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Abstract

In this paper, we propose the Hierarchical Document Transformer (HDT),
a novel sparse Transformer architecture tailored for structured hierarchi-
cal documents. Such documents are extremely important in numerous
domains, including science, law or medicine. However, most existing
solutions are inefficient and fail to make use of the structure inherent to doc-
uments. HDT exploits document structure by introducing auxiliary anchor
tokens and redesigning the attention mechanism into a sparse multi-level
hierarchy. This approach facilitates information exchange between tokens
at different levels while maintaining sparsity, thereby enhancing compu-
tational and memory efficiency while exploiting the document structure
as an inductive bias. We address the technical challenge of implementing
HDT’s sample-dependent hierarchical attention pattern by developing a
novel sparse attention kernel that considers the hierarchical structure of
documents. As demonstrated by our experiments, utilizing structural in-
formation present in documents leads to faster convergence, higher sample
efficiency and better performance on downstream tasks.

1 Introduction

Many natural language processing tasks including summarization and question answering
require language models to encode long structured documents such as scientific papers or
Wikipedia articles into meaningful representations. Since 2017, attention-based Transformer
architectures Vaswani et al. (2017) have established themselves as the dominant modeling
paradigm, demonstrating state-of-the-art performance on numerous NLP tasks. While
dense attention yields context-rich representations, its computational complexity grows
quadratically with the input. This is problematic when processing large documents, in
particular on resource constrained hardware such as consumer GPUs.

At the same time, most documents are naturally structured: Words form sentences, sentences
form sections and sections form documents. Surprisingly, this structure is largely ignored
by many existing language models that typically consider their context as a “flat” sequence
of tokens. While transformer models can in principle learn to generalize hierarchically,
structural grokking requires extremely long training (Murty et al., 2023). Moreover, the perfor-
mance of flat long context models depends on the position of relevant information (Liu et al.,
2023). We hypothesize that exploiting the structure of documents explicitly yields two major
benefits: (1) Imposing the structure of documents as an inductive bias improves sample
efficiency and generalization. (2) Adapting the attention pattern to the document structure
leads to sparse representations which reduce computational and memory complexity, and
enable processing of long documents even on consumer hardware.

To test this hypothesis, we propose the Hierarchical Document Transformer (HDT), a novel
sparse Transformer architecture for processing hierarchically structured documents. More
specifically, we first introduce auxiliary anchor tokens for all structural elements such
as sentences, sections and documents as illustrated in Fig. 1a. Second, we redesign the
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Figure 1: (a) We propose a sparse attention kernel that considers the hierarchical structure of docu-
ments. Here, regular tokens are illustrated in green, and auxiliary anchor tokens in yellow (document),
red (section) and blue (sentence). Each token attends to its parent, siblings and children. Cross-level
attention is illustrated using color gradients in the attention matrix. Utilizing structural information
present in documents leads to faster pre-training (b) and better performance on downstream tasks.
We use the held-out validation set in (b) to calculate the MLM loss.

attention pattern of a Transformer block into a multi-level hierarchy where information is
exchanged only between tokens at the same level (siblings) as well as between the respective
parent and child tokens. By stacking multiple HDT blocks, information from any token
can reach any other token. At the same time, the attention pattern of HDT blocks is highly
sparse, leading to gains in computational and memory efficiency. In contrast to previous
hierarchical models Wu et al. (2021a); Chalkidis et al. (2022), our HDT block supports deeper
hierarchies and communicates at all hierarchy levels simultaneously such that stacking of
only a few HDT layers establishes communication between all tokens.

However, implementing our model required solving a key technical challenge: Existing
sparse Transformer architectures like LongFormer Beltagy et al. (2020) assume a fixed
sparsity pattern for all inputs in a mini-batch which can be implemented using standard
libraries. In contrast, HDT imposes a different sparsity pattern for each sample within a
mini-batch as each document is structured differently. Towards this goal, we developed a
novel, flexible and efficient attention kernel based on the Triton (Tillet et al., 2019) library. We
pre-train HDT encoder models using Masked Language Modeling (MLM) and HDT encoder-
decoder models using UL2 (Tay et al., 2023b) on three document datasets: arXiv (Saier et al.,
2023), HUPD Patents (Suzgun et al., 2023) and Wikipedia. We demonstrate improved pre-
training convergence rates (see Fig. 1b) as well as better downstream task performance on
several proximity, summarization, QA and NLI tasks. Our code and data are available at
https://github.com/autonomousvision/hdt.

2 Related Work

This study combines two lines of work that try to improve the performance of bi-directional
Transformers in handling long-document inputs: structural modeling and efficient attention.

Structural modeling approaches exploit the hierarchical organization of documents into
sections, subsections, paragraphs, sentences, etc. They can be divided into two categories
Buchmann et al. (2024): (1) In structure infusion, structural information is added to the Trans-
former input, e.g., via special tokens (Aghajanyan et al., 2022; Liu et al., 2022; Buchmann
et al., 2024), position embeddings (Bai et al., 2021; Cao & Wang, 2022), attention masks (Wang
et al., 2019; Liu et al., 2021; Hong et al., 2022; Wu et al., 2021b) or fusing self-attention layers
with GNN layers Sachan et al. (2021); Ahmed et al. (2019). While observing performance
improvements, these works do not improve efficiency. (2) Hierarchical processing employs
architectures that first contextualize tokens on a local (e.g., sentence) level, aggregate the
local representations (e.g., in a “[CLS]” token) and then contextualize the aggregates on
one or several higher levels (e.g., paragraph or section, Yang et al. 2016; Chalkidis et al.
2019; Yang 2019; Ruan et al. 2022; Zhang et al. 2022; Dai et al. 2022). Local and higher-level
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Figure 2: Hierarchical Document Decomposition. Left: Tree representation of a document. Tokens
within the same box attend to each other. Tokens that do not share a box attend to each other only
indirectly (e.g., T1 and T3 via the sentence and section tokens). Right: Sparse attention matrix.

contextualization is performed iteratively over several layers. While hierarchical processing
improves efficiency, separation of contextualization levels into different layers results in two
problems: (1) Contextualization is not conducted simultaneously across all levels, hence
more layers are required potentially. (2) Because different layers assume different functions,
they can’t serve as drop-in replacements for common Transformer architectures. HDT
resolves these problems by simultaneous contextualization over all hierarchy levels in a
single layer using an efficient hierarchical attention pattern.

Due to the quadratic memory and time complexity of the self-attention block of Transformer
models (Vaswani et al., 2017), major efforts have been devoted to reducing complexity, in
particular when applying attention to longer sequences. One branch of work focuses on
using sparse attention patterns to reduce computation while maintaining expressiveness
including Sparse Transformer (Rewon et al., 2019), ETC (Ainslie et al., 2020), BigBird (Zaheer
et al., 2020), Longformer (Beltagy et al., 2020) and CoLT5 (Ainslie et al., 2023) among
others. Another branch of work aims at speeding up attention computation by considering
GPU hardware characteristics. FlashAttention 1 & 2 (Dao et al., 2022; Dao, 2023) propose
tiling with block-wise attention to reduce memory IOs and compute attention blocks in
parallel in Static Random Access Memory (SRAM). Matteo et al. (2023) extends the idea
of FlashAttention to key/query dropping and hashing-based attention that was originally
proposed by Kitaev et al. (2020). Our work builds upon both branches: We propose a
dynamic sample-dependent sparse attention pattern which exploits the structure of text
documents. For efficiency, we follow Dao et al. (2022) and implement this pattern as a
customized memory-aware kernel.

3 Methodology

We now introduce the proposed Hierarchical Document Transformer (HDT) for efficient
long-document modeling. First, we briefly recap the standard transformer model. Next, we
introduce the proposed HDT block. Finally, we describe the design of the encoder-only as
well as encoder-decoder HDT architectures which are used in our experiments in Section 4.

3.1 Standard Transformer

The original transformer encoder model by Vaswani et al. (2017) is composed of Multi-Head
Self-Attention (MHSA) layers that are interleaved with shallow feed-forward networks and
residual connections. Because the attention pattern is identical across multiple heads in
an attention layer, for simplicity of notation, we represent queries, keys and values for a
single attention head as Q, K, V ∈ Rn×dk , where n is the sequence length and dk the head
dimension. All MHSA layers in the model, as well as the embedding layers, produce outputs
of dimension dmodel. We further denote the number of heads as h, hence dmodel = dk × h. A
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Figure 3: Hierarchical Positional Encoding. We represent the position of each token in the hierarchy
with one linear index pl per hierarchy level l yielding an index vector p = (p1, . . . , pL)T . Above, we
show an example with L = 3 levels. Note that level 0 (document) does not require an index. Each
index in p is passed through sinusoidal encoding functions which are summed over all levels to form
the final encoding vector according to Eq. (2).

self-attention head computes its output O ∈ Rn×dk as follows:

A =
QKT
√

dk
S = softmax(A) O = SV (1)

where the softmax operator is applied row-wise. The standard attention block has O(n2)
time and memory complexity where n is the input length. It further does not explicitly take
the structure of documents into account.

3.2 Hierarchical Document Transformer

Most documents are organized into structural constituents like sections, paragraphs, sen-
tences, bulleted lists, figures, and footnotes. This structure is represented in the visual
layout and conveys the author’s semantic organization of the text (Taylor & Beach, 1984;
Guthrie et al., 1991). While our model is general and can handle arbitrary hierarchical
structures, for simplicity we will focus our exposition on a document hierarchy with three
levels: tokens, sentences and sections. More specifically, we split a document with n tokens
D = (t1, t2, ..., tn) into sections D = (E1, E2, ..., E|D|). Sections Ei are split into sentences
Ei = (S1,S2, ...,S|Ei |) which are split into sequences of regular tokens Sj = (t1, t2, ..., t|Sj |).

We exploit this document structure by (1) introducing auxiliary anchor tokens to represent
each element in the hierarchy, and (2) developing an efficient sparse attention kernel that
exchanges information only between tokens at the same level (siblings) as well as between
the respective parent and child tokens. By stacking multiple HDT blocks, information
from any token can reach any other token. At the same time, the attention pattern of HDT
blocks is highly sparse, leading to gains in computational (and memory) efficiency. More
specifically, for the document hierarchy introduced above, we prepend additional [SENT]
anchor tokens to the beginning of every sentence, [SEC] anchor tokens to the start of each
section, and a [DOC] anchor token to the beginning of the document as illustrated in Fig. 2.

Hierarchical Positional Encoding: We extend the sinusoidal position encoding to model L
hierarchy levels. To inform each token about its position within the hierarchy, we assign
it one linear index pl per hierarchy level as illustrated in Fig. 3, yielding an index vector
p = (p1, . . . , pL)T . Each index in p is passed through a set of standard sinusoidal encoding
functions which are summed over all levels to form the final hierarchical positional encoding
(HPE) vector at p:

HPE(p, i) =
L

∑
l=1

{
sin(ωk pl) if i = 2k
cos(ωk pl) if i = 2k + 1

where ωk =
1

100002k/dmodel
(2)

Hierarchical Attention: To model document structure, we impose a document-specific
attention pattern by modifying the standard Transformer attention in Eq. (1) as follows

A =
QKT
√

dk
S = softmax(A⊙ 1M) O = SV (3)

with (Aij ⊙ 1Mij) = Aij if Mij = 1 and −∞ if Mij = 0. For clarity of notation, we use pl
i , pl

j
to represent the position index for hierarchy level l of the i’th token ti and the j’th token

