
StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Ya Jiang 1 2 Chuxiong Wu 1 Massieh Kordi Boroujeny 2 Brian Mark 2 Kai Zeng 2

Abstract
Watermarking for large language models (LLMs)
offers a promising approach to identifying AI-
generated text. Existing approaches, however,
either compromise the distribution of original gen-
erated text by LLMs or are limited to embedding
zero-bit information that only allows for water-
mark detection but ignores identification. We pro-
pose StealthInk, a stealthy multi-bit watermarking
scheme that preserves the original text distribu-
tion while enabling the embedding of provenance
information, such as userID, TimeStamp, and
modelID, within LLM-generated text. This en-
hances fast traceability without requiring access
to the language model’s API or prompts. We de-
rive a lower bound on the number of tokens neces-
sary for watermark detection at a fixed equal error
rate, which provides insights on how to enhance
the capacity. Comprehensive empirical evalua-
tions across diverse tasks highlight the stealthi-
ness, detectability, and resilience of StealthInk,
establishing it as an effective solution for LLM
watermarking applications.

1. Introduction
Large language models (LLMs) like ChatGPT (OpenAI,
2022) or the open-sourced LLaMA (Touvron et al., 2023)
and Gemini (Team et al., 2023), which have the remarkable
ability to generate high-quality text, have become a crucial
part of various text generation APIs, such as question an-
swering, blog creation, and programming assistance (Austin
et al., 2021; Perkins, 2023). However, these sophisticated
language models’ increased availability and capabilities
present a significant concern. A key concern is their po-
tential for facilitating the creation of fake news, which could
be disseminated at scale, influencing public opinion and

1Department of Computer Science, George Mason University,
Fairfax, VA, USA 2Wireless Cyber Center, College of Engineering
and Computing, George Mason University, Fairfax, VA, USA.
Correspondence to: Ya Jiang <yjiang25@gmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

democratic processes more easily. Moreover, there is a risk
of misuse of LLMs for scams or academic plagiarism. To
tackle these issues, it is crucial to implement regulations and
technical protections to encourage fair and responsible us-
age. Major providers of LLMs, including OpenAI, Google,
and Meta, have committed to watermarking text generated
by their models as part of this effort (Bartz & Hu., 2023).

Several papers suggest incorporating invisible watermarks
into text to detect AI-generated content (Kirchenbauer et al.,
2023; 2024; Christ et al., 2024; Kuditipudi et al., 2024; Hu
et al., 2024; Wang et al., 2024; Zhao et al., 2024; Aaronson,
2023; Wu et al., 2024). However, detecting whether text is
watermarked is insufficient to prevent misuse by malicious
users.

Rather than solely embedding a zero-bit watermark to iden-
tify AI-generated content, it is crucial to employ a multi-bit
watermark to track text provenance. Previous multi-bit wa-
termarking schemes can be categorized into two groups: 1)
undetectable or distortion-free watermarking, in which the
watermarked text has exactly the same distribution as the
non-watermarked text, e.g., (Kordi Boroujeny et al., 2024)
and (Zamir, 2024), and 2) watermarking that allows some
distortion of the output distribution (Wang et al., 2024; Fer-
nandez et al., 2023; Yoo et al., 2024; Qu et al., 2024). A
notable issue not tackled by the schemes in the first group is
robustness against modifications made to the text generated
by these methods.

In the second group, (Wang et al., 2024) use a proxy lan-
guage model to guide LLM text generation according to the
message, requiring extra resources and distorting the LLM’s
distribution. Other works (Fernandez et al., 2023; Qu et al.,
2024) cyclically shift vocabulary permutations according
to the message and bias tokens in a green list to enable
efficient multi-bit decoding. However, overlapping shifts
introduce interference, weakening message distinctiveness
and statistical separation. To counteract this, a stronger bias
is needed for reliable extraction, but this increases text dis-
tortion and reduces stealthiness. The multi-bit watermarking
schemes proposed by (Yoo et al., 2024) essentially extend
the reweighting approach outlined in (Kirchenbauer et al.,
2023). This approach biases the frequency of certain words
or phrases to embed the watermark during the generation
process, such that the output distribution deviates from the

1

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

distribution of the LLM. Thus, the naturalness and readabil-
ity of the LLM output may be disrupted, reducing the utility
and effectiveness of the LLM for the users. Furthermore,
due to lack of stealthiness, these schemes (Fernandez et al.,
2023; Qu et al., 2024; Yoo et al., 2024) are vulnerable to the
watermark spoofing attack (Jovanović et al., 2024) whereby
an attacker forges a text watermarked by the LLM at low
cost without knowing the secret key of the LLM by analyz-
ing the distribution of n-grams between watermarked and
non-watermarked texts. This poses a significant security
risk, as malicious actors could fabricate harmful content
that appears to be verified by a trusted model, thereby com-
promising the credibility of watermark-based verification
systems. In contrast, a stealthy or undetectable watermark
significantly increases the difficulty for adversaries attempt-
ing to manipulate or forge watermarked text, enhancing
the resilience of the system against spoofing attacks and
strengthens the reliability of watermark-based authentica-
tion.

We propose a novel reweighting strategy for multi-bit water-
marking that satisfies all of the properties listed in Table 1,
which compares our proposed StealthInk scheme with SOTA
multi-bit watermarking schemes. The stealthiness property
implies that the watermarked text is statistically difficult
to distinguish from non-watermarked text without the wa-
termark key. Efficiency refers to the low computational
complexity of the encoder and decoder. High AUC implies
low false positive and false negative rates in detecting the
watermark. For multi-bit watermarking, high bit accuracy
in decoding the hidden message is an important property. In
Section 5, we provide a theoretical derivation of the mini-
mum number of tokens necessary for watermark detection
at a fixed equal error rate, i.e., the false positive and false
negative rates are equal, which provides insights for capacity
enhancement.

Table 1. Comparison with SOTA multi-bit LLM watermarking
schemes.
A: (Kordi Boroujeny et al., 2024; Zamir, 2024); B: (Wang et al.,
2024; Fernandez et al., 2023); C: (Yoo et al., 2024; Qu et al.,
2024).

