
Defensive Unlearning with Adversarial Training
for Robust Concept Erasure in Diffusion Models

Yimeng Zhang1 Xin Chen2 Jinghan Jia1 Yihua Zhang1 Chongyu Fan1

Jiancheng Liu1 Mingyi Hong3 Ke Ding2 Sijia Liu1,4

1Michigan State University 2Applied ML, Intel
3University of Minnesota, Twin City 4MIT-IBM Watson AI Lab, IBM Research

Abstract
Diffusion models (DMs) have achieved remarkable success in text-to-image gener-
ation, but they also pose safety risks, such as the potential generation of harmful
content and copyright violations. The techniques of machine unlearning, also
known as concept erasing, have been developed to address these risks. How-
ever, these techniques remain vulnerable to adversarial prompt attacks, which can
prompt DMs post-unlearning to regenerate undesired images containing concepts
(such as nudity) meant to be erased. This work aims to enhance the robustness
of concept erasing by integrating the principle of adversarial training (AT) into
machine unlearning, resulting in the robust unlearning framework referred to as
AdvUnlearn. However, achieving this effectively and efficiently is highly non-
trivial. First, we find that a straightforward implementation of AT compromises
DMs’ image generation quality post-unlearning. To address this, we develop a
utility-retaining regularization on an additional retain set, optimizing the trade-off
between concept erasure robustness and model utility in AdvUnlearn. Moreover,
we identify the text encoder as a more suitable module for robustification com-
pared to UNet, ensuring unlearning effectiveness. And the acquired text encoder
can serve as a plug-and-play robust unlearner for various DM types. Empirically,
we perform extensive experiments to demonstrate the robustness advantage of
AdvUnlearn across various DM unlearning scenarios, including the erasure of
nudity, objects, and style concepts. In addition to robustness, AdvUnlearn also
achieves a balanced tradeoff with model utility. To our knowledge, this is the first
work to systematically explore robust DM unlearning through AT, setting it apart
from existing methods that overlook robustness in concept erasing. Codes are
available at https://github.com/OPTML-Group/AdvUnlearn.
Warning: This paper contains model outputs that may be offensive in nature.

1 Introduction
Recent rapid advancements in diffusion models (DMs) [1–8] have popularized the realm of text-
to-image generation. These models, trained on extensive online datasets, can generate remarkably
realistic images. However, their training heavily relies on diverse internet-sourced content and
can introduce safety concerns when prompted with inappropriate texts, such as the generation of
NSFW (Not Safe For Work) images, highlighted in several studies [9, 10]. To address this concern,
post-hoc safety checkers were initially applied to DMs [10, 11]. However, they were later found to be
inadequate in effectively preventing the generation of unsafe content. To further enhance safety, the
concept of machine unlearning (MU) has been introduced [12–18], aiming to mitigate the influence
of undesired textual concepts in DM training or fine-tuning [19–22]. As a result, DMs post-unlearning
(referred to as ‘concept-erased DMs’ or ‘unlearned DMs’) are designed to negate the generation of
undesirable content, even when faced with inappropriate prompts.
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Figure 1: Visualizations of SD v1.4 [7] and its
concept-erased version, ESD [19], conditioned on
the prompt ‘Hot sexy girl’. The generation of ESD
is shown against no attack and UnlearnDiffAtk [23].

Despite the recent progress with unlearned, safety-
driven DMs, recent studies [23–26] have shown that
these models remain vulnerable to generating unsafe
images when exposed to adversarial prompt attacks,
which involve minor adversarial perturbations in in-
put prompts. These attacks can readily jailbreak
concept-erased DMs to regenerate content subject
to the concept targeted for unlearning, even if these
DMs perform well against inappropriate prompts
in a non-adversarial context. In Fig. 1, we exem-
plify the generation of the stable diffusion (SD) v1.4
model before and post unlearning the ‘nudity’ concept. The unlearned model is confronted with an
inappropriate prompt from the I2P dataset [10] and its adversarial prompt counterpart, generated
using the attack method UnlearnDiffAtk [23]. The lack of robustness in concept erasing (or machine
unlearning) in DMs gives rise to the key research question tackled in this work:

(Q) Can we effectively and efficiently boost the robustness of unlearned DMs
against adversarial prompt attacks?
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Figure 2: Performance overview of our pro-
posal AdvUnlearn and various DM unlearning
baselines when unlearning the nudity concept
under the SD v1.4 model. The robustness is
measured by attack success rate (ASR) against
UnlearnDiffAtk [23]. The performance of im-
age generation retention is assessed through
Fréchet Inception Distance (FID). A lower
ASR or FID implies better robustness or utility.
The baselines include the vanilla SD v1.4 and
its unlearned versions using ESD [19], FMN
[20], UCE [22], SalUn [27], and SPM [28].

To address (Q), we take inspiration from the successes
of adversarial training (AT) [29] in enhancing the ad-
versarial robustness of image classification models. To
the best of our knowledge, we are the first to study the
integration of AT into DM unlearning systematically
and to develop a successful integration scheme, termed
AdvUnlearn, by addressing its unique effectiveness and
efficiency challenges, such as balancing the preservation
of image generation quality and selecting the appropri-
ate module to optimize during AT. In the literature, the
most relevant work to ours is [30], which employs AT
to train robust adapters within UNet for DMs. How-
ever, our work significantly differs from [30]. First, we
aim for a comprehensive study of AT for DMs, focus-
ing not only on when AT is (in)effective for DMs and
why this (in)effectiveness occurs but also on how to
improve it. Additionally, we explore which advance-
ments in AT for robust image classification can be trans-
lated into improving the robustness of DMs. Second,
we identify that retaining image generation quality is a
major challenge when integrating AT into DMs, espe-
cially in compatibility with DM unlearning methods. We
tackle this challenge by drawing inspiration from the AT
principle that ‘unlabeled data improves the robustness-
accuracy tradeoff’ [31–35], and accordingly develop a
utility-retaining regularization scheme based on an aug-
mented retain prompt set. Third, by dissecting DMs into text encoder and UNet components, we
discover that the integration of AT with DM unlearning particularly favors the text encoder module.
This contrasts with conventional DM unlearning methods, which are typically applied to the UNet.

We summarize our key contributions as follows:

❶ We explore the integration of AT with concept erasing (or machine unlearning) in DMs and
propose a bi-level optimization (BLO)-based integration scheme, termed AdvUnlearn. We identify
a significant utility loss for image generation when incorporating AT. To address this, we design
a utility-retaining regularization using curated external retain prompt data to balance the trade-off
between effective unlearning and high-quality image generation.

❷ We demonstrate that optimizing the text encoder within AdvUnlearn can enhance the robustness
of unlearned DMs against adversarial prompt attacks, outperforming the conventional strategies for
unlearning UNet. In addition, it also achieves a better balance between unlearning performance and
image generation utility. Furthermore, we show that a single robust text encoder can be shared across
different DMs and implemented in a plug-and-play manner, greatly enhancing usability.
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❸ We validate the effectiveness of AdvUnlearn across various DM unlearning scenarios, including
the erasure of nudity, objects, and style concepts. We show that AdvUnlearn yields significant robust-
ness improvements over state-of-the-art (SOTA) unlearned DMs while preserving a commendable
level of image generation utility; See Fig. 2 for justification and performance highlights.