4



Published as a conference paper at COLM 2024

Copy to
SRAM

High Bandwidth Memory (HBM)
Original Order

Sort

Skip

Skip

Skip Skip

Skip Skip

Copy to
SRAM

Keys and
ValuesQueries

Figure 4: Hierarchial Attention Kernel. We copy queries, keys and values block-wise to SRAM for
fast attention computation using a fused kernel. To increase the number of empty blocks that can be
skipped, we sort keys and values based on their hierarchy level. Larger examples are shown in Fig. 10.

tj, respectively. The attention mask M ∈ {0, 1}n×n is defined such that information is only
exchanged directly between tokens at the same level as well as between the respective
parent and child tokens. For a 3-level document structure, we first compute the attention
mask for each hierarchy level separately

MDOC
ij = [p2

i = 0] · [p2
j = 0] (4)

MSEC
ij = [p3

i = 0] · [p3
j = 0] · [p1

i = p1
j ] (5)

MSENT
ij = [p1

i = p1
j ] · [p2

i = p2
j ] (6)

where [·] denotes the Iverson bracket which evaluates to 1 if the argument is true and 0
otherwise. Finally, we perform an OR operation to obtain the full attention mask M:

M = MDOC ⊕MSEC ⊕MSENT (7)

Note that M is highly sparse in practice (see Fig. 10 for an example) and hence reduces
theoretical complexity from O(n2) to O(n s) where s is the length of the longest sentence in
the document. Thus, computational savings are largest for long documents for which s≪ n.
However, when using parallel hardware (e.g., GPUs) as customary in deep learning, special
care has to be taken regarding the kernel design to translate these theoretical savings into
actual wall-clock time reduction. We hence develop a custom hierarchical attention kernel.

More specifically, we build upon the recent tiling-based ideas of FlashAttention (Dao et al.,
2022; Dao, 2023). FlashAttention partitions attention computation into small 128× 64 token
blocks that can be computed efficiently in SRAM. This is in contrast to classical attention
implementations that materialize intermediate outputs to slow High Bandwidth Memory
(HBM). However, naı̈vely partitioning the attention matrix into regular blocks is suboptimal
given the uniformly distributed entries of M. Furthermore, each document has a different
structure and hence leads to a different sparsity pattern in the attention matrix.

To maximize the number of empty blocks that can be skipped, we leverage a simple heuristic
which is illustrated with an example in Fig. 4. Specifically, before copying keys and values
to SRAM, we first sort them based on their hierarchy level from l = 0 to L while keeping
the order of the queries unchanged. This ensures adjacency of the most related tokens and
hence increases the probability of large empty blocks that can be skipped as illustrated in
Appendix Fig. 10. Afterwards, we copy the queries Qi, keys Kj and values Vj of block
(i, j) to SRAM and apply block attention. We process all non-empty blocks in parallel,
skipping empty ones. Finally, we write the result Oi back to HBM using the online softmax
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Figure 7: ListOps Convergence

algorithm (Milakov & Gimelshein, 2018). The complete algorithm for a forward pass is
provided in Appendix Algorithm 1. While we found this simple sorting heuristic to work
well in practice (see Fig. 8 for a runtime comparison to Block-Sparse FlashAttention and
Appendix Fig. 10 for qualitative examples), more advanced permutation algorithms for
sparse matrices (Aykanat et al., 2004; Ferris & Horn, 1998; Hendrickson & Kolda, 2000) could
possibly lead to larger computational savings at the cost of additional inference time per
data sample. We will leave the investigation of such trade-offs for future work.

Hierarchical Encoder and Decoder Stacks: We realize the encoder as a stack of N identical
HDT blocks where each block is composed of two sub-layers as illustrated in Fig. 1a. The
first sub-layer performs hierarchical multi-head self-attention as described above, and the
second is a simple position-wise fully connected feed-forward network (FFN). We use layer
normalization at the beginning of each sub-layer as well as residual connections (He et al.,
2016) for each layer. We apply the hierarchical positional encoding to the input tokens and
add them to the respective token embeddings as input to the encoder stacks. The decoder
is composed of a stack of N identical standard Transformer decoder blocks, including a
sub-layer of causal multi-head attention that prevents tokens from attending to subsequent
positions, a sub-layer to perform multi-head cross attention wrt. the output of the encoder
stack, and a standard feed-forward network (FFN). Following T5 (Raffel et al., 2020), we use
relative positional encoding for the decoder.

4 Experiments

We first demonstrate the utility of structure-aware attention patterns on a simple mathe-
matical task. Next, we show the effectiveness of our encoder-only model on SciRepEval
proximity tasks. We also investigate the expressiveness of the anchor token representations
using our encoder-decoder model on the FacetSum summarization tasks. Experiments on
SCROLLS demonstrate that our model can even be applied to long texts which are not
explicitly structured. Finally, we provide a detailed efficiency analysis.

4.1 Mathematical Reasoning Tasks

Model Acc.
BERT 75.9
HDTr+g+b 79.7
HDTg+b 85.6
HDTblue 86.2

Table 1: ListOps Acc.

As proof of concept, we first compare our encoder model (HDT-E)
to BERT (Devlin et al., 2019), Longformer (Beltagy et al., 2020) and
HAT (Chalkidis et al., 2022) on the ListOps mathematical reasoning
task (Nikita & R., 2018). The ListOps dataset is composed of simple
list operations (Modular Sum, Minimium, Maximum, Median) with
2-5 operands and maximum tree depth 20. An example is shown
in Fig. 5. Fig. 6 shows the different types of attention patterns we
use. The combination of red+green+blue entries corresponds to the
attention pattern defined in Section 3.2. However, the special structure
of the problem admits of further increasing sparsity by using a “causal”
mask where operands do not attend to their operators (green+blue) and where operands
do not attend to each other (blue only). Our ablations in Table 1 show that as we increase
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the inductive sparsity bias, test set accuracy improves. As illustrated in Fig. 7, whilst BERT,
Longformer and HAT use a learned positional embedding, we find that HDT outperforms
all baselines on ListOps even without using any positional embedding as the operators in
the ListOps task are invariant to the positions of their operands.

4.2 Language Tasks

We now investigate the utility of HDT for long-document processing tasks. As we are
interested in efficiency, we conduct all experiments using a constrained compute budget.
Following Geiping & Goldstein (2023), we pre-train our encoder models (HDT-E) for 24
hours on 1 GPU (∼10k steps) and our encoder-decoder models (HDT-ED) for 72 hours on
4 GPUs (∼50k steps) using a batch size of 128. Compared to the baselines, our models
require 5-20 times fewer pre-training steps to reach better or comparable downstream task
performance. We leave scaling HDT to larger sizes and more data for future work.

Data: To train our proposed structure-aware models, we build a large full-text document
corpus from unarXive (Saier et al., 2023) (1.9M arXiv papers), HUPD (Suzgun et al., 2023)
(utility patent applications) and the latest Wikipedia dump processed with Gensim (Řehůřek
& Sojka, 2010). In total, our corpus includes over 12M long documents with extracted
structural information. Our word tokenizer utilizes a vocabulary size of 32,768 tokens,
trained with Byte Pair Encoding (BPE) (Sennrich et al., 2016). For splitting sentences, we use
the NLTK sentence tokenizer1. We report results of HDT-E pre-trained with and without
arXiv data on a full-document version of SciRepEval (Singh et al., 2023). We evaluate HDT-
ED on the FacetSum (Meng et al., 2021) and SCROLLS (Shaham et al., 2022) benchmarks
which contain tasks for long text reasoning requiring context modeling. Benchmarks details
are provided in Appendix Section A.2.2.

Baselines: We compare HDT-E to Hierarchical Attention Transformer (HAT) (Chalkidis
et al., 2022) which is the closest work to us that applies attention hierarchically to reduce
computation/memory usage for processing long text. HDT-E differs from HAT as follows:
(1) HDT-E takes the natural structure of text to build hierarchies while HAT cuts long text
into fixed-size segmentations that do not adheare to the structure of natural language, (2)
HDT-E enables simultaneous information passing across all levels in a single layer while
HAT requires multiple blocks to contextualize information between hierarchies. Moreover,
HAT only considers two hierarchy levels. Despite the flexibility of our model, it achieves
comparable latency/throughput supported due to our highly efficient kernel implementa-
tion. As the sparse attention baseline, we choose Longformer (Beltagy et al., 2020) and its
encoder-decoder variant Longformer-Encoder-Decoder (LED) which are effective on various
long-text tasks in previous works (Tay et al., 2021; Dasigi et al., 2021; Tay et al., 2023a). We
also include the current SotA methods SciBERT (Beltagy et al., 2019) and SciNCL (Ostendorff
et al., 2022) as additional SciRepEval baselines. Both baselines use dense attention with an
input length of 512 capturing only title and abstract. Unless stated otherwise, we use the
officially released code and models by the original authors.

Pre-training & Fine-tuning: We pre-train the encoder-only model HDT-E and the encoder-
decoder model HDT-ED from scratch on our training corpus. All models are pre-trained
using an input length of 8,192 tokens and a mini-batch size of 128 (via gradient accumula-
tion). HDT-E is pre-trained on the standard Masked Language Modeling (MLM) objective
with a mask ratio of 15%. We also pre-train Longformer from scratch in the same setting as
ours to study the effectiveness of the attention pattern we propose. Fig. 1b shows that our
model converges faster than Longformer. HDT-ED is pre-trained on UL2 (Tay et al., 2023b),
which is a unified pre-training paradigm with a range of denoising tasks. We fine-tune all
models on the downstream tasks using the default settings, see Section A.2.2 for details.

Results on SciRepEval (Encoder Models): SciRepEval (Singh et al., 2023) is a scientific
document representation benchmark containing various classification, regression, and
proximity tasks. Unfortunately, the original SciRepEval dataset comprises only titles and
abstracts as for many papers in the original benchmark the full text is not publicly available.

1https://www.nltk.org/api/nltk.tokenize.html
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Model Full SciDocs Feeds-M High. Avg.Text Cite CoCite CoView CoRead Infl.

Pretrained Only

SciBERTbase 53.75 66.73 66.37 53.20 63.18 40.80 57.34
Longformer ✓ 56.64 71.92 71.51 61.57 63.66 43.82 61.52
HAT ✓ 60.14 75.55 73.62 67.65 65.02 45.81 64.63
HDT-E ✓ 62.50 78.51 75.69 72.12 65.19 43.60 66.27
HDT-E (-arXiv) ✓ 59.03 76.05 72.85 71.71 65.41 43.69 64.79

Pretrained + Finetuned with Contrastive Learning

SciNCL @684k 64.77 81.67 78.55 77.48 70.22 48.66 70.23
SciNCL @19k 62.56 82.29 77.84 75.84 67.11 46.23 68.65
Longformer @19k ✓ 61.75 79.87 78.20 74.25 67.80 43.85 67.62
HAT @19k ✓ 63.46 81.24 79.43 75.76 69.31 47.37 69.42
HDT-E @19k ✓ 64.23 82.44 78.95 77.09 71.22 49.37 70.55
HDT-E @19k (-arXiv) ✓ 63.34 82.18 79.06 76.78 70.64 48.95 70.16

Table 2: Results on SciRepEval Proximity Tasks. Top: Models pre-trained with MLM without fine-
tuning. Bottom: Models pre-trained with MLM and fine-tuned using SciNCL’s contrastive learning
objective. Full text documents are available only for a subset of 19k training triplets. For reference,
we also report the results of the original SciNCL model which is trained on all 684k title+abstract
triplets. We also report HDT-E pre-trained without arXiv data (-arXiv) to study the impact of scientific
documents as pre-training data to our model’s performance on the SciRepEval tasks which are in the
scientific domain. All numbers are mean average precision. SciBERT and SciNCL use only title and
abstract as input.

To adapt SciRepEval for long document models, we hence consider a subset of SciRepEval
for which full-text articles are available in unarXive (Saier et al., 2023). Table 2 shows the
tasks with the largest number of samples, which are proximity tasks involving ranking a
set of candidate papers by their relatedness to a query paper. Results on other SciRepEval
tasks can be found in Appendix Table 6. Without any fine-tuning, we take the hidden
representation of the first token (either [CLS] for baseline models or [DOC] for HDT-E)
and sort papers by cosine similarity between paper representations. The first set of results
in Table 2 (“Pretrained Only”) shows the mean average precision for models pre-trained
on MLM. Our results demonstrate that both, pre-training on full-text documents and
considering the structure of documents, leads to substantial performance gains in this
setting. Moreover, our model pre-trains significantly faster (10k iterations) than Longformer
(64k) and HAT (50k) and can be trained from scratch while Longformer and HAT require
parameter initialization from BART (Lewis et al., 2020) and RoBERTa (Liu et al., 2019)
(respectively) for best performance. This result underscores the sample efficiency of our
structure-aware HDT model.

Currently, the state-of-the-art performance on SciRepEval is reported by SciNCL (Ostendorff
et al., 2022) which finetunes a pre-trained SciBERT (Beltagy et al., 2019) model using a
contrastive learning objective. When comparing in this setting (“Pretrained + Finetuned
with Contrastive Learning”), we observe that HDT-E again outperforms all baselines, despite
with a smaller margin. Notably, HDT-E outperforms SciNCL even though SciNCL has access
to 684k triplets for finetuning while HDT-E is trained only on those 19k triplets for which
full-text documents are publicly available. In addition, to test our model’s reliance on
scientific documents for pre-training, we exclude the entire arXiv corpus from our pre-
training dataset. We observed that our model’s performance nearly matches HAT in the
pre-training-only setting and surpasses HAT in the contrastive learning setting, even when
using only out-of-domain data for pre-training.

Results on FacetSum (Encoder-Decoder Models): A major advantage of our model is its
flexibility. As tokens are hierarchically grouped via anchor tokens, the document’s content
is compressed at different levels of granularity. We can query this information by letting
the decoder of HDT-ED attends to only a subset of the tokens or anchor tokens (e.g., [SEC]).
To better understand how much information is retained where in our model, we design a
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Model Purpose Method Findings Value Purpose-ZS Method-ZS
LEDbase 39.51 19.31 19.22 24.26 18.54 14.12
HDT-ED-[SEC] 30.70 17.65 17.15 18.90 15.01 12.67
+[SENT] 34.29 19.72 18.38 20.53 19.67 13.94
+ tokens 40.60 22.21 22.11 22.11 21.75 15.43

Table 3: Results on FacetSum Summarization Task. Following the original paper, we report ROUGE-
L as the metric here. For HDT-ED-[SEC], the decoder cross-attends only to the section anchor token
[SEC]. We observe that even when attending only to the anchor tokens (+[SENT]), our model is on par
with LED, where the decoder attends to all tokens of the section, demonstrating the expressiveness of
the learned intermediate representation of anchor tokens. When attending to additional regular tokens
(+tokens), our model outperforms LED. We also report zero-shot (ZS) performance for “Purpose” and
“Method”, training only on “Findings” and “Value”.

Model GovRep SumScr QMSum Qspr Nrtv QALT CNLI Avg
ROUGE-1/2/L ROUGE-1/2/L ROUGE-1/2/L F1 F1 EM-T/H EM Score

LEDbase 56.2/26.6/28.8 24.2/4.5/15.4 25.1/6.7/18.8 26.6 18.5 25.8/25.4 71.5 29.16
HDT-ED 49.8/22.2/25.8 30.8/7.1/18.6 28.3/6.7/18.7 33.1 14.2 29.4/26.4 81.4 31.41

Table 4: Results on the SCROLLS Summarization, QA and NLI Benchmark. We compare HDT-
ED (pre-trained for 12 GPU days) to Longformer-Encoder-Decoder (LED) on the official SCROLLS
benchmark without document structure. We choose LED as baseline as it has a comparable number of
parameters (162M) to HDT-ED (124M). We remark that neither model is competitive with state-of-the-
art billion-parameter models such as CoLT5 XL (score 43.5) which are trained on large GPU clusters.

summarization task based on FacetSum (Meng et al., 2021) which provides section-level
summaries for Emerald journal articles. Table 3 shows our results. We observe performance
on par with LEDbase even when attending only to the anchor tokens, which demonstrates the
expressiveness of the learned intermediate representations. When additionally attending
to all regular tokens (as LEDbase does), performance increases further. The right part of the
table shows generalization performance when training on “Findings” and “Value”, but
evaluating “Purpose” and “Method” summaries.

Results on SCROLLS (Encoder-Decoder Models): While our model benefits from the
structure of documents as present in our SciRepEval and FacetSum evaluations, we are
also interested in the applicability of our model to less structured “flat” long-text tasks.
Towards this goal, we evaluate our model on the SCROLLS benchmark, which contains 7
tasks spanning multiple domains that require reasoning over long texts for which document
structure is not available. To apply our model to such inputs, we use pseudo sections
composed of a fixed number of 32 sentences for hierarchical attention, while sentences are
extracted as usual. We fine-tune HDT-ED on the 7 tasks in SCROLLS separately and submit
the test set predictions to the public leaderboard2. Table 4 show our results. Compared to
LEDbase with a similar number of parameters, HDT-ED improves by over 2 score points.
This demonstrates that our model is also effective on “flat” long-text tasks. However,
unsurprisingly, our results are not competitive with state-of-the-art billion-parameter models
such as CoLT5 XL which are trained for many epochs on large industrial GPU clusters.

Efficiency Analysis: Denoting the length (number of tokens) of the longest sentence in a
document as s, the theoretical complexity of HDT attention is O(n× s). Fig. 8 compares GPU
runtime and memory usage of different attention layers, including standard dense attention,
block-sparse FlashAttention (using our pattern), Longformer sparse windowed attention,
and HDT attention. All kernels are fed with real data, i.e., documents, which are further
transformed to multi-head queries, keys, and values using 12 heads with head dimension
64. We report the runtime for one batch with 4 samples on an NVIDIA A100 GPU, and plot
peak GPU memory consumption at lengths 16k and 32k for each kernel, except standard
attention which exceeds 40 GB at 16k tokens. Besides, we also compare runtime and memory
consumption for three complete 12-layer models using different attention mechanisms in
Table 5. Despite its flexibility, HDT-E achieves runtime and memory consumption on par
with HAT which uses 2 layers and fixed segment length.

2https://www.scrolls-benchmark.com/leaderboard
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13146 MB
5909 MB

5716 MB

21259 MB

1966 MB

2063 MB

9636 MB

Figure 8: Runtime and Memory con-
sumption of a single attention layer.

Model Longformer HAT HDT-E
Complex. O(n w) O(n k) O(n s)
#Params 148.66 M 152.73 M 108.99 M
Time (ms) 178.82 ± 6.84 77.84 ± 2.30 79.8 ± 2.96

TFLOPS 5.29 ± 0.19 8.95 ± 0.26 8.99 ± 0.34

Memory 11.25 GB 5.3 GB 5.85 GB

Table 5: Runtime and Memory consumption of several
long-document models with 12 layers. We report complex-
ity, parameters, inference time, throughput, and mem-
ory usage using context length n = 4096 and mini-batch
size 1. Here, w = 512 is the Longformer window size,
k = 128 is the fixed HAT segment length. s is the length
of the longest sentence in the document.

5 Conclusion

We presented Hierarchical Document Transformer (HDT), a novel approach for encoding
long documents efficiently. By explicitly incorporating document structure into the attention
mechanism, we achieve sparse representations, reducing computational complexity while
improving sample efficiency and generalization. We believe that hierarchical text represen-
tations offer many exciting opportunities in the future: Extending the hierarchical structure
down to byte-level could enable token-free language models. Hierarchical ideas might
also inspire novel decoder architectures that generate language in a structured hierarchical
fashion. Hierarchical models may also be advantageously combined with other models
such as state space models, RNNs or ConvNets. Finally, it still remains unclear if scaling
laws also hold for hierarchical language models as they do for LLMs, and if hierarchical
language models hold similar potential for unlocking emergent abilities.
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A Appendix

A.1 Hierarchical Attention Kernel

(a) Longformer’s fixed-window attention (b) Our dynamic hierarchical attention

Figure 9: (a) The Longformer (Beltagy et al., 2020) sparse attention pattern is identical for all samples
in a mini-batch. (b) In contrast, the proposed dynamic hierarchical attention pattern considers the
document structure and hence is different for each sample in a mini-batch.

In this section, we compare the proposed dynamic hierarchical attention pattern to the
fixed sparse attention pattern of Longformer and provide algorithmic details of its im-
plementation. Subsequently, we illustrate how our customized attention kernel reduces
computational overhead through qualitative examples.

Given that our attention pattern is rooted in document structure, it is different for each
sample. Hence, we require an attention mechanism that is able to cope with sample-
dependent attention patterns. Fig. 9 provides a visual illustration comparing our dynamic
attention pattern to the fixed attention pattern of Longformer (Beltagy et al., 2020), assuming
a mini-batch size of 2 for clarity. Notably, within a mini-batch containing multiple samples,
the attention pattern applied to each sample varies, thereby complicating the realization
of our attention pattern using existing attention kernels. Moreover, due to the presence of
anchor tokens positioned at the onset of different hierarchies and attending to one another,
the attention devoted to these anchor tokens can be notably fine-grained and sparse within
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the attention mask. This phenomenon is demonstrated in Fig. 10, depicting hierarchical
attention masks derived from real documents. Note that due to space limitations only the
first 1k tokens (∼25% of the total document size) are visualized. To optimize the number of
empty blocks that can be skipped, we employ the sorting heuristic outlined in Section 3.2.
The core mechanism of our hierarchical sparse attention kernel is based on and extends
FlashAttention Dao et al. (2022). Our algorithm for a forward pass of the attention layer
is provided in Algorithm 1. This algorithm is executed in parallel for all elements of the
Cartesian product B× H, where B represents the batch size and H denotes the number of
heads, assuming input tensors of shape (B× H × n× dk).

Our primary adjustment to the FlashAttention algorithm is in line 2 of Algorithm1, where
we implement a sorting mechanism for the key and value based on their hierarchy levels,
specifically prioritizing [DOC] tokens followed by [SEC] and [SENT] tokens before normal
tokens. This modification is grounded in the observation that the computational ineffi-
ciency in block-wise hierarchical attention predominantly stems from attention interactions
between anchor tokens situated distantly from each other, resulting in excessively sparse
blocks. Fig. 10 offers a visual comparison between the computation patterns of our kernel
and block-sparse FlashAttention, demonstrating the efficacy of our approach.