A B C StealthInk
Stealthiness ✓ ✗ ✗ ✓

Efficiency ✓ ✗ ✓ ✓

High AUC ✓ ✓ ✓ ✓

High bit accuracy ✓ ✓ ✓ ✓

Robustness ✗ ✓ ✓ ✓

We empirically compare StealthInk with existing meth-
ods (Yoo et al., 2024; Qu et al., 2024; Fernandez et al.,
2023), demonstrating its superiority in detection, extraction,
text quality, and stealthiness. StealthInk achieves an AUC
of 0.98 and a bit accuracy of 0.92 when embedding 24-bit
messages in 300 tokens. In contrast, prior methods either
degrade text quality for better detectability (Yoo et al., 2024;
Qu et al., 2024) or sacrifice detectability to maintain qual-

ity (Fernandez et al., 2023), while also lacking stealthiness
and being vulnerable to spoofing. StealthInk ensures robust
detection, high text quality, and enhanced security, making
it resilient against attacks.

2. Preliminaries
Notation: We first establish a few essential notations. Let
V denote the vocabulary set and |V | its size. We use x1:L to
denote the sequence of L tokens {x1, . . . ,xL}; x:i denotes
the first i elements while x−i: represents the last i elements.
Denote the prompt as a and the likelihood of generating an
imminent token xL+1 ∈ V given the prompt and current
context by PO(xL+1 | a,x1:L). Due to the autoregressive
model of operation that an LLM adopts, the joint probability
of producing L tokens spanning from x1 to xL is given by

PO(x1:L | a) =
L∏

i=1

PO(xi | a,x1:i−1).

Like other LLM watermarking schemes, our approach uti-
lizes pseudorandom functions (PRFs) (Goldreich et al.,
1986) to generate an i.i.d. watermark cipher θ with a uni-
form distribution. Specifically, θ is a permutation of the
vocabulary V , derived by seeding the PRF with the water-
mark key sk ∈ SK and the texture key s, i.e., the context
n-grams x−h: ∈ V h. This results in an ordered sequence of
tokens θ = (t1, . . . , tk, . . . , t|V |), where tk is the kth token
in the permutation. We denote an m-bit watermark message
as M ∈ M = {0, 1, . . . , 2m − 1}. In addition, we define
PM
W (xL+1 | a,x1:L, θL) as the watermarked probability

distribution for generating the (L+ 1)-th token.

3. Threat model
Following (Jovanović et al., 2024), the model owner deploys
an LLM LMmo with a watermarking scheme and a water-
mark key sk. We assume the attacker has only black-box
access (e.g., API access) to full generations of LMmo and is
aware of the presence of the watermark behind the API. In
line with standard security assumptions (Kerckhoffs’ princi-
ple), we assume that the attacker knows all parameters of
the watermarking scheme, but not sk.

Editing attacks To avoid watermark detection, some attack-
ers could try to edit the text while ensuring text quality. In
that case, after obtaining the response from the LLM, attack-
ers could employ straightforward text modification, such
as substitution, insertion, and deletion, while ensuring the
preservation of semantics. This method aims to subtly alter
the content to evade detection, making it challenging for
conventional security measures to identify the modified text.
Distinct from modification attacks, in paraphrasing attacks,
the attackers focus on rephrasing the text rather than making

2

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

direct modifications. This involves rearranging sentence
structures, changing the order of words, or altering gram-
matical constructions to achieve a different phrasing while
preserving the underlying semantics. The intent is to create
a response that is different but retains the core meaning,
which complicates the task of identifying the manipulated
content.

Watermark spoofing attacks. Targeting distribution-
modified watermarking schemes that boost green-list tokens
by adding δ to their logits (Kirchenbauer et al., 2023; 2024;
Zhao et al., 2024; Yoo et al., 2024; Qu et al., 2024), Jo-
vanovic et al. (Jovanović et al., 2024) introduce watermark
spoofing. Here, an attacker queries LMmo minimally to
approximate its watermarking rules based on sk, enabling
the forgery of text detected as watermarked, thus damaging
the LLM provider’s reputation. This attack assumes access
to an auxiliary model LMatt—a trivial condition given the
abundance of open models.

(Jovanović et al., 2024) spoof non-stealthy zero-bit water-
marks by identifying distribution differences between water-
marked and non-watermarked text. For instance, (Kirchen-
bauer et al., 2023) boost logits of tokens in the first half of a
permutation, increasing their selection likelihood. As a re-
sult, certain tokens after context n-grams x−h: consistently
have higher probabilities than in a non-watermarked LLM.

However, multi-bit watermarks embed diverse signals across
tokens. When m = 1, some tokens carry signal 0, others
signal 1, creating varying bias directions. This additional
complexity makes spoofing multi-bit watermarks more chal-
lenging. In Section 6, we investigate the potential to extend
the stealing attack proposed by (Jovanović et al., 2024) to
multi-bit watermarking schemes.

4. Methodology
We propose a multi-bit and stealthy watermarking scheme,
StealthInk, which uses a novel token sampling probability
reweighting strategy to embed information in the sampled
tokens from randomized vocabulary permutations. We dou-
ble the probabilities of certain tokens while ensuring that
several others have a probability of zero, thus preserving
the expected distribution over the random space of permu-
tation. The tokens with zero probability, referred to as red
tokens, are never sampled, enabling watermark detection
and information bit extraction through statistical tests. In
this section, we will first extend the stealthy concept from
zero-bit watermarking to multi-bit watermarking, and then
describe StealthInk in detail.

4.1. Stealthy multi-bit watermarking

We adopt the definition of a stealthy or unbiased water-
mark used in (Hu et al., 2024; Wu et al., 2024) and ex-
tend the concept to multi-bit watermarking. Let Θ denote

a set of watermark ciphers and let PΘ denote a probabil-
ity distribution defined on Θ. We assume that PΘ is the
uniform distribution on Θ since θ ∈ Θ is determined by
a PRF. Let ∆V denote the set of all possible probability
distributions on V . We then define reweighting function
F (θ,M,PO) : Θ×M×∆V → R|V |+1, which generates
the watermarked text with embedded message M .

Definition 4.1. (Stealthy or unbiased multi-bit watermark)
After embedding M ∈ M, the watermarked distribution,
PM
W , determined by the reweighting function F (θ,M,PO)

is stealthy or unbiased if for all PO ∈ ∆V , Eθ∼PΘ
[PM

W] =
PO, where PM

W = G(F (θ,M,PO)) ∈ ∆V and G is a
difference operator that transforms a cumulative vector into
a discrete probability distribution over the vocabulary.

