that of the target manifold. [34] prove convergence results in Wasserstein dis-
tance between score-based models and target distributions which are supported on a manifold under
the assumption that the score estimator is accurate in the L∞ norm. These results were subsequently
improved in [24] which only required a score estimator is accurate in the L2 norm, among other im-
provements. For data supported on a low-dimensional linear subspace, [22] provide an end-to-end
sampling guarantee avoiding the curse of dimensionality and showing that the score function can
be efficiently estimated. The resulting sampling algorithm in their work thus approaches the true
distribution in total variation distance and recovers the linear subspace appropriately.

Geometric Machine Learning. We briefly mention a related body of work, which studies ma-
chine learning algorithms, which directly leverage geometric structure in data. Such methods
have shown empirical promise in a variety of domains [15]. Examples of such architectures are
translation- and rotation-equivariant neural networks [30], graph neural networks [59] and DeepSets
for permutation-invariant inputs [96], as well as hyperbolic machine learning algorithms [45, 93],
which assume that data lies on a manifold of constant negative curvature.

B Deferred Proofs

B.1 Auxiliary statements

For completeness, we recall several classical notions from metric geometry.
Definition B.1 (Packing and covering numbers). Given a set S ⊆ Rn, the covering number cvS(ϵ)
is the minimum number of balls of size ϵ needed to cover every point in S:

cvS(ϵ) := min {k > 0 | ∃ x1, . . . ,xk ∈ S such that ∀x ∈ S,∃ i ∈ [k] such that ∥xi − x∥ ≤ ϵ} .
(7)

The packing number pkS(ϵ) is the maximum number of disjoint ϵ-balls that can be contained in S:

pkS(ϵ) := max {k > 0 | ∃ x1, . . . ,xk ∈ S such that ∀i ̸= j : ∥xi − xj∥ > 2ϵ} . (8)

Lemma B.2 (Packing and covering duality). For any compact set S ⊂ Rn and ϵ > 0:

pkS(2ϵ) ≤ cvS(2ϵ) ≤ pkS(ϵ). (9)

Proof. For the first inequality, assume by contradiction that cvS(2ϵ) < pkS(2ϵ). Then, there must
exist two points xi,xj in the maximal packing, which are within the same 2ϵ-ball in the cover and
thus have distance ∥xi − xj∥ ≤ 2ϵ contradicting the assumption.

For the second inequality, note that any maximal packing with balls of radius ϵ is a 2ϵ-covering,
because otherwise, there would exist a point x ∈ S which is at least 2ϵ distance away from all the
packing points contradicting the definition of a packing.

Before stating the next result, we give a brief definition of Ricci curvature, which locally character-
izes the curvature of M in a neighborhood of a point x ∈ M.

16

Definition B.3 (Ricci Curvature). Let v ∈ TxM denote a unit vector and {u1, . . . , um−1, v} an
orthonormal basis of TxM; gx denotes the inner product on TxM. Then the Ricci curvature at x
along the direction v is defined as

Ricx(v) :=
1

m− 1

m−1∑
i=1

gx(R(v, ui)v, ui) , (10)

where R(u, v)w := ∇u∇vw − ∇v∇uw − ∇[u,v]w is the Riemann curvature tensor, with [u, v]
denoting the Lie Bracket between u and v.

Theorem B.4 (Corollary of Bishop-Gromov Theorem [10] (see [75] Lemma 7.1.3)). Let
VolM(p, r) denote the volume of the ball of radius r around the point p with respect to the Rie-
mannian distance metric. If a manifold M of intrinsic dimension d has bounded Ricci curvature
Ric (M) ≥ (d − 1)K, then for all r > 0 and p ∈ M, VolM(p, r) ≤ VolSK

d
(r) where VolSK

d
(r)

denotes the volume of a ball of radius r around an arbitrary point p ∈ SK
d in the space SK

d with
constant sectional curvature K (d-sphere if K > 0 or d-dimensional Hyperbolic space if K < 0).

Lemma B.5 (Coupon collector bound [39]). Let ξ1, . . . , ξN be i.i.d. random variables taking values
in [n] with uniform probability: P[ξi = k] = 1

n for all k ∈ [n]. Let Tn be the minimum value T such
that for all k ∈ [n], there exists at least one i ∈ [T] where ξi = k (i.e. every value in [n] is covered).
Then, E[Tn] = Θ(n log(n)) and

lim
n→∞

P [Tn < n log(n) + cn] = exp(− exp(−c)). (11)

B.2 SQ lower bounds

To show lower bounds in the statistical query model, we follow the technique employed in [26, 13],
which constructs hardness from statistical independence properties of a function class. Since our
setting differs slightly from those in [26, 13], we provide an adapted version of their constructions
below.

Definition B.6 ((1− η)-pairwise independent; see also Definition C.1 of [26]). Let C be a function
class consisting of functions f : X → Y . Let D be a distribution on X . C is (1 − η)-pairwise
independent if there exists a finite subset Ŷ ⊆ Y such that with probability (1− η) over x,x′ ∈ X
drawn independently from D, the distribution of (f(x), f(x′)) for f ∼ Unif(C) drawn uniformly
at random from C is the product distribution Unif(Ŷ)⊗Unif(Ŷ).

The above agrees with Definition C.1 of [26] apart from the extension that here we define the inde-
pendence with respect to a finite subset Ŷ ⊆ Y of the output space.

Theorem B.7 (Theorem C.4 of [26]). Let the function class C of functions f : X → Y be a (1− η)-
pairwise independent function family with respect to a distribution D on X . For any f ∈ C, let Df

denote the distribution of (x, f(x)) where x ∼ D. Let DUnif(C) denote the distribution of (x, y)
where x ∼ D and y = f(x) for f ∼ Unif(C). Any SQ learner able to distinguish the labeled
distribution Df∗ for an unknown f∗ ∈ C from the randomly labeled distribution DUnif(C) using
bounded queries of tolerance τ requires at least τ2

2η such queries.

