
Under review as a conference paper at ICLR 2024

ADDRESSING REAL-TIME FRAGMENTARY INTERAC-
TION CONTROL PROBLEMS VIA MULTI-STEP REPRE-
SENTATION REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fragmentary interaction control problem is common in real-time control scenar-
ios. For example, the delay or the loss of the network packets (caused by network
obstacles, inadequate bandwidth, or switch faults) will lead to dynamic interval
or fragmentary interaction. Moreover, fragmentary interaction hinders the appli-
cation of reinforcement learning algorithms in real-time control tasks: when the
states are not received, the reinforcement learning (RL) algorithm cannot make
the decision for the agent according to the traditional MDP, which leads to the
standstill of the agent, and finally leads to low efficiency or even failure in com-
pleting the task. However, such problems are not well studied in the RL commu-
nity. In this paper, we propose to simultaneously generate multiple actions for fu-
ture states in case some future states cannot be perceived. We present Multi-step
Action RepreSentation (MARS) to learn a compact and decodable latent space
for the original multi-step action space. Besides, our method enhances the envi-
ronmental dynamic semantics of the action representation through unsupervised
environmental dynamics prediction and action transition scale. Based on MARS,
the RL algorithms optimize policies in the learned representation space and in-
teract with the environment by decoding the latent actions to the original ones.
MARS outperforms the existing state-of-the-art baselines in a variety of fragmen-
tary interaction real-time control tasks. Further, MARS significantly improves the
performance of high-frequency robot control tasks based on fragmentary interac-
tion in the real-world.

1 INTRODUCTION

In recent years, the field of deep reinforcement learning (DRL) has witnessed striking empirical
achievements in a variety of Markov Decision Process (MDP) problems (Mnih et al., 2013; Kauf-
mann et al., 2023). However, when applying RL algorithms to real-time (especially remote) control
tasks, we will face an inevitable challenge: the delayed or fragmentary interaction issue induced
by communication latency or packet loss. In a real-time control task, the interaction between the
action executor and the agent is conveyed over a channel using data packets. When the packet is
lost due to link failure1, the RL agent cannot make decisions, and the action executor will abruptly
stop or simply repeat the previous action, leading to low efficiency or even failure in completing the
task (Sutton & Barto, 2018). This problem can be more destructive in high-frequency real-time con-
trol (HFRT) scenarios. For instance, in high-speed navigation scenarios, unmanned aerial vehicles
must be frequently adjusted to ensure smooth flying and flexible obstacle avoidance. In computer
games, the AI-controlled non-player characters (NPCs) may become stuck due to high latency in
client interaction, thereby negatively impacting the gaming experience.

The conventional remedies for solving the delayed or fragmentary interaction issue include device
restart, data recollection, bandwidth increasing and underlying network protocol optimization (Li
et al., 2016). However, the shortcomings of such approaches are evident. Device restart causes
the operating agent to lose control in real-time scenarios. Data recollection increases the time cost,
resulting in low algorithmic efficiency. Besides, the recollected data can still be interrupted. Increas-

1The link failure can be caused by obstruction, insufficient bandwidth, switch failure, etc.

1

Under review as a conference paper at ICLR 2024

ing bandwidth will consume more manpower and material resources. The benefit of underlying net-
work protocol optimization (e.g. transport layer protocol) is limited in a high delay network (Ahmed
et al., 2003). Some recent works focus on recovering lost data by modeling the environmental dy-
namics (Li et al., 2014; Chen & Wu, 2015; Dong et al., 2009). However, in realistic control tasks,
modeling the environmental dynamics is difficult due to the complexity of the environment. Besides,
these methods require separate modeling of each scenario and thus lack generalization.

The most simple way to alleviate the delayed or fragmentary interaction issue is using ‘action-
repeat’ (also commonly known as frameskip) (Kalyanakrishnan et al., 2021), where the same action
(usually the last action) is repeated during a fixed interval. For example, in simple video games (e.g.
Atari games (Braylan et al., 2015a)), appropriately setting action-repeat can simplify exploration
and facilitate the learning of polices (Braylan et al., 2015b). However, improper action-repeat can
impede exploration and lead to suboptimal policies. Besides, action repetition can leads to internal
homogeneity of the action sequence and the inability to change the action at key states. Thus,
the policy is unstable. Another way is to let the RL algorithms make up-front decisions (advance
decision) for the future steps according to the current state or the received delayed state. Ramstedt &
Pal (2019) and Ramstedt et al. (2020) consider real-time RL control problems with constant delays
or random delays and predict the future action at+c based on the received delayed state st.

Methods Frameskip advance decision MARS

Generability ✓ ✓ ✓
stationarity × × ✓

Environment dynamic sensitivity × × ✓

Table 1: A comparison on algorithmic properties of existing
RL methods for fragmentary interactive control tasks

Compared to frameskip, these meth-
ods can improve action variety.
However, RL algorithms make ad-
vanced decisions by concatenating
action sequences. This increases the
difficulty of exploration and leads to
unstable training (Chen et al., 2021).
The stability of each method is analyzed in the appendix B.3 Furthermore, it is crucial for a general
method to exhibit effectiveness across a wide range of environments. For example, in humanoid
robot control, the changes in action are small to ensure balance. However, in the car navigation task,
the range of changes in action can be very large in response to unexpected situations. Therefore,
an ideal method should have dynamic sensitivity. As summarized in Table 1, none of the above
methods is able to offer three desired properties, i.e., generability, stationarity and environment
dynamic sensitivity, at the same time.

Latent
Space

Select Latent Action

Decision maker
Decode

Original multi-step
Action

Action trajectory

State

Interspaced interaction

Environment

Reward

Figure 1: Conceptual overview of MARS.

In this paper, we propose
Multi-step action representation
(MARS), which is the first
DRL framework for solving
fragmentary interactive control
tasks while simultaneously
achieving all three properties
outlined in Tab.1. The high
level idea is shown in Figure 1:
MARS constructs a unified
and decodable representation
space for original multi-step
actions, among which the agent learns a stable latent policy. Then, the selected latent action is
decoded to the original action space so as to interact with the environment. MARS is inspired by
recent advances in Representation Learning in DRL. Action representation learning has shown the
potential to improve learning performance (Whitney et al., 2019) and hybrid action contorl (Li
et al., 2021). MARS relies on a conditional Variational Auto-encoder (c-VAE) (Sohn et al., 2015)
that conditions on the states and employs the embedding of dynamic transition between actions
to construct the latent representation space for the associated multi-step actions (See Appendix A
for complete preliminaries). The modular architecture of MARS is applicable to all reinforcement
learning algorithms, which ensure the generalization of MARS. Besides, we use the unsupervised
environmental dynamics to learn dynamics predictive multi-step action representation. Such a
representation space can be semantically smooth, i.e., multi-step action representations that are
close in the space have a similar influence on environmental dynamics. Moreover, to capture the
dynamic transition semantics between multi-step actions, we propose the action transition scale,

2

Under review as a conference paper at ICLR 2024

	𝑠! 	𝑠!"# 	𝑠!"$ 	𝑠!"% 	𝑠!"& 	𝑠!"'

	𝑠! 	𝑠!"# 	𝑠!"$ 	𝑠!"% 	𝑠!"& 	𝑠!"'Agent

: Time step : Sending observations : Sending action

	𝑠! 	𝑠!"# 	𝑠!"$ 	𝑠!"% 	𝑠!"& 	𝑠!"'

	𝑠! 	𝑠!"# 	𝑠!"$ 	𝑠!"% 	𝑠!"& 	𝑠!"(

Action
executor

Adjust height and direction to avoid trees

: Interaction failure

Decide for 𝒄 steps at 𝒔𝒕 to avoid trees

(a) Ideal environment (b) Realistic high-frequency control environment

	𝑠! 	𝑠!"# 	𝑠!"$ 	𝑠!"% 	𝑠!"& 	𝑠!"'
	𝑎" 	𝑎"#$ 	𝑎"#% 	𝑎"#& 	𝑎"#' 	𝑎"#(𝑢"#'𝑢" = {𝑎" , … , 𝑎"#&}

Figure 2: In this case, c = 3. The left picture is the decision-making process in the ideal scenario,
and the right one is the fragmentary interaction phenomenon in the real-time scenario. How to make
decisions for the unknown state is the key to solving this problem.

thus making MARS provide targeted latent action spaces for specific states. In our experiments, we
evaluate MARS in a variety of environments with fragmentary interaction.

Our main contributions are summarized as follows: (1) We propose the first DRL framework for
solving fragmentary interactive control tasks via multi-step action representation learning. (2) We
provide an unsupervised method of learning a compact and decodable representation space for multi-
step actions, along with two modules to improve the effectiveness of latent policy learning. (3)
MARS consistently outperforms baselines in almost all related tasks, especially demonstrating sig-
nificant superiority. When the environment becomes complex and the interactions are long-spaced.
(4) MARS significantly improves the performance of real-world high-frequency robot control tasks
based on fragmentary interaction.

2 PROBLEM FORMULATION

0 5 10 15 20 25 30 35 40 45 50 55

91%

Interaction disorder

31%

37%

22%

0 1.3 2.6 3.9 5.2 6.5 7.8 9.1 10.4 11.7 14.3 15.6

Interaction disorder

Duration of data collection (ms) Duration of data collection (s)

Figure 3: (a) Random fragmentary interaction caused by poor
link contact. (b) Constant fragmentary interaction caused by the
wireless card periodically scan.

Interaction is an indispensable
requirement for real-time con-
trol (especially high-frequency
(HF) control tasks). As shown
in Figure 2, the agent relies on
interaction to obtain information
of the environment and simulta-
neously sends actions to the ex-
ecutor. Therefore, continuous interaction ensures continuity and efficiency of real-time control.
However, we need to mitigate the impact of delay and packet loss on interactions in real-world.
Even if the single-step transmission delay is alleviated through communication optimization meth-
ods (e.g., increasing bandwidth), the action execution delay is negligible in many scenarios due to
the short execution time (especially in HF control tasks). Multi-step delay and packet loss still cause
the current information untimely transmitted, reducing the interaction frequency. We model such
real-time control problems as fragmented interactive reinforcement learning problems.

2.1 FRAGMENTARY INTERACTION ENVIRONMENTS

We formalize the fragmentary interaction reinforcement learning into four components: the agent,
the unstable channel, the action executor, and the real-time environment. The agent needs to decide
the appropriate action at for each state st in real-time to ensure efficient completion of the task. The
challenge is that the interaction between the agent and the action executor is discontinuous. Because
the packet delay and loss in the channel lead to sparsity in observations received by the agent.
Besides, the states received by the action executor from the agent are also sparse due to fragmentary
interactions. An illustration is shown in Figure 2, the fragmentary interaction problem is defined
as follows: For a given observation st, how does the decision maker choose an action sequence u
that conforms to the decision logic of the corresponding unobserved state {st+1, ..., st+c} (where c

3

Under review as a conference paper at ICLR 2024

denotes the interaction interval). Besides, Figure 3 shows that fragmentary interaction tasks can be
divided into constant and random fragmentary interaction settings.

2.2 FRAGMENTARY INTERACTION MARKOV DECISION PROCESS (FIMDP)

We consider MDPs where the state space is continuous (S ∈ Rn) and the action of each time step
is a ∈ A. Different from ordinary MDP in which the agent decides an action a according to the
current state s, FIMDP requires the agent to evaluate the action sequence u = at, ..., at+c according
to the current state. Thus, FIMDP is defined as:

FIMDP
(
E, π

)
, E =

(
S,U, P,R

)
(1)

π is the policy, E denotes the set of all information involved in the environment. S denotes the
collected states, where Š represent lost states. U is the set of action sequence u and P is transition
distribution. In FIMDP, reward is defined as R : r(st) =

∑n=c
i=t r(si), which means the rewards

received by the agent are accumulated. Because the information in c steps is lost. Policy π takes
current state to select action sequence u = {at, ..., at+c}. Thus, the environment transition function
K is defined as:

K(st+c|st, ut) = p(st+c|st, ut)π(ut|st) (2)

3 MULTI-STEP ACTION REPRESENTATION

As mentioned in previous sections, it is non-trivial for an RL agent to learn with fragmentary interac-
tion efficiently due to the unobservability of intermediate states. Naive solutions, such as frameskip
and advance decision, try to learn FIMDP policies directly by original reinforcement learning. How-
ever, these methods fail to provide the three desired properties: generability, stationarity and envi-
ronment dynamic sensitivity (See Tab.1).

Inspired by recent advances in Representation Learning for RL (Chandak et al., 2019), we propose
Multi-step action representation (MARS), a novel framework that converts the original multi-step
action policy learning into a single-step policy learning problem. The intuition behind MARS is that
the action of each step is heterogeneous in their original representations, but they jointly influence
the environment. Thus, we assume that multi-step actions lie on a homogeneous manifold that is
closely related to environmental dynamics semantics. In the following, we introduce an unsuper-
vised approach to constructing a compact and decodable latent representation space to approximate
such a manifold. The representation model is optimized by self-supervised technique. During the
self-supervised training, transitions previously stored in the buffer or offline dataset are used. Be-
sides, we find that MARS is not sensitive to data quality. In most scenarios, the data collected by
random policies is used for effective training.

3.1 SCALE-CONDITIONED MULTI-STEP ACTION ENCODING AND DECODING

Although the vanilla VAE was used to construct the single-step action space in previous work, its
representation of multi-step actions is of low quality. Because the concatenated dimension of the
action sequence is high, it increases the difficulty of encoding and decoding. The encoder cannot
represent the high-dimensional data in the latent space with high quality. The decoder cannot de-
code effectively according to the low-quality latent space variables. Thus, we propose the scale
conditional VAE (sc-VAE) based on c-VAE for MARS. sc-VAE not only constructs the multi-step
action latent space z, but also constructs the action transition scale space η. η(ut) describes the
accumulation of action change scales for each action sequence ut. sc-VAE regards η as a priori
condition. Encoder uses η to guide the representation of multi-step actions. The decoder decodes
precisely through the latent space variable and its corresponding η.

To realize differential evaluation of all action sequences at the same scale, we formula η as follows:

η(ut) =
∑ ζut

(c− 1)×B
, ζut =

n=c−1∑
i=t

|ai+1 − ai| (3)

c is the maximum interval and B denotes the upper limit of action change. ζut denotes the sum of
the absolute value of the difference between adjacent actions, which is used to evaluate the transition

4

Under review as a conference paper at ICLR 2024

scale of ut. Note that ζ is also used as a regularization term to guide VAE optimizing (introduced
later in this subsection). η(ut) normalizes ζut to [0, 1].

For an action sequence ut and corresponding states st:t+c, our encoder qϕ(z|ut, st:t+c, η(ut)) pa-
rameterized by ϕ takes st:t+c and action transition scale η(ut) as conditions to build a multi-step
action latent space, and maps action sequence ut into the latent variable z ∈ Rd1 (d1 denotes the di-
mension of z). The decoder pψ(ût|z, st, η(ut)) parameterized by ψ then reconstructs the multi-step
actions ut from z. During training, η(ut) can be obtained from buffer (or offline dataset) according to
Eq.3. According to (Kingma & Welling, 2013), Variational Auto-Encoder (VAE) can be optimized
by maximizing the variational lower bound. It should be emphasized that the input of the decoder
is different from those of the encoder. Because in the FIMDP scenario, the intermediate states are
missing. So we trained it to decode latent space action z according to the current state st and η(ut).

RL policy

𝒛𝒖𝐭 		𝜼(𝐮𝐭)

Action decoding

𝒔𝒕:𝒕#𝒄, 𝒔𝒕, 𝒖𝒕	, 𝜼(𝒖𝒕)	

𝒒𝝓

𝒒𝝓

Latent space z

Encoder

Decoder𝒔𝒕, 𝜼(𝒖𝒕)

	𝒖𝒕: 	𝒂𝒕, … , 𝒂𝒕"𝒄 𝜹𝒔𝒕,𝜻𝒖𝒕,

(a) Pretrain

𝒑𝝍𝟎

Environment

Sample

𝒔𝒕
Concatenate

(b) Combine with RL policy

𝒈𝝍𝟏 𝒉𝝍𝟑𝒌𝝍𝟐
	𝒖𝒕: 	𝒂𝒕, … , 𝒂𝒕"𝒄

𝒈𝝍𝟏

𝒑𝝍𝟎

Figure 4: Detailed architecture of MARS.

We employ a Gaussian la-
tent distribution N(µx, σx) to
model qϕ(z|ut, st:t+c, η(ut))
where µx and σx are the mean
and standard deviation out-
putted by the encoder. The
decoder decodes the latent
variable z ∼ N(µx, σx) as
following: ût = gψ1 ◦
pψ0(z, st, η(ut)), gψ1 is a
fully-connected layer for re-
construction. B ◦ A denotes
function A’s output acts as the
input of function B. pψ0

de-
notes the shared layers of the
decoder. ψi∈{1,2,3} denote the
parameters of the prediction
networks. To ensure that the latent space learns the action transition scale, the decoder reconstructs
ˆζut : ˆζut = kψ2

◦ pψ0
(z, st, η(ut)). The loss function of sc-VAE is LV AE :

LV AE(ϕ, ψ) = Es,u∼D,z∼qψ
[
∥ût − ut∥22 + ∥ ˆζut − ζut∥22

+DKL

(
qϕ(·|ut, st:t+c, η(ut))∥N(0, I)

)] (4)

Where D is the buffer. The first term is the reconstruction error (i.e., mean square error, MSE),
the last term is the Kullback Leibler divergence DKL between the variational posterior of latent
representation z and the standard Gaussian prior. By using the reparameterization trick (Kingma &
Welling, 2013), ût is differentiable with respect to ψ and ϕ. For any latent variables zut , they are
decoded into multi-step actions ut conveniently by the VAE decoder. We summarize the encoding
and decoding process:

Encoder :zut ∼ qϕ(·|ut, st:t+c, η(ut)) ∀ st:t+c, ut, η(ut)
Decoder :ut = gψ1

◦ pψ0
(zut , st, η(ut)) ∀ s, zut , η(ut)

(5)

3.2 TRANSITION AWARE MULTI-STEP ACTION REPRESENTATION

In the last section, we introduce how to build a scale-aware and decodable representation space
for multi-step actions. However, it is still inefficient to learn the policy and value functions in the
latent action space learned by the vanilla sc-VAE. Because the policy and value functions are highly
dependent on the environmental dynamics. However, the vanilla VAE does not explicitly capture
the effects of different multi-step actions on the environment (Grosnit et al., 2021). To address this
issue, we further apply an unsupervised learning loss based on environmental dynamics prediction
to further refine the multi-step action representation.

Ideally, the dynamics predictive representation should be semantically smooth, i.e., the action se-
quences decoded by the close points in the latent space should have a similar influence on the
environment. Such a semantically smooth latent space is superior to the vanilla one in function
approximation and generalization (Schwarzer et al., 2020).Based on this idea, MARS captures the

5

Under review as a conference paper at ICLR 2024

environmental dynamics by predicting the state transition residual. Besides, another advantage of
using environment dynamics for represnetation clustering is that environment dynamics are more
accessible and contain richer information than rewards or Q values in FIMDP. Detailded analysis
see Appendix B.4. Note that MARS predicts the residual difference between the state after the ex-
ecution of ut and the current statest. As shown in the left of Figure 4, hψ3

is a subnetwork of our
decoder. For any transition sample (st, ut, st+c), the state residual is denoted by δst = st+c − st.
pstate = hψ2

◦ pψ . The predictions δ̂st is produced as:

δ̂st = pstate(zut , st, η(ut)) ∀ st, zut , η(ut) (6)

The environmental transition prediction loss is defined as:

Ldy(ϕ, ψ) = Est,ut,st+c
[
∥δ̂st − δst∥] (7)

Above all, the ultimate training loss for the multi-step action representation is denoted as follows:

LMARS(ϕ, ψ) = LV AE(ϕ, ψ) + βLdy(ϕ, ψ) (8)

where β is a hyper-parameter that controls the relative importance of the Ldy and LV AE . LMARS

only depends on the environmental dynamic data which is reward-agnostic and is easier to ob-
tain (Erraqabi et al., 2021; Yarats et al., 2021).

3.3 DRL WITH MULTI-STEP ACTION REPRESENTATION

As a plug-in method, MARS can be applied to any RL algorithm. MARS provides two action
spaces for the RL algorithm: the multi-step action space z and the action transition scale space η.
RL algorithm maximizes the reward expectation by selecting optimal latent space actions from these
two spaces. In this section, we apply MARS to a typical model-free RL method TD3 (Fujimoto et al.,
2018) as an example. TD3 is a deterministic Actor-Critic algorithm. As illustrated in the right part
of Figure 4, with the learned transition-aware multi-step action representation, the actor network
learns a latent policy πτ that outputs the latent actions, i.e., [aη, az] = πτ (s); aη ∈ η, az ∈ z.
Then we obtain the corresponding multi-step actions u (in the original action space) by decoding
the latent action aη and az according to Eq.5.

The critic networks Qθ1 , Qθ2 take the latent actions az and aη as inputs to approximate the value
function Qπτ , i.e., Qθi=1,2

(s, aη, az) ≈ Qπτ (s, aη, az). We train the critic network using data
sampled (s, aη, az, r, s

′). To make the expression of the formula clear, in this subsection s is the
current state. s′ is the first state of the next interaction cycle. The critic loss function is as follows:

LQ(θi) = Es,aη,az,s′
[
(y −Qθi(s, aη, az))

2
]

for ∀i ∈ {1, 2} (9)

Where y = r + γ min
j=1,2

Qθ̄j (s
′, πτ̄ (s

′)), τ̄ denotes the target network parameters. The actor is

updated according to the Deterministic Policy Gradient (Silver et al., 2014) as follows:

∇τJ(τ) = Es
[
∇πτ (s)Qθ1(s, πτ (s))∇τπτ (s)

]
(10)

The overall algorithm MARS-TD3 is summarized in Algorithm 1, which contains two major stages:
(1) the warmup stage and (2) the policy learning stage. In stage 1, MARS is trained using a prepared
replay buffer D. The sc-VAE is updated by minimizing the VAE and the environmental dynamic
prediction loss. Note that the proposed algorithm has no requirement on how the bufferD is prepared
and here we simply use a random policy to gather the data. In stage 2, given an environment state, the
latent policy outputs the latent action az and the action transition scale aη perturbed by the Gaussian
exploration noise. The latent action is decoded into the original multi-step actions so as to interact
with the environment, after which the collected transition sample is stored in the replay buffer D.
Then, the latent policy is updated using the data sampled from D. The action representation model
is updated concurrently in the second stage to make continual adjustments to the change of data
distribution. The detailed network architecture is presented in appendix B.1. Appendix B.5 contains
the way we guarante the training stability in FIMDP.

6

Under review as a conference paper at ICLR 2024

Algorithm 1 MARS-TD3
Initialize actor πτ and critic networks Qθ1 , Qθ2
Initialize conditional VAE qϕ, pψ and replay buffer D

Stage 1
while not reaching warmup training times do

Fill D with data generated by random policy or offline datasets
Update qϕ, pψ using samples in D

end while

Stage 2
while t < policy training time do

aη, az = πτ (with Gaussian noise)
u = gψ1

◦ pψ0
(az, s, aη)

Execute u, observe r and new state s′
Fill D with (s, st:t+c, u, az, aη, r, s

′)
Sample from D, update Qθ1 , Qθ2 and πτ
if reach representation training time then Update qϕ, pψusing samples in D
end if

end while

Figure 5: Comparisons of methods in constant fragmentary interaction tasks. Red lines denote the
results of TD3 at the ideal setting with no interval. The x- and y-axis denote the environment steps
and average episode reward over recent 10 episodes. The curve and shade denote the mean and a
standard deviation over 5 runs.

4 EXPERIMENT

We empirically evaluate MARS to answer the following research questions. (1) RQ1: Can MARS
effectively address the FIMDP problem and outperform related baselines in various simulation
tasks? (2) RQ2: Can MARS help improve the performance of real-world robotic control problems
based on fragmentary interaction? (3) RQ3: Can MARS be applied to all kinds of RL algorithms?
(4) RQ4: Whether the action transition scale and the state dynamic prediction both play important
roles in latent action optimization?

4.1 EXPERIMENTAL SETUPS

Benchmarks. To verify MARS in various aspects, we selected two different types of fragmentary
interaction tasks: robot control (four openai Mujoco tasks (Brockman et al., 2016))and navigation.

7

Under review as a conference paper at ICLR 2024

Figure 6: Results of random FIMDP tasks. The coordinates have the same meaning as Figure 5.

For navigation tasks, we used the medium and difficult maps of 2dmaze in D4RL (Fu et al., 2020),
the agent’s goal is to walk to the end of the maze (The original action dimension is low,i.e., 2).

Baselines. As far as we know, there is no specific solution to the FIMDP problem. Therefore, we
designed two reasonable methods as baselines. The first is the RL algorithm combined with the
frameskip trick, the second is using the RL algorithm to directly make decisions for the last c steps
(referred to simply as advance decision).

4.2 PERFORMANCE OF SIMULATION TASKS (RQ1)

To counteract implementation bias and achieve comprehensive comparison, all methods are imple-
mented based on TD3 (Fujimoto et al., 2018) of the same architecture. For all tasks, we set latent
action space dimension as 8 and environment dynamic predictive representation loss β as 5. For the
Mujoco tasks, the steps in the warm-up (stage 1) are 400000, and in the navigation task, the steps
in stage 1 are 100000. Parameter setting can be found in appendix B.5. We first evaluate the per-
formance in six environments of constant fragmentary interaction. In real-world tasks, an execution
time for one step is about 0.05s to 0.25s. And most of the prohibited interaction duration is 0.5s
to 2s. Thus, we set the interval step length as 8 to simulate the real-world setting. The results in
Figure 5 show that MARS-TD3 outperforms other methods in all tasks, especially in the high-action
dimension tasks (i.e., Mujoco). This proves that MARS can effectively solve the FIMDP problem,
and avoid the convergence difficulties caused by dimensional explosion. Besides, although TD3-
frameskip and TD3 advance decision can learn effective policies in navigation tasks, their learning
efficiency is slow, shortages are more obvious in high-dimensional action tasks (mujoco). Further,
MARS-TD3 is comparable to the ideal TD3 even in long-interval interaction settings, and even
better on Hopper and Walker. This is because MARS compresses episode length with multi-step
decision making, which reduces task difficulty and makes TD3 optimization easier.

We evaluate MARS on random FIMDP tasks, the above six environments are transformed into
random fragmentary interaction setting. In the real-world, the longest interaction interval of the
drone scene is generally 0.5s to 1.5s, and the game delay is generally 0.1s to 1.5s. Thus, we set the
longest interval to 10 time steps. Figure 6 shows that MARS performs better than other baselines
on all tasks. Compared with constant FIMDP, the effects of all methods are reduced to varying
degrees in random fragmentary interaction tasks. However, MARS’s scores are still the same as the
ideal TD3 score in most tasks, but slightly fluctuating. The possible reason is that the agent may
receive cumulative rewards after the execution of the two action sequences, which interferes with
the evaluation of the latent space action. We will try to overcome this problem in the future.

4.3 PERFORMANCE OF REAL-WORLD ROBOTIC CONTROL TASK (RQ2)

8

Under review as a conference paper at ICLR 2024

RL policy

𝒛𝒖 		𝑫𝒕𝒑𝒔

Action decoding

		𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏

𝒑𝝓

𝒔𝒕𝒓𝒂𝒋, 𝒔, 𝒖𝒔, 𝑫𝒕𝒑𝒔, 𝒓, 𝒔

𝒒𝝓

𝒒𝝓

Latent space z

Encoder

Decoder

MLP

𝒔, 𝑫𝒕𝒑𝒔

MLP

		𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 𝜹*𝒔,𝒔&𝜻,𝒔,𝒔&

(a) Pretrain

𝒑𝝓

Environment

Sample

𝒔

Concatenate

(b) Combine with RL policy

MLP

Figure 7: The left pictures are the snake robot posture. The
right part is the path visualization.

We evaluate MARS in a real-world
high-frequency snake robot control
task. Snake robots are widely used in
outdoor exploration because of their
lightweight and flexible movements.
However, the complex observation
(i.e., 54-d) multi-joint (i.e., 24), re-
dundant degrees of freedom make
it hard to control. Visual descrip-
tion and detailed analysis is in App-
nedix C.5. As a key of the con-
trol system, MARS solves the control
task of the snake robot in the frag-
mentary interaction outdoor scene.
The result is shown in figure 7. We will release the robot control system in the near future.

4.4 GENERALIZATION OF MARS (RQ3)

We test MARS with popular RL methods on 2dmaze and Mujoco. In summary, MARS can effec-
tively combine with different RL methods. We analyze MARS’s excellent generalization perfor-
mance in detail based on experiments in appendix C.1.

4.5 ABLATION STUDY AND VISUAL ANALYSIS (RQ4)

（a) Constant Hopper （b) 2D t-SNE visualizations

MARS_action_transition_scale

Vanilla_VAE
MARS_state_dynamic_prediction
MARS_with_all_module

Figure 8: Ablation study, the curve and shade denote the mean and
a standard deviation over 3 runs.

We further evaluate the con-
tribution of the major compo-
nents in MARS: action tran-
sition scale η and state dy-
namic prediction. Figure 8
(a) shows that both modules
effectively optimize the latent
space. when they are com-
bined, the modeling ability of
the environmental dynamic is
improved. See the complete
analysis and additional results
in Appendix B.4. Figure 8 (b)
uses t-SNE (van der Maaten & Hinton, 2008) to visualize the learned latent action representations.
We color each action based on its impact on the environment. result shows that actions with a similar
impact on the environment are relatively closer in the latent space.), which demonstrates these two
modules are helpful for deriving multi-step action representation.

Besides, results in Appendix C.3 improve the robustness of MARS to different interaction interval
settings. Results in Appendix C.4 show the influence of latent space dimensions on MARS. Finally,
the analysis of self-supervised training steps is in Appendix C.5.

5 CONCLUSION

In this paper, we propose Multi-step action representation (MARS) for RL methods to efficiently
solve the fragmentary interaction tasks. MARS uses an unsupervised method to derive a compact
and decodable representation space for multi-step actions. MARS can be easily combined with all
kinds of DRL methods, making DRL algorithms learn effective policies. We evaluate MARS in a
variety of environments. The results demonstrate the superiority of MARS when compared with
baselines. Besides, MARS improves the performance of real-world HF robot control tasks based on
fragmentary interaction.

9

Under review as a conference paper at ICLR 2024

REFERENCES

A.A. Ahmed, H. Shi, and Y. Shang. A survey on network protocols for wireless sensor networks. In
International Conference on Information Technology: Research and Education, 2003. Proceed-
ings. ITRE2003., pp. 301–305, 2003. doi: 10.1109/ITRE.2003.1270626.

Alexander Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a
powerful parameter for learning to play atari. In AAAI Workshop: Learning for General Compe-
tency in Video Games, 2015a. URL https://api.semanticscholar.org/CorpusID:
194604.

Alexander Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is
a powerful parameter for learning to play atari. In AAAI-15 Workshop on Learning for Gen-
eral Competency in Video Games, 2015b. URL http://nn.cs.utexas.edu/?braylan:
aaai15ws.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine learn-
ing, pp. 941–950. PMLR, 2019.

Chen Chen, Hongyao Tang, Jianye Hao, Wulong Liu, and Zhaopeng Meng. Addressing action
oscillations through learning policy inertia. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7020–7027, 2021.

Qian Chen and Dapeng Wu. Delay-rate-distortion model for real-time video communication. IEEE
Transactions on Circuits and Systems for Video Technology, 25(8):1376–1394, 2015.

Xihua Dong, Xiaochen Li, and Dapeng Wu. Analysis of packet error probability in delay con-
strained communication over fading channels. In 2009 6th IEEE Consumer Communications and
Networking Conference, pp. 1–5. IEEE, 2009.

Akram Erraqabi, Mingde Zhao, Marlos C Machado, Yoshua Bengio, Sainbayar Sukhbaatar, Ludovic
Denoyer, and Alessandro Lazaric. Exploration-driven representation learning in reinforcement
learning. In ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter Dürr. Super-human
performance in gran turismo sport using deep reinforcement learning. IEEE Robotics and Au-
tomation Letters, 6(3):4257–4264, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexander I Cowen-
Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, et al. High-dimensional
bayesian optimisation with variational autoencoders and deep metric learning. arXiv preprint
arXiv:2106.03609, 2021.

Shivaram Kalyanakrishnan, Siddharth Aravindan, Vishwajeet Bagdawat, Varun Bhatt, Harshith
Goka, Archit Gupta, Kalpesh Krishna, and Vihari Piratla. An analysis of frame-skipping in rein-
forcement learning. arXiv preprint arXiv:2102.03718, 2021.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

10

https://api.semanticscholar.org/CorpusID:194604
https://api.semanticscholar.org/CorpusID:194604
http://nn.cs.utexas.edu/?braylan:aaai15ws
http://nn.cs.utexas.edu/?braylan:aaai15ws

Under review as a conference paper at ICLR 2024

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. arXiv preprint arXiv:2109.05490, 2021.

Chenglin Li, Dapeng Wu, and Hongkai Xiong. Delay—power-rate-distortion model for wireless
video communication under delay and energy constraints. IEEE Transactions on Circuits and
Systems for Video Technology, 24(7):1170–1183, 2014.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast detection of lost packets
in data center networks. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’16, pp. 481–495, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342926. doi: 10.1145/2999572.
2999609. URL https://doi.org/10.1145/2999572.2999609.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4635–4640. IEEE, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Simon Ramstedt and Chris Pal. Real-time reinforcement learning. Advances in neural information
processing systems, 32, 2019.

Simon Ramstedt, Yann Bouteiller, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. arXiv preprint arXiv:2010.02966, 2020.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation us-
ing deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware embed-
dings. arXiv preprint arXiv:1908.09357, 2019.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. In International Conference on Machine Learning, pp. 11920–11931.
PMLR, 2021.

11

https://doi.org/10.1145/2999572.2999609
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

Under review as a conference paper at ICLR 2024

A PRELIMINARIES

Markov Decision Process (MDP). A standard MDP can be represented as a tuple:
(S,A,P,R, γ, T), where S denotes the state set, A denotes an action set, P is the transition func-
tion: S × A × S → [0, 1] and R is the reward function: S × A → R. γ ∈ [0, 1) is a discount
factor and T is the decision horizon. The target of the agent is to optimize its policy to maximize
the expected discounted cumulative reward.

Differences between FIMDP and POMDP, or MDP with reward delays. The main difference
between FIMDP and delay MDP: In FIMDP All environmental information is delayed (observation,
action sequence, reward). Besides, agents are not allowed to pause midway. However, in reward
delay MDP agent just need address the reward delay. And reward delay MDP does not consider the
harm caused by the agent stalled in the middle. POMDP does not involve delay, the agent gets a
local observation at each step. In contrast, the FIMDP has a delay in obtaining observations, but the
agent can obtain global observations.

Frameskip. Frame-skipping may be viewed as an instance of (partial) open-loop control, under
which a predetermined sequence of (possibly different) actions is executed without heed to inter-
mediate states. Aiming to minimize sensing, Kalyanakrishnan et al. (2021) proposes a framework
for incorporating variable-length open-loop action sequences in regular (closed-loop) control. The
primary challenge in general open-loop control is that the number of action sequences of some given
length d is exponential in d. Consequently, the main focus in the area is on policies to prune cor-
responding data structures (Braylan et al., 2015b). Since action repetition restricts itself to a set of
actions with size linear in d, it allows for d itself to be set much higher in practice. With frame-
skipping, the agent is only allowed to sense every d state: that is, if the agent has sensed a state st at
time step t >= 0, it is oblivious to statesst+1, st+2, ..., st+d−1, and next only observes st+d.

Variational Auto-encoder. The variational auto-encoder (VAE) is a directed graphical model with
certain types of latent variables, such as Gaussian latent variables. A generative process of the VAE
is as follows: a set of latent variable z is generated from the prior distribution pθ(z) and the data x is
generated by the generative distribution pθ(x|z) conditioned on z : z ∼ pθ(z), x ∼ pθ(x|z). In gen-
eral, parameter estimation of directed graphical models is often challenging due to intractable poste-
rior inference. However, the parameters of the VAE can be estimated efficiently in the stochastic gra-
dient variational Bayes (SGVB) framework, where the variational lower bound of the log-likelihood
is used as a surrogate objective function. In this framework, a proposal distribution qθ(x|z), which
is also known as a “recognition” model, is introduced to approximate the true posterior pθ(x|z). The
multilayer perceptrons (MLPs) are used to model the recognition and the generation models. Assum-
ing Gaussian latent variables, the first term of Equation (2) can be marginalized, while the second
term is not. Instead, the second term can be approximated by drawing samples z(l)(l = 1, ..., L)
by the recognition distribution qθ(x|z), and the empirical objective of the VAE with Gaussian latent
variables is written as follows:

LV AE(ϕ, ψ) =
1

L

∑
θ

(x|z(l))−KL
(
qϕ(z|x)||N(0, I)

)
(11)

B EXPERIMENTAL DETAILS

B.1 NETWORK STRUCTURE

Layer Actor Network Critic Network

Fully Connected (state dim, 256) (statedim + η dim + latent space dim, 128)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128,latent space dim) and η dim (128, 1)
Activation Tanh None

Table 2: Network Structures for DRL Methods

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a single
NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 17 hours,

12

Under review as a conference paper at ICLR 2024

depending on the algorithms and environments. For more details of our code refer to the HyAR.zip
in the supplementary results. And will open source code in the near future.

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a single
NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 17 hours,
depending on the algorithms and environments. For more details of our code refer to the HyAR.zip
in the supplementary results. And will open source code in the near future.

Our TD3 is implemented with reference to github.com/sfujim/TD3 (TD3 source-code).
DDPG and PPO are implemented with reference to https://github.com/sweetice/
Deep-reinforcement-learning-with-pytorch. For a fair comparison, all the baseline
methods have the same network structure (except for the specific components of each algorithm)
as our MARS-TD3 implementation. As shown in Tab.2, we use a two-layer feed-forward neural

Model Component layer dimension

Conditional Encoder Network

Fully Connected (encoding) (Rx, 256)
Fully Connected (condition) (stae dim + η dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, latent space dim)

Activation None
Fully Connected (log std) (256, latent space dim)

Activation None

Conditional Decoder, Prediction Network

Fully Connected (latent) (latent space dim, 256)
Fully Connected (condition) (stae dim +η dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (η) (256, action dynamic transition)

Activation None
Fully Connected (reconstruction) (256, multi-step action dim)

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None

Table 3: Network structures for the Multi-step action representation (MARS).

network of 256 and 256 hidden units with ReLU activation (except for the output layer) for the actor
network for all algorithms. For DDPG the critic denotes the Q-network. For PPO, the critic denotes
the V-network. All algorithms (TD3, DDPG, PPO) output two heads at the last layer of the actor
network, one for latent action and another for dynamic transition potential.

The structure of MARS is shown in Tab.3. We use element-wise product operation (Mahmood et al.,
2018) and cascaded head structure (Fuchs et al., 2021) to our model.

B.2 HYPERPARAMETER

For all experiments, we use the raw state and reward from the environment, and no normalization or
scaling is used. No regularization is used for the actor and the critic in all algorithms. An exploration
noise sampled from N(0, 0.1) (Dong et al., 2009) is added to all baseline methods when selecting an
action. The discounted factor is 0.99 and we use Adam Optimizer (Li et al., 2016) for all algorithms.
Tab.4 shows the common hyperparameters of algorithms used in all our experiments.

B.3 THE ANALYSIS OF STABILITY

Section 1 of new version provides detailed analysis: Our method is more stable than frameskip and
Advance decision.

The essence of frameskip is the repetition of an action, which leads to internal homogeneity of the
action sequence and the inability to change the action at key states. Thus, the policy is unstable.

13

github.com/sfujim/TD3
https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch
https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch

Under review as a conference paper at ICLR 2024

Hyperparameter TD3-frameskip TD3-advance MARS-PPO MARS-TD3 MARS-DDPG

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−3

Representation Model Learning Rate None None None 1e−4 5e−3 5e−3

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99
Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 4: A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote
the ‘not applicable’ situation.

Advance decision needs to output the whole action sequence (concatenate c steps), and the long
action sequence will increase the output dimension (output dim = c × single action dim). This
increases the difficulty of the action space exploration. Thus, the agent cannot learn the optimal
policy.

Our method represents diverse action sequences into low-dimensional space. RL algorithms only
need to learn policies in the latent action space. Our method reduces the difficulty of exploration
and performs better.

B.4 ANALYSIS OF REPRESENTATION CLUSTERING METHODS

The in-depth explanation is as follows (Section 1 of the new version, highlight) :

Get accurate Q value is difficult: In sparse reward environments (such as FIMDP), reward and Q
are difficult to obtain and the evaluation of Q values in the early stage of training is inaccurate. In
contrast, environmental dynamic is more reliable and accessible.

Environmental dynamic contains more information: The same reward or Q value may correspond
to different environmental changes, but the same environmental change must have the same reward
or Q value.

Environmental dynamic is reward-agnostic: In FIMDP, rewards are sparse. Environment dynamic
do not require per-step reward. Therefore, environmental dynamic representation is more robust in
FIMDP.

Further, in the following Table, we compare these three representational learning methods (1.cluster
by Env dynamic 2. cluster by Q 3. cluster by reward). We only changed the clustering representa-
tions to ensure experimental fairness (buffer size is . Average of the 10 runs).

Method Halfcheetah Walker maze-hard

Env dynamic (ours) 7012.1± 131.4 4821.6± 427.6 311.4± 16.3
Q 6386.1± 412.7 4021.6± 313.7 275.2± 13.7

reward 6618.1± 372.7 4188.3± 185.5 253.9± 21.5

Table 5: Average of the 10 runs

B.5 HOW TO GUARANTE THE STABLE EXECUTING AND TRAINING

Section 3.2 of new version cover our method to guarante the training stability in detail (a common
low-level method used in real-time control). We use the physical clocks on both devices to align. If
the actions are obsolete, lose them. We retain the time stamp and execution flag of each action, which
make actions executed in strict accordance with the timestamp order. When the new sequence arrives
at the executor, the previous sequence will be replaced, and the execution flag of the unexecuted
action will be False. The subsequent rewards will be accumulated into the new sequence. Thus, each
latent space action reward is the sum of the executed action reward in the corresponding sequence.
Following results shows the effect of alignment method (average of the 10 runs, Interval is 6).

14

Under review as a conference paper at ICLR 2024

Method Walker maze-hard

Ours 4463.2± 362.7 311.4± 16.3—
without aligment 4168.3± 372.6 213.1± 16.7

Table 6: Average of the 10 runs, Interval is 6.

B.6 ADDITIONAL IMPLEMENTATION DETAILS

For PPO, the actor network and the critic network are updated every 2 and 10 episode respectively
for all environments. The clip range of the PPO algorithm is set to 0.2 and we use GAE (Sutton
& Barto, 2018) for a stable policy gradient. For DDPG, the actor network and the critic network is
updated at every 1 environment step. For TD3, the critic network is updated every 1 environment
step and the actor network is updated every 2 environment steps.

The default latent action dim is 8, We set the KL weight in representation loss LMARS as 0.5.
Environment dynamic prediction loss weight β is 5 (default).

C ADDITIONAL EXPERIMENT

C.1 GENERALIZATION OF MARS

We test MARS with popular RL methods on three tasks: Hopper, Walker, and hardMaze. To make
the experiment fair, we used the same parameters for all methods and implemented them based on
public code. We use each RL algorithm to train on three tasks under the ideal setting and compare
them with their corresponding improvement methods. To show the optimal score after the algorithm
convergence, we train all the algorithm’s 2000000 time steps. The results in Tab.7 show that all
methods can learn effective policies with the help of MARS and perform similarly to their ideal set-
tings. The differences in scores are mainly due to the variation in performance of the RL algorithms.
In summary, MARS can be combined with different methods to provide a reliable action space for
solving FIMDP as normal MDP with RL.

Benchmarks MARS-PPO MARS-DDPG MARS-TD3

Maze hard 256 | 0.7 ↑ 243 | 2.5 ↑ 311 | 16.3 ↑
Hopper 2811.4 | 73.5 ↓ 1815.6 | 184.3 ↑ 3384 | 53.1 ↑
Walker 3831.2 | 285.1 ↓ 1032.7 | 201.9 ↓ 4821.6 | 427.6 ↑

Table 7: MARS generalization verification. All tasks are set to constant FIMDP, interval is 8. The
format of the data in the table is: MARS-RL score | the score gap. ↓ denotes score of MARS lower
than the ideal setting baseline. ↑ denotes score of MARS higher than the ideal setting baseline. All
scores are averaged over five runs.

C.2 DETAILS OF ABLATION STUDY

We conducted two experiments to show how well the two mechanisms of MARS work together.
Although the results of randomized FIMDP and constant FIMDP are slightly different, the same
conclusion can be derived: The green curves in Figure 9 demonstrate that the representation model
with increased action transition scale is much better than the original VAE. This means that dynamic
transition potential can create an action hidden space by explicitly modeling the dependence between
multi-step actions. The blue curves also show that VAE with state dynamic prediction is better than
the original VAE because it can represent action sequences that have similar environmental effects at
close locations. Finally, the red curves show that the two mechanisms work well together in MARS,
and combining them improves representation ability.

15

Under review as a conference paper at ICLR 2024

（a) Constant FIMDP （b) Random FIMDP

MARS_action_transition_scale

Vanilla_VAE
MARS_state_dynamic_prediction
MARS_with_all_module

MARS_action_transition_scale

Vanilla_VAE
MARS_state_dynamic_prediction
MARS_with_all_module

Figure 9: Details of ablation study. The curve and shade denote the mean and a standard deviation
over 5 runs.

C.3 VALIDITY VERIFICATION OF MULTIPLE INTERACTION INTERVALS

To further demonstrate the effectiveness of MARS in diverse fragmentary interaction scenarios. For
constant fragmentary interaction control tasks, we uniformly set the forbidden interaction duration
and conducted four experiments on Hopper. The results in Figure 10 show that MARS can solve
most tasks effectively and still guarantee good scores at long intervals, but the effectiveness of
MARS decreases significantly when the interval is too long (which is not common in real-world
scenarios). We believe that this is because VAE is unable to effectively characterize excessively
long sequences, leading to the failure of multi-step action space modeling.

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval : 16 time step Interaction interval : 22 time step

Figure 10: MARS’s experimental results under four different settings of forbidden interaction dura-
tion. The curve and shade denote the mean and a standard deviation over 5 runs.

16

Under review as a conference paper at ICLR 2024

In addition, to observe the sensitivity of MARS to interaction intervals on random FIMDP tasks, we
uniformly set the forbidden interaction duration and conducted four experiments on Hopper. The
results in Figure 11 show that in random FIMDP scenarios, MARS performs well in both short and
medium-interval scenarios. However, convergence changes slowly in the very long interval scenario,
and the score is only half that of the medium interval task. Because MARS’s representational ca-
pabilities are not perfect for modeling long action sequences for extremely long-spaced tasks (even
if this setting rarely occurs in real-world scenarios). Therefore, in the future, we hope to find more
suitable representation models to overcome this problem.

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval : 16 time step Interaction interval : 22 time step

Figure 11: MARS’s experimental results under four different settings of forbidden interaction dura-
tion. The curve and shade denote the mean and a standard deviation over 5 runs.

C.4 THE INFLUENCE OF LATENT ACTION SPACE DIMENSION ON ALGORITHM EFFECT

The representation space dimension of VAE is an important hyperparameter. If the latent space
dimension is too low, a large amount of original data information will be lost, resulting in invalid
representation space. On the contrary, when the latent space dimension is too large, the calculation
amount of the model will be increased. To verify the sensitivity of MARS to latent space dimensions,
we test it on two tasks with different original action dimensions.

We set up four sets of latent space dimensions for constant FIMDP Hopper (interaction interval time
step: 8, original action dimension: 3, so the action sequence dimension to be modeled is 24). The
learning curve in Figure 12 shows that for raw data of such high dimensions, when the latent space
dimension is set too low, the latent space information will be lost, resulting in the convergence failure
of reinforcement learning policies. On the contrary, too high a latent space dimension increases the
complexity of reinforcement learning policy exploration. In addition, we set up four comparison
experiments on the 2dmaze task with a lower dimension of the original action sequence (interaction
interval time step: 4, original action dimension: 2, so the action sequence dimension to be modeled
is 8). The experimental results in Figure 13 show that the suboptimal policy can be learned when the
latent space dimension is low, because the original data dimension is low. So the low-dimensional
latent space loses less information. The score increases as the latent space dimension increases.

17

Under review as a conference paper at ICLR 2024

Latent_dim : 1 Latent_dim : 8

Latent_dim : 16

Figure 12: TD3 learning curves of three different latent space dimensions set the corresponding.
The curve and shade denote the mean and a standard deviation over 5 runs.

However, when the latent space dimension is too high, the score will drop significantly, which is
because of the exploration difficulties brought by high-dimensional latent space.

C.5 THE INFLUENCE OF ENVIRONMENT STEPS OF WARMUP STAGE

In this section, we conduct some additional experimental results for a further study of MARS from
different perspectives: We provide the exact number of samples used in the warm-up stage (i.e.,
stage 1 in Algorithm 1 in each environment in Tab.8. The number of warm-up environment steps
is about 5% ∼ 10% of the total environment steps in our original experiments. Moreover, we also
conducted some experiments to further reduce the number of samples used in the warm-up stage (at
most 80% off). See the colored results in Tab.8. MARS can achieve comparable performance with
< 3% samples of the total environment steps.

Conclusion: The number of warm-up environment steps is about 5% ∼ 10% of the total environment
steps in our original experiments. The number of warmup environment steps can be further reduced
by at most 80% off (thus leading to < 3% of the total environment steps) while the comparable
performance of our algorithm remains.

Snake robot point tracking is a periodic information acquisition task. The reason for this phe-
nomenon is not packet loss or delay, but the unique rolling gait of the snake robot. The rolling gait
of the snake robot is the most efficient gait for outdoor work at present, which includes the rolling of
the head sensor. However, this gait causes the next observation to be acquired only when the head
sensor rolls to a position parallel with the ground. If the rolling motion is interrupted midway, the
next state cannot be obtained, leading to agent ineffective shaking. Our control system is the first
to complete the rolling gait tracking task. We describe the snake robot tracking task in detail and
provide several visualization results in the new version. The snake robot needs to scroll from the
starting point to the target point in a scene with a size of 5 square meters. Each observation step is
54d, the action sequence time step is 20, so the action sequence dimension is 1.08k. And the control

18

Under review as a conference paper at ICLR 2024

Latent_dim : 2 Latent_dim : 8

Latent_dim : 16

Figure 13: TD3 learning curves of three different latent space dimensions set the corresponding.
The curve and shade denote the mean and a standard deviation over 5 runs.

Environment Warm-up steps (original) Warm-up steps (new) Total Env. Steps

Hopper 400000(0.08|3219.1) 100000(0.02|3086.4) 5000000
Ant 400000(0.08|4305.7) 100000(0.02|4025.6) 5000000

Walker 400000(0.08|4961.3) 100000(0.02|4792.6) 5000000
HalfCheetah 400000(0.08|6593.2) 100000(0.02|6071.2) 5000000

2dmaze-medium 100000(0.083|127.8) 30000(0.025|118.5) 1200000
2dmaze-hard 100000(0.083|327.6) 35000(0.0292|296.1) 1200000

Table 8: The exact number of samples used in warm-up stage training in different environments.
The column of ‘original’ denotes what is done in our experiments; the column of ‘new’ denotes
additional experiments we conduct with fewer warm-up samples (and proportionally fewer warm-
up training). For each entry x(y|z), x is the number of samples (environment steps), y denotes the
percentage number of warm−up environment steps

number of total environment steps during the training process , and z denotes the
corresponding performance of MARS-TD3.

frequency of the real interaction is 20 Hz. Here is the demo video and several visual description of
the task: https://anonymous.4open.science/r/ICLR2024-C0F6/README.md.

D MARS-DDPG PSEUDOCODE

19

https://anonymous.4open.science/r/ICLR2024-C0F6/README.md

Under review as a conference paper at ICLR 2024

Algorithm 2 MARS-DDPG
Initialize actor πτ and critic networks Qθ
Initialize conditional VAE qϕ, pψ and replay buffer D

Stage 1
while not reaching warmup training times do

Fill D with data generated by random policy or offline datasets
Update qϕ, pψ using samples in D

end while
Stage 2

while t < policy training time do
az, aη = πτ (with Gaussian noise)
u = pψ(az, aη, s)
Execute u, observe r and new state s′
Fill D with (s, st:t+c, u, az, aη, r, s

′)
Sample from D, update Qθ and piτ
if reach representation training time thenUpdate qϕ, pψusing samples in D

20

	Introduction
	Problem Formulation
	Fragmentary Interaction Environments
	Fragmentary Interaction Markov Decision Process (FIMDP)

	Multi-step Action Representation
	Scale-Conditioned Multi-step Action Encoding and Decoding
	Transition Aware Multi-step Action Representation
	DRL with Multi-step Action Representation

	Experiment
	Experimental Setups
	Performance of Simulation Tasks (RQ1)
	Performance of real-world robotic control task (RQ2)
	Generalization of MARS (RQ3)
	Ablation Study and Visual Analysis (RQ4)

	Conclusion
	Preliminaries
	Experimental Details
	NETWORK STRUCTURE
	Hyperparameter
	The analysis of stability
	analysis of representation clustering methods
	How to Guarante the Stable Executing and Training
	Additional Implementation Details

	Additional experiment
	Generalization of MARS
	Details of Ablation study
	Validity verification of multiple interaction intervals
	The influence of Latent action space dimension on algorithm effect
	The influence of environment steps of warmup stage

	MARS-DDPG pseudocode