Algorithm 1 Forward Pass of the HDT Hierarchical Attention Kernel

Require: Query, key, value Q, K, V ∈ Rn×dk , query block size M, key-value block size N,
softmax statistics vectors m ∈ Rn×n and l ∈ Rn×n, output tensor On×dk .

1: Partition Q into Tr =
⌈ n

M
⌉

blocks Q1, . . . , QTr
2: Sort K, V according to the hierarchy level from l = 1 to L.
3: Partition K, V into Tc =

⌈ n
N
⌉

blocks K1, . . . , KTc , and V1, . . . , VTc
4: for 1 ≤ i ≤ Tr do
5: Load Qi, Oi, mi, li from HBM to SRAM
6: for 1 ≤ j ≤ Tc do
7: Load Kj, Vj from HBM to SRAM
8: On chip, compute mask M according to Equation (7)
9: if Non-zero values in M then

10: Sij = QiKj ⊙Mij
11: m̃ij = rowmax(Sij)

12: P̃ij = exp(Sij − m̃ij) (pointwise)
13: l̃ij = rowsum(P̃ij)

14: mnew
i = max(mi, m̃ij) ∈ RM, lnew

i = emi−mnew
i li + em̃ij−mnew

i l̃i,j ∈ RM

15: Write Oi ← diag(lnew
i )−1(diag(li)emi−mnew

i Oi + em̃ij−mnew
i P̃ijVj) to HBM

16: Write li ← lnew
i , mi ← mnew

i to HBM
17: end if
18: end for
19: end for
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(a) Block-Sparse FlashAttention (Dao et al., 2022) (b) HDT Attention

(c) Block-Sparse FlashAttention (Dao et al., 2022) (d) HDT Attention

Figure 10: Attention Pattern (Black) and Processed SRAM Blocks (Grey). Comparison between the
practical computation of Block-Sparse FlashAttention (Dao et al., 2022) and our HDT attention kernel
on the same hierarchical attention patterns. We show the attention mask of the first 1k tokens (∼25%
of the total document size) of two different documents (row 1+2) in black. The blue grid illustrates the
128× 64 SRAM blocks which are processed in parallel using the fused kernel. All blocks highlighted in
grey contain at least one non-zero attention entry and hence require processing. Due to the reordering
of keys and values (columns) in HDT, anchor tokens are aggregated within adjacent blocks leading to
a larger number of blocks that can be skipped compared to Block-Sparse FlashAttention (Dao et al.,
2022).
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A.2 Experiments

In this section, we provide additional details about the model settings and datasets.

A.2.1 Mathematical Reasoning Tasks

ListOps: The models we train on ListOPs 20d have 12 transformer encoder layers with a
feature dimension of 128, an intermediate size of 512, a learning rate of 3e-4 and a batch size
of 200. We split the original training set into 85k samples for training and 5k samples for
validation. The test set accuracy is computed on 10k samples. The ListOps code (Nikita & R.,
2018) generates many short samples and a few very long ones, occasionally exceeding the
512 token input size of the BERT model. The largest token length that can be generated by
ListOps 20d is 520, with a maximum tree depth of 20 and the maximum number of operands
per operator being 5. We exclude such rare samples from the dataset for our experiments.
We observe that our conclusions regarding the benefits of sparse structure-aware attention
patterns also hold on ListOps data generated with a smaller maximum tree depth of 10d
and 5d. As shown in Fig. 11, HDT is capable of correctly predicting long ListOPs sequences,
whereas BERT, Longformer and HAT exhibit lower performance for long samples. HDT’s
performance on ListOPs is stable across varying input lengths.
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Figure 11: Stacked histograms of predictions by HDT, BERT, Longformer and HAT on ListOPs 20d.

A.2.2 Language Tasks

Model Settings: We choose a typical setting for our model architecture, with dmodel = 768,
dk = 64 with 12 heads, and an intermediate hidden size of 3,072. For HDT-E, we use 12
encoder stacks, and for HDT-ED we use 6 encoder stacks and 6 decoder stacks, resulting
in 109M and 124M parameters, respectively. For fine-tuning, we use a constant learning
rate of 5e-5, batch size 32 (by accumulating gradients of 8 mini-batches with mini-batch
size 4), and a dropout rate of 0.1 for all tasks, except for summarization tasks for which we
use a larger learning rate of 1e-3 which we empirically find better suited for all models in
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Model SRH PRX RGN
Search Feeds-1 Peer Review Score Tweet Mentions hIndex Citation Count Publication Year Average
nDCG MAP Kendall’s T Kendall’s T Kendall’s T Kendall’s T Kendall’s T

SciBERT 56.79 69.2 17.39 10.09 16.84 15.43 13.37 28.44
Longformer 56.11 66.46 17.34 12.68 16.65 26.16 25.43 31.54
SciNCL 56.05 71.85 13.15 13.95 11.92 26.27 18.69 30.27
HAT 57.01 70.01 14.62 13.18 13.64 19.75 19.8 29.72
HDT-E (title+abstract) 56.62 71.65 13.79 13.62 15.65 26.34 24.66 31.76

Table 6: Results on remaining SciRepEval tasks. Although our model is not the best across all tasks,
the performance is comparably stable in different tasks than other models.

Model MIMIC ECtHR-LJP ECtHR-ARG
F1 F1 acc

Longformer 78.7 78.6 66.7
HAT 78.9 79.8 82.6
HDT-E 79.1 79.5 82.9

Table 7: Results on document classification task ECtHR-LJP, ECtHR-ARG, MIMIC. We follow the
experimental setting of HAT and cover three long document classification tasks and report the test
scores.

our experiments. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer for both
pre-training and fine-tuning.

SciRepEval: The SciRepEval benchmark we use in this work is a subset of the original
dataset (Singh et al., 2023) with additional full-text data from unarXive (Saier et al., 2023). We
remove samples that are not in unarXive and drop the tasks that have less than 100 samples
left after filtering. This leads to a benchmark spanning 13 tasks, including regression,
proximity, and search tasks for scientific document representation evaluation. We show our
results on proximity tasks in Table 2 and results on the remaining tasks in Table 6.

Long Document Classification Tasks: Following HAT (Chalkidis et al., 2022), we validate
our model on three additional long document classification tasks. The first task is MIMIC-
III (Johnson et al., 2016), which comprises nearly 50,000 discharge summaries from US
hospitals. Each summary is annotated with one or more ICD-9 codes (labels). The model
takes a discharge summary as input and outputs the relevant set of first-level ICD-9 codes
(19 in total). The second task is ECtHR-LJP (Chalkidis et al., 2021), containing approximately
11,000 cases from the European Court of Human Rights (ECtHR) public database. For each
case, the dataset provides a list of factual paragraphs (facts) from the case description. Each
case is mapped to articles of the ECHR that were allegedly violated. The model takes the
list of facts as input and outputs the set of allegedly violated articles. Lastly, we include
the ECtHR-ARG task (Habernal et al., 2023), which includes approximately 300 cases from
the European Court of Human Rights (ECtHR). For each case, the dataset provides a list
of argumentative paragraphs from the case analysis, with spans in each paragraph labeled
with one or more of 13 argument types. We follow HAT in re-formulating this task as a
sequential paragraph classification task, where each paragraph is labeled with one or more
argument types. The model takes the list of paragraphs of a case as input and outputs the
set of relevant argument types for each paragraph. Our results in Table 7 show that our
model is comparable to HAT on this task.

FacetSum: The FacetSum dataset provides fixed 4-class summaries, “Purpose”, “Method”,
“Findings”, and “Value”, for each document. To align classes to the corresponding sections,
we follow Meng et al. (2021) to classify sections into “Introduction”, “Method”, “Result”
and “Conclusion” first by keyword matching and then match the four classes of sections to
the four classes of summaries, respectively.

SCROLLS: The SCROLLS benchmark contains a suite of tasks that require reasoning
over long texts. The tasks cover GovReport (Huang et al., 2021) and SummScreenFD
(Chen et al., 2022) that are summarization tasks in the domain of government reports and
TV shows; QMSum (Zhong et al., 2021), a query-based summarization task for meeting
transcripts; QASPER (Dasigi et al., 2021), a question answering dataset for scientific papers;
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Model GovRep SumScr QMSum Qspr Nrtv QALT CNLI Avg
ROUGE-1/2/L ROUGE-1/2/L ROUGE-1/2/L F1 F1 EM-T/H EM

CoLT5†
XL 61.3/32.2/33.8 36.4/10.1/21.7 36.2/12.9/24.2 53.9 31.1 48.1/43.8 88.4 43.51

LongT5†
XL 61.1/32.3/33.7 35.8/9.6/21.1 34.9/11.8/23.5 53.1 29.3 46.0/42.1 88.2 42.53

CoLT5†
Large 60.7/31.3/32.9 36.7/10.6/22.0 34.9/11.5/23.1 49.8 27.7 39.9/36.8 88.7 41.04

LED†
base 56.2/26.6/28.8 24.2/4.5/15.4 25.1/6.7/18.8 26.6 18.5 25.8/25.4 71.5 29.16

HDT-ED 49.8/22.2/25.8 30.8/7.1/18.6 28.3/6.7/18.7 33.1 14.2 29.4/26.4 81.4 31.41

Table 8: Results on the SCROLLS benchmark compared to SotA. We evaluate several models on the
SCROLLS benchmark. † indicates results reported on the public leaderboard.

Model
GovRep QASPER

ROUGE-1/2/L F1
Extractive Abstractive Yes/No Unanswer. Overall

LED 56.2/26.6/28.8 30.96 15.76 70.33 26.21 32.80
HDT-ED 49.89/21.54/25.26 30.57 11.42 67.14 46.45 33.14
+ struct. 49.42/21.22/24.97 33.12 13.02 64.19 43.17 34.02

Table 9: Effect of using document structure on GovRep and QASPER. Note that the models are
evaluated with the original GovRep (Huang et al., 2021) and QASPER (Dasigi et al., 2021) datasets,
therefore results in this table might be slightly different from the results in Table 4 for the same task as
the authors have cleaned the datasets in SCROLLS.

NarrativeQA (Kociský et al., 2018), a question answering dataset over entire books from
Project Gutenberg3; QuALITY (Pang et al., 2022), a multiple choice question answering
dataset over stories and articles sourced from Project Gutenberg; and Contract NLI (Koreeda
& Manning, 2021) as a natural language inference dataset in the legal domain. Table 8
compares our model with SotA billion-parameter encoder-decoder models which have been
trained on large industrial compute clusters.

Effect of document structure: Our models are initially pre-trained on structured documents,
and since most downstream tasks also maintain document structure, we aim to investigate
the impact of such structures. To accomplish this, we selected two tasks, GovReport (Huang
et al., 2021) and QASPER (Dasigi et al., 2021), where document structure preservation is
integral. We proceeded by flattening the documents to create a flattened version of the
dataset. Subsequently, we trained both LED and HDT-E on these datasets, employing
the pseudo-section setting introduced in Section 4.2 for the flattened data. A comparative
analysis between models trained with and without real document structure for the two
datasets is presented in Table 9. While we observe that modeling document structure is not
having a very large effect on downstream task performance in this setting, it is yet very
important to utilize document structure during pre-training in our experiments. In fact,
models pre-trained on pseudo sections and tested on the structured downstream tasks did
not deliver any reasonable results. Our interpretation is that during pre-training, HDT learns
to represent hierarchical information in different granularity via its anchor tokens, which
allows it to adapt to pseudo-section data via fine-tuning.

3https://www.gutenberg.org/
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