Proof. We follow the proof in [26]. Let ϕ : X ×Y → [−1, 1] be any query made by the learner and
set ϕ[f] = Ex∼D[ϕ(x, f(x))]. Then,

Varf∼Unif(C) [ϕ[f]] = Ef [ϕ[f]ϕ[f]]− Ef [ϕ[f]]Ef ′ [ϕ[f ′]]

= Ef,f ′ [Ex[ϕ(x, f(x))]Ex′ [ϕ(x′, f(x′))]− Ex[ϕ(x, f(x))]Ex′ [ϕ(x′, f ′(x′))]]

= Ex,x′Ef,f ′ [ϕ(x, f(x))ϕ(x′, f(x′))− ϕ(x, f(x))ϕ(x′, f ′(x′))]

≤ 2η.
(12)

In the last line, we use the fact that for any (1−η)-pairwise independent class C, the inner expectation
is zero with probability at least 1− η over the choice of x,x′ ∼ D and at most 2 otherwise.

17

Since any SQ algorithm must work with any given value of the noise within the stated tolerance,
consider the adversarial strategy where the SQ oracle responds to a query with ϕ = Ef∼Unif(C)[ϕ[f]]
whenever possible. By Chebyshev’s inequality,

Pf∼Unif(C)
[∣∣ϕ[f]− ϕ

∣∣ > τ
]
≤

Varf∼Unif(C)
[
ϕ[f]

]
τ2

≤ 2η

τ2
. (13)

So each such query only allows the learner to rule out at most a 2η
τ2 fraction of C. Thus to distinguish

Df∗ from DUnif(C), the learner requires at least τ2

2η queries.

B.3 Additional examples of learnable manifolds

Here, we provide additional examples of manifolds and their properties that render such manifolds
learnable as detailed in Section 3.1. There, learnability of the distribution of the manifold corre-
sponded to the property that one can efficiently approximate the manifold with an epsilon net.

As mentioned in the main text, many algorithms in the manifold reconstruction literature implicitly
assume that the manifold is efficiently sampleable. We give one such example below.

Example B.8 (Manifold Learning Setting [9]). [9] provide provable guarantees for the Isomap al-
gorithm in the sense of recovering geodesic distances on a manifold M via shortest-path distance
on a similarity graph G under the following assumptions (listed in Main Theorem A in [9]), which
informally require among other things: (1) the algorithm is given a set of samples {xi}, which
form a δ-net over the manifold M; (2) M is geodesically convex; (3) the reach (equivalently en-
coded as bounds on the radius of curvature and branch separation) is bounded as Rch (M) = O(δ).
Assumption (1) suffices to guarantee learnability in our setting.

We also extend Proposition 3.5 to incorporate manifolds with negative curvature. Negatively curved
manifolds have volume that can grow exponentially with respect to the radius around a given point.
However, as long as the radius of a sequence of manifolds does not grow with the ambient dimen-
sion, the Bishop-Gromov inequality bounds the volume of such manifolds rendering them efficiently
sampleable. As far as we are aware, estimating the diameter of real-world manifolds is a challenging
task and it is unknown whether real-world data manifolds can fit within this regime.

Example B.9 (Manifolds with bounded curvature and radius). Any sequence of distributions
{PMn} supported over manifolds {Mn} where each manifold Mn has bounded Ricci curva-
ture Ric (Mn) ≥ (d − 1)K for an arbitrary constant K and is contained within a ball of radius
r = On(log(n)) around a point pn ∈ Mn is efficiently sampleable.

Proof. By the Bishop-Gromov theorem (Theorem B.4), the volume of any such manifold is bounded
by VolSK

d
(r) which is the volume of a ball of radius r in the d-dimensional Hyperbolic space of

constant curvature K. This means that

Vold(Mn) ≤ VolSK
d
(r) = σd−1

∫ r

t=0

sinhd−1(t) dt ≤ σd−1r

(
exp(r)

2

)d−1

. (14)

Thus, whenever r = On(log(n)), this allows for an ϵ-cover of size On(poly(n)). The rest of the
proof follows directly from that of Proposition 3.5.

Another example of a class of manifolds that fall in the learnable regime are those which are α-
strongly convex [82], a property that can be leveraged in instances of Riemannian optimization.
This property is extended from the standard notion of strong convexity on Hilbert spaces.

Definition B.10 (α-strong convexity of a Hilbert space [50]). Given a real Hilbert space H with
inner product ⟨·, ·⟩ and corresponding induced norm ∥ · ∥, denote by BR(c) the closed ball of radius
R centered around c ∈ H . A subset A ⊂ H is α-strongly convex if there exists a set C ⊂ H such
that

A =
⋂
c∈C

BR(c), (15)

where R = 1
2α .

18

Figure 5: Enumeration of Gray code for n = 7 bits. Each column corresponds to a bitstring where
black square is equal to 0 and tan square is 1. Note that the variation takes place largely in the last
entries (bottom-most).

The above definition captures the equivalent notion in the Euclidean space Rd that an α-strongly
convex set A ⊂ Rd is one where for any x,y ∈ A and unit norm z ∈ Rd such that ∥z∥ = 1, we
have that [82]

(1− t)x+ ty + α(1− t)t∥x− y∥2z ∈ A. (16)

Riemannian manifolds are α-strongly convex if the image of the exponential map over inputs in a
set A living in the tangent space are α-strongly convex in the Euclidean sense.
Definition B.11 (α-strong convexity of a Riemannian manifold [82]). Let M be a Riemannian
manifold that is uniquely geodesic (i.e. any two points x,y ∈ M can be connected by a unique
geodesic). Then, M is Riemannian α-strongly convex if for any x ∈ M, the set

Exp−1
x (M) := {y ∈ TxM : z = Expx(y), z ∈ M} (17)

is α-strongly convex with respect to the inner product ∥·∥x on TxM in the sense of Definition B.10.

The above definition places restrictions on the diameter of manifolds, essentially placing them in the
setting of bounded radius manifolds studied in Example B.9.
Example B.12 (Strongly convex manifolds). As stated in Definition B.10 for any α-strongly convex
manifold M, the diameter of Exp−1

x (M) is at most 2r = α−1. For a sequence of such Riemannian
α-strongly convex manifolds {Mn}, as long as the metric over the manifold in the normal coor-
dinates at TxM is bounded everywhere (or say the curvature is bounded), then such sequences of
manifolds are efficiently sampleable similar to the setting of Example B.9.

C Proofs for Section 3.2

C.1 Space-filling manifold

To construct a manifold which achieves the desired lower bound, we form a customized manifold
which acts as a space-filling curve touching exponentially many quadrants of the n-dimensional
hypercube. This space-filling curve is constructed by maneuvering around a Gray code which enu-
merates Boolean strings in such a fashion that successive strings differ by Hamming distance one.
This procedure is motivated by and reminiscent of techniques used in constructing Hilbert curves
from Gray codes [84].
Lemma C.1 (Gray code [51]). For every integer k > 0, there exists a bijective function G : [2k] →
{0, 1}k enumerating length k bitstrings such that successive bitstrings G(i) and G(i + 1) differ in
only one coordinate, i.e., |G(i)−G(i+ 1)|H = 1 where | · |H denotes the Hamming distance.

As a simple example, for k = 3, the sequence [000, 001, 011, 010, 110, 111, 101, 100] is one such
Gray code which can be constructed recursively as a binary-reflected Gray code [60]. We also
visualize the k = 7 bit Gray code in Figure 5.

Given an intrinsic dimension d, we will construct manifolds M as products of Pd = {x ∈
[0, 1]d−1}, the (d − 1)-dimensional hypercube, and a one-dimensional submanifold over the re-
maining dimensions, which resembles a one-dimensional space-filling curve. The submanifold is
constructed to touch the corners of the hypercube following a Gray code.

One-dimensional space-filling curve construction. Our goal is to construct a one-dimensional
sub-manifold M ⊂ [0, 1]n−d+1 that covers as many quadrants of the hypercube as possible. Given
a radius of curvature R, which we will later set to be within the bounds of the stated reach, let
nR = ⌊(n − d + 1)/δR⌋ and δR = ⌈4R2⌉. In our construction, we will use the Gray code on nR

bits and map these to bitstrings in dimension n by copying the bitstring of the Gray code δR times.

19

x1

0.0
0.5

1.0

x 2

0.0

0.5
1.0

x 3

0.0

0.5

1.0

1d Manifold (n = 3)

Figure 6: Shape of constructed manifold M3.

This construction will allow the manifold to have radius of curvature conforming to the given bound
on the reach.

Specifically, let G : [2nR] → {0, 1}nR be a Gray code over nR bits, which maps indices 1, . . . , 2nR

to the corresponding bitstring in the Gray code (see Lemma C.1). Then, for i ∈ [2nR] let bi =
G(i)⊕δR ⊕ 0n−nR

where G(i)⊕δR is the bitstring G(i) repeated δR times and 0k is the bitstring of
length k with each entry equal to 0. 0k is concatenated at the end to ensure the input is of dimension
n. Then, the space-filling sub-manifold takes the form:

MnR
=

2nR⋃
k=1

{
bk−1 + bk+1

2
+

(
bk − bk+1

2

)
cos(t) +

(
bk − bk−1

2

)
sin(t) : t ∈ [0, π/2]

}
.

(18)
As an example, the manifold M3 is visualized in Figure 6. Indexing of the bitstrings bk is assumed
circular and taken k mod 2n.
Lemma C.2. The manifold MnR

defined in Equation (18) has Rch (MnR
) = R. Furthermore,

defining

Round(MnR
) =

{
1

2
(sign(x− 1nR

/2) + 1nR
) : x ∈ MnR

}
(19)

as the operation which projects each point onto the nearest corner corresponding to bitstrings of the
hypercube, we have that |Round(MnR

)| = 2nR .

Proof. Each segment of the manifold in Equation (18) is an arc of a circle centered at bk−1+bk+1

2

and of radius
√
δR/2. For two segments indexed by k′ such that |k − k′| ≥ 2, the segments differ

maximally in at least δR locations so the medial axis between these segments is at least
√
δR/2 ≥ R

distance away.

Between neighboring segments indexed by k and k+1, we note that we have a curve which consists
of circular arcs from [0δR ,1δR/2,1δR]⊕s to [0δR ,1δR ,1δR/2]⊕s and then to [1δR/2,1δR ,0δR]⊕s
for some bitstring s which is shared between all of the points in the curve. Here, for simplicity, we
have permuted the distinct elements in the neighboring segments to the beginning of the bitstrings.
Consider now the medial axis of this curve and set δR = 1 for simplicity as the general case will
directly follow. Here, the medial axis takes the form of points [a, 1− b, c]⊕ s where 0 ≤ a, b ≤ 1/2
and 0 ≤ c ≤ 1. For any such point where c > 0.5 or c < 0.5, the nearest point in the manifold will
be a point in the first or second segment respectively. For such points, the medial axis will thus be
the center of the corresponding circle which the arc spans. When c = 0.5, if a = b < 0.5, then the
unique nearest point is always [0, 1, 1/2]⊕ s. Otherwise, if c = 0.5 and a < b or b < a, the nearest
point in the manifold will be a point in the first or second segment respectively as in the previous
case. Putting this all together, the reach of this manifold is

√
δR/2 ≥ R.

20

Finally, to count the number of elements in Round(MnR
), note that setting t = π/4 for segment k

in Equation (18) obtains a point of the form

(bk−1 + bk+1)
1

2

(
1−

√
2

2

)
+

√
2

2
bk. (20)

The above is rounded to bk. Applying this procedure for all k gives 2nR total rounded points.

Corollary C.3. For a sequence of manifolds {Mn} of intrinsic dimension d = O(1) and reach
Rch (Mn) = O(nα) for α < 0.5 taking the form of Lemma C.2, the manifold covers exponentially
many quadrants of the Boolean cube, i.e. |Round(Mn)| = 2Ω(n).

In our proofs, we will consider the setting where we have a sequence of manifolds of increasing
intrinsic dimension n and bounded reach. We choose the parameters of this sequence as follows.
Definition C.4 ((α, d)-sequence of manifolds). For given intrinsic dimension d and bound on the
reach R = O(nα) for some α < 0.5, set n = ⌈4R2⌉nb + d − 1. We construct a sequence of
manifolds {Mn} of the form given in Equation (18) with the given values of R,n, d where n is
incremented by increasing values nb.

C.2 SQ hardness

We present here the hardness results in the statistical query (SQ) model by mapping a class of hard to
learn Boolean functions to real-valued neural network functions, which approximate those Boolean
functions well. This follows a commonly used set of proof techniques employed in [36, 32, 26, 48].
We follow most closely the line of reasoning in [26] for showing hardness results for learning two
hidden layer ReLU networks though the nature of the distribution in our case will allow us to show
SQ hardness results for single hidden layer networks. Similar hardness results based on reductions
to cryptographically hard problems as shown in the work of [32] are also provided in Appendix C.3.

Hardness in our setting is based on classic results of the SQ hardness of learning parity functions
over Boolean inputs [55, 11]. A parity function χS : {0, 1}d → {0, 1} is a Boolean function taking
the form

χS(xb) =
∑
i∈S

[xb]i mod 2, (21)

which determines whether the summation of the input Boolean string over indices in the set S ⊆ [d]
is even or odd. The class of such parity functions indexed by subsets S ⊆ [d] is exponentially hard
to learn in the SQ model.
Theorem C.5 (SQ hardness of parities [11, 55], see also Theorem 4.3 of [26]). Any SQ algorithm
given SQ access to the distribution of labeled pairs (xb, y) where xb ∼ Unif({0, 1}d) and y =
χS(xb) for an unknown S ⊆ [d] capable of learning χS up to classification error ϵ sufficiently small
with queries of tolerance τ requires Ω(τ22d) queries.

For Boolean inputs xb ∈ {0, 1}d, the parity function χS(xb) can be constructed as a single hidden
layer neural network with O(d) nodes. Ideally, one would want to replicate this over real-valued
inputs, but since ReLU networks are continuous, this construction cannot be made exactly. [32]
show that, in practice, one can form a network which is equivalent to the sign function for all but a
small percentage of inputs. Combined with an indicator function that zeros out the output wherever
such inputs cannot be rounded exactly, they show that equivalent hardness results can be obtained in
real-valued settings. This construction was extended to SQ settings by [26].

In our setting where the underlying distribution is uniformly drawn from the space-filling manifold
described in Appendix C.1, we can resort to a simpler construction given that most input values
are either 0 or 1 at any point in the space-filling manifold. This lets us identify approximate parity
functions which for all but an exponentially small fraction of inputs is equivalent to the Boolean
parity function.

To achieve this goal, we need to map Boolean parity functions χS : {0, 1}nb → {0, 1} to real-
valued neural network functions f : Rn → R that approximate the parity functions appropriately.
In this construction, for given intrinsic dimension d and bound on the reach R = O(nα) for some
α < 0.5, we set n = ⌈4R2⌉nb + d − 1 in the construction given in Appendix C.1 (n chosen so

21

that the number of bits in the Gray code nR is equal to nb). Each input entry is repeated ⌈4R2⌉
times in this construction, so for a given input x ∈ Rn, we define P : Rn → Rnb as an operation,
which selects one of the ⌈4R2⌉ many equivalent inputs for each of the nb potentially unique values.
That is, for segments of the manifold taking the form of Equation (18), each segment is a sum of
elements bi = G(i)⊕δb ⊕ 0n−nb

where G : [2nb] → {0, 1}nb is a Gray code over nb bits. Setting
Px = [x]:nb

to capture the first nb elements then suffices to perform such an operation.

The intuition for our construction is as follows: We have to show that at most points on the manifold,
inputs are with high probability equal to some Boolean string. If we choose the marginal distribution
over the first k input locations of Px with k < nb sufficiently smaller than nb, then with high
probability, these will always be constantly set to either value 0 or 1 in the segments of the manifold
(Equation (18)). This is because the reflected Gray code is formed by changing the right-most bits
first whenever possible so the left-most bits are constant along most segments. We formalize this
below.
Lemma C.6. Let DMn

denote the uniform distribution over the (α, d)-sequence of manifolds Mn

constructed in Definition C.4 for given bounds on the reach R = O(nα) and intrinsic dimension
d. Given x ∈ Mn constructed over the binary code over nb bits, let [Px]:nb−t denote the vector
consisting of the first nb − t entries of Px for t ∈ [nb]. Then, with probability 1− O(2−t), a draw
of x ∼ DMn will have the property that [Px]:nb−t ∈ {0, 1}nb−t. Additionally, with probability
2t−nb + O(2−t) over independent draws x,x′ ∼ DMn , [Px]:nb−t ̸= [Px′]:nb−t and the resulting
values will differ in at least one location.

Proof. In the binary reflected Gray code G : [2nb] → {0, 1}nb over nb bits, at any location i ∈ [2nb],
there exists a span of integers [a, b) containing i of length b − a = 2t such that [G(j)]nb−t =
[G(j′)]nb−t is equal for all j, j′ ∈ [a, b). Furthermore, by removing the endpoints where for any
j, j′ ∈ [a + 1, b − 1), any entry of [G(j)]k for k ∈ [nb − t] will also have the property that
[G(j)]k = [G(j′)]k (see Figure 5 for example for a visualization of this property). The value at a
given point in a segment of the manifolds in Equation (18) is not equal to zero or one only when
bitstring indices are differing in three adjacent points in the Gray code. Given a random point
x ∼ DMn , it will fall within a given segment of the Gray code spanned over elements i− 1, i, i+1
of the Gray code for i ∼ Unif([2nb]). Thus, the probability that [Px]:nb−t ∈ {0, 1}nb−t is at least
1−O(2−t).

To prove the additional fact, note that for any z ∈ {0, 1}nb−t, we have that

P[[Px]:nb−t = z] ≥ 2t − 8

2nb
. (22)

This follows from the previously stated property that at any location i ∈ [2nb] in the gray code, there
exists a span of integers [a, b) containing i of length b − a = 2t such that [G(j)]k = [G(j′)]k is
equal for all j, j′ ∈ [a + 1, b − 1) and all k ∈ [nb − t]. From this span [a, b) we remove the first
and last three indices to get the span [a + 4, b − 4) over which [G(i)]nb−t = [G(i + k)]nb−t for
all i ∈ [a + 4, b − 4) and k ∈ [−2, 2]. I.e. this span is chosen to ensure that xnb−t is constant
in Equation (18) over those segments of the Gray code. From here, we have that over independent
draws x,x′ ∼ DMn

:

Px,x′∼DMn

[
[Px]:nb−t = [Px′]:nb−t, [Px]:nb−t ∈ {0, 1}nb−t

]
=

∑
z∈{0,1}nb−t

P [[Px]:nb−t = z]
2

≤ max
z∈{0,1}nb−t

P [[Px]:nb−t = z]

≤ 1− (2nb−t − 1)
2t − 8

2nb

≤ 2t−nb + 8(2−t).
(23)

The second line above follows from Hölder’s inequality. The third line above applies Equation (22).
Noting that the last term is 2t−nb +O(2−t) completes the proof.

The above shows that with exponentially high probability, samples drawn from the distribution over
the space-filling manifold will be equivalent to those drawn uniformly over Boolean inputs. This
lets us complete the proof of hardness.

