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ABSTRACT

For deep regression, preserving the ordinality of the targets with respect to the
feature representation improves performance across various tasks. However, a
theoretical explanation for the benefits of ordinality is still lacking. This work
reveals that preserving ordinality reduces the conditional entropy H(Z|Y) of
representation Z conditional on the target Y. However, our findings reveal that
typical regression losses fail to sufficiently reduce H(Z|Y), despite its crucial
role in generalization performance. With this motivation, we introduce an optimal
transport-based regularizer to preserve the similarity relationships of targets in
the feature space to reduce H(Z|Y). Additionally, we introduce a simple yet
efficient strategy of duplicating the regressor targets, also with the aim of reducing
H(Z|Y). Experiments on three real-world regression tasks verify the effectiveness
of our strategies to improve deep regression. Code: https://github.com/
needylove/Regression_tightness.

1 INTRODUCTION

Classification and regression are two fundamental tasks in machine learning. Classification maps input
data to categorical targets, while regression maps the data to continuous target space. Representation
learning in deep neural networks is well-studied for classification (Boudiaf et al., 2020; Achille &
Soatto, 2018), but is less explored for regression. One emerging observation in deep regression is
the importance of feature ordinality (Zhang et al., 2023). Preserving the ordinality of targets within
the feature space leads to better performance, and various regularizers to enhance ordinality have
been proposed (Gong et al., 2022; Keramati et al., 2023). But what is the underlying link between
ordinality and regression performance?

The information bottleneck principle (Shwartz-Ziv & Tishby, 2017) suggests that a neural network
learns representations Z that retain sufficient information about the target Y while compressing
irrelevant information. The two aims can be regarded as minimizing the conditional entropies H(Y|Z)
and H(Z|Y) (Zhang et al., 2024). Compression reduces representation complexity, prevents
overfitting, and bounds the generalization error (Tishby & Zaslavsky, 2015; Kawaguchi et al.,
2023; Zhang et al., 2024). We find that preserving ordinality enhances compression by minimizing
H(Z|Y), i.e., the conditional entropy of the learned representation Z with respect to the target Y.
Following (Boudiaf et al., 2020; Zhang et al., 2024), we refer to this conditional entropy as tightness,
and its compression as tightening the representation.

But are ordinal feature spaces not learned naturally by the regressor? We explore this question through
gradient analysis and comparing the differences between regression and classification. We find that
typical regressors are weak in tightening the learned representations. Specifically, given a fixed linear
regressor with weight vector θ, the update direction of zi for a given sample i tends to follow the
direction of θ. The movement of zi can be regarded as a probability density shift (Sonoda & Murata,
2019). Deep regressors update and tighten the representation in limited directions perpendicular to θ.
In contrast, we find that deep classifiers update zi more flexibly and in diverse directions, leading
to better-tightened representations. Such a finding sheds insight into why reformulating regression
as a classification task may be more effective (Farebrother et al., 2024; Liu et al., 2019) and why
classification losses benefit representation learning for regression (Zhang et al., 2023).

So how can regression representations be further tightened? We take inspiration from classification,
where one-hot encodings allow a separate set of classification weights θk for each class k. Similarly,
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we augment the target space of the regressor into multiple targets. The multiple-target strategy adds
extra dimensions to the regression output and incorporates additional regressors, making it more
flexible to tighten the feature representations. Additionally, we introduce a Regression Optimal
Transport (ROT) Regularizer, or ROT-Reg. ROT-Reg captures local similarity relationships through
optimal transport plans. By encouraging similar transport plans between the target and feature space,
the regularizer can tighten representations locally. It also helps to preserve the target space topology,
which is also desirable for regression representations (Zhang et al., 2024).

Our main contributions are three-fold:

• We are the first to analyze the need for preserving target ordinality with respect to the
representation space for deep regression and link it to feature tightness.

• We reveal the weakness of standard regression in tightening learned feature representations,
as the representation updating direction is constrained to follow a single line.

• We introduce a multi-target learning strategy and an optimal transport-based regularize,
which tighten regression representations globally and locally, respectively.

2 RELATED WORK

Regression representation learning. Existing works mainly focus on the properties of continuity and
ordinality. For continuity, DIR (Yang et al., 2021) tackles missing data by smoothing, based on the
continuity of both targets and representations. VIR (Wang & Wang, 2024) computes representations
with additional information from data with similar targets. Preserving representation continuity also
encourages the feature manifold to be homeomorphic with respect to the target space and is highly
desirable (Zhang et al., 2024).

For ordinality, RankSim (Gong et al., 2022) explicitly preserves ordinality for better performance.
(Keramati et al., 2023) further incorporated a contrastive regularizer to preserve ordinality. It is
worth mentioning that continuity overlaps with ordinality conceptually; ensuring continuity for
neighboring samples inherently involves ordinality. Although ordinality plays a key role in regression
representation learning, its importance and characteristics are underexplored. This work tackles these
questions by establishing connections between target ordinality and representation tightness.