Definition 4.1 establishes the unbiasedness of the water-
marked distribution for a single generated token. We further
define the unbiasedness of the watermarked distribution for
texts. Note that for a single response where M is given
and fixed, stealthiness or unbiasedness is not relevant, as
a user cannot infer a probability distribution from just one
output. The concept only becomes meaningful when con-
sidering multiple responses over time, where the message
changes and is random due to metadata variations (e.g.,
userID,TimeStamp).

In the following, to define the stealthiness over K pairs
of prompt and response, we use bold lowercase ak for the
kth prompt and xk = (xk

1 , . . . , x
k
Lk) to denote a response

of a sequence of Lk tokens in the kth response. The em-
bedded message in the kth response is denoted Mk, and
θk = (θk1 , . . . , θ

k
Lk) represents the sequence of vocabulary

permutations used during generation. The watermarked
probability distribution for generating the entire text xk is
denoted as Pwm(xk | ·).
Definition 4.2 (K-shot stealthy watermark). Let
{ak,xk}Kk=1 be K prompt–response pairs, with aforemen-
tioned notations, the watermarking scheme is said to be
K-shot stealthy if the expectation of joint distribution over
the K generations under watermarking matches the original
model’s joint distribution:

Eθ1:K ,M1:K [A] =

K∏
k=1

PO(x
k | ak), (1)

where

A =

K∏
k=1

Pwm

(
xk | ak,Mk,θk,a1:k−1,x1:k−1,M1:k−1

)
.

The following theorem illustrates the condition when K-
shot stealthiness holds. See the proof in Appendix B.

Theorem 4.3. For any prompt ak and the response xk, if
the sequence of ciphers θk is independent, and each token

3

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

is generated with unbiasedness, then the K pairs of prompts
a1:K and responses x1:K are K-shot stealthy.

If two seeds applied to the PRF are different then the
two generated watermark ciphers, say θk

i and θk
j (i, j ∈

[1, Lk], i ̸= j), will “look” random and independent.
To ensure the independence of θk, intuitively, when
the same seed is encountered during generation of xk,
the original distribution PO(x

k
i |ak,xk

1:i−1) should be
used. Otherwise, the reweighted probability distribution
PMk

W (xk
i |ak,xk

1:i−1,θ
k
i) is applied. Therefore, the prob-

ability distribution of generated tokens either follows the
original distribution or an unbiased distribution. In that case,
according to Theorem 4.3, the watermarked probability dis-
tribution of multiple pairs of prompts and responses can be
preserved.

The property of K-shot stealthiness ensures that the wa-
termark remains imperceptible to both users and potential
attackers, even if they are aware of the original distribu-
tion PO. Specifically, it makes watermark spoofing attacks
more difficult for attackers to successfully execute by distin-
guishing between the watermarked text distribution and the
non-watermarked text distribution, as evaluated in Section 6.
Moreover, preserving the text distribution inherently implies
maintaining the quality of the generated text.

4.2. StealthInk

Notation: We define γM = M · γ, where γ = 2−m, to map
M to an interval in a permutation θ. Consequently, γM ∈
{0, 2−m, 21−m, . . . , 1− 2−m}. Tokens within the interval
associated with M are indexed as1 θ[γM |V | : (γM +γ)|V |].
To generate the ith token, given the original probability
distribution P i

O and the permutation θi seeded by x−h:, an
axis ranging from 0 to 1 can be constructed. Along this axis,
the tokens are arranged in the order defined by θi, occupying
positions proportional to their respective probabilities. By
denoting Xk =

∑k
j=1 P

i
O(tk|a,x1:i−1, θi), we can define

Xk−1 and Xk as the left and right cumulative probabilities
corresponding to token tk, which is the kth token in θi. Then
the probability of tk under P i

O is Xk −Xk−1.

Next, define α to be sum of the probabilities of the tokens
t1, t2, . . . , tγM |V |, under probability distribution P i

O with
permutation θi:

α =

γM |V |∑
j=1

P i
O(tj |a,x1:i−1,θi) = XγM |V |, (2)

i.e., α is the left cumulative probability corresponding to the

1With slight abuse of notation, for a permutation θ =
(t1, . . . , tk, . . . , t|V |), we denote the subsequence (ta, . . . , tb) as
θ[a : b] and we assume that the ceiling operation is applied to
indices, e.g., as an index, γM |V | is interpreted as ⌈γM |V |⌉.

γM |V |-th token. Similarly, define

β =

(γM+γ)|V |∑
j=1

P i
O(tj |a,x1:i−1,θi) = X(γM+γ)|V |, (3)

i.e., β is the right cumulative probability corresponding to
the (γM + γ)|V |-th token. Let β̄ = 1− β and ᾱ = 1− α.

Fig. 1 presents a simplified example of a StealthInk encoder
for embedding a message of 8 bits. The message is formed
as a MsgSeq, which is comprised of H message chunks and
we refer to the index of the chunk as pos ∈ {0, 1, . . . ,H −
1}. Each message chunk carries an m-bit signal. Therefore,
MsgSeq carries an Hm-bit signal. In Fig. 1, m = 2,
H = 4, and γ = 2−m = 0.25. To enhance the capacity, we
leverage the position allocation approach in MPAC, which
allocates each token pseudorandomly onto a message chunk
of MsgSeq to be embedded.

As illustrated in Fig. 1, given a prompt, StealthInk first
derives the texture key using the last n-grams of the prompt
(in this case, h = 3). The watermark key and texture key are
then combined to form a seed for a PRF, which generates
a permutation over the vocabulary set V . This seed is also
used to choose a position pos, determining the message
chunk to embed at the current generation step.

In Fig. 1, pos = 1, meaning that the corresponding message
chunk “10” (i.e., M = 1) is selected for embedding at this
step. By forming the permutation with each token ordered
according to their probabilities from PO, we compute α and
β as defined in (2) and (3). This process allows us to define
the red list with M embedded,

RLM = θ[γM |V | : (γM + γ)|V |], (4)

where tokens within this range have their probabilities
reweighted to zero and will not be sampled.

To demonstrate how StealthInk works, we present four cases
in Fig. 2. In each case, 2⋆ indicates that the probabilities of
tokens in that interval are doubled, while 0 means the prob-
abilities of tokens in that interval are zeroed. In addition, ⋆
indicates that the probabilities of tokens in the correspond-
ing interval keep their original values. When embedding the
message M , the probabilities of tokens in the red list will
be reweighted to 0. Let F (θ,M,PO)k be the reweighted
cumulative probability for the token tk under permutation
θ for k = 1, . . . , |V |, illustrated in Fig. 2, which can be
expressed as2:

F (θ,M,PO)k=

(Xk−β)++(Xk−β̄)+

−(Xk−α)−−(Xk−ᾱ)+, Case 1 or 3,
(Xk−β)+ + (Xk−β̄)−

−(Xk−α)−−(Xk−ᾱ)−, Case 2 or 4.
(5)

2(x)+ := max(x, 0) and (x)− := −min(x, 0). Note that
x = (x)+ − (x)−.