22

Theorem C.7. Let DMn denote the uniform distribution over the (α, d) sequence of manifolds Mn

constructed in Definition C.4 where Rch (Mn) = O(nα) for α < 0.5. Any SQ algorithm A capable
of learning the class of linear width single hidden layer ReLU neural networks under this sequence
of distributions up to mean squared error sufficiently small (ϵ/8 suffices) with queries of tolerance τ
must use at least Ω(τ22n

Ω(1)

) queries.

Proof. Given the sequence of manifolds {Mn} from the construction in Definition C.4, we have
nb = Ω(n1−2α) which is chosen to fit the bounds on the reach of the manifold.

Given a parity function χS : {0, 1}d → {0, 1} taking the form

χS(xb) =
∑
i∈S

[xb]i mod 2, (24)

consider its continuous approximation χ̃S : [0, 1]d → {0, 1} defined as

χ̃S(x) =

{∑
i∈S xi − k

∑
i∈S xi ∈ [k, k + 1], k ∈ {0, 2, 4, ..., d}

k + 1−
∑

i∈S xi

∑
i∈S xi ∈ [k, k + 1], k ∈ {1, 3, 5, ..., d− 1} . (25)

Note, that the above is valid for d even and a similar equation can be obtained for d odd. The above
is also piecewise linear and can be constructed as a single hidden layer ReLU network with O(d)
width. We consider learning the class C of single hidden layer networks consisting of

C = {fS : S ⊆ [nb − t]} where fS(x) = χ̃S ([Px]:nb−t) . (26)
Setting t = nb/2 suffices by Lemma C.6 to guarantee that [Px]:nb/2 is a Boolean string with
probability 1−O(2−Ω(nb)). Furthermore, for x,x′ drawn i.i.d. from DMn , [Px]:nb/2 ̸= [Px′]:nb/2

with probability 1 − O(2−Ω(nb)). Conditioned on this event, the distribution of (fS(x), fS(x′)) is
equal to Unif({0, 1}2). Since nb = Ω(n1−2α), we can apply Theorem B.7 noting that learning
the function class up to MSE ϵ sufficiently small suffices to distinguish the distribution task in
Theorem B.7.

C.3 Cryptographic hardness reduction

Here, we will prove hardness results for learning single hidden layer networks under cryptographic
hardness assumptions following the methodology in [32]. First, we detail the construction of Gol-
dreich’s pseudorandom generator (PRG) [49] which are used as the basis for the hard to learn class
of single hidden layer neural networks in [32]. In fact, [32] show that given random Boolean inputs,
a neural network with width ω(1) suffices to construct these hard to learn functions. From here,
we show that the manifold constructed in Section 3.1 can produce inputs that are approximately
uniformly distributed over the Boolean cube when restricted to a certain set of input locations. This
lets us directly apply the results of [32] to this distribution.

Pseudorandomness assumption The pseudorandom functions are constructed over an (n,m, k)-
hypergraph with n vertices [n] with m ordered hyperedges S1, . . . , Sm, each having cardinality k
and no repeated entries. Hypergraphs are drawn from the Erdős–Rényi distribution Gn,m,k where
each hyperedge is drawn i.i.d. from the set of n!/(n−k)! possible hyperedges (equivalent to ordered
sets).
Definition C.8 (Goldreich’s pseudorandom generator (PRG) [49]). Given constant integer k > 0,
predicate P : {0, 1}k → {0, 1}, and a (n,m, k)-hypergraph G, Goldreich’s pseudorandom gener-
ator (PRG) is the function fP,G : {0, 1}n → {0, 1}m, such that given input x ∈ {0, 1}n returns
fP,G(x) = (P (xS1

), . . . , P (xSm
)). The PRG has polynomial stretch if m = na for some a > 1.

Denoting the collection of functions fP,G over (n,m, k)-hypergraphs as FP,n,m then FP,n,m is an ε-
pseudorandom generator (ε-PRG) if every polynomial-time probabilistic algorithm A has advantage
at most ϵ in distinguishing pairs (G, fP,G(x)) from random pairs (G,y) where y is drawn i.i.d. from
the uniform distribution on {0, 1}m. This is formalized below.
Definition C.9 (ε-pseudorandom generator (ε-PRG) [32]). FP,n,m is an ε-pseudorandom generator
(ε-PRG) if for every polynomial-time probabilistic algorithm A, it holds that∣∣PG∼Gn,m,k,x∼Bn [A(G, fP,G(x)) = 1]− PG∼Gn,m,k,y∼Bm [A(G,y) = 1]

∣∣ ≤ ϵ, (27)

where Bk denotes the uniform distribution over bitstrings {0, 1}k.

23

The cryptographic hardness assumption posits that there does exist such a class as above for which
it is hard to distinguish between the cases where y is completely random or the output of a randomly
drawn function fP,G.
Assumption C.10 (Existence of ϵ-PRG [32]). For every constant s > 1, there exists a constant k
and a predicate P : {0, 1}k → {0, 1}, such that FP,n,ns is 1

3 -PRG.

Hard to learn neural network function class We follow the procedure in the previous subsection
to map hard to learn Boolean functions to the task of learning real-valued functions where inputs are
drawn from the data manifold. In this procedure, we must show that instances where a given input
does not correspond to a Boolean string occur with a vanishingly small probability. Following the
previous construction, for given intrinsic dimension d and bound on the reach R = O(nα) for some
α < 0.5, we again set n = ⌈4R2⌉nb + d − 1 in the construction given in Appendix C.1 (n chosen
so that the number of bits in the Gray code nR is equal to nb). As each input entry is repeated
⌈4R2⌉ times in this construction, we recall the definition of P : Rn → Rnb selecting one of the
⌈4R2⌉ many equivalent inputs for each of the nb potentially unique values. The following lemma
then guarantees upon that taking the first nb− t entries, with probability 1−O(2−t) the distribution
of [Px]:nb−t will be equivalent to the uniform distribution over Boolean strings.
Lemma C.11. Let DMn

denote the uniform distribution over the (α, d)-sequence of manifolds Mn

constructed in Definition C.4 for given bounds on the reach R = O(nα) and intrinsic dimension
d. Given x ∈ Mn constructed over the binary code over nb bits, let [Px]:nb−t denote the vector
consisting of the first nb − t entries of Px for t ∈ [nb]. Denoting PDMn as the distribution
of [Px]:nb−t for x ∼ DMn , we have that with probability at least 1 − 23−t, PDMn returns a
uniformly random Boolean string:

PDMn ∼
{
Bnb−t w.p. 1− 23−t,

Drem w.p. 23−t,
(28)

where Bk denotes the uniform distribution over bitstrings {0, 1}k and Drem is an arbitrary distribu-
tion handling the event where draws from the distribution PDMn

are not uniform over the Boolean
string.