Recasting regression as classification. For a diverse set of regression tasks, formulating them into
a classification problem yields better performance (Li et al., 2022; Bhat et al., 2021; Farebrother
et al., 2024). Previous works have hinted at task-specific reasons. For pose estimation, classification
provides denser and more effective supervision (Gu et al., 2022). For crowd counting, classification
is more robust to noise (Xiong & Yao, 2022). Later, Pintea et al. (2023) empirically found that
classification helps when the data is imbalanced, and Zhang et al. (2023) suggests that regression
lags in its ability to learn a high entropy feature space. A high entropy feature space implies that
representations preserve necessary information about the target. In this work, we provide a derivation
and further suggest that regression struggles to compress the representations.

3 ON THE TIGHTNESS OF REGRESSION REPRESENTATIONS

3.1 NOTATIONS & DEFINITIONS

Consider a dataset {xi, zi, yi}Ni=1 sampled from a distribution P , where xi is the input, y ∈ R is
the corresponding label, and zi ∈ Z ⊂ Rd is the feature corresponding to the input xi extracted
by a neural network. A regressor fθ parameterized by θ maps zi to a predicted target ŷi = fθ(zi).
Specifically, when fθ is a linear regressor, which is typically the case in deep neural networks, we
have ŷi = θTzi. The encoder and fθ are trained by minimizing a task-specific regression loss Lreg.
Typically, the mean-squared error is used, i.e. Lreg = 1

N

∑N
i=1(yi − ŷi)

2.

To formulate regression as a classification problem, the continuous target y is quantized to K
classes yci ∈ {1, · · · ,K}, and the cross-entropy loss is used to train the encoder and classifiers
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LCE = − 1
N

∑N
i=1 log

exp θT
yc
i
zi∑K

j=1 exp θT
j zi

, where θk is the classifier 1 corresponding to the class k. The

function d(∗, ∗) measures some distance between two points, e.g., Euclidean distance.

3.2 ORDINALITY AND TIGHTNESS

This section shows that preserving ordinality tightens the learned representation, and conversely,
tightening the representation will help preserve ordinality. A lower H(Z|Y) represents a higher
compression (Zhang et al., 2024) . The compression is maximized when H(Z|Y) is in its minimal
(H(Z|Y) = −∞ for differential entropy and H(Z|Y) = 0 for discrete entropy).

First, we define the ordinality following (Gong et al., 2022):
Definition 1 (Ordinality). The ordinality is perfectly preserved if ∀i, j, k, the following holds:
d(yi, yj) ≤ d(yi, yk) ⇒ d(zi, zj) ≤ d(zi, zk).

Theorem 1 Let B(z, ϵ) = {z′ ∈ Z|d(z, z′) ≤ ϵ} be the closed ball center at z with radius ϵ.
Assume that ∀(x, z, y) ∈ P and ∀ϵ > 0,∃(x′, z′, y′) ∈ P such that z′ ∈ B(z, ϵ) and y′ ̸= y.
Then if the ordinality is perfectly preserved, ∀(xi, zi, yi), (xj , zj , yj) ∈ P , the following hold:
yi = yj ⇒ d(zi, zj) = 0.

The detailed proof of Theorem 1 is given in Appendix A.1. Theorem 1 states that if the ordinality is
perfectly preserved, then the tightness (i.e. H(Z|Y)) is minimized. This suggests that preserving
ordinality will tighten the representations. The assumption in Theorem 1 aligns with the learning
target that learning continuously changes representations from continuous targets.

Conversely, if the representations can be correctly mapped to the target and are perfectly tightened,
then the representations collapse into a manifold homeomorphic to the target space (e.g., collapse
into a single line when the target space is a line) [(Zhang et al., 2024), Proposition 2]. Thus, ordinality
will be perfectly preserved locally. Note that reserving ordinality globally constrains the line to be
straight, which is not necessary.

3.3 REGRESSION TIGHTNESS

Why are additional efforts to emphasize ordinality necessary? In this work, we find that standard deep
regressors are weak in their ability to tighten the representations due to the gradient update direction
with respect to the representations. Consider a fixed linear regression with a typical regression loss
(e.g., MSE, L1), which has the following gradient with respect to zi:

∂Lreg

∂zi
= L′

reg(θ
Tzi − yi)θ

T. (1)

Here, the direction of ∂Lreg

∂zi
is determined solely by the direction of θ. As such, during learning, all the

zi are moved in the direction of θ (or away). This movement can be regarded as a probability density
shift (Sonoda & Murata, 2019) , so regression suffers from a weak ability to change probability
density in directions perpendicular to θ, which indicates a limited ability to tighten representations in
those directions. In other words, regressors can only move zi to Syi , but cannot tighten Syi , where
Syi = {z|fθ(z) = yi} is the solution space of fθ(z) = yi. More generally, for a differentiable
regressor, we have the following:
Theorem 2 Assume fθ is differentiable and Sy′

i
is a convex set, then ∀z′i, z′j ∈ Sy′

i
:

∂Lreg

∂zi
(z′i − z′j) = 0, (2)

where y′i is the predicted target of zi.

The detailed proof of Theorem 2 is given in Appendix A.2. The regressor fθ is generally differentiable
for gradient backpropagation, and Syi

is commonly a convex set with widely used regressors, such
as the linear regressor. Theorem 2 shows that the gradient with respect to the representation will be
perpendicular to its solution space and has no effect within the solution space. In other words, with a

1In this work, a classifier represents a single θj rather than the whole set {θj |j ∈ K}.
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fixed regressor, the gradient only moves the representations to the corresponding solution space and
lags in its ability to tighten the feature space.

In reality, the regressor is not fixed (i.e., updating with training), and the solution space is also
changing during training. In the case of a linear regressor, the gradient with respect to θ over a batch
of b samples can be given as:

∂Lreg

∂θ
=

1

b

b∑
i=1

L′
reg(θ

Tzi − yi)z
T
i =

1

b

b∑
i=1

wiz
T
i . (3)

Here, the direction of ∂Lreg

∂θ will tend to be the weighted mean of the direction of zi. As discussed, the
direction of zi approaches the direction of θ. Thus, zi will distribute around θ and offset each other,
resulting in a limited impact on the direction of θ.

It is worth mentioning that the tightness here is specific to H(Z|Y = yi) within Syi
, which is

indirectly related to the predicted results and performance. By contrast, the tightness outside Syi

directly affects the predicted results and potentially plays a more important role.

3.4 COMPARISON IN TIGHTNESS FOR CLASSIFICATION

When comparing classification with regression, we find that classification has greater flexibility to
tighten representations in diverse directions θk, suggesting an ability to better tighten the representa-
tion. For the gradient with respect to zi over a batch of b samples:

∂LCE

∂zi
=

∂(− 1
b

∑b
i=1 θ

T
yi
zi)

∂zi
+

∂( 1b
∑b

i=1 log
∑K

j=1 e
θT
j zi)

∂zi
=

1

b

b∑
i=1

( K∑
j=1

pijθ
T
j − θT

yi

)
(4)

where pij =
exp θT

j zi∑K
k=1 exp θT

kzi
is the probability of sample i belonging to class j. Here, the direction

of ∂LCE

∂zi
is affected by all θk, and zi will approach θyi

with training. In contrast, the direction

of ∂LReg

∂zi
is purely determined by θ. Classification moves zi to its corresponding classifier θyi

even if the sample is correctly classified. At the same time, regression has no effect on zi if it is
correctly predicted (i.e., ∂Lreg

∂zi
= 0). This suggests that classification has a higher ability to tighten

representations in the solution space Syi . Here, Syi for classification is defined as the set of zi that
are classified as class yi.

In reality, the classifiers θk are not fixed and are updated with training. The gradient with respect to
kth classifier θk over a batch of b samples is given as:

∂LCE

∂θk
= −1

b

∑
i:yi=k

zTi +
1

b

b∑
i=1

eθ
T
kz

T
i∑K

j=1 e
θT
j zi

zTi =
1

b

b∑
i=1

(pik − δyi,k)z
T
i (5)

where pik = eθ
T
kzi∑K

j=1 e
θT
j
zi

is the probability of sample i belongs to the class k, and δyi,k is the

Kronecker delta function. For classification, the direction of θk will biased toward zi with respect to
the class k , while zi will also bias towards its corresponding classifier. In contrast, for regression,
the direction of θ will tend to be the weighted mean of the direction of zi. Thus, the effect of many
zi on the direction of θ will offset each other and have a limited impact. As a result, changes in the
directions of θk are generally greater than the change of the θ direction in regression, and therefore
classification can move z more flexible and thus potentially better tighten the representation.

4 METHOD

Our analysis in Sec. 3 inspires us to tighten the regression representations. To this aim, we introduce
the Multiple Target (MT) strategy and the Regression Optimal Transport Regularizer (ROT-Reg) to
tighten the representations globally (i.e., minZ H(Z|Y)) and locally (i.e., minZ H(Z|Y = yi),Z ∈
B(zi, ϵ), ϵ control the degree of locality). Inspired by the effect of multiple classifiers in classification,
the MT strategy introduces additional targets as constraints to compress the representations. For
ROT-Reg, we exploit it to encourage representations to have local structures similar to the targets,
which implicitly tightens the representations.
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Figure 1: Illustration of the MT strategy. Changing the target from y to [y, y] will introduce an
additional regressor to predict the additional y. The original solution space Sy0

is a line in the feature
manifold. The additional y introduces a new constraint, tightening Sy0

from a line to a point.

4.1 TARGET SPACE WITH EXTRA DIMENSIONS BETTER TIGHTEN THE FEATURE SPACE

Our analysis in Sec. 3.4 suggests that classification outperforms regression in its ability to compress
representations in multiple directions, resulting from multiple classifiers. Inspired by this, we
introduce a simple yet efficient strategy, which adds extra dimensions for the target space to bring
in extra regressors as constraints. Here, the additional regressors have a similar effect as individual
classifiers. As shown in Figure 1, the additional constraints will result in a lower-dimensional Syi

,
which indicates higher compression. The number of additional targets depends on the intrinsic
dimension of the feature manifold. In our Multiple Targets strategy, the final predicted target is the
average over the multiple predicted targets:

ŷi =
1

M

M∑
t=1

ŷti , (6)

where M is the number of the total target dimension and ŷti is the tth predicted target.

4.2 REGRESSION OPTIMAL TRANSPORT REGULARIZER (ROT-REG)

The MT strategy tightens the representations globally through additional regressors. We propose
to further tighten the representations locally. Specifically, we preserve the local similarity relations
between the target and representation space. The local similarities are characterized by a self entropic
optimal transport model (Yan et al., 2024; Landa et al., 2021). The model determines the optimal
plan is to move a set of samples to the set itself with minimal transport costs, while each sample
cannot be moved to itself.

Formally, Given a set S = {s1, . . . , sn}, the corresponding weight vector p = Rn reflects how many
masses the samples have, where the weights simplify the simplex constraint

∑n
i=1 pi = 1. Usually,

one can easily implement p as a uniform distribution, i.e., pi = 1
n , ∀ i ∈ [n]. CS

ij is the transport
cost between si and sj , which is generally adopted as the Euclidean distance between the samples,
and TS

ij indicates how many masses are transported from the locations of si to sj . The self entropic
optimal transport is defined as follows:

T (S) = argmin
T

⟨CS,T⟩+ γΩ(T) (7)

s.t. T1n = p,T⊤1n = p, Tii = 0 ∀i ∈ [n], (8)

where γ is a trade-off parameter, and Ω(T) =
∑n

i=1

∑n
j=1 T

S
ij log T

S
ij is the negative entropic

regularization, which is used to smoothen the solution and speed up the optimization (Cuturi, 2013).

Given the solution T̃S minimizing the above objective, the element TS
ij measures the similarity

relation between samples si and sj , since two samples with a large distance CS
ij will induce a small

transport mass TS
ij between them. As a result, the optimal total transport cost ⟨Cs, T̃S⟩ reflects the

tightness of the samples.
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Motivated by this, we employ the self optimal transport model to capture local similarity relations
of target and representation spaces, respectively, and encourage a relation consistency between two
spaces. In specific, we first construct a self optimal transport model on the target space to obtain
T̃Y = T (Y), which describes the local similarity relations between the regression targets. After
that, we learn regression representations Z such that the corresponding optimal transport matrix
T̃Z = T (Z) is consistent with T̃Y, which is achieved by the following loss function

Lot =
∣∣⟨CZ, T̃Y⟩ − ⟨CZ, T̃Z⟩

∣∣. (9)

ROT-Reg is updating CZ through gradient backpropagation to minimize Lot. In contrast, simply
minimizing the gap of T̃Y and T̃Z can introduce optimization challenges, as the two matrices are
obtained iteratively through the Sinkhorn algorithm rather than simply through gradient backpropa-
gation. In addition, directly minimizing ||CZ −CY||F imposes an overly strict constraint on the
feature manifold, forcing it to become identical to the target space, which is unnecessary.

It is worth mentioning that γ controls the ‘smooth’ of the transport plan T , and determines the degree
of locality. When γ = 0, T will approach the minimal spanning tree (i.e., only transports mass to its
nearest neighbor), and Lot will encourage the representations to have the same minimal spanning
tree to the targets, which is shown to be a strategy to preserve the topology of the target space
(Moor et al., 2020). In fact, the topological auto-encoder (Moor et al., 2020) preserves topological
information in this way. Compared to topology autoencoder, Lot captures more local structures of
targets when γ > 0. The final loss Lf sums the task-specific loss Lt and the regularizer with a
trade-off hyper-parameter λ :

Lf = Lt + λLot, (10)

5 EXPERIMENTS

We experiment on three deep regression tasks: age estimation, depth estimation, and coordinate
prediction and compare with RankSim (Gong et al., 2022), Ordinal Entropy (OE) (Zhang et al.,
2023), and PH-Reg (Zhang et al., 2024). RankSim explicitly preserves ordinality to serve as the
ordinality baseline. OE leverages classification for better regression representations and serves as a
regression baseline. PH-Reg preserves the topological structure of the target space by the Topological
autoencoder (Moor et al., 2020) and tightens the representation by Birdal’s regularizer (Birdal et al.,
2021), serving as a topology baseline. More details are given in Appendix B.1.

5.1 REAL-WORLD DATASETS: AGE ESTIMATION AND DEPTH ESTIMATION

For age estimation, we use AgeDB-DIR (Yang et al., 2021) and evaluate using Mean Absolute Error
(MAE) as the evaluation metric. γ and λ are set to 0.1 and 100, respectively. For depth estimation,
we use NYUD2-DIR (Yang et al., 2021) and evaluate using the root mean squared error (RMSE)
and the threshold accuracy δ1 as the evaluation metrics. γ and λ are set to 0.05 and 10, respectively.
We set the total target dimension M to be 8 for both tasks. Both AgeDB-DIR and NYUD2-DIR
contain three disjoint subsets (i.e., Many, Med, and Few) divided from the whole set. We exploit
the regression baseline models of (Yang et al., 2021), which use ResNet-50 (He et al., 2016) as the
backbone, and follow their setting for both tasks.

Tables 1 and 2 show results on age estimation and depth estimation respectively. Both the Multiple
Targets strategy (MT) and Lot improve regression performance, and combining both further boosts
performance. Specifically, combining both achieves 0.52 overall improvements (i.e. ALL) on age
estimation, and a 0.156 reduction of RMSE on depth estimation.

5.2 Lot PRESERVES THE LOCAL SIMILARITY RELATIONSHIPS

The effectiveness of Lot is verified with the coordinate prediction task from Zhang et al. (2024). This
task predicts data coordinates sampled from manifolds such as Mammoth, Torus, and Circle, which
have different topologies. The inputs are noisy data samples and the goal is to recover the true data
coordinates. Figure 2 shows that Lot successfully preserves the similarity relationships of the targets,
resulting in a feature manifold similar to the targets. Quantitative comparisons in Table 3 indicate

6



Published as a conference paper at ICLR 2025

Table 1: Quantitative comparison (MAE) on AgeDB-DIR. We report results as mean ± standard
deviation over 10 runs. Bold numbers indicate the best performance.

Method ALL Many Med. Few
Baseline 7.80 ± 0.12 6.80 ± 0.06 9.11 ± 0.31 13.63 ± 0.43

+ RankSim 7.62 ± 0.13 6.70 ± 0.10 8.90 ± 0.33 12.74 ± 0.48
+ OE 7.65 ± 0.13 6.72 ± 0.09 8.77 ± 0.49 13.28 ± 0.73

+PH-Reg 7.32 ± 0.09 6.50 ± 0.15 8.38 ± 0.11 12.18 ± 0.38
+ MT 7.67 ± 0.06 6.72 ± 0.08 8.87 ± 0.13 13.36 ± 0.16
+Loe 7.36 ± 0.08 6.55 ± 0.07 8.40 ± 0.14 12.14 ± 0.33

+ MT + Loe 7.28 ± 0.05 6.52 ± 0.10 8.26 ± 0.19 11.86 ± 0.24

Table 2: Quantitative comparison on NYUD2-DIR.

Method RMSE ↓ δ1 ↑
ALL Many Med. Few ALL Many Med. Few

Baseline 1.477 0.591 0.952 2.123 0.677 0.777 0.693 0.570
+RankSim 1.522 0.565 0.889 2.213 0.666 0.791 0.735 0.513

+OE 1.419 0.671 0.925 2.005 0.668 0.727 0.702 0.596
+PH-Reg 1.450 0.789 0.911 2.002 0.620 0.621 0.680 0.596

+ MT 1.367 0.605 0.854 1.952 0.715 0.776 0.759 0.636
+Lot 1.353 0.654 0.934 1.899 0.689 0.736 0.697 0.638

+ MT + Lot 1.321 0.685 0.951 1.829 0.701 0.731 0.689 0.675

Table 3: Results (Lmse) on the coordinate prediction dataset. We report results as mean ± standard
deviation over 10 runs. Bold numbers indicate the best performance.

Method Mammoth Torus Circle
Baseline 211 ± 55 3.01 ± 0.11 0.154 ± 0.006
+ InfDrop 367 ± 50 2.05 ± 0.04 0.093 ± 0.003
+ OE 187 ± 88 2.83 ± 0.07 0.114 ± 0.007

+Topological Autoencoder 80 ± 61 0.95 ± 0.05 0.036 ± 0.004
+ PH-Reg 49 ± 27 0.61 ± 0.05 0.013 ±0.008

+ MT 174 ± 76 2.99 ± 0.11 0.152 ± 0.005
+ Lot 87 ± 26 0.77 ± 0.02 0.010 ± 0.001

+ MT+ Lot 76 ± 53 0.75 ± 0.03 0.010 ± 0.001

(a) Target Space (b) Regression (c) + PH-Reg (d) + Lot

Figure 2: Visualization of the feature manifolds, which shows that Lot preserves the local similarity
relationships of the target space.

that Loe performs similarly to PH-Reg, specifically designed to preserve similarity relationships.
However, the Multiple Targets (MT) strategy has a limited impact in this context, likely because the
target space is three-dimensional, providing sufficient constraints for the feature manifold.
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Table 4: Correlation between feature and label similarities. Results are mean ± std dev over 10 runs.
Method RMSE Cosine Distance Euclidean Distance

(ALL) Spearman’s ↑ Kendall’s ↑ volume Spearman’s ↑ Kendall’s ↑ volume
Baseline 1.477 0.39 ± 0.15 0.27 ± 0.11 0.573 ± 0.071 0.35 ± 0.14 0.24 ± 0.10 7.72 ± 0.92

+ RankSim 1.522 0.09 ± 0.04 0.06 ± 0.03 0.000 ± 0.000 0.60 ± 0.16 0.44 ± 0.13 4.26 ± 1.29
+ MT 1.367 0.49 ± 0.14 0.34 ± 0.10 0.492 ± 0.047 0.47 ± 0.11 0.33 ± 0.08 6.56 ± 1.18
+ Lot 1.353 0.48 ± 0.16 0.34 ± 0.12 0.010 ± 0.003 0.42 ± 0.15 0.29 ± 0.11 5.57 ± 0.77

+ MT + Lot 1.321 0.64 ± 0.09 0.46 ± 0.08 0.006 ± 0.002 0.61 ± 0.11 0.44 ± 0.09 4.16 ± 0.51

(a) Baseline (b) + RankSim (c) + MT

Figure 3: Visualizations of the feature manifold on NYUD2-DIR for depth estimation. Preserving the
ordinality (+ RankSim) has an effect similar to MT, which explicitly tightens the representations.

5.3 TIGHTNESS AND ORDINALITY AFFECT EACH OTHER

Compression for a better ordinality. We examine the impact of tightness on the ordinality. Table 4
presents the Spearman’s rank correlation coefficient (Spearman, 1961) and Kendall rank correlation
coefficient (Kendall, 1938) between the feature similarities (based on Cosine distance and Euclidean
distance) and the label similarities. The two correlation coefficients measure how well ordinality is
preserved. Since tightness compresses the feature manifold, reducing its volume, we use volume as a
proxy for tightness, and the volume is approximated by the mean of the similarities between samples.
The experiments are conducted on NYUD2-DIR, we randomly sample 1000 pixels from a batch
of 8 test images. The label similarities are calculated as the Euclidean distances between the 1000
pixels, while the corresponding feature similarities are the distances between their corresponding
representations. The results in Table 4 show standard regression fails to preserve the ordinality, while
MT and Lot both improve the ordinality, although they are designed to tighten the representations.
Combining both has a similar effect on preserving ordinality as RankSim, which is specifically
designed for this purpose. The lower volumes of our method compared to the baseline indicate that
the feature manifold is more compressed. We provide the visualization of the feature similarities in
Appendix C.1.

Ordinality for a better compression. To further verify that preserving ordinality leads to better
compression, we visualize the feature manifold of the depth estimation task in 3D space. This is
done by changing the last hidden layer’s feature space to three dimensions. As shown in Figure 3,
explicitly preserving the ordinality (i.e., +RankSim) compresses the feature manifold into a thin line,
which shows a similar effect to explicitly tightening the representations (i.e., +MT).

5.4 TIGHTNESS OF REGRESSION

Our theoretical analysis in Sec. 3 focuses on the gradient direction of representations. However, in
reality, the neural network updates its parameters to update the representations indirectly. Here, we
verify our analysis by visualizing the update of z and θ in the depth estimation task.

The update of z. We change the last hidden layer’s feature space to 2 dimensional for visualization.
We randomly sample 1000 pixels from a batch of 8 images in the NYUD2-DIR test set to visualize
the feature manifold. Figure 4(a) displays the feature manifolds at epoch 1 (blue dots) and epoch 10
(the final epoch, red dots), the corresponding pixel representations are connected by black arrows.
Aligned with our theoretical analysis, the directions of the representation updates follow the direction
of θ. To verify this quantitatively, we calculate the principal component of the update directions using
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(a) Update of z (b) Update of θ (c) Update directions of θ

Figure 4: (a) Visualization of the z update, which aligns with θ, (b) θ update, which is steady through
the training process, (c) the updating directions of θs, which distributed along a line, with the original
as the center.

PCA. We find that the cosine distance between this principal component and θ is very small (0.03),
indicating that the updating directions of representations from the beginning to the end of training
follow the direction of θ. The visualization also shows that the feature manifold tightened limited in
the direction perpendicular to θ throughout the training. The visualizations of feature manifolds at
each epoch are provided in Appendix C.2, which reveals that the tightening effect in the direction
perpendicular to θ between adjacent epochs is even smaller.

The update of θ. As discussed in Sec. 3, the effect of zi on the direction of θ tends to offset
each other and results in a limited impact, while changes in the directions of θk in classification are
generally greater. Here we quantitatively verify this by calculating the cosine distances between θ̃
and θ at each epoch from 1 to 10 (final epoch), where θ̃ represents θ at epoch 10. We also convert
this regression task into a classification task by uniformly discretizing the target range into 10 classes,
and monitoring the change of θk in the same way. As shown in Figure 4(b), the changes in θk are all
larger than the changes in θ. The maximum cosine distance between θ at different epochs is very
small (i.e., 0.0004), which also verified the limited change of θ.

Multiple θs. Adding additional θs (our MT strategy) , with random initialization, does not change
the update speed of θ (see Figure 7 in the Appendix C.3). The update directions of all θs are even
aligned. Let viθ = θi+1 − θi be the updating vector of θ in iteration i. Figure 4(c) plots the set of
points {viθ|i = 500k, k ∈ Z, 0 ≤ k ≤ 100} for three θs. This visualizes the change of θs throughout
the training process. The three θs are distributed along a line, with the original as the center. When
we calculate the principle components of {vθ} for the three θs using PCA, the maximum cosine
distances between the three principle components are less than 1e− 4, which quantitatively shows the
updating directions of all θs are in the same direction. As shown in Eq. 3, vθ is the weighted mean
of a batch of z. Different θ leads to different magnitudes of the weight mean while the directions
remain steady. It is worth mentioning that the multiple θs do not collapse to a single θ in reality,
although their updating directions are the same. This is because θs are randomly initialized, and
their directions remain nearly identical during training (see Figure 4(b)), due to the three reasons: 1)
The magnitude of ∂Lreg

∂θ is ‘scaled’ by wi, since wi often follows a Gaussian distribution centered at
the origin, as assumed in models like Bayesian linear regression. When w and z are independent
or weak dependent, E[wizi] will approach 0 and causing ∂Lreg

∂θ be ‘scaled’ to 0. 2) According to the
central limit theorem, the updates of θ follow a Gaussian distribution. This causes partial offsets
between updates and results in a reduced accumulated effect. In addition, we empirically observe
that the mean of this Gaussian distribution approaches 0 (see Figure 4(c)), indicating that w and z

are independent or weakly dependent. 3) The effect of zi on the direction of ∂Lreg

∂θ over a batch of
samples offsets each other, resulting in the stability of the direction of θ throughout training. This
occurs because zi tends to be distributed around θ. More details can be found in Appendix C.3.

5.5 ABLATION STUDY

We conduct the ablation study on AgeDB-DIR for age estimations. The results are given in Table 5.
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Table 5: Ablation study on AgeDB-DIR for age estimation. We report MAE mean ± standard
deviation over 10 runs, and the default λ, γ and M are set to 100, 0.1 and 8, respectively.

Method ALL Many Med. Few
Baseline 7.80 ± 0.12 6.80 ± 0.06 9.11 ± 0.31 13.63 ± 0.43
+ Loe

λ = 1 7.68 ± 0.08 6.75 ± 0.11 8.81 ± 0.19 13.38 ± 0.37
λ = 10 7.55 ± 0.05 6.64 ± 0.07 8.71 ± 0.12 12.88 ± 0.35
λ = 100 7.36 ± 0.08 6.55 ± 0.07 8.40 ± 0.14 12.14 ± 0.33
λ = 1000 8.80 ± 0.19 7.17 ± 0.10 11.32 ± 0.48 17.26 ± 0.53
γ = 0.1 7.36 ± 0.08 6.55 ± 0.07 8.40 ± 0.14 12.14 ± 0.33
γ = 1 7.47 ± 0.12 6.61 ± 0.08 8.57 ± 0.31 12.55 ± 0.49
γ = 10 7.51 ± 0.07 6.63 ± 0.08 8.60 ± 0.25 12.75 ± 0.31
+ MT
M=2 7.72 ± 0.11 6.77 ± 0.07 8.92 ± 0.20 13.37 ± 0.50
M=4 7.74 ± 0.06 6.77 ± 0.10 8.96 ± 0.13 13.52 ± 0.41
M=8 7.67 ± 0.06 6.72 ± 0.08 8.87 ± 0.13 13.36 ± 0.16
M=16 7.70 ± 0.11 6.73 ± 0.13 8.93 ± 0.25 13.44 ± 0.36
M=32 7.71 ± 0.08 6.74 ± 0.10 8.96 ± 0.32 13.40 ± 0.32
noise 8.00 ± 0.23 6.91 ± 0.20 9.43 ± 0.33 14.36 ± 0.67

Table 6: Time and memory consumption.
Method Time (mins) Memory(MB)
Baseline 65 14433

+ MT 70 14457
+ Lot 74 14587

+ MT + Lot 82 14689

Hyperparameter λ, γ. We keep λ, γ at their default value 100, 0.1, and vary each individually to
examine their impact. As shown in Table 5, The MAE (ALL) decreases consistently as λ increases.
However, it overtakes the task-specific learning target when set too high (e.g., 1000) and decreases
the performance. For the γ, the MAE (ALL) decreases consistently as γ decreases. However, we
empirically find that setting γ (e.g., 0.01) too low will easily result in NaN values when calculating
the transport matrixes using the Sinkhorn algorithm (Cuturi, 2013). We thus set γ = 0.1.

Number of the total targets M . As shown in Table 5, the performance generally improves with
the increase of M , when M ≤ 8, and stays steady when M increases further. The primary factor
affecting the selection of M is the intrinsic dimension of the feature manifold, which determines how
many additional constraints (i.e., M − 1) are required to compress the manifold. The range of Y has
a limited impact on the selection of M , since M equals 8 works well in NYUD2-DIR (y ∈ [0.7, 10])
and AgeDB-DIR ( y ∈ [0, 101]).

Mean ŷ vs. a single ŷ. We verify the strategy of the mean operation in MT (see Eq. 6), which
potentially brings in an ensemble effect. We find that ŷti are very similar for all t. For a model with
M , the MAE(ALL) results calculated by ŷti for t ∈ T are with mean equal to 7.579 and standard
deviation 0.0003. Thus, the improvement of MT is not due to the ensemble effect, and the mean
operation is optional.

Additional y vs. noise. Adding additional targets as noise, as shown in Table 5, does not work.

Time and memory consumption. We monitor the time and memory consumption for training a
model from the beginning to the end with a batch size equal to 128. Table 6 shows the added memory
is negligible(1.7%), and the added time is limited (17 min).

6 CONCLUSION

In this paper, for the regression task, we provide a theoretical analysis that suggests preserving
ordinality enhances the representation tightness, and regression suffers from a weak ability to tighten
the representations. Motivated by classification and the self entropic optimal transport, we introduce
a simple yet effective method to tighten regression representations.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1 Let B(z, ϵ) = {z′ ∈ Z|d(z, z′) ≤ ϵ} be the closed ball center at z with radius ϵ.
Assume that ∀(x, z, y) ∈ P and ∀ϵ > 0,∃(x′, z′, y′) ∈ P such that z′ ∈ B(z, ϵ) and y′ ̸= y.
Then if the ordinality is perfectly preserved, ∀(xi, zi, yi), (xj , zj , yj) ∈ P , the following hold:
yi = yj ⇒ d(zi, zj) = 0.

Proof

d(zi, zj) = d(zi − zk + zk − zj) (11)
≤ d(zi − zk) + d(zk − zj), (12)

where zk ∈ B(z, ϵ). Since d(yk, yj) ≤ d(yk, yi), and the ordinality is perfectly preserved, we have:

d(zk − zj) ≤ d(zi − zk). (13)

Thus:

0 ≤ d(zi, zj) ≤ 2d(zi − zk) ≤ 2ϵ. (14)

Let ϵ → 0, the result follows. □

A.2 PROOF OF THEOREM 2

We first give a lemma:

Lemma 1 Let Sy = {z|g(z) = y} be a convex set, where z ∈ Rn is the representation, y is the
target and g is the regressor. Assume g is differentiable, then ∀zk, zi, zj ∈ Sy , we have:

∇g(zk)(zi − zj) = 0. (15)

Proof Let zϵk = (1− ϵ)zk + ϵzi, where ϵ ∈ [0, 1]. Since g is differentiable, using Taylor expansion,
we have:

g(zϵk) = g((1− ϵ)zk + ϵzi) (16)
= g(zk + ϵ(zi − zk)) (17)
= g(zk) + ϵ∇g(zk)(zi − zk) + o(ϵ). (18)

Since Sy is a convex set, we have zϵk ∈ Sy . Thus:

g(zϵk) = g(zk) + ϵ∇g(zk)(zi − zk) + o(ϵ) (19)
y = y + ϵ∇g(zk)(zi − zk) + o(ϵ) (20)

o(ϵ)

ϵ
= ∇g(zk)(zk − zi). (21)

Let ϵ → 0:

∇g(zk)(zk − zi) = lim
ϵ→0

o(ϵ)

ϵ
= 0. (22)

Similarly, we have:

∇g(zk)(zk − zj) = 0. (23)

Combining the two equations above, we have:

∇g(zk)(zi − zj) = ∇g(zk)(zi − zk + zk − zj) (24)
= ∇g(zk)(zi − zk) +∇g(zk)(zk − zj) (25)
= 0. (26)

□
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Theorem 2 Assume fθ is differentiable and Sy′
i

is a convex set, then ∀z′i, z′j ∈ Sy′
i
:

∂Lreg

∂zi
(z′i − z′j) = 0, (27)

where y′i is the predicted target of zi.

Proof

∂Lreg

∂zi
=

∂Lreg(g(zi)− yi)

∂zi
(28)

=
∂Lreg(g(zi)− yi)

∂(g(zi)− yi)

∂(g(zi)− yi)

∂zi
(29)

= L′
reg(g(zi)− yi)∇g(zi). (30)

Based on Lemma 1, we have:

∇g(zi)(z
′
i − z′j) = 0. (31)

Thus,

∂Lreg

∂zi
(z′i − z′j) = L′

reg(g(zi)− yi)∇g(zi)(z
′
i − z′j) (32)

= L′
reg(g(zi)− yi)× 0 (33)

= 0. (34)

□

B DETAILS

B.1 DETAILS ABOUT THE REAL-WORLD TASKS

For the age estimation on AgeDB-DIR, we adopt the suggested hyper-parameters to train the RankSim,
where λ, γ are set to 2, 1000, and the results of OE and PH-Reg are adopted from their published
papers. The evaluation metric MAE: 1

N

∑N
i=1 |yi − y′i|, where N is the total number of samples,

yi, y
′
i are the label and the predicted result.

For depth estimation on NYUD2-DIR, we adopt the suggested hyper-parameters of OE and PH-
Reg to train the models. For RankSim, we train the model with the γ range from 1 to 1000. We
report the best results for all three baselines. The evaluation metric: threshold accuracy δ1 ≜ % of
yp, s.t. max(

yp

y′
p
,
y′
p

yp
) < 1.25, and root mean squared error (RMS):

√
1
n

∑
p(yp − y′p)

2.

C VISUALIZATIONS

C.1 VISUALIZATION OF THE UPDATING OF z

We provide the visualization of the feature similarities in Figure. 5.

C.2 VISUALIZATION OF THE UPDATING OF z

The visualizations of feature manifolds at each epoch are provided in Figure 6. For the neural collapse
of regression, the feature manifold will collapse into a single line when the target space is a line and
the compression is maximized (Zhang et al., 2024). This trend can be observed in Figure 6, where the
feature manifold looks like a thick line and evolves to a thinner line over training. However, standard
regression’s limited ability to tighten representations results in a slower collapse. In contrast, our
proposed method and RankSim both accelerate this collapse, as shown in Figure 3.
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(a) Baseline (b) + RankSim (c) + MT (d) + Lot (e) + MT + Lot

Figure 5: Feature similarity matrices (Euclidean Distance). Tightening the representations results in a
better ordinality.

C.3 UPDATING OF MULTIPLE θ

The experiments are conducted on NYUD2-DIR, we change the last hidden layer’s feature space to
three dimensions for visualization, and the M in our MT strategy is set to 3. The change of multiple
θs throughout the training is shown in Figure 7. We further plot the change of {viθ|i = 500, k ∈
Z, 0 ≤ k ≤ 500} for three θs. The visualizations are given in Figure 8. The visualization shows the
update directions of θs align with each other, even for a neural network without training.
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(a) epoch 1 to 2 (b) epoch 2 to 3 (c) epoch 3 to 4

(d) epoch 4 to 5 (e) epoch 5 to 6 (f) epoch 6 to 7

(g) epoch 7 to 8 (h) epoch 8 to 9 (i) epoch 9 to 10

Figure 6: Change of z between adjoin epochs.
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Figure 7: Change of the multiple θs.

Figure 8: Change of θs within the iteration [0, 500].
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