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Abstract
Continuous-time parametric models of dynamical systems are usually preferred given their physical
interpretation. When there is a lack of prior physical knowledge, the user is faced with the model
selection issue. In this paper, we propose a non-parametric approach to estimate a continuous-time
stable linear model from data, while automatically selecting a proper structure of the transfer func-
tion and guaranteeing to preserve the system stability properties. Results show how the proposed
approach outperforms the state of the art.
Keywords: Kernel methods; System identification; Linear identification; Continuous-time identi-
fication.

1. Introduction

System identification is the term used in the automatic control field for estimating dynamical models
of systems, based on measurements of the system input and output signals. Given the discrete nature
of sampled data, the community mostly focused on discrete-time models, developing methods either
in time (Ljung and Glad (2016)) or frequency domain (Pintelon and Schoukens (2012)).

However, discrete-time models present the following shortcomings (Garnier and Young (2012)):
(i) the model is valid only for a fixed sampling frequency; (ii) they must rely on uniformly sampled
data; (iii) their performance degrade with stiff systems; (iv) physical insight is more difficult. Such
issues can be tackled by continuous-time models, which are not defined by a specific sampling fre-
quency. Most of the methods devised for this scope are parametric and require the prior knowledge
of the system complexity, see Young (2015); Garnier (2015); Chen et al. (2015).

Nonparametric approaches such as kernel methods allow to select the bias-variance trade-off
in a continuous way, due to the presence of various regularization terms (Formentin et al. (2019);
Pillonetto et al. (2014); Mazzoleni et al. (2018a,b, 2019)). Their use in continuous-time Linear-
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Time-Invariant (LTI) system identification is advocated in Pillonetto and Nicolao (2010) where
Bounded-Input Bounded-Output (BIBO) stability of the identified model is guaranteed by the so-
called stable-spline kernel. However, current approaches need a second stage to switch from a
nonparametric (discrete-time) estimate to a parametric transfer function model representation (com-
bining a model-reduction step and a conversion from discrete to continuous model), that is usually
more suited for control applications (Pillonetto and Nicolao (2010); Mazzoleni et al. (2018c)).

This work presents a novel approach for direct nonparametric continuous-time identification of
the (parametric) transfer function of asymptotically stable LTI systems. The method: (ii) automat-
ically chooses model complexity; (ii) preserves the stability property of the system under study.

2. Setting and goal

Consider the continuous causal Single-Input Single-Output (SISO) LTI system Ğ with impulse re-
sponse ğ : R → R. The input/output relation of Ğ is y (t) = [ğ ? u] (t) =

∫ +∞
0 ğ (ξ)u (t− ξ) dξ,

where u : R+ → R and y : R+ → R are, respectively, the input and the output signals, and ? de-
notes the convolution operator. In the Laplace domain, this relation becomes Y (s) = Ğ (s)U (s),
where, being L the Laplace operator, U (s) = L [u] (s), Y (s) = L [y] (s) and Ğ (s) = L [ğ] (s) is
the transfer function of the system Ğ .

Suppose to have at disposal a dataset containing n ∈ N\{0} noisy measurements, obtained with
an experiment on the plant D =

{
(ti, yi) , 1 ≤ i ≤ n

}
, distributed according to the probabilistic

model yi = [ğ ? u] (ti) + ei, i = 1, . . . , n where ei ∼ N
(
0, η2

)
are independent and identically

distributed output-error Gaussian noises and u : R → R is the known input excitation used during
the experiment. The excitation signal u (t) is applied to the plant at the time instant d ∈ R, i.e.
u (t) = 0, ∀t < d.

The aim is now to estimate the (continuous-time) impulse response ğ of the SISO LTI system
Ğ using the noisy dataset D and the knowledge of the form of u. Following the rationale reported
in Pillonetto et al. (2014); Pillonetto and Nicolao (2010), we can estimate ğ by

ĝ = arg min
g∈Hk

{
J (g)

}
, J (g) =

n∑
i=1

(
yi − [g ? u] (ti)

)2
+ τ ‖g‖2H , (1)

where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel k : R+ × R+ → R, τ > 0
controls the regularization strength and ‖·‖H is the induced norm of the space H. This estimator
can be written as in Dinuzzo and Schölkopf (2012) ĝu (t) =

∑n
i=1 ciĝ

u
i (t), where the depen-

dency on the input u is highlighted and ĝui (t) =
∫∞
0 u (ti − ξ) k (t, ξ) dξ. The coefficients vector

c = [c1, . . . , cn]> ∈ Rn×1 is found solving O (O + τIn) c = Oy>, where y = [y1, . . . , yn] ∈
R1×n andO ∈ Rn×n is a symmetric positive-definite matrix whose (i, j) element is ou (ti, tj),

ou (ti, tj) =

+∞∫
0

+∞∫
0

u (ti − ψ)u (tj − ξ) k (ψ, ξ) dξdψ. (2)

The tuning of the hyperparameters of the method ζ =
[
ψ>, τ

]> ∈ Rnζ×1 can be performed by
resorting to its Bayesian interpretation (Pillonetto et al. (2014)).

A generic order stable-spline kernel can be represented as follows.
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Proposition 1 (Spline kernels) The stable-spline kernel kq : R+ × R+ → R of order q and with
λ, β strictly positive hyperparameters can be written as

kq (a, b) = λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)a+hb] if a ≥ b
e−β[(2q−h−1)b+ha] if a < b

; γq,h =
(−1)q+h−1

h! (2q − h− 1)!
, (3)

Proof The proof is straightforward and omitted for the sake of brevity.

The next section shows the proposed method to directly estimate the transfer function of the sys-
tem without: (i) estimating a discrete-time impulse response ĝu, (ii) performing model reduction,
(iii) converting the model from discrete-time to continuous time.

3. Asymptotically stable transfer function estimation from impulse input excitation

3.1. Continuous-time transfer function identification

Proposition 2 (TF expression) Given the non-parametric estimator ĝu of an LTI system, the cor-
responding transfer function Ĝu (s) is

Ĝu (s) =
n∑
i=1

ciĜ
u
i (s) ; Ĝui (s) =

ti∫
d

u (x)K (s; ti − x) dx; K (s;x) =

∞∫
0

k (t, x) e−sτ dt. (4)

Proof The transfer function of an LTI system corresponds to the Laplace transform of its impulse
response. For this reason, we have

Ĝu (s) = L [ĝu] (s) =

∞∫
0

ĝu (t) e−st dt =

∞∫
0

(
n∑
i=1

ciĝ
u
i (t)

)
e−st dt =

n∑
i=1

ciĜ
u
i (s) ,

where the term Ĝui (s) = L [ĝui ] (s) reads as

Ĝui (s) =

∞∫
0

ĝui (t) e−st dt =

∞∫
0

 ∞∫
0

u (ti − ξ) k (t, ξ) dξ

 e−st dt =

∞∫
0

u (ti − ξ)K (s; ξ) dξ.

At last, since the integral can be limited to ti − d, with a change of variable x = ti − ξ, we obtain

Ĝui (s) =

ti∫
d

u (x)K (s; ti − x) dx.

From the above result, we note that the estimated transfer function is composed by the convolution
of two terms: the first one, u (x), depends only on the shape of the excitation signal while the
second one, K (s; ti − x), depends only on the kernel used. For the stable-spline kernel of order q,
it is possible to compute a more informative formulation thanks to the following proposition.
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Proposition 3 (Stable spline TF expression) Let the kernel be a stable-spline kq of order q with
hyperparameter β, the term γq,h as in Proposition 1 and the time instant d as defined in Section 2.
The identified transfer function can be written as

Ĝu (s) = λ

[
q−1∑
h=0

Quq,h (s) +Hu
q (s)

]
, (5)

where

Quq,h (s) =
γq,h

s+ βh

(
n∑
i=1

ciA
u
i

(
β (2q − h− 1)

))
; (6)

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i

(
s+ β (2q − 1)

))
; Aui (x) =

ti∫
d

u (t) ex(t−ti) dt. (7)

Proof Let us start by analyzing the term Kq (s;x) =
∫∞
0 kq (x, t) e−st dt, where the kernel kq

is a stable-spline of order q. It is useful to note that the parameter x ∈ R is always greater than 0
because in (4) this argument is always positive, thanks to the assumption that ti > d. It is convenient
to divide this integral in two parts:

Kq (s;x) =

x∫
0

kq (x, t) e−st dt+

∞∫
x

kq (x, t) e−st dt.

Firstly, let us focus on the first integral:
x∫

0

kq (x, t) e−st dt =

x∫
0

λ

q−1∑
h=0

γq,he
−β[(2q−h−1)x+ht]e−st dt = λ

q−1∑
h=0

γq,he
−β(2q−h−1)x

x∫
0

e−(s+βh)t dt

= λ

q−1∑
h=0

γq,h
e−β(2q−h−1)x

s+ βh

(
1− e−(s+βh)x

)
= λ

q−1∑
h=0

γq,h

(
e−β(2q−h−1)x

s+ βh
−
e−(s+β(2q−1))x

s+ βh

)
.

Analogously, the second integral can be simplified as
∞∫
x

kq (x, t) e−st dt =

∞∫
x

λ

q−1∑
h=0

γq,he
−β[(2q−h−1)t+hx]e−st dt = λ

q−1∑
h=0

γq,he
−βhx

∞∫
x

e−(s+β(2q−h−1))t dt

= λ

q−1∑
h=0

γq,h
e−(s+β(2q−h−1))x

s+ β (2q − h− 1)
.

Thus, Kq (s;x) can be reformulated as

Kq (s;x) = λ

q−1∑
h=0

γq,h
e−β(2q−h−1)x

s+ βh
+ λ

q−1∑
h=0

γq,h

[
e−(s+β(2q−1))x

s+ β (2q − h− 1)
−
e−(s+β(2q−1))x

s+ βh

]
.

This can be further simplified by noting that

q−1∑
h=0

γq,h

(
1

s+ β (2q − h− 1)
−

1

s+ βh

)
=

(−1)
q
β2q−1∏2q−1

i=0 (s+ βi)
.
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obtaining

Kq (s;x) = λ

q−1∑
h=0

γq,h
e−β(2q−h−1)x

s+ βh
+ λe−(s+β(2q−1))x

(−1)
q
β2q−1∏2q−1

i=0 (βi+ s)
.

Now, it is possible to plug Kq (s; a) in (4) to obtain Ĝui for the stable-spline kernel.

Gui (s) =

ti∫
d

u (y) ·Kq (s; ti − y) dy = λ

q−1∑
h=0

γq,h

s+ βh

ti∫
d

u (y) e−β(2q−h−1)(ti−y) dy

︸ ︷︷ ︸
Au

i

(
β(2q−h−1)

)
+

+ λ
(−1)

q
β2q−1∏2q−1

i=0 (βi+ s)

ti∫
d

u (y) e−(s+β(2q−1))(ti−y) dy

︸ ︷︷ ︸
Au

i

(
s+β(2q−1)

)
= λ

q−1∑
h=0

γq,h

s+ βh
Aui
(
β (2q − h− 1)

)
+

+ λ
(−1)

q
β2q−1∏2q−1

i=0 (βi+ s)
Aui
(
s+ β (2q − 1)

)
.

The identified transfer function using the stable-spline kernel is then

Ĝu (s) =

n∑
i=1

ciĜ
u
i (s) = λ

q−1∑
h=0

γq,h

s+ βh

n∑
i=1

ciA
u
i

(
β
(
2q − h− 1

) )
︸ ︷︷ ︸

Qu
q,h(s)

+

λ
(−1)

q
β2q−1∏2q−1

i=0 (s+ βi)

n∑
i=1

ciA
u
i

(
s+ β (2q − 1)

)
︸ ︷︷ ︸

Hu
q (s)

= λ

[
q−1∑
h=0

Quq,h (s) +Hu
q (s)

]
.

The expression (5) represents the estimated transfer function as a sum of q + 1 transfer functions.
The first q of them have one real pole located in a multiple of the −β and a gain that depends on the
coefficients c, the hyper-parameters λ and β, the spline order and the shape of the input signal u (t).
The last one has 2q − 1 real poles that are multiple of −β and, eventually, other poles that depend
on the shape of the input u (t). In particular, the transfer function Aui

(
s + β (2q − 1)

)
can have

some poles or zeros that will be added to Ĝu. For this reason, to evaluate the asymptotic stability of
the identified system, we impose the following condition on the input signal.

Theorem 4 (Excitation for stability) If the input signal u (t) is such that the terms

Aui
(
s+ β (2q − 1)

)
, i = 1, . . . , n (8)

are transfer functions whose poles have a negative real part, then Ĝu (s) is an asymptotically stable
transfer function.

Proof Since the transfer function Ĝu is defined as the sum of q + 1 transfer functions, we need to
show that all these addends are asymptotically stable. First, let us consider the q− 1 addends of the
type

Quq,h (s) = λ
γq,h

s+ βh

(
n∑
i=1

ciA
u
i

(
β (2q − h− 1)

))
,
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with h > 0. All these transfer functions have only one real pole in −βh that it is strictly less than
zero because h > 0 and β > 0. Therefore, these first q − 1 transfer functions are asymptotically
stable. The remainder of Ĝu is

R (s) = λQuq,0 (s) + λHu
q (s)

=
λ

s
· γq,0

n∑
i=1

ciA
u
i

(
β (2q − 1)

)
+
λ

s
· (−1)

q
β2q−1∏2q−1

i=1 (βi+ s)

n∑
i=1

ciA
u
i

(
s+ β (2q − 1)

)
.

The poles of the transfer function R (s) are {0,−β,−2β, . . . ,− (2q − 1)β}∪ (
⋃n
i=1 Pi), where Pi

are the poles, which real part is strictly negative (for the hypothesis of the Theorem), of the transfer
function Aui

(
s+ β (2q − 1)

)
. Therefore, the only non-strictly negative pole is the one in 0 because

β > 0. However, there is also a zero in the origin. To see this, consider the transfer function R̃ (s)

such that R (s) = λ
s · R̃ (s). Then, the transfer function R (s) has a zero in the origin if and only if

R (0) = 0. This can be verified with some mathematical steps

R̃ (0) = γq,0

n∑
i=1

ciA
u
i

(
β (2q − 1)

)
+

(−1)
q
β2q−1∏2q−1

i=1 βi

n∑
i=1

ciA
u
i

(
β (2q − 1)

)
=

(
(−1)

q−1

(2q − 1)!
+

(−1)
q
�
��β2q−1

�
��β2q−1 (2q − 1)!

)
n∑
i=1

ciA
u
i

(
β (2q − 1)

)
=

(−1)
q−1

+ (−1)
q

(2q − 1)!

n∑
i=1

ciA
u
i

(
β (2q − 1)

)
.

Since (−1)q−1 and (−1)q have opposite signs for every value of q, we have

R̃ (0) =
0

(2q − 1)!

n∑
i=1

ciA
u
i

(
β (2q − 1)

)
= 0.

Therefore R (s) has a zero in the origin that cancels out the pole in 0. Therefore, the identified
system Ĝu is asymptotically stable.

From this Theorem, it is clear that the terms (8) have an important role in the identification procedure
and on the stability of the identified model. Furthermore, note that the identified model is always at
least BIBO stable because the stable-spline kernel is a stable kernel.

3.2. Identification using step response data

Consider now the case where a step input is applied at the time instant d ∈ R, i.e.

u (t) = step (t) =

{
1 if t ≥ d
0 if t < d

. (9)

In this case, since ti > d, we have

A
step
i (x) =

ti∫
d

step (t) ex(t−ti) dt = e−xti

ti∫
d

ext dt = e−xti
exti − exd

x
=

1− e−x(ti−d)

x
(10)

Therefore, it is possible to check the condition of Theorem 4. In particular, we have:

A
step
i

(
s+ β (2q − 1)

)
=

1− e−
(
s+β(2q−1)

)
(ti−d)

s+ β (2q − 1)
=

1

s+ β (2q − 1)
− e−s(ti−d)

e−β(2q−1)(ti−d)

s+ β (2q − 1)
.
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This is a sum of two transfer functions (the second one with an input-ouput delay) that share the
same pole in p = −β (2q − 1). Since q ∈ N, q ≥ 1 and β > 0, this pole is strictly negative for
every value of the hyper-parameters and the theorem hypothesis is respected.

Applying Theorem 3 and using (10), we can to compute the identified transfer function Ĝstep

Ĝstep (s) = λ

[
q−1∑
h=0

Q
step
q,h (s) +Hstep

q (s)

]
,

Q
step
q,h (s) =

γq,h
∑n

i=1 ci
(
1− e−β(2q−h−1)(ti−d)

)
β (2q − h− 1) (s+ βh)

; H
step
q,h (s) . =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

Tq (s)

Here, we can note that the transfer function Hstep
q (s) contains a non-rational term Tq (s). This non-

rational term can approximated using a specialized Padé approximant as explained in Remark 5.
The derived kernel in this specific case reads as

ostep (ti, tj) =

q−1∑
h=0

γq,h

{
wh (ti, tj) if ti ≥ tj
wh (tj , ti) if ti < tj ,

where the term wh (ti, tj), when h = 0, is equal to

w0 (ti, tj) = 2
1− e−β(tj−d)(2q−1)

β2 (2q − 1)2
−

(tj − d)
(
e−β(ti−d)(2q−1) + e−β(tj−d)(2q−1)

)
β (2q − 1)

.