Proof. It suffices to show that there exists an event E occuring with probability at least 1 − 23−t

such that conditioned on this event, for every z ∈ {0, 1}nb−t:

P [[Px]:nb−t = z|E] = 2t−nb , (29)

i.e. every bitstring z ∈ {0, 1}nb−t is returned with equal probability. In fact, previously in
Lemma C.6 and specifically Equation (22), we showed that

P[[Px]:nb−t = z] ≥ 2t − 8

2nb
. (30)

Therefore, we can construct the event E by taking the union over the bitstrings z, each of probability
2t−8
2nb

ignoring a portion of the distribution whenever a given P[[Px]:nb−t = z] exceeds this value.
This implies that

P[E] ≥ 2nb−t

(
2t − 8

2nb

)
= 1− 23−t. (31)

Theorem C.12 (Cryptographic hardness). Let DMn denote the uniform distribution over manifolds
Mn constructed in Definition C.4 where Rch (Mn) = O(nα) for α < 0.5. Set a > 0 to be
constant. Then under Assumption C.10, there does not exist any polynomial time algorithm A that
with probability 1 − δ for 0 < δ < 1/2 is capable of learning the class of width O(na) single
hidden layer ReLU neural networks under this sequence of distributions up to mean squared error
sufficiently small (ϵ/40 suffices).

Proof. Theorem 8 (part 3) of [32] states that under Assumption C.10, there does not exist an efficient
algorithm to learn the class of O(na) width neural networks under the uniform input distribution
Bm over bitstrings {0, 1}m. Namely, they show that there exist a set of neural network functions
f : Rm → [0, 1] that have the property that they recover a hard to learn Boolean DNF formula

24

f(x) ∈ {0, 1} for any x ∈ {0, 1}m. They then show that any algorithm which with probability 1−δ
returns a hypothesis hb : {0, 1}m → {0, 1} achieving classification error Px∼Bm [hb(x) ̸= f(x)] ≤
1/10 suffices to contradict Assumption C.10.

Any efficient algorithm can only take O(poly(n)) samples. From Lemma C.11, we can set m =
nb/2 with t = nb/2 so that with probability at least 1 − exp(−nΩ(1)) a given sample is drawn
from Bnb/2. By union bounding over O(poly(n)) samples, we are guaranteed that all samples are
drawn i.i.d. from Bnb/2 with probability 1− δ′ for δ′ vanishing exponentially in n. Given any input
xb ∈ {0, 1}m, we can convert it to a random point on the corresponding quadrant in the manifold
x = T xb ∈ Mn by drawing t ∼ Unif([0, π/2]) and applying Equation (18). This recovers the
distribution DMn

. Now, assume that the algorithm for learning single hidden layer neural networks
under the distribution DMn

returns a hypothesis h : Rn → R. We can convert this to a boolean-
output function h′ : Rm → {0, 1} by setting h′(x) = sign(h(x)−1/2). Note that (see also Lemma
23 of [32]) whenever h′(T xb) ̸= f(xb) then (h(T xb) ̸= f(xb))

2 ≥ 1/4 and

Pxb∼Bm,t∼Unif([0,π/2]) [h
′(T xb) ̸= f(xb)] ≤ 4Exb∼Bm,t∼Unif([0,π/2])

[
(h(T xb)− f(xb))

2
]
.

(32)
The right hand side above contains the mean squared error loss over random Boolean inputs. This is
equivalent to the mean squared error loss under the distribution DMn

up to an exponentially small
correction for the event where [Px]:nb−t is not Boolean. Thus, learning the function f up to mean
squared error ϵ/40 suffices to output a function h′ achieving classification error ϵ/10 (up to these
exponentially vanishing corrections). Applying Theorem 8 of [32] finishes the proof.

C.4 Volume bounds based on reach

The reach of a manifold lower bounds the radius of curvature of a manifold. In our setting where
manifolds are contained within the hypercube [0, 1]n, restrictions on the reach can intuitively limit
the space-filling capacity of a manifold resulting in upper bounds on the volume of the manifold.
Namely, as we will show below, for a sequence of manifolds {Mn} of intrinsic dimension d, if
the reach is bounded by Rch (Mn) = ω(n0.5), then the volume of the manifold is Vold(Mn) =
poly(n). This implies that the results proven in the previous subsections are tight up to Rch (Mn) =
Θ(n0.5), where similar exponential hardness results may apply though are not immediately obtained
from our proofs. We formally detail the tightness of our results in what follows below.

Our volume bounds will follow from Lemma B.1 of [3] which locally bound the volume of a mani-
fold of bounded reach contained within a ball.
Lemma C.13 (Adapted from Lemma B.1 of [3]). Consider a Riemannian manifold M ⊂ Rn of
intrinsic dimension d with reach bounded by R ≤ Rch (M). Let D be a measure on Rn supported
on M with density function f with respect to the volume measure Vold where f is Lipschitz smooth
and bounded by 0 < fmin ≤ f(x) ≤ fmax for all x ∈ M. Denote B(x, h) = {x′ : ∥x−x′∥ ≤ h}
as the ball centered around x of radius h. Then for any x0 ∈ Rn and h ≤ R/8, it holds that

D(B(x, h)) ≤ (5/4)d/22dfmaxωd max
{(

h2 − d(x,M)2
)d/2

, 0
}
. (33)

Lemma C.14. Denote B(x, h) = {x′ : ∥x − x′∥ ≤ h} as the ball centered around x of radius
h. Given a manifold M ⊂ Rn of intrinsic dimension d bounded in reach by Rch (M) ≥ R, the
volume of the intersection of the manifold and a ball B(x, h) with h ≤ R/8 is bounded by

Vold (M∩B(x, h)) ≤ ωd

(
R

2

)d

, (34)

where ωd is the volume of the d-dimensional unit ball.

Proof. This is a consequence of Lemma B.1 of [3] recalled in Lemma C.13 setting fmin = fmax = 1
to recover the standard volume measure, i.e. for a given point x ∈ Rn and h ≤ Rch (M) /8,
Lemma C.13 states

Vold (M∩B(x, h)) ≤ (5/4)d/22dωd

(
h2 − d(x,M)2

)d/2
. (35)

Applying the bound h ≤ Rch (M) /8 and noting that (5/4)d/22d(1/8)d ≤ (1/2)d completes the
proof.

25

The above lemma provides an immediate bound on the volume as one can note that for large enough
n, any manifold M ⊂ [0, 1]n is contained within a single ball B(x, h) for h = ω(n0.5).

Proposition C.15. Given a sequence of manifolds {Mn} of intrinsic dimension d (fixed and inde-
pendent of n) and reach bounded by Rch (Mn) = ω(n0.5), the volume of the manifolds grows at
most Vold(Mn) = O(poly(n)).

Proof. There exists large enough n such that [0, 1]n is contained within a ball of radius equal to the
bound on the reach Rch (Mn) = ω(n0.5). Applying Lemma C.14 with h =

√
n/2 and x = 1/2

then implies that for large enough n:

Vold (Mn) = Vold (Mn ∩B(x, h)) ≤ ωd

(√
n

4

)d

= poly(n). (36)

Remark C.16. The above implies that manifolds with reach bounded as Rch (Mn) = ω(n0.5) fall
within the class of efficiently sampleable manifolds defined in Definition 3.2. The proof above does
not extend to the setting where Rch (Mn) = Ω(n0.5). Covering number bounds (e.g. see Theorem
2 of [61]) show that exponentially many (in n) balls of radius cn0.5 are needed to cover the space
[0, 1]n when c is sufficiently small. Therefore, Proposition C.15 does not guarantee that volume is
polynomially bounded in n specifically for the setting where Rch (Mn) = Θ(n0.5).

D Experiments confirming learnability results

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

Te
st

 M
SE

ambient dim. (n)
20
50
100
200

Figure 7: Replication of Figure 3a where the target is a neural network of the same form but with
randomly chosen weights. Results are aggregate over five random initializations.

0 5000 10000 15000
Step

0.0

0.5

1.0

1.5

2.0

Te
st

 M
SE

ambient dim. (n)
10
20
50

Figure 8: Replication of Figure 3b where the trained neural network is overparameterized in both
width (3 hidden layers instead of just 1) and width. Results are consistent with that of Figure 3b
further corroborating the hardness of this learning task. Results are aggregated over five random
initializations including random tuning of the optimization hyperparameters.

26

For Figure 3a, the data is generated by drawing random unit norm vectors from a subspace of
dimension d = 10 with ambient space of dimension n. The random d-dimensional subspace is
obtained by drawing a random n× n orthogonal matrix and taking its first d = 10 columns. Target
functions for Figure 3a are drawn from the class in Equation (5) in [36], which form a hard class
of single hidden layer neural networks to learn under the i.i.d. Gaussian input model. We set the
hidden layer width k = n/4 = O(n) for this construction. To corroborate these findings, we also
show in Figure 7 that the results are consistent when the objective is to learn a target function which
is a single hidden layer ReLU neural network with randomly chosen weights of the same form. To
normalize all target functions to have a consistent MSE benchmark, we divide by the norm of the
function which is approximated by taking the average norm over a batch of 100 randomly chosen
inputs.

We use the Pytorch package for our neural network experiments [73]. Training a single neural
network on the tasks shown in Figure 3 took no longer than a few minutes on a single GPU. For
the learnable setting in Figure 3a, we use a training set of size 1000 and a neural network of a
single hidden layer and width 100 to learn the target function. For the hard setting of Figure 3b,
we provide the algorithm with a fresh randomly drawn batch of data each training step. The trained
neural network is overparameterized with width 2n in these experiments. For the hard setting in
Figure 3b, we also attempted to learn the target function with an overparameterized network with
three hidden layers and width 2n. The results, shown in Figure 8, are consistent with those shown
in Figure 3b. In all experiments, the learning rate for the optimizer was varied by the default value
times a random multiplicative factor exp(c) where c ∼ Unif([−2, 1]); results were largely consistent
across all ranges of the tuned values.

E Estimating Intrinsic Dimension

E.1 Details on Experimental Setup

Following [87], to calculate the intrinsic dimension at a given point p ∈ M, we sample a local
neighborhood of points around p by noising p a small amount. Then, from a trained diffusion
model, we collect a series of score vectors {si}Ni=1 at the sampled neighborhood which point in
the direction of the de-noised sample. We then apply PCA upon this collection of N score vectors
(treated as a matrix S ∈ Rn×N) which gives us a basis for the tangent space TpM and normal space
NpM. Given potential instabilities inherent in training diffusion models and performing statistical
estimation on manifolds, we use the stable rank to estimate the rank of S [91]. Given a matrix M ,
the stable rank is given by

rS(M) :=
∥M∥2F
∥M∥2∞

, (37)

where ∥ · ∥F and ∥ · ∥∞ denote the Frobenius norm and maximum singular value respectively. Since
S is actually high rank, we estimate instead the rank of smaxI − S where smax is the max singular
value of M to convert this into a low rank estimation problem. We find the stable rank above to be
a more robust measure of estimated rank in comparison to other such metrics such as the maximum
difference in singular values.

We note that this approach can also be taken by estimating the rank over a neighborhood of sampled
points as well. That is, we find that collecting difference vectors between p and the denoised points
as samples also estimates the dimension of the tangent space d accurately. Such a method may be
more suited to higher dimensional inputs. However, to be consistent with prior work, we perform
our analysis on collections of score vectors here. [87] have confirmed this overall methodology on
synthetic datasets where the intrinsic dimension is known, showing that in general, it outperforms
other statistical means to estimate intrinsic dimension.

Diffusion model and training. For Euclidean datasets, we train a fully-connected 5-layer ReLU
network of width 2048 on 100000 samples for 30 epochs, batch size 64, and a learning rate of
4× 10−4.

For image datasets, we pre-process the images to have pixel values in [−1, 1]. We train a DDPM
U-Net 2D model [79] on 10000 samples for 30 epochs, batch size 64, and a learning rate of 4×10−4.
The architecture is held the same across all three datasets: a ResNet block, a ResNet downsampling

27

block with spatial self-attention, and a ResNet block with 64, 128, and 256 channels each (and the
reverse for upsampling).

We use a noise scheduler in the DDPM paradigm with 1000 timesteps between the image and pure
Gaussian noise, with the squared cosine beta schedule introduced by [72]. This training was done
on an NVIDIA L4 24GB GPU.

We investigate synthetic unit hyperspheres to sanity check our method and proceed to three real-
world image datasets: MNIST [35], Fashion MNIST (FMNIST) [95], and Kuzushiji-MNIST (KM-
NIST) [29]. For each of the three image datasets, we consider two sizes: the original 28× 28 and a
downsampled 12× 12.

E.2 Results on synthetic data manifolds

Following [87], we verify our intrinsic dimension estimation procedure on unit hyperspheres of dif-
ferent dimension, randomly projected into a higher-dimensional ambient space. We vary intrinsic
and ambient dimension and report estimates of intrinsic dimension measurements (Table 2). We
observe that, generally, the estimated and true intrinsic dimension align well. Our results further
suggest an overall higher accuracy if the intrinsic dimension is small compared to the ambient di-
mension. Figure 9 shows the singular values of the score vector for different configurations; the
curves, resembling a step function, distinguish normal from tangent directions.

Ambient Dim. Intrinsic Dim. Estimated Intrinsic Dim.
20 2 3
20 10 10
20 18 17

100 10 12
100 50 47
100 90 82

Table 2: Estimated intrinsic dimension for the hypersphere.

Figure 9: Intrinsic Dimension Estimation on Hyperspheres

E.3 Results on real-world data manifolds

As stated in the main text, we observe that our estimate of MNIST’s intrinsic dimension matches
that obtained in [87]. We observe slightly lower values, which we believe to be due to different

28

Dataset Intrinsic Dimension (Std Dev)
MNIST (12 x 12) 29.8 (7.0)
MNIST (28 x 28) 97.0 (18.4)
KMNIST (12 x 12) 52.9 (9.4)
KMNIST (28 x 28) 168.9 (28.6)
FMNIST (12 x 12) 39.8 (10.5)
FMNIST (28 x 28) 299.1 (135.9)

Table 3: Estimated intrinsic dimension for the data manifolds considered. We report the mean across
classes with standard deviation in brackets.

input sizes. In [87], MNIST images were upscaled to size 32 × 32, which differs from our input
sizes (28×28, 12×12). In addition to MNIST, we also analyze FMNIST and KMNIST, which have
not been considered in previous studies. Our results suggest that among the three datasets, FMNIST
has the largest intrinsic dimension. Images in FMNIST cover part of the image in comparison to
MNIST and KMNIST; we believe that much of this increase in intrinsic dimension is due to the
larger set of possible perturbations of the image within this area.

We also explore how resizing the image impacts the data manifold’s intrinsic dimension in Figure 10
and Table 3. We see that for MNIST and KMNIST, resizing to a smaller ambient dimension can
reduce the intrinsic dimension though at a slightly slower rate than that of the ambient dimension.
We note that all the images we consider here have relatively intrinsic dimension, where the effects
of resizing may be more prominent.

0 20 40 60 80 100 120 140
Dimension

0

50

100

150

200

250

300

350

Sin
gul

ar V
alu

e

MNIST-12 Intrinsic Dimension

Digit 0: 29
Digit 1: 19
Digit 2: 36
Digit 3: 35
Digit 4: 23
Digit 5: 32
Digit 6: 29
Digit 7: 21
Digit 8: 43
Digit 9: 31

0 20 40 60 80 100 120 140
Dimension

0
50

100
150
200
250
300
350

Sin
gul

ar V
alu

e

Kuzushiji MNIST-12 Intrinsic Dimension

: 66
: 64
: 41
: 54
: 44
: 38
: 47
: 61
: 58
: 56

0 20 40 60 80 100 120 140
Dimension

0
50

100
150
200
250
300
350

Sin
gul

ar V
alu

e

Fashion MNIST-12 Intrinsic Dimension

T-Shirt/Top: 38
Trouser: 26
Pullover: 47
Dress: 34
Coat: 38
Sandal: 51
Shirt: 33
Sneaker: 25
Bag: 47
Ankle Boot: 59

Figure 10: Impact of Resizing on Score Spectrum for Estimating Intrinsic Dimension from Diffusion
Models

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this work, we support formal claims with proofs and include experimental
evidence of the main findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have described limitations of our work at various points. Given our work
describes a theoretical setting where we can prove hardness under data manifold assump-
tions, many of these limitations relate to the assumptions fo the work. For example, in the
discussion section, we mention various places where our formal statements do not apply
and mention future areas of work to address these limitations. In our experiments, we also
outline areas of differences between practice and theory.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

30

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All formal statements are proven either in the main text or Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code is supplied which replicates all experiments. We include additional
details of experiments in the main text and in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.

31

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is supplied and details are provided in appendix for experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of optimizers, hyperparameters, etc. are provided in Appendices D
and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For experiments where we train neural networks (Appendix D), we include
error bars over random instantiations of the training.

Guidelines:

• The answer NA means that the paper does not include experiments.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources were relatively limited for this largely theoretical
work. All experiments required only a single GPU (see Appendices D and E).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

33

https://neurips.cc/public/EthicsGuidelines

Justification: This work fits within the scope of foundational research and is theoretical in
nature. We do not introduce any new models or techniques, instead focusing on understand-
ing data manifolds and learning in a more theoretical framework. Although this work can
advance our knowledge of machine learning, there are no clear negative societal impacts
that directly arise from this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is largely theoretical and apart from some small datasets like
MNIST, we do not perform any experiments on data that has a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The real-world datasets used in our paper are cited with their respective li-
censes explicitly named in the README and are properly respected.

34

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

35

paperswithcode.com/datasets

Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

36

	Introduction
	Background
	Basic Notation
	Learning Setting
	Related works

	Learnability results
	Sampleable regime
	Hard regime with bounded curvature

	Experiments
	Empirical verification of main findings
	Empirical study of geometry of data manifolds

	Discussion
	Extended Related Works
	Deferred Proofs
	Auxiliary statements
	SQ lower bounds
	Additional examples of learnable manifolds

	Proofs for sec:boundedcurvature
	Space-filling manifold
	SQ hardness
	Cryptographic hardness reduction
	Volume bounds based on reach

	Experiments confirming learnability results
	Estimating Intrinsic Dimension
	Details on Experimental Setup
	Results on synthetic data manifolds
	Results on real-world data manifolds