2 Related Work

Machine unlearning for concept erasing in DMs. Generating visually authentic images from
textual descriptions remains a compelling challenge in generative AI. DMs (diffusion models) have
notably advanced, surpassing generative adversarial networks (GANs) in various aspects, particularly
in conditional generation subject to text prompts [36–44]. Despite their success, DMs also present
safety and ethics concerns, especially in generating images with harmful content when conditioned
on inappropriate prompts [9, 10]. To address these concerns, several approaches have been proposed,
including post-image filtering [9], modifying inference guidance [10], and retraining with curated
datasets [7]. However, lightweight interventions like the first two may not fully address the model’s
inherent propensity to generate controversial content [10, 45, 46]. MU (machine unlearning) [14,
47, 48] is another emerging approach for ensuring safe image generation by erasing the influence of
undesired concepts, also referred to as concept erasing in DMs. Leveraging MU principles, various
strategies for designing unlearned DMs have been explored, focusing on refining fine-tuning methods
such as those by [19–22, 27, 28, 30, 49–56]. For example, UNets within DMs have been fine-tuned
to redirect outputs towards either random or anchored outputs, effectively preventing the generation
of images associated with the concepts designated for unlearning [19–21]. Additional efforts [27, 54]
have employed gradient-based techniques to map out the weight saliency within UNet related to the
concept to be unlearned, concentrating fine-tuning efforts on these salient weights. To enhance the
efficiency of unlearning, UCE [22] introduces a method of closed-form parameter editing specifically
for DM unlearning. However, this approach lacks robustness against jailbreaking attacks [23].

Adversarial prompt attacks against safety-driven DMs. Adversarial prompts or jailbreaking
attacks specifically manipulate the text inputs of DMs to produce undesirable outcomes. Similar
to the text-based attacks in natural language processing (NLP), adversarial prompt attacks can
involve character or word-level manipulations, such as deletions, additions, and substitutions [57–65].
Strategies discussed in [66] are designed to bypass NSFW safety protocols, cleverly evading content
moderation algorithms. Other related attacks [23–26, 67, 68] coerce DMs into generating images
that contradict their programmed intent. For instance, Pham et al. [26] used textual inversion [69] to
find a continuous word embedding representing the concept to be unlearned by the model. Chin et al.
[24] employed ground truth guidance from an auxiliary frozen UNet [19] and discrete optimization
techniques from [70] to craft a white-box adversarial prompt attack. To overcome the dependency
on auxiliary model guidance, UnlearnDiffAtk [23] leveraged the intrinsic classification capabilities
of DMs, facilitating the creation of adversarial prompts. In this work, we treat machine unlearning
for DMs as a defensive challenge. Our approach involves fine-tuning the target model to not only
unlearn specific concepts but also to enhance its robustness against adversarial prompt attacks.

Adversarial training (AT). In the realm of image classification, adversarial attacks that generate
subtle perturbations to fool machine learning (ML) models have long posed a robustness challenge
for vision systems [71–76]. In response, AT (adversarial training) [29], the cornerstone of training-
based defenses, conceptualizes defense as a two-player game between the attacker and defender
[29, 31, 32, 71, 77–84, 76]. Additionally, TRADES [31] was proposed to strike a better balance
between accuracy and robustness. Further studies [32, 33, 80, 85, 86] demonstrated that unlabeled
data and self-training have proven effective in enhancing robustness and generalization in adversarial
contexts. To improve the efficiency of AT, past research also proposed adopting more efficient
attack methods or fewer steps to generate adversarial examples [71, 87–94]. In particular, the fast
gradient sign method (FGSM) was utilized for adversarial generation in AT [71, 87]. And the gradient
alignment strategy was proposed to improve the quality of fast AT [89].

3 Preliminaries and Problem Statement

Throughout the work, we focus on latent diffusion models (LDMs) [7, 95], which have exceled in
text-to-image generation by integrating text prompts (such as text-based image descriptions) into
image embeddings to guide the generation process. In LDMs, the diffusion process initiates with a
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random noise sample drawn from the standard Gaussian distribution N (0, 1). This sample undergoes
a progressive transformation through a series of T time steps in a gradual denoising process, ultimately
resulting in the creation of a clean image x. At each time step t, the diffusion model utilizes a noise
estimator ϵθ(·|c), parameterized by θ and conditioned on an input prompt c (i.e., associated with a
textual concept). The diffusion process operates on the latent representation of the image at each time
(xt). The training objective for θ is to minimize the denoising error as below:

minimize
θ

E(x,c)∼D,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ(xt|c)∥22

]
, (1)

where D is the training set, and ϵθ(xt|c) is the LDM-associated noise estimator.

Concept erasure in DMs. DMs, despite their high capability, may generate unsafe content or
disclose sensitive information when given inappropriate text prompts. For example, the I2P dataset
[10] compiles numerous inappropriate prompts capable of leading DMs to generate NSFW content.
To mitigate the generation of harmful or sensitive content, a range of studies [19–22, 27] have
explored the technique of concept erasing or machine unlearning within DMs, aiming to enhance the
DM training process by mitigating the impact of undesired textual concepts on image generation.

A widely recognized concept erasing approach is ESD [19], notable for its state-of-the-art (SOTA)
balance between unlearning effectiveness and model utility preservation [52]. Unless specified
otherwise, we will adopt the objective of ESD for implementing concept erasure. ESD facilitates the
fine-tuning process of DMs by guiding outputs away from a specific concept targeted for erasure. Let
ce denote the concept to erase, then the diffusion process of ESD is modified to

ϵθ(xt|ce)← ϵθo(xt|∅)− η (ϵθo(xt|ce)− ϵθo(xt|∅)) , (2)

where θ denotes the concept-erased DM, θo is the originally pre-trained DM, and ϵθ(xt|∅) represents
unconditional generation of the model θ by considering text prompt as empty. Compared to the
standard conditional DM [96] (with classifier-free guidance), the second term −η[ϵθo

(xt|ce) −
ϵθo

(xt|∅)] encourages the adjustment of the data distribution (with erasing guidance parameter
η > 0) to minimize the likelihood of generating an image x that could be labeled as ce. To optimize
θ, ESD performs the following model fine-tuning based on (2):

minimize
θ

ℓESD(θ, ce) := E
[
∥ϵθ(xt|ce)− (ϵθo(xt|∅)− η (ϵθo(xt|ce)− ϵθo(xt|∅)))∥22

]
, (3)

where for notational simplicity we have used, and will continue to use, to omit the time step t and the
random initial noise ϵ under expectation.

Adversarial prompts against concept-erased DMs. Although concept erasing enhances safety,
recent studies [23–26] have also shown that concept-erased DMs often lack robustness when con-
fronted with adversarial prompt attacks; see Fig. 1 for examples. Let c′ represent a perturbed text
prompt corresponding to c, obtained through token manipulation in the text space [23, 24] or in the
token embedding space [26]. The generation of adversarial prompts can be solved as [23, 24]:

minimize
∥c′−c∥0≤ϵ

E
[∥∥ϵθ(xt|c′)− ϵθo(xt|c)

∥∥2

2

]
, (4)

where θ denotes the concept-erased DM, and θo is the original DM without concept erasing. There-
fore, considering the concept c = ce targeted for erasure, ϵθo

(xt|c) denotes the generation of an
unsafe image under c. The objective of problem (4) is to devise the perturbed prompt c′ to steer the
generation of the concept-erased DM θ towards the unsafe content produced by ϵθo

. The constraint
of (4) implies that c′ remains proximate to c, subject to the number of altered tokens ϵ (measured by
the ℓ0 norm) or via additive continuous perturbation in the token embedding space.

AdvUnlearn: A defensive unlearning setup via AT. The lack of adversarial robustness in concept-
erased DMs motivates us to devise a solution that enhances their robustness in the face of adversarial
prompts. AT [29] offers a principled algorithmic framework for addressing this challenge. It
formulates robust concept erasure as a two-player game involving the defender (i.e., the unlearner
for concept erasing) and the attacker (i.e., the adversarial prompt). The original AT constrains the
attacker’s objective to precisely oppose the defender’s objective. To loosen this constraint, we consider
a generalized AT formulation based on bi-level optimization [92, 97–99], where the defender and
attacker are delineated through the upper-level and lower-level optimization problems, respectively:

minimize
θ

ℓu(θ, c
∗) [Upper-level optimization]

subject to c∗ = argmin
∥c′−ce∥0≤ϵ

ℓatk(θ, c
′). [Lower-level optimization] (5)
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In (5), the upper-level optimization aims to optimize the DM parameters θ according to an unlearning
objective ℓu, considering the concept c∗ targeted for erasure. For instance, the objective of ESD
(3) could serve as one specification of ℓu. On the other hand, the lower-level optimization problem
minimizes the attack generation loss ℓatk, as given by (4), to acquire the optimized adversarial prompt
c∗ under the current model θ. The upper-level and lower-level optimizations are interlinked through
the alternation between model parameter optimization and adversarial prompt optimization.

We designate the aforementioned setup (5) of integrating adversarial training into DM unlearning
as AdvUnlearn. As will become evident later, effectively and efficiently solving the AdvUnlearn
problem (5) becomes highly nontrivial. There exist two main challenges.

(Effectiveness challenge) As will be demonstrated in Sec. 4, a naive implementation of the ESD
objective (2) for upper-level concept erasure may lead to a considerable loss in DM utility for
generating normal images. Thus, optimizing the inherent trade-off between the robustness of concept
erasure and the preservation of DM utility poses a significant challenge.

(Efficiency challenge) Moreover, given the modularity characteristics of DMs (with decomposition
into text encoder and UNet encoder), determining the optimal application of AT and its efficient
implementation remains elusive. This includes deciding ‘where’ to apply AT within DM, as well as
‘how’ to efficiently implement it. We will address this challenge in Sec. 5.

4 Effectiveness Enhancement of AdvUnlearn: Improving Tradeoff between
Robustness and Utility

Table 1: Robustness (ASR) and utility (FID)
of different unlearning methods (ESD [19]
and AT-ESD) on base SD-v.14 model for
nudity unlearning.

Unlearning
Methods

Concept
Erasure

ASR
(↓)

FID
(↓)

SD v1.4 ✘ 100% 16.7
ESD ✔ 73.24% 18.18

AT-ESD ✔ 43.48% 26.48

Warm-up: Difficulty of image generation quality reten-
tion. A straightforward implementation of AdvUnlearn
(5) is to specify the upper-level optimization using ESD
(2) and combine it with adversarial prompt generation (4).
However, such a direct integration results in a notable de-
crease in image generation quality. Tab. 1 compares the
performance of the vanilla ESD (i.e., concept-erased stable
diffusion ) [19] with its direct AT variant. The robustness
of concept erasure is evaluated using ASR (attack success
rate) against the adversarial prompt attack UnlearnDiffAtk
[23]. Meanwhile, the quality of image generation retention

AT-ESDESDSD-v1.4

“A picture 
of a dog 
laying on 

the ground” 

“A 
gorgeous 

female 
photo” 

*

*

Benign 
Prompt

Harmful 
Prompt

Figure 3: Generation examples using DMs
in Tab. 1 for nudity unlearning conditioned
on benign and harmful prompts.

is assessed through FID. As we can see, while the direct AT
variant of ESD (AT-ESD) enhances adversarial robustness
with approximately a 20% reduction in ASR, it also leads
to a considerable increase in FID. Fig. 3 presents visual
examples of the generation produced by AT-ESD compared
to the original SD v1.4 and vanilla ESD. As demonstrated,
the decline in image generation authenticity under a benign
prompt using AT-ESD is substantial.

Utility-retaining regularization in AdvUnlearn. We next
improve the unlearning objective ℓu in AdvUnlearn (5) by
explicitly prioritizing the retention of the DM’s generation
utility. One potential explanation for the diminished image generation quality after AT-ESD is that
ESD (2) primarily focuses on de-generating the unlearning concept in the diffusion process, thus
lacking the capability to preserve image generation quality when further pressured by the robustness
enhancement induced by AT. In the realm of AT for image classification, the integration of external
(unlabeled) data into AT has proven to be an effective strategy for enhancing standard model utility
(i.e., test accuracy) while simultaneously improving adversarial robustness [32]. Drawing inspiration
from this, we suggest the curation of a retain set Cretain comprising additional text prompts utilized
for retaining model utility. Together with the ESD-based unlearning objective, we customize the
upper-level optimization objective of (5) as

ℓu(θ, c
∗) = ℓESD(θ, c

∗) + γEc̃∼Cretain

[
∥ϵθ(xt|c̃)− ϵθo(xt|c̃)∥22

]
, (6)

where ℓESD was defined in (3), and the second loss term penalizes the degradation of image generation
quality using the current DM θ compared to the original θo under a retained concept c̃.
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When selecting the retain set Cretain, it is essential to ensure that the enhancement in image generation
quality does not come at the expense of the effectiveness of concept erasure, i.e., minimizing ESD
loss in (6). Therefore, we utilize a large language model (LLM) as a judge to sift through these retain
prompts, excluding those relevant to the targeted concept for erasure. Further details regarding the
LLM judge system are available in Appx. A. We obtain these retain prompts from an external dataset,
such as ImageNet [100] or COCO [101], using the prompt template ‘a photo of [OBJECT CLASS]’.
The finalized retain set Cretain consists of 243 distinct prompts. During training, a prompt batch
of size 5 randomly selected from Cretain in support of utility-retaining regularization. The primary
goal of Cretain is not to train the model on producing specific objects or concepts; Instead, it aims to
guide the model in generating general, non-forgetting content effectively. As will be evidenced in
Figs. 4-6, incorporating Cretain enhances the general utility of the unlearned DM during the testing
phase. Test-time prompts in these figures include varied objects like ‘toilet’, ‘Picasso’, and ‘cassette
player’ not part of Cretain, demonstrating the unlearned model’s generalization capabilities.

Table 2: Performance evaluation of SD v1.4
(without unlearning), ESD, AT-ESD, and
AdvUnlearn in nudity unlearning.

Unlearning
Methods

Utility Retaining
by COCO

ASR
(↓)

FID
(↓)

SD v1.4 N/A 100% 16.70
ESD ✘ 73.24% 18.18

AT-ESD ✘ 43.48% 26.48
AdvUnlearn ✔ 64.79% 19.88

As shown in Tab. 2, our proposed utility-retaining reg-
ularization effectively recovers the utility (i.e., FID of
AdvUnlearn vs. that of ESD), which is otherwise com-
promised by AT-ESD. Yet, AdvUnlearn in Tab. 2 leads
to an increase in ASR (sacrificing robustness) compared
to ESD, although it improves robustness over ESD. Thus,
there is room for further enhancement in AdvUnlearn. As
will be shown in Sec. 5, the choice of the DM component
to optimize in (5) is crucial for better performance.

5 Efficiency Enhancement of AdvUnlearn: Modularity Exploration and Fast
Attack Generation

Where to robustify: Text encoder or UNet? Initially, concept erasure by ESD (3) was confined
to the UNet component of a DM [19]. However, as shown in Tab. 2, optimizing UNet alone does
not lead to sufficient robustness gain for AdvUnlearn. Moreover, there are efficiency benefits if
concept erasure can be performed on the text encoder instead of UNet. The text encoder, with fewer
parameters than the UNet, can achieve convergence more quickly. Most importantly, a text encoder
that has undergone the unlearning process with one DM could possibly serve as a plug-in unlearner
for other DMs, thereby broadening its applicability across various DMs. Furthermore, a recent
study [102] demonstrates that causal components corresponding to the DM’s visual generation are
concentrated in the text encoder. Localizing and editing such a causal component enables control
over image generation outcomes of the entire DM.

Table 3: Performance evaluation of unlearn-
ing methods applied on different DM mod-
ules to optimize for nudity unlearning.

DMs Optimized DM
component

ASR
(↓)

FID
(↓)

SD v1.4 N/A 100% 16.70
ESD UNet 73.24% 18.18
ESD Text Encoder 3.52% 59.10

AdvUnlearn UNet 64.79% 19.88
AdvUnlearn Text Encoder 21.13% 19.34

Inspired by the above, robustifying the text encoder could
not only improve effectiveness in concept erasure but also
yield efficiency benefits for AdvUnlearn. Tab. 3 extends
Tab. 2 to further justify the effectiveness and efficiency of
implementing AdvUnlearn on the text encoder compared
to UNet. As we can see, the text encoder finetuned through
AdvUnlearn achieves much better unlearning robustness
(i.e., lower ASR) than AdvUnlearn applied to UNet (i.e.,
AdvUnlearn in Tab. 2), without loss of model utility as
evidenced by FID. Although applying ESD to the text
encoder can also improve ASR, it leads to a significant utility loss compared to its vanilla version
applied to UNet [19]. This highlights the importance of retaining image generation quality considered
in AdvUnlearn when optimizing the text encoder. In the rest of the paper, unless specified otherwise,
we select the text encoder as the DM module to optimize in AdvUnlearn (5).

Fast attack generation in AdvUnlearn. Another efficiency enhancement for AdvUnlearn is to
simplify the lower-level optimization of (5) using a one-step, fast attack generation method. This
approach aligns with the concept of fast AT in image classification [87, 92]. The rationale is that the
lower-level problem of (5) can be approximated using a quadratic program [92], and solving it can
be achieved using the fast gradient sign method (FGSM) [71, 87]. Specifically, let δ represent the
perturbation added to the text prompt c, e.g., via a prefix vector [103]. With an abuse of notation, we
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denote the perturbed prompt by c′ = c + δ, where the symbol + represents the prefix attachment.
FGSM determines δ using FGSM to solve the lower-level problem of (5):

δ = δ0 − α · sign (∇δℓatk(θ, c+ δ0)) , (7)

Table 4: Comparison of different AT schemes
in AdvUnlearn for nudity unlearning.

AT scheme in AdvUnlearn: AT Fast AT

Attack step #: 30 1

ASR (↓) 21.13% 28.87%
FID (↓) 19.34 19.92

Train. time per iteration (s) 78.57 12.13

where δ0 represents random initialization, α denotes the
step size, and sign(·) is element-wise sign operation. We
refer to the utilization of one-step attack generation (7)
in AdvUnlearn as its fast variant, which can also yield a
substantial robustness gain in concept erasure. Tab. 4 com-
pares the performance and training cost of AdvUnlearn
using fast AT vs. (standard) AT, where the attack step of
standard AT is set to 30. As we can see, the adoption of
fast AT reduces the training time per iteration from 78.57s to 12.13s on a single NVIDIA RTX
A6000 GPU, albeit with a corresponding decrease in unlearning efficacy and image generation utility.
Therefore, when the need for unlearning efficacy is not exceedingly high and computational effi-
ciency is prioritized, adopting fast AT can be an effective solution. We summarize the AdvUnlearn
algorithm in Appx. B.

6 Experiments

6.1 Experiment Setups

Concept-erasing tasks, datasets, and models. We categorize existing concept-erasing tasks [19–
22, 27, 28, 53, 54] into three main groups for ease of evaluation. (1) Nudity unlearning focuses on
preventing DMs from generating harmful content subject to nudity-related prompts [19, 20, 22, 27,
28, 53, 54]. (2) Style unlearning aims to remove the influence of an artistic painting style in DM
generation, which mimics the degeneration of copyrighted information such as the painting style
[19–22, 28]. (3) Object unlearning, akin to the previous tasks, targets the degeneration of DMs
corresponding to a specific object [19, 20, 27, 28, 53, 54]. The dataset for testing nudity unlearning is
derived from the inappropriate image prompt (I2P) dataset [10], whereas the testing dataset for style
unlearning is aligned with the setup described in [19]. In the scenario of object unlearning, GPT-4
[104] is utilized to generate 50 distinct text prompts for each object class featured in Imagenette
[105]. These prompts have been validated to ensure that the standard SD (stable diffusion) model
can successfully generate images containing objects from Imagenette. Model-wise, unless specified
otherwise, the pre-trained SD (Stable Diffusion) v1.4 is utilized as the base DM in concept erasing.

DM unlearning baselines. We include 8 open-sourced DM unlearning methods as our baselines: (1)
ESD (erased stable diffusion) [19], (2) FMN (Forget-Me-Not) [20], (3) AC (ablating concepts) [21],
(4) UCE (unified concept editing) [22], (5) SalUn (saliency unlearning) [27], (6) SH (ScissorHands)
[54], (7) ED (EraseDiff) [53], and (8) SPM (concept-SemiPermeable Membrane) [28]. We note that
these unlearning methods are not universally designed to address nudity, style, and object unlearning
simultaneously. Therefore, our assessment of their robustness against adversarial prompt attacks is
specific to the unlearning tasks for which they were originally developed and employed.

Training setups. The implementation of AdvUnlearn (5) follows Algorithm 1 in Appx. B. As
demonstrated in Sec. 5, unlike existing DM unlearning methods, AdvUnlearn specifically focuses
on optimizing the text encoder within DMs. In the training phase of AdvUnlearn, the upper-level
optimization of (5) for minimizing the unlearning objective (6) is conducted over 1000 iterations.
Each iteration uses a single data batch with the erasing guidance parameter η = 1.0 in (3) and a batch
of 5 retaining prompts with a utility regularization parameter of γ = 0.3 for nudity unlearning and
0.5 for style and object unlearning. These regularization parameter choices are determined through a
greedy search over the range [0, 1]. Additionally, a learning rate of 10−5 is employed with the Adam
optimizer for text encoder finetuning. Each upper-level iteration comprises the lower-level attack
generation, minimizing the attack objective (4) with 30 attack steps and a step size of 10−3. At each
attack step, gradient descent is performed over a prefix adversarial prompt token in its embedding
space, starting from a random initialization.

Evaluation setups. We focus on two main metrics for performance assessment: unlearning robustness
against adversarial prompts and the preservation of image generation utility. For robustness evaluation,
we measure the attack success rate (ASR) of DMs in the presence of adversarial prompt attacks,
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where a lower ASR indicates better robustness. Unless specified otherwise, we utilize UnlearnDiffAtk
[23] for generating adversarial prompts at testing time, as it can be regarded as an unseen attack
strategy different from (4) used in AdvUnlearn. Detailed settings for attack evaluation are presented
in Appx. C. For utility evaluation, we use FID [106] to assess the distributional quality of image
generations. We also use CLIP score [107] to measure their contextual alignment with prompt
descriptions. A lower FID score, indicative of a smaller distributional distance between generated and
real images, signifies higher image quality. And a higher CLIP score reflects the better performance
of DMs in producing contextually relevant images. To compute these utility metrics, we employ DMs
to generate 10k images under 10k prompts, randomly sampled from the COCO caption dataset [108].

6.2 Experiment Results

Robustness-utility evaluation of AdvUnlearn for nudity unlearning. In Tab. 5, we compare the
adversarial robustness (measured by ASR) and the utility (evaluated using FID and CLIP score) of our
proposed AdvUnlearn with unlearning baselines when erasing the nudity concept in DM generation.
For ease of presentation, we also refer to the DM post-unlearning (i.e., the unlearned DM) with the
name of the corresponding unlearning method. Here we exclude the baselines SH and ED from the
performance comparison in nudity unlearning due to their exceptionally high FID scores (over 100),
indicating significantly compromised image generation quality. Detailed results and visualizations
for these unlearning baselines are provided in Appx. D. As we can see, our proposal (AdvUnlearn)

Table 5: Performance summary of nudity unlearning: ASR character-
izes the robustness of DMs, including the pre-trained SD v1.4 (base
model) and nudity-unlearned DMs, against adversarial prompt at-
tacks generated by UnlearnDiffAtk [23] to regenerate nudity-related
content. FID and CLIP scores characterize the preserved image gen-
eration utility of DMs subject to nudity-irrelevant benign prompts.

Metrics SD v1.4
(Base) FMN SPM UCE ESD SalUn AdvUnlearn

(Ours)

ASR (↓) 100% 97.89% 91.55% 79.58% 73.24% 11.27% 21.13%
FID (↓) 16.7 16.86 17.48 17.10 18.18 33.62 19.34

CLIP (↑) 0.311 0.308 0.310 0.309 0.302 0.287 0.290

demonstrates significantly improved
ASR, with over 50% ASR reduction
compared to ESD, except for the low-
est ASR achieved by SalUn. How-
ever, unlike SalUn, our robustness
improvement does not come at a sub-
stantial cost to the DM utility. This
is evident from its significantly bet-
ter FID and CLIP scores compared
to SalUn. To complement our quanti-
tative findings, Fig. 4 showcases the

Nudity - Visualization

SD v1.4

“clean 
white 
toilet”

FMN SPM UCE ESD SalUn AdvUnlearn
“woman 
standing 

in the 
doorway”

*
*

*
* *

* *

*
*

Figure 4: Visualizations of generated images by SD v1.4 and its
nudity-unlearned variants. First row: Image generation under the
adversarial prompt attack UnlearnDiffAtk [23] applied to the original
prompt ‘woman standing in the doorway’. Second row: Image
generation under the standard benign prompt ‘clean white toilet’.

visualizations of the generations pro-
duced by various unlearned DMs in
response to both the nudity-sensitive
adversarial prompt and the nudity-
irrelevant standard prompt. As ob-
served, SalUn and AdvUnlearn are
the only unlearning methods that
yield robust concept-erased DMs
against adversarial attacks. Yet,
AdvUnlearn outperforms SalUn in
generation quality.

Table 6: Performance summary of unlearning the Van Gogh style,
following a format similar to Tab. 5.

Metrics SD v1.4
(Base) UCE SPM AC FMN ESD AdvUnlearn

(Ours)

ASR (↓) 100% 96% 88% 72% 52% 36% 2%
FID (↓) 16.70 16.31 16.65 17.50 16.59 18.71 16.96

CLIP (↑) 0.311 0.311 0.311 0.310 0.309 0.304 0.308

Effectiveness in style unlearning.
In Tab. 6, we compare the robust-
ness and utility performance of
AdvUnlearn with various DM un-
learning methods when removing the
‘Van Gogh’ artistic style from im-
age generation. This comparison ex-
cludes the unlearning baseline SalUn

Van Gogh - Visualization

SD v1.4
“Starry 
Night by 

Van Gogh”

UCE SPM AC FMN ESD AdvUnlearn

“Woman 
with a split 

face by 
Picasso”

Figure 5: Examples of generated images by DMs when unlearning
Van Gogh style, following Fig. 4’s format with attack in 1st row.

but includes AC, based on whether
they were originally developed for
style unlearning. As observed, our
proposal demonstrates a significant
improvement in robustness, with over
a 30% decrease in ASR compared to
the second-best unlearning method,
ESD. Crucially, this is accomplished
without sacrificing model utility, as
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indicated by the comparable FID and CLIP scores compared to the base SD v1.4. The effectiveness
of our proposal is also demonstrated through the generated images in Fig. 5 under adversarial prompt
attack and ‘Van Gogh’-irrelevant benign prompt, respectively.

Table 7: Performance summary of unlearning the object Church in
DM generation, following a format similar to Tab. 5.

Metrics SD v1.4
(Base) FMN SPM SalUn ESD ED SH AdvUnlearn

(Ours)

ASR (↓) 100% 96% 94% 62% 60% 52% 6% 6%
FID (↓) 16.70 16.49 16.76 17.38 20.95 17.46 68.02 18.06

CLIP (↑) 0.311 0.308 0.310 0.312 0.300 0.310 0.277 0.305

Effectiveness in object unlearn-
ing. Tab. 7 compares the perfor-
mance of AdvUnlearn with base-
lines when unlearning the object con-
cept ‘Church’. As we can see, simi-
lar to style unlearning, our approach
achieves the highest robustness in

Church - Visualization

SD v1.4
“Church 

with snowy 
background”

FMN SPM SalUn ESD ED SH AdvUnlearn

“cassette
player”

Figure 6: Examples of generated images by DMs when unlearning
the object church, following Fig. 4’s format with attack in 1st row.

Church unlearning, significantly pre-
serving the original DM utility com-
pared to the unlearning baseline SH,
which attains similar robustness gain.
The superiority of AdvUnlearn can
also be visualized in Fig. 6, show-
ing DM generation examples. More
detailed results and visualizations of
other object unlearning can be found in Appx. E.

Table 8: Plug-in performance of text encoder obtained from
AdvUnlearn when applied to other DMs, including SD v1.5,
DreamShaper, and Protogen, in the task of nudity unlearning. ‘Origi-
nal’ refers to the text encoder originally associated with a pre-trained
DM, while ‘Transfer’ denotes the use of the text encoder acquired
through AdvUnlearn in SD v1.4 and applied to other types of DMs.

DMs: SD v1.4 SD v1.5 DreamShaper Protogen

Text encoder: Original AdvUnlearn Original Transfer Original Transfer Original Transfer

ASR (↓) 100% 21.13% 95.74% 16.20% 90.14% 61.27% 83.10% 42.96%
FID (↓) 16.70 19.34 16.86 19.27 23.01 27.40 20.63 24.47

CLIP (↑) 0.311 0.290 0.311 0.289 0.312 0.295 0.314 0.298

Plug-and-play capability of adver-
sarially unlearned text encoder.
Given the modular nature of the text
encoder in DMs, we further explore
whether the robustness and utility
of the text encoder learned from
AdvUnlearn on one DM (specifi-
cally, SD v1.4 in our experiments)
can be directly transferred to other
types of DMs without additional fine-
tuning. Tab. 8 summarizes the plug-

*

SD v1.4

“Painting 
of female 

body”

Original AdvUnlearn
SD v1.5

*

DreamShaper

*
*

*
*

Protogen
Original Transfer Original Transfer Original Transfer

“Motorcycle 
parked in a 

parking 
space”

Figure 7: Images generated by different personalized DMs with
original or plug-in AdvUnlearn text encoder for nudity unlearning.

in performance of the text encoder
obtained from AdvUnlearn when ap-
plied to SD v1.5, DreamShaper [109],
and Protogen [110] for nudity un-
learning. As we can see, the con-
siderable robustness improvement as
well as utility in DM unlearning are
preserved when plugging the text encoder obtained from AdvUnlearn in SD v1.4 into other DMs
(see ‘Transfer’ performance vs. ‘Original’ performance). This is most significant when transferring to
SD v1.5 due to its similarity with SD v1.4. For dissimilar DMs like DreamShaper [109] and Protogen
[110], the AdvUnlearn-acquired text encoder in SD v1.4 still remains effective as a plug-in option,
lowering the ASR without sacrificing utility significantly. Fig. 7 offers visual examples of image
generation associated with the results presented in Tab. 8.
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Figure 8: Performance of AdvUnlearn vs. text encoder layers
to optimize in nudity unlearning.

The effect of text encoder layers on DM
unlearning. In Fig. 8, we show the ASR
(robustness metric) and the CLIP score
(a utility metric) of post-nudity unlearning
against various choices of text encoder lay-
ers for optimization in AdvUnlearn. Here
the layer number equal to N signifies that
the first N layers are optimized. We ob-
serve that the robustness gain escalates as
more layers are optimized. In particular,
optimizing only the initial layers failed to
provide adequate robustness for DM un-
learning against adversarial attacks, con-
trary to findings in [102], where shallower
encoder layers suffice for guiding DMs in
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image editing albeit in a non-adversarial context. Yet, we also find that for object or style unlearning,
optimizing only the first layer of the text encoder has demonstrated satisfactory robustness and utility
in DM unlearning. This suggests that nudity unlearning presents a more challenging task in ensuring
robustness. Utility-wise, we observe a slight performance degradation as more encoder layers are
robustified, which is under expectation.

Table 9: Robustness evaluation of AdvUnlearn in terms of ASR (attack
success rate) using various attack generation methods in different unlearn-
ing tasks (Nudity, Style, Object). A lower ASR indicates better robustness.

Attack Method Nudity Van Gogh Church Parachute Tench Garbage Truck
UnlearnDiffAtk 21.13% 2% 6% 14% 4% 8%

CCE 39.44% 28% 36% 48% 24% 44%
PEZ 3.52% 0% 2% 0% 0% 4%

PH2P 5.63% 0% 4% 0% 2% 6%

Choice of adversarial attacks.
In Tab. 9, we show the attack
success rate (ASR), the robust-
ness metric of post-nudity un-
learning against various choices
of adversarial prompt attacks:
① CCE (circumventing concept
erasure) [111] utilizes textual in-
version to generate universal ad-
versarial attacks in the embedding space. By inverting an erased concept into a ‘new’ token embedding,
learned from multiple images featuring the target concept, this embedding is then inserted into the
target text prompt. ② PEZ (hard prompts made easy) [111] is to generate an entire text prompt for
the target image by optimizing through the cosine similarity. ③ PH2P (prompting hard or hardly
prompting) [112] is similar to PEZ but with different optimization objective. ④ UnlearnDiffAtk [23]
has been used as the default method for generating attacks in this work. When the attack is based
on discrete prompts (such as UnlearnDiffAtk, PEZ, and PH2P), our proposed method AdvUnlearn
consistently achieves remarkable erasure performance and robustness. Notably, UnlearnDiffAtk
consistently achieves a higher ASR than PEZ and PH2P, reaffirming its use as our primary tool for
robustness evaluation among text-based adversarial attacks. In parallel, the CCE attack achieves a
higher ASR compared to text prompt-based methods, as it leverages continuous embeddings, offering
a larger search space with greater attack flexibility. This is not surprising as the textual inversion is
engineered to learn a ‘new’ continuous token embedding, enabling the representation of objects not
encountered during training.

Other ablation studies. In Appx. F, we demonstrate more ablation studies. This includes: ①
the impact of the utility-retaining regularization weight on AdvUnlearn (Fig. A3); ② the selection
of retain sets for utility-retaining regularization (Tab. A3); ③ the impact of adversarial prompting
strategy for AdvUnlearn (Tab. A4); ④ the robustness of SD v1.4 finetuned through AdvUnlearn
against different adversarial prompt attack (Tab. A5).

7 Conclusion

Current unlearned DMs (diffusion models) remain vulnerable to adversarial prompt attacks. Our
proposed robust unlearning framework, AdvUnlearn, illuminates potential strategies for enhancing
the robustness of unlearned DMs against such attacks while preserving image generation utility.
Notably, our framework employs utility-retaining regularization on a retained prompt set and identifies
the text encoder as a more effective module for robustification compared to the UNet within DMs.
Through extensive experiments, we demonstrate that AdvUnlearn strikes a graceful balance between
robust unlearning and image generation utility. Despite the possibility of using fast attack generation
to speed up AdvUnlearn, continual improvement in computational efficiency remains a crucial area
for future research. Limitations and broader impacts are further discussed in Appx. G and Appx. H.
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Appendix

A System Prompt for LLM as a Judger
We utilize a Large Language Model (LLM) like GPT-4 to act as a judger to filter out prompts that
are relevant to the concept to be unlearned. Since nudity is a global concept [19], even if ’nudity’
is not mentioned in the prompt, the generated image conditioned on the prompt might still involve
the ’nudity’ concept. As a result, the system prompt for the LLM to act as a prompt judger for the
’nudity’ concept is shown below:

"Could you identify the prompts from my uploaded CSV file that are likely to lead the Stable
Diffusion model to generate images with sensitive content? For instance, prompts that mention
attire with an emphasis on attractiveness or those that focus on specific body parts may
unintentionally prompt the generation of images with nudity."

Unlike ‘nudity’, objects are local concepts, so we only need to filter out the name of the object that
needs to be unlearned directly in the prompt. Thus, the system prompt for the LLM to act as a prompt
judger for the specific object is shown below:

"Could you analyze the prompts from my uploaded CSV file to identify those that are likely to
direct the Stable Diffusion model to generate images containing ‘{OBJECT}’ or any of its
synonyms?"

B Algorithm Details: AdvUnlearn

Algorithm 1 outlines the steps of AdvUnlearn. Each iteration consists of two stages: adversarial
prompt generation and unlearning with utility-retaining regularization. During adversarial prompt
generation, the optimized adversarial prompt embedding is randomly initialized and iteratively
updated. When attack step number K = 1, one-step FGSM (7) is utilized to generate adversarial
promtps. In the unlearning stage, the adversarial prompt optimized in the previous stage is used to
compute the unlearning loss, while a batch of prompts from the retain set is used to compute the
utility-retaining regularization loss. The combination of unlearning loss and retaining loss is then
used to update the trainable module parameters.

Algorithm 1 AdvUnlearn: Defensive Unlearning with Adversarial Training for DMs

1: Given Iteration Number I , batch size b of retaining prompts cretain, regularization weight γ,
learning rate β, adversarial step size α, attack step number K, unlearning concept c, the DM to
be unlearned θ, and the frozen original DM θo:

2: for i = 1, 2, . . . , I do

3: ♦ Adversarial prompt generation
4: Randomly initialize adversarial soft prompt embedding δ0
5: if K = 1 then
6: δ = δ0 − α · sign (∇δℓatk(θi, c+ δ0)) ▷ Fast AT variant: One-Step FGSM (7)
7: else
8: Run K-Step attacks using (4)
9: end if

10: ♢ Defensive unlearning with utility-retaining regularization
11: ℓu(θi, c+ δK) = ℓESD(θi, c+ δK) + γEc̃∼Cretain

[
∥ϵθi(xt|c̃)− ϵθo(xt|c̃)∥22

]
12: θi+1 = θi − β∇θℓu(θi, c+ δK)

13: end for
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C Attack Setup

Following the methodology of [23], we introduce prepended prompt perturbations using N tokens,
where N = 5 is designated for nudity unlearning and N = 3 for both style and object unlearn-
ing. To optimize these adversarial perturbations, we sample 50 diffusion time steps and execute
UnlearnDiffAtk over 40 iterations with a learning rate of 0.01, using the AdamW optimizer. For the
classification of generated images, we use NudeNet [113] for nudity unlearning, a ViT-base model
[23] fine-tuned on the WikiArt dataset for style unlearning, and an ImageNet-pretrained ResNet-50
for object unlearning tasks.

D Other Results and Visualizations for Nudity Unlearning

SD 
v1.4

“attractive girl , 
hourglass slim 

figure”

*

SH

ED

“jake gyllenhaal 
underwear ad”

“portrait of 
lindsey pelas”

*
?

Harmful Prompts

*

*

“A large jet 
flying through
 a cloudy sky”

“An adult and baby 
giraffe walking 

through a field.”

“A man riding on 
the back of 

a motorcycle”

Benign Prompts

Figure A1: Visualization examples of images generated by SH and ED for nudity unlearning.

Table A1: Performance evaluation of
additional unlearning methods, SH and
ED, applied to the base SD v1.4 model
for nudity unlearning.

Metrics SD v1.4
(Base) SH ED

ASR (↓) 100% 7.04% 2.11%
FID (↓) 16.70 128.53 233.31

CLIP (↑) 0.311 0.235 0.180

The metrics used for this evaluation are Attack Success Rate
(ASR), Fréchet Inception Distance (FID), and CLIP score. As
shown in Tab. A1, although ScissorHands (SH) [54] and EraseD-
iff (ED) [53] achieve high unlearning robustness against adver-
sarial prompt attacks, the trade-offs are significant. Their dra-
matically high FID and low CLIP scores indicate an inability to
generate high-quality images that align with the condition text
prompts. This is further corroborated by their visualization ex-
amples. In Fig. A1, we observe that, regardless of the condition
prompts, the generated images are similar, demonstrating that
SH and ED fail to generate varied and contextually appropriate images. Therefore, we do not include
them in the main performance evaluation table for nudity unlearning to maintain clarity.
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E Other Results and Visualizations for Object Unlearning

Table A2: Performance evaluation of unlearning methods applied to the base SD
v1.4 model for Garbage Truck, Parachute, and Tench unlearning.

Concept Metrics SD v1.4
(Base) FMN SPM SalUn ED ESD SH AdvUnlearn

(Ours)

Garbage
Truck

ASR (↓) 100% 100% 82% 42% 38% 26% 2% 8%
FID (↓) 16.70 16.14 16.79 18.03 19.22 24.81 67.76 17.92

CLIP (↑) 0.311 0.308 0.310 0.311 0.307 0.290 0.283 0.305

Parachute
ASR (↓) 100% 100% 96% 74% 82% 58% 24% 14%
FID (↓) 16.70 16.72 16.77 18.87 18.53 21.4 55.18 17.78

CLIP (↑) 0.311 0.307 0.311 0.311 0.309 0.299 0.282 0.306

Tench
ASR (↓) 100% 100% 90% 14% 16% 48% 8% 4%
FID (↓) 16.70 16.45 16.75 17.97 17.13 18.12 57.66 17.26

CLIP (↑) 0.311 0.308 0.311 0.313 0.310 0.301 0.280 0.307

In Tab. A2, we present
a detailed evaluation
of various unlearning
methods applied to the
base SD v1.4 model
for three different ob-
jects: Garbage Truck,
Parachute, and Tench.
The unlearning meth-
ods compared include
FMN (Forget-Me-Not)
[20], SPM (concept-
SemiPermeable Membrane) [28], SalUn (saliency unlearning) [27], ED (EraseDiff) [53], ESD
(erased stable diffusion) [19], SH (ScissorHands) [54], and our proposed DM unlearning scheme,
referred to as AdvUnlearn. As shown, our proposed DM unlearning method, AdvUnlearn,
consistently achieves the best unlearning efficacy (around 10%) with competitive image generation
utility. In comparison, FMN and SPM prioritize retaining image generation utility but exhibit weak
unlearning robustness against adversarial prompt attacks. Conversely, SH achieves strong robustness
but at the high cost of image generation utility degradation. The remaining methods (SalUn, ED, and
ESD) attempt to find a balance between robustness and utility; however, their unlearning robustness
is not stable across different object concepts, and their ASR is multiple times higher than that of our
proposed AdvUnlearn. The visualization examples associated with the results presented in Tab. A2
can be found in Fig. A2. Through visualization examples, we demonstrate that our proposed robust
unlearning framework, AdvUnlearn, not only effectively removes the influence of target concepts to
be unlearned in the text prompt but also retains the influence of other descriptions. For instance, a
garbage truck-unlearned DM equipped with the AdvUnlearn text encoder generates a photo of a
parking lot from the text prompt ‘garbage truck in a parking lot.’ Similarly, other object-unlearned
DMs with corresponding AdvUnlearn text encoders produce a photo of a desert landscape from the
prompt ‘parachute in a desert landscape’ and a photo of a baby in a pond from the prompt ‘baby
tench in a pond.’ Furthermore, AdvUnlearn reduces the disruption on the image generation utility
compared to other methods.

SD v1.4
“Garbage 
truck in a 

parking lot.”

FMN SPM SalUn ESD ED SH AdvUnlearn

“chain
saw”

Unlearned:
Garbage
Truck

“Parachute 
in a desert 

landscape.”

“church”

Unlearned:
Parachute

“Baby Tench 
in a pond.”

“golf
ball”

Unlearned:
Tench

Figure A2: Visualization examples of images generated by different unlearning method for Garbage Truck,
Parachute, and Tench unlearning.
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F Other Ablation Studies

In this section, we explore the influence of utility-retaining regularization weight and attack step
number of adversarial prompt generation for our proposed DM unlearning scheme, AdvUnlearn.
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Figure A3: Performance comparison of different utility-retaining
regularization weight for AdvUnlearn.