4

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Figure 1. StealthInk encoder: m = 2, H = 4.

0 0.5 1α β β̄ ᾱ

⋆ 0 ⋆ 2⋆ ⋆

Case 1: β ≤ 0.5

0 0.5 1β̄ ᾱ α β

⋆ 2⋆ ⋆ 0 ⋆

Case 2: α ≥ 0.5

0 0.5 1α β̄ β ᾱ

⋆ 0 ⋆ 2⋆ ⋆

Case 3: α<0.5 and β>0.5
and α+ β ≤ 1

0 0.5 1β̄ α ᾱ β

⋆ 2⋆ ⋆ 0 ⋆

Case 4: α<0.5 and β>0.5
and α+ β>1

Figure 2. Multi-bit watermarking reweighting rule.

With the original distribution P i
O at the ith gener-

ation step, the reweighted probability of token tk
is PM

W (tk|a,x1:i−1,θi) = G(F (θ,M,P i
O))k =

F (θi,M, P i
O)k − F (θi,M, P i

O)k−1. We prove the follow-
ing result in Appendix C.

Theorem 4.4. For each θ ∈ i.i.d. θ1:L, the reweighting func-
tion Fk(θ,M,PO) in (5) ensures stealthy watermarking.

Algorithm 1 shows the process of encoding a multi-bit wa-
termark in StealthInk. During a query attempt, to ensure
the independence between permutations, the same texture
key should not repeat for watermarking, which means the
original probability distribution is applied when encounter-
ing the same texture key. In this way, a history log hist is
maintained for each query attempt to record the texture key
encountered.

In Dipmark (Wu et al., 2024) and ZMH (Hu et al., 2024) (see
Algorithm 1 in both), a single hist must be shared across all
user queries to maintain K-shot stealthiness. However, as
global queries increase, the pool of available texture keys
shrinks, requiring periodic replacement of the watermark
key sk. This necessitates keeping track of all used keys,
which adds overhead in both storage and verification.

This issue becomes even more prominent when embedding
the multi-bit watermark using only multiple keys or en-

hancing StealthInk’s capacity by key enumeration. For in-
stance, embedding a 2-bit message requires choosing from
4 watermark keys. As shown in Appendix L, traversing
sk values causes significant detection delays without nec-
essarily improving capacity. Furthermore, since StealthInk
leverages the position allocation approach in MPAC (Yoo
et al., 2024) to enhance capacity, ensuring the randomness
of the message is crucial for maintaining K-shot stealth-
iness. To achieve this, the lower-end bits of TimeStamp,
such as those representing seconds or even milliseconds,
should be embedded in the initial tokens of the response.
The remaining message chunks are then embedded into the
rest of the tokens using position allocation. Therefore, even
if a user repeatedly queries the same prompt, the distribu-
tion of the responses is preserved. Moreover, an attacker
attempting a spoofing attack by distinguishing the distri-
butions of the original and watermarked text can only suc-
ceed if they use the same userID to repeatedly submit the
same prompt within a very short time frame (e.g., within
1 second or even 1 millisecond) and gather a sufficiently
large number of queries (e.g., 100,000). This constraint
makes it significantly more challenging for an attacker to
exploit distributional differences to forge the watermark. In
Appendix F, we further discuss resilience against adaptive
attacks through a sufficiently large number of queries.

In the detection stage, as described in Algorithm 2 in Ap-
pendix D, each token in the given text is mapped to a posi-
tion pos by seeding a PRF with the watermark and texture
keys. For tokens mapped to a particular pos, we count
the number of tokens that fall into the red list defined by
M ∈ M, as specified in Eq. (4). Under the null hypothe-
sis (i.e., the text is not watermarked), the probability that
a token falls into the red list is γ. Let Lpos denote the
number of tokens mapped to position pos; then the num-
ber of red list tokens RM

pos ∼ Bin(Lpos, γ). We extract
the message chunk at each position by selecting the candi-
date M ∈ M that minimizes the count of red list tokens

5

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

M∗
pos = argminM∈M RM

pos. To detect whether the text
is watermarked, we concatenate M∗

pos across all positions
pos ∈ {0, 1, . . . ,H − 1} to form the message sequence
MsgSeq. Then, we compute the z-score as

Z(MsgSeq, x1:L) =
R− µ̂R

σ̂R
, (6)

where µ̂R and σ̂R denote the empirical mean and stan-
dard deviation of R, estimated from a collection of non-
watermarked texts. Note that in our experiments, we evalu-
ate detection performance by comparing the values of R for
watermarked and non-watermarked texts, rather than setting
a threshold on the z-score.

Algorithm 1 StealthInk Encoder

Input: a, sk, L, h, f , hist = ∅, MsgSeq, H , γ = 2−m

for i = 1, . . . , L do
Calculate PO(· |a,x:i−1)
Generate texture key si based on x−h:

Sample pos from [0, 1, . . . ,H − 1] with seed si; let
MsgSeq[pos] = M and γM = Mγ
if si ∈ hist then

Sample xi from PO(· |a,x:i−1)
else
hist.add(si)
Generate permutation θi = f(sk, si)
Calculate α and β using (2) and (3)
Calculate PM

W (· |a,x:i−1,θi) from (5)
Sample xi from PM

W (· |a,x:i−1)
end if

end for

5. Theoretical analysis
In Appendix G we can derive the probability of sampling a
red token when embedding the message M∗ as

P[rtγM∗] =
(1− p)(β − α)

2m+1
+ p(β − α) (7)

where p represents the probability of repeated texture keys,
defined as the ratio of the number of texture keys that have
already appeared to the total number of texture keys in a
text. As P[rtγM∗] increases, under a certain equal error rate
(eer), the minimum number of tokens required to detect the
watermark Lmin is larger. Specifically, we present the rela-
tionship between Lmin and eer under uniform distribution
as Fig. 3, which is the best Lmin with the maximum entropy.
In that case, β − α = 2−m.