Instead, for h > 0, wh (ti, tj) is equal to:

wh (ti, tj) = 2
1− e−β(tj−d)(2q−1)

β2 (2q − h− 1) (2q − 1)
+
e−β(tj−d)(2q−1) − eβ(tj−d)(2q−h−1)

β2h (2q − h− 1)
+

−
e−β(ti−d)(2q−h−1)

(
1− e−β(tj−d)h

)
β2h (2q − h− 1)

.

Remark 5 In this work, a rational approximation T̃ (s) of T (s) is achieved by using a Padé
approximant (Baker and Graves-Morris (1996)). In particular, a specialized approximant for Tq (s)
of order 25 was developed following the rationale described in Baker and Graves-Morris (1996).

4. Simulation example

In the last decades, continuous-time system identification was studied in detail (Garnier (2015)).
The most recent methods are implemented in the CONTSID toolbox (Garnier and Gilson (2018)).
This section shows simulation results, where we compare the Simple Refined Instrumental Variable
(SRIVC) method (Garnier (2015); Young (2011)) with the the proposed approach, using a step
input.

The proposed method is tested on three different LTI systems

G1 (s) = −
27

20

2000s3 + 3600s2 + 2095s+ 396

1350s4 + 7695s3 + 12852s2 + 7796s+ 1520

G2 (s) = 1600
1− 4s

s4 + 5s3 + 408s2 + 416s+ 1600
; G3 (s) = −

1

10

NG3
(s)

DG3
(s)

,
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withNG3 = 1869s4+17400s3+68220s2+72350s+5075,DG3 = 1000s5+4419s4+14160s3+
27180s2 + 22220s + 5168. The system G2(s) is the Rao-Garnier benchmark used in Garnier
(2015); Rao and Garnier (2002). In all the simulations, we employ the stable-spline kernel with
order q chosen in the set {1, 2, 3, 4, 5}. The SRIVC method requires the knowledge of the order of
the system under analysis. In this comparison, the YIC (Young Information Criterion),see Young
(2011), is used to select the best model order (the number of poles and zeros ranges from 1 to 5).

The output of the true model is compared with the estimated one on a test dataset, obtained
using a random white Gaussian noise with 10 Hz of bandwidth as excitation signal. Both input and
output are sampled for 1000 s. Then, the performance is computed according to the following fit

index: Fit =

(
1−

∑nv
t=1(yt−ŷt)

2∑nv
t=1(yt−

∑nv
t=1 yt)

2

)
· 100%, where nv is the length of the obtained dataset, yt

and ŷt, with t = 1, . . . , nv, are, respectively, the samples of the true response and the estimated one.
The comparison with the SRIVC approach is performed in the following settings: (i) the input

signal is a step; (ii) the dataset is composed by 250 output measurements, taken between 0 and
T = 4s for G1, T = 12s for G2, T = 15s for G3 ; (iii) the dataset is sampled regularly, i.e. ti = i·T

250 ;
(iv) the measurements noise has variance η2step = 2.78 · 10−2 for G1, η2step = 6.80 · 10−1 for G2,
η2step = 6.74 · 10−3 for G3; (v) the pool of the possible number of poles and zeros for the SRIVC
method is {1, 2, 3, 4, 5, 6}. The Signal-Noise-Ratio (SNR) is 5.

The results of a Monte Carlo simulation with 100 different noise values are reported in Fig-
ure 1. In the second example, the Rao-Garnier benchmark system(Garnier (2015); Rao and Garnier
(2002)), is the one where the proposed kernel approach has more difficulties, but the median fit is
still slightly better than the one obtained with the CONTSID toolbox.

Figure 1: Comparison between the proposed method and SRIVC from the CONTSID toolbox.

5. Concluding remarks

This paper presented a novel black-box non-parametric continuous-time LTI identification tech-
nique. The proposed methodology directly identifies a parametric transfer function model, can
work with non-regularly sampled data-points and preserves the stability properties of the system.
The method showed very good performance when compared to the method proposed in Garnier
(2015); Garnier and Gilson (2018) using a step input. Furthermore, a general parametrization of the
stable-spline kernel is derived. Future research will be devoted to the development of the proposed
method with more general excitation signals, along with optimal experiment design.
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