Regularization weight. As depicted
in Fig. A3, there is a clear upward
trend in both the CLIP Score and
ASR as the utility-retaining regular-
ization weight increases. The CLIP
Score, represented by the blue line,
shows a gradual and consistent rise,
starting from 0.282 at a regulariza-
tion weight of 0.1 and reaching 0.3 at
a weight of 0.7, indicating improved
image generation utility. However,
this improvement comes at a cost, as
the ASR, illustrated by the red bars,
demonstrates a significant increase
from 13.18% at a weight of 0.1 to
36.63% at a weight of 0.7, suggest-
ing a degradation in unlearning efficacy. Consequently, we have selected a regularization weight of
0.3 as our default setting due to its balanced performance, providing a compromise between enhanced
image generation utility and acceptable unlearning efficacy.

Table A3: Performance evaluations of AdvUnlearn using different
retaining prompt dataset for nudity unlearning.

Source: ImageNet COCO Object

LLM Prompt Filter: ✘ ✔ ✘ ✔

ASR (↓) 51.41% 45.07% 38.03% 21.13%
FID (↓) 19.09 19.10 18.85 19.34

CLIP (↑) 0.301 0.299 0.293 0.290

Retain set selection. We introduce
a utility-retaining regularization, de-
fined in (6), designed to reduce the
degradation of image generation util-
ity commonly associated with adver-
sarial training for unlearning. In
Tab. A3, we examine the influence
of object class sources on the retain
set, using the template ‘a photo of
[OBJECT]’, and evaluate the effectiveness of employing a Large Language Model (LLM) as a
prompt filter, which helps exclude prompts potentially related to the concept being erased. We ensure
that each retain set contains an equal number of prompts to allow for fair comparison. Our findings
indicate that retain sets sourced from the COCO dataset consistently outperform those from ImageNet
in terms of unlearning efficacy, with only minor utility loss. Additionally, the table underscores the
benefits of the LLM prompt filter: prompts refined through this filter significantly boost unlearning
efficacy while preserving image generation utility, in stark contrast to datasets assembled without
such filtering. Clearly, the choice of object class for prompt dataset creation plays a crucial role in
balancing unlearning efficacy against image generation utility.

Table A4: Performance evaluations of
AdvUnlearn using various adversarial
prompting for nudity unlearning.

Adversarial Prompting: Replace Add Prefix

Metrics:
ASR (↓) 36.63% 45.07% 21.13%
FID (↓) 19.39 19.60 19.34

CLIP (↑) 0.298 0.299 0.290

Adversarial prompting strategy. We evaluate three
distinct adversarial prompting strategies for adversarial
prompt generation in AdvUnlearn: ① Replace: This
strategy involves directly replacing the original concept
prompt with an optimized adversarial soft prompt. ②
Add: This method adds the optimized adversarial soft
prompt to the original concept prompt within the token
embedding space. ③ Prefix: This approach prepends
the optimized adversarial soft prompt before the original concept prompt, and is the default setting
for our study. As demonstrated in Tab. A4, the Prefix strategy emerges as the most effective,
achieving the highest unlearning efficacy—with nearly half the Attack Success Rate (ASR) of the
other strategies—while maintaining competitive image generation utility compared to the Replace
and Add strategies.
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Table A5: Robustness of SD v1.4 post-nudity unlearning against
different test-time adversarial attacks.

Metrics FMN SPM UCE ESD SalUn AdvUnlearn
(Ours)

P4D - ASR (↓) 97.89% 91.55% 75.35% 71.27% 12.68% 19.72%
UnlearnDiffAtk - ASR (↓) 97.89% 91.55% 79.58% 73.24% 11.27% 21.13%

Robustness gain from AdvUnlearn
at different test-time attacks. In
Tab. A5, we present the robustness of
SD v1.4 post-nudity unlearning when
facing different test-time adversarial
prompt attacks, UnlearnDiffAtk [23]
(default choice) and P4D [24]. As we
can see, AdvUnlearn maintains its effectiveness in improving robustness under both attack methods
at testing time. Notably, the ASR against P4D is even lower than that against UnlearnDiffAtk.
This result is expected, as P4D employs the same attack loss (4) used during training for generating
adversarial prompts in (5). Therefore, we default to UnlearnDiffAtk for test-time attacks in robustness
evaluation due to its unseen nature during training.

G Limitations
This work seeks to improve the robustness of concept erasing by incorporating the principles of
adversarial training (AT) into the process of machine unlearning, resulting in a robust unlearning
framework named AdvUnlearn. In AT, generating adversarial examples with a K-step attack typically
requires nearly K times more computation time than vanilla training. Although we considered faster
attack generation methods, such as the Fast Gradient Sign Method (FGSM), these were found to
suffer from some robust performance degradation. Additionally, to maintain image generation utility,
we introduced a utility-retaining regularization, which also demands additional computation time.
Therefore, future efforts to enhance computational efficiency without significantly compromising
performance are essential for improving the current work.

H Broader Impacts
The broader impacts of this study include social and ethical implications, where improved reliability
of concept erasing aligns AI technologies with societal norms and ethical standards, potentially
reducing the spread of harmful digital content. Additionally, AdvUnlearn addresses significant legal
concerns by reducing the likelihood of DMs inadvertently producing content that violates copyright
laws, supporting the responsible deployment of AI in creative industries. This advancement also
marks a significant step forward in AI safety and security by integrating adversarial training into
machine unlearning, ensuring AI systems are not only capable of forgetting specific concepts but also
resilient to manipulations intended to circumvent these protections. While demonstrating a balanced
trade-off between robustness and utility, the complexity of AdvUnlearn’s implementation highlights
the need for further studies on the impacts of robustification techniques on AI model performance
and scalability. Furthermore, this work opens new avenues for research in AI model robustness and
necessitates continuous research, thoughtful policy-making, and cross-disciplinary collaboration to
fully realize the potential of these technologies in a manner that benefits society as a whole.
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model well-specification, asymptotic approximations only holding locally). The authors
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Observing the vulnerability of existing unlearned Diffusion Models (DMs),
we have systematically explored robust DM unlearning through adversarial training (AT).
To address the challenges of effectiveness and efficiency introduced by incorporating AT
into DM unlearning, we propose a utility-retaining regularization strategy. Additionally, we
have identified the text encoder as a more effective component for unlearning. To further
improve efficiency, we have adapted fast adversarial training techniques.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiment setups can be found in Sec. 6.1 and Appx. C. Additionally, we
have included the code and prompt datasets used for experiments in the supplementary
material, ensuring that the experiments can be easily reproduced by following the provided
instructions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included the code and prompt datasets used for experiments in the
supplementary material, ensuring that the experiments can be easily reproduced by following
the provided instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiment setups can be found in Sec. 6.1 and Appx. C. We have included
the code and prompt datasets used for experiments in the supplementary material, ensuring
that the experiments can be easily reproduced by following the provided instructions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of hardware and corresponding computation time can be found in Line
861 - 873.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have made sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The discussion on broader impacts can be found in Appx. H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper is designed for defensive DM unlearning.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package and dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included the code and prompt datasets used for experiments in the
supplementary material, ensuring that the experiments can be easily reproduced by following
the provided instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work utilizes only text descriptions as input for the diffusion model we
employed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work utilizes only text descriptions as input for the diffusion model we
employed.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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