One key insight is that capacity can be enhanced by dis-
tributing unit capacity across locations. As shown in Fig. 3,
the Lmin needed to embed 2 bits is smaller than half of that
required for 4 bits. Thus, embedding 2 bits into two separate

chunks can achieve the same eer with significantly fewer
tokens. By analyzing the relationship between Lmin and
eer under varying entropy and repetition rates p, we can
determine the optimal unit capacity for improving capacity
through position allocation.

Another insight from Fig. 3 is that repetitions greatly hinder
watermark detection. When p = 0.2, the minimum number
of tokens required for detection is much higher than when
p = 0. As discussed in Section 4.2, Dipmark and ZMH
share a global history log across all queries, causing p to
increase over time, requiring more tokens for watermarking.
In contrast, our method constructs an empty history log
for each query and recycles it after response completion,
which keeps p significantly lower and stabilizes Lmin across
different query attempts through our reweighting strategy.

(a) p = 0 (b) p = 0.2

Figure 3. Lmin vs. eer for p = 0 and p = 0.2.

6. Experiments
We compare StealthInk with SOTA methods (Yoo et al.,
2024; Qu et al., 2024; Fernandez et al., 2023) on stealthiness,
detectability, and robustness. For text completion, unless
noted otherwise, we use LLAMA2-7B (Touvron et al., 2023)
and 500 randomly selected texts from the RealNewsLike
subset of C4 (Raffel et al., 2020), trimming a fixed number
of tokens from the start as prompts (see Appendix H).

6.1. Stealthiness Results

6.1.1. STEALTHINESS PRESERVES TEXT QUALITY

Following Dipmark and ZMH, we compare text quality
among the methods for machine translation, text summariza-
tion, and text completion tasks. For the text summarization
task, we employ the BART-large model (Liu et al., 2020).
For the machine translation task, we focus on English-to-
Romanian translation and employ the Multilingual BART
(MBart) model (Liu et al., 2020) on the WMT’14 En-Ro
corpus (Bojar et al., 2014). Due to the limited number of
tokens in each sample, which is less than 50 tokens, we
compare the quality of text watermarked by 1 bit and 2 bit
watermarks, respectively, for machine translation and text
summarization tasks, as shown in Table 2, where no segmen-

6

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Table 2. Text quality for machine translation and text summarization. PPL is the median perplexity.
Machine Translation Text Summarization

Metrics BERTScore ↑ BLEU ↑ ROUGE-1 ↑ PPL ↓ ROUGE-1 ↑
Unit Capacity (Bit) 1 2 1 2 1 2 1 2 1 2
Non-Watermarked 0.6995 0.0677 0.3312 7.274 0.2319

StealthInk 0.6941 0.6967 0.0776 0.0719 0.3317 0.3337 7.147 7.333 0.2322 0.2325
MPAC 0.6457 0.6515 0.0442 0.0488 0.2670 0.2789 10.51 10.82 0.1991 0.1963

Qu et al. 0.5840 0.5822 0.0180 0.0153 0.1782 0.1628 26.27 25.09 0.1498 0.1512
Fernandez et al. 0.6658 0.6730 0.0489 0.0483 0.2807 0.2907 12.41 12.58 0.2083 0.2094

Table 3. Spoofing attacks on different schemes with 1 bit and 2 bits embedded, respectively, where m = 1.
Dolly CW MMWBookReports

AUC ↓ TPR@
10%FPR ↓ @FNR

*1e-3 ↓ GPT4 ↑ AUC ↓ TPR@
10%FPR ↓ @FNR

*1e-3 ↓ GPT4 ↑

H=1
StealthInk 0.7265 0.29 0.4482 8.11 0.8064 0.5 0.3333 8.74

MPAC 0.8301 0.6 0.7018 8.22 0.86 0.73 0.6885 8.24
Qu et al. 0.9835 0.97 0.9899 6.77 0.954 0.93 1.0 7.0

H=2
StealthInk 0.8456 0.57 0.6667 8.73 0.893 0.65 0.5439 8.92

MPAC 0.9239 0.83 0.8313 8.21 09491 0.84 0.7125 8.67
Qu et al. 0.9979 1.0 1.0 7.0 0.999 1.0 1.0 7.1

tation is utilized, i.e., H = 1. On the other hand, for text
completion, we present the quality of text watermarked by
24 bits at 200 tokens for different schemes in Fig. 6, where
segmentation is leveraged, m = 1 and H = 24.

As shown in Table 2 and Fig. 6 in Appendix I, text quality
remains largely unaffected by watermark capacity, regard-
less of whether it is 1 bit, 2 bits, 24 bits, or more. Both
Table 2 and Fig. 6 shows that text quality remains consis-
tent between StealthInk watermarked and non-watermarked
texts. In contrast, the other methods degrade text quality.

6.1.2. STEALTHINESS PROTECTS AGAINST SPOOFING

Following the settings in (Jovanović et al., 2024), we com-
pare the robustness against watermark spoofing attack by set-
ting up LMmo as LLAMA2-7B and LMatt as MISTRAL-
7B (Jiang et al., 2023). We randomly select 30,000 prompts
from the RealNewsLike subset of the C4 dataset to query
each LLM, generating responses of fewer than 800 tokens
under various watermarking schemes, in order to learn and
estimate the underlying watermark patterns. LMatt then
generate 100 responses of less than 800 tokens, respectively,
using the prompts from Dolly-CW (Conover et al., 2023)
and MMW BookReports (Piet et al., 2023). Table 3 presents
the performance of spoofing attacks on different multi-bit
watermarking schemes for embedding 1 bit (H = 1) and
2 bits (H = 2), respectively, where m = 1. We exclude
Fernandez et al. in this comparison because of its low de-
tectability. In particular, we ignore low-quality texts (GPT4
score below 6.5). From the attacker’s view, the forged text
should be detected as watermarked, which is a positive sam-
ple, while the true non-watermarked text which is a negative
sample should be correctly identified as well. AUC is de-

rived to test the performance of watermarking schemes in
distinguishing between watermarked and non-watermarked
texts. Low AUC would indicate a failed spoofing attack,
which means the detector cannot discern the watermarked
text forged by the attacker from the non-watermarked text.
TPR@10%FPR represents the fraction of forged texts that
are detected as watermarked when the ratio of false identi-
fied non-watermarked texts is smaller than 10%. @FNR*1e-
3 denotes the fraction of forged texts that are detected as
watermarked at FNR=1e-3 (i.e., p-value ≤ 0.001). There-
fore, smaller TPR@10%FPR and @FNR*1e-3 represent an
ineffective spoofing attack. We observe that the text forged
from StealthInk consistently exhibits the lowest detection
performance among the evaluated methods. For instance,
when an attacker learns the outputs watermarked by Steal-
thInk and attempts to forge watermarked text on the Dolly
CW dataset, only 29% of the forged texts are detected as wa-
termarked when the FPR is below 10%. In contrast, forged
texts generated using MPAC and (Qu et al., 2024) achieve
significantly higher detection rates, with about 70% and
98% of forgeries being correctly identified as watermarked
under the FNR = 10−3 setting.

6.2. Detectability results
First, we compare the TPR for m ∈ {1, 2, 3, 4} when the
FPR is below 1%, with H = 1, to determine the optimal
value of m for constructing the MsgSeq , as shown in Fig. 4.
Using the red dashed line, which represents the TPR for
embedding 1 bit in 50 tokens, we observe that the TPR for
embedding 2 bits in 100 tokens is lower, and the TPR for
embedding 3 and 4 bits in 150 and 200 tokens, respectively,
is even less than half. Therefore, we select m = 1.

Then we evaluate the performance of message detection and

7

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

extraction among various methods in 24 bits, 36 bits, and 48
bits at 200 tokens, as shown in Table 4. While the method
of (Qu et al., 2024) achieves the best detection and extrac-
tion accuracy, their text quality measured by perplexity is
significantly compromised. (Fernandez et al., 2023) exhibit
lower TPR and bit accuracy with significantly higher time
cost compared to other methods. For example, when embed-
ding 24-bit messages, it cost 113 s to extract the message.
In contrast, StealthInk and MPAC extract the message in
only 0.01 s. This highlights the inefficiency of directly using
varied keys within the hash function.

Figure 4. Detection performance comparisons with m ∈
{1, 2, 3, 4} and H = 1.

In particular, we compare the TPR of StealthInk and MPAC
with 1% FPR and 0.1%FPR, respectively, across various
number of tokens in Fig. 5. The logits bias δ of MPAC
are compared between 1, 1.5, and 2, where δ = 2 is the
original setting in MPAC and is applied in the evaluation of
MPAC in this paper. Higher logits bias generally represents
more skewed probability distribution and larger watermark
detectability. We observe that while StealthInk may initially
show lower TPR at shorter lengths (e.g., 200 tokens), its
detectability approaches or matches MPAC as the number
of tokens increases. For example, when embedding 36
bits, MPAC (δ = 2) achieves TPR@ 1%FPR of 0.98 at
200 tokens, while StealthInk achieves comparable TPR@
1%FPR (i.e., 0.985) at 400 tokens. Note that StealthInk’s
TPR is significantly better than that of MPAC when δ = 1,
while close to MPAC’s TPR when δ = 1.5. For example,
when embedding 36 bits, MPAC (δ = 1.5) achieves TPR@
1%FPR of 0.97 at 300 tokens, while StealthInk achieves
comparable TPR@ 1%FPR (i.e., 0.9725) at 400 tokens.

This demonstrates that StealthInk is competitive in de-
tectability given sufficient sequence length, while offer-
ing additional benefits in terms of stealthiness, robustness
to spoofing, and multi-bit capacity. Unlike distribution-
modifying schemes like MPAC, which achieve higher de-
tectability through aggressive token-level distortion, Steal-
thInk is designed to be statistically stealthy across multiple

text generations with theoretical guarantees.

Note that in Table 4 the PPL of the StealthInk is signifi-
cantly lower than the non-watermarked sequences, which
arises from the evaluation setup and not from a violation
of the stealthiness guarantee of StealthInk. StealthInk uses
a reweighting strategy that satisfies two constraints during
token sampling: (1) the token must not appear in the red list
(whose probability is zeroed out), and (2) it must be sampled
from the remaining tokens based on multinomial sampling.
In contrast, non-watermarked text generation only follows
the second condition. As a result, StealthInk effectively
filters out low-probability tokens that fall into the red list,
which may include semantically weak or low-quality op-
tions. This selection bias may cause the sampled tokens to
have higher average probabilities, thus reducing PPL.

However, this observation does not contradict the stealth-
iness of StealthInk. The PPL reported in Table 4 are me-
dian values aggregated over responses of 200 tokens to 500
prompts, each associated with a random message and per-
mutation. Due to this variability, small empirical differences
in PPL can emerge across text generations. Nonetheless,
StealthInk is provably stealthy in expectation (as shown in
Definition 4.1 and Theorem 4.4), i.e., when averaged over
a sufficiently large number of generated tokens or samples,
the watermarked and non-watermarked token distributions
are statistically indistinguishable. In Appendix J, we show
the PPL with various number of generations and note that
if we further increase the number of prompts or use even
longer generated sequences, the PPL statistics of StealthInk
and non-watermarked text become closer to each other.
6.3. Robustness against editing attacks

The copy-paste attack involves mixing watermarked text
with non-watermarked text, while the paraphrasing attack
rewrites the watermarked text using another language model
to preserve its meaning. For the copy-paste attack, we
randomly mix a proportion ϵ of non-watermarked text into
the watermarked text, maintaining the total length. In the
paraphrasing attack, we use the Dipper (Krishna et al., 2023)
and PEGASUS (Zhang et al., 2020) models to paraphrase
the watermarked text, with ϵ representing the paraphrasing
strength.

As shown in Table 5, bit accuracy decreases steadily with
the increasing proportion of non-watermarked text in the
copy-paste attack. This occurs because replacing more
watermarked text reduces the distinguishing features re-
quired for accurate watermark extraction. Additionally,
non-watermarked tokens distribute the watermark signal
more evenly, as seen in StealthInk, where non-watermarked
tokens are spread across the vocabulary permutation. Conse-
quently, the watermarking schemes can maintain acceptable
bit accuracy when only a small portion of the watermarked
text is replaced.

8

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Table 4. Clean performance with 200 tokens for text generation task. PPL is the median perplexity.

AUC ↑ TPR
@1% ↑ Bit Accuracy ↑ PPL ↓ Extraction

Time (s) ↓
Non-Watermarked - - - 8.016 -

24 Bit

StealthInk 0.9780 0.8475 0.8747 7.141 0.01
MPAC 0.9959 0.985 0.9437 10.19 0.01

Qu et al. 1.0 1.0 0.9987 42.63 0.18
Fernandez et al. 0.9433 0.655 0.61 9.46 113

36 Bit

StealthInk 0.9709 0.7475 0.8327 7.135 0.01
MPAC 0.9923 0.982 0.8927 9.376 0.01

Qu et al. 0.9975 1.0 1.0 39.87 0.82
Fernandez et al. - - - - 45100 (Estimated)

48 Bit

StealthInk 0.9556 0.6185 0.7867 6.968 0.01
MPAC 0.9907 0.98 0.8611 10.11 0.01

Qu et al. 0.9998 1.0 0.9775 41.16 1.37
Fernandez et al. - - - - 1.85e9 (Estimated)

(a) 24 Bits

(b) 36 Bits

(c) 48 Bits

Figure 5. TPR of StealthInk and MPAC with number of tokens.

Table 5. Bit accuracy when launching copy-paste attack with 24
bits embedded in 300 tokens.

Bit Accuracy Copy-Paste Attack
ϵ=0 ϵ=0.1 ϵ=0.2 ϵ=0.3

StealthInk 0.9195 0.8932 0.8649 0.8319
MPAC 0.9627 0.9572 0.9334 0.9075

Qu et al. 0.9987 0.9981 0.9993 0.9993
Fernandez et al. 0.6612 0.625 0.5762 0.5193

Table 6 shows that all evaluated schemes suffer significant
performance degradation under paraphrasing attacks, with
a marked drop in bit accuracy compared to the baseline
(ϵ = 0). This decline is due to the attack’s alteration of
sentence structure and rephrasing, which disrupts the em-
bedded watermark signal. Achieving robustness against
paraphrasing attacks remains a major challenge for multi-bit
watermarking.

Table 6. Bit accuracy when using Dipper and PEGASUS to para-
phrase 400 watermarked texts of 300 tokens with 24 bits embed-
ded.

Bit Accuracy Paraphrasing Attack

ϵ=0 ϵ=0.1
Dipper PEGASUS

StealthInk 0.9195 0.6118 0.57
MPAC 0.9627 0.6108 0.5944

Qu et al. 0.9988 0.6337 0.6337
Fernandez et al. 0.6613 0.4162 0.4237

7. Conclusion
StealthInk is a provably stealthy and multi-bit watermark-
ing scheme for LLMs that enables text traceability while
preserving text quality. StealthInk uses a novel reweight-
ing strategy for token probability distributions, ensuring
unbiased distribution and effective multi-bit message em-
bedding. Empirical results demonstrate StealthInk’s high
bit accuracy, superior text quality, and resilience against
attacks. Our work highlights that watermarking must go be-
yond embedding and extraction — it must ensure statistical
stealthiness to prevent detection and spoofing while main-
taining text integrity. This balance enhances the practical
applicability of watermarking in real-world scenarios. Fu-
ture research should explore trade-offs among detectability,
text quality, efficiency, and robustness to further strengthen
watermarking for LLMs.

9

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Impact Statement
We introduce StealthInk, a multi-bit watermarking scheme
for large language models (LLMs) that enables the stealthy
embedding of meta-information into generated text. This
allows an authorized user to verify the provenance of wa-
termarked text without compromising its quality. Such a
watermarking approach is crucial in addressing ethical con-
cerns related to LLM misuse, including the creation of fake
news, scams, and academic plagiarism. Recognizing these
risks, major LLM providers—including OpenAI, Google,
and Meta—have committed to incorporating watermarking
techniques to mitigate misuse.

To assess the security of StealthInk, we evaluated its re-
silience against potential attacks aimed at forging the wa-
termark or removing the watermark, including spoofing,
copy-paste, and paraphrasing attacks. These attack vectors
have been explored in prior watermarking research, and
our focus was to compare StealthInk’s robustness against
other multi-bit LLM watermarking schemes. Through both
theoretical analysis and empirical validation, we demon-
strated StealthInk’s advantages while also acknowledging
its limitations.

LLM watermarking has the potential to serve as a valuable
tool for preventing the ethical misuse of AI-generated text.
Our work contributes to this effort by developing a stealthy,
multi-bit watermark that balances security, detectability, and
text quality. In summary, we believe this research does not
raise any ethical concerns and instead provides a practical
approach to improving AI accountability and trustworthi-
ness.

Acknowledgment
This research was partially supported by the Virginia Com-
monwealth Cyber Initiative (cyberinitiative.org) through the
Cyber Acceleration, Translation, and Advanced Prototyping
for University Linked Technology (CATAPULT) Fund.

References
Aaronson, S. My AI Safety Lecture for UT Effective Altru-

ism., Nov. 2023. URL https://scottaaronson.
blog/?p=6823. Accessed May 5, 2023.

Abdelnabi, S. and Fritz, M. Adversarial watermarking trans-
former: Towards tracing text provenance with data hiding.
In 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021.

Atallah, M. J., Raskin, V., Crogan, M., Hempelmann, C.,
Kerschbaum, F., Mohamed, D., and Naik, S. Natural
language watermarking: Design, analysis, and a proof-
of-concept implementation. In Information Hiding: 4th

International Workshop, IH 2001 Pittsburgh, PA, USA,
April 25–27, 2001 Proceedings 4. Springer, 2001.

Atallah, M. J., Raskin, V., Hempelmann, C. F., Karahan, M.,
Sion, R., Topkara, U., and Triezenberg, K. E. Natural
language watermarking and tamperproofing. In Interna-
tional workshop on information hiding. Springer, 2002.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Bartz, D. and Hu., K. OpenAI, Google, others pledge
to watermark AI content for safety, White House says.
Website, 2023. https://www.reuters.com/technology/
openai-google-others-pledge-watermark-ai-content-
safety-white-house-2023-07-21.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P.,
Leveling, J., Monz, C., Pecina, P., Post, M., Saint-Amand,
H., Soricut, R., Specia, L., and Tamchyna, A. s. Findings
of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Ma-
chine Translation, pp. 12–58, Baltimore, Maryland, USA,
June 2014. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/
W14/W14-3302.

Christ, M., Gunn, S., and Zamir, O. Undetectable water-
marks for language models. In Agrawal, S. and Roth,
A. (eds.), Proceedings of Thirty Seventh Conference on
Learning Theory, volume 247 of Proceedings of Ma-
chine Learning Research, pp. 1125–1139. PMLR, 30 Jun–
03 Jul 2024. URL https://proceedings.mlr.
press/v247/christ24a.html.

Cohran, W. G. Sampling Techniques. Wiley, 3rd edition,
1977.

Conover, M., Hayes, M., Mathur, A., Xie, J., Wan, J., Shah,
S., Ghodsi, A., Wendell, P., Zaharia, M., and Xin, R. Free
dolly: Introducing the world’s first truly open instruction-
tuned llm. Company Blog of Databricks, 2023.

Fernandez, P., Chaffin, A., Tit, K., Chappelier, V., and Furon,
T. Three bricks to consolidate watermarks for large lan-
guage models. In 2023 IEEE International Workshop on
Information Forensics and Security (WIFS). IEEE, 2023.

Goldreich, O., Goldwasser, S., and Micali, S. How to con-
struct random functions. Journal of the ACM (JACM), 33
(4), 1986.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

10

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://proceedings.mlr.press/v247/christ24a.html
https://proceedings.mlr.press/v247/christ24a.html

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Hu, Z., Chen, L., Wu, X., Wu, Y., Zhang, H., and Huang, H.
Unbiased watermark for large language models. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=uWVC5FVidc.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. Technical
report, 2023.

Jovanović, N., Staab, R., and Vechev, M. Watermark steal-
ing in large language models. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers,
I., and Goldstein, T. A watermark for large language
models. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 17061–17084. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/kirchenbauer23a.html.

Kirchenbauer, J., Geiping, J., Wen, Y., Shu, M., Saifullah,
K., Kong, K., Fernando, K., Saha, A., Goldblum, M.,
and Goldstein, T. On the reliability of watermarks for
large language models. In ICLR, 2024. URL https:
//openreview.net/forum?id=DEJIDCmWOz.

Kordi Boroujeny, M., Jiang, Y., Zeng, K., and Mark, B.
Multi-Bit Distortion-Free Watermarking for Large Lan-
guage Models. arXiv preprint arXiv:2402.16578, 2024.

Krishna, K., Song, Y., Karpinska, M., Wieting, J., and Iyyer,
M. Paraphrasing evades detectors of ai-generated text,
but retrieval is an effective defense. In Proceedings of
the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA,
2023. Curran Associates Inc.

Kuditipudi, R., Thickstun, J., Hashimoto, T., and Liang,
P. Robust distortion-free watermarks for language mod-
els. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.
net/forum?id=FpaCL1MO2C.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad,
M., Lewis, M., and Zettlemoyer, L. Multilingual denois-
ing pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguistics, 8,
2020.

OpenAI. ChatGPT: Optimizing language models for di-
alogue. Website, 2022. https://openai.com/
blog/chatgpt.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Perkins, M. Academic Integrity considerations of AI Large
Language Models in the post-pandemic era: ChatGPT
and beyond. Journal of university teaching & learning
practice, 20(2), 2023.

Piet, J., Sitawarin, C., Fang, V., Mu, N., and Wagner, D.
Mark my words: Analyzing and evaluating language
model watermarks. arXiv preprint arXiv:2312.00273,
2023.

Qu, W., Yin, D., He, Z., Zou, W., Tao, T., Jia, J., and
Zhang, J. Provably Robust Multi-bit Watermarking for AI-
generated Text via Error Correction Code. arXiv preprint
arXiv:2401.16820, 2024.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140), 2020.

Shih, F. Y. Digital watermarking and steganography: fun-
damentals and techniques. CRC press, 2017.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Topkara, U., Topkara, M., and Atallah, M. J. The hiding
virtues of ambiguity: quantifiably resilient watermarking
of natural language text through synonym substitutions.
In Proceedings of the 8th workshop on Multimedia and
security, 2006.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, L., Yang, W., Chen, D., Zhou, H., Lin, Y., Meng, F.,
Zhou, J., and Sun, X. Towards codable watermarking for
injecting multi-bits information to LLMs. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=JYu5Flqm9D.

11

https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=uWVC5FVidc
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openreview.net/forum?id=JYu5Flqm9D
https://openreview.net/forum?id=JYu5Flqm9D

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Wu, Y., Hu, Z., Zhang, H., and Huang, H. Dipmark: A
stealthy, efficient and resilient watermark for large lan-
guage models. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

Yoo, K., Ahn, W., and Kwak, N. Advancing beyond
identification: Multi-bit watermark for large language
models. In Duh, K., Gomez, H., and Bethard, S.
(eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 4031–4055, Mexico
City, Mexico, June 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.naacl-long.
224. URL https://aclanthology.org/2024.
naacl-long.224/.

Zamir, O. Excuse me, sir? Your language model is leaking
(information). arXiv preprint arXiv:2401.10360, 2024.

Zhang, H., Edelman, B. L., Francati, D., Venturi, D., Ate-
niese, G., and Barak, B. Watermarks in the sand: Impos-
sibility of strong watermarking for generative models. In
Forty-first International Conference on Machine Learn-
ing, 2024a.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. Pegasus: Pre-
training with extracted gap-sentences for abstractive sum-
marization. In International conference on machine learn-
ing, pp. 11328–11339. PMLR, 2020.

Zhang, R., Hussain, S. S., Neekhara, P., and Koushanfar, F.
Remark-llm: a robust and efficient watermarking frame-
work for generative large language models. In Proceed-
ings of the 33rd USENIX Conference on Security Sym-
posium, SEC ’24, USA, 2024b. USENIX Association.
ISBN 978-1-939133-44-1.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi,
Y. Bertscore: Evaluating text generation with bert. arXiv
preprint arXiv:1904.09675, 2019.

Zhao, X., Ananth, P. V., Li, L., and Wang, Y.-X. Provable
robust watermarking for AI-generated text. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=SsmT8aO45L.

12

https://aclanthology.org/2024.naacl-long.224/
https://aclanthology.org/2024.naacl-long.224/
https://openreview.net/forum?id=SsmT8aO45L
https://openreview.net/forum?id=SsmT8aO45L

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Appendix

A. Related Work
A.1. Zero-bit watermarking

Due to the discrete linguistic properties of text, watermarking for digital text is considered a challenging problem (Shih,
2017). Early approaches were mainly rule-based, such as paraphrasing (Atallah et al., 2002), syntactic structure restructur-
ing (Atallah et al., 2001), and synonym substitution (Topkara et al., 2006). Later, advancements in modern language models
led to improved methods. (Kirchenbauer et al., 2023) introduced the first watermarking scheme for LLMs and highlighted
the critical property of the reweighting-based watermark by showing that the watermark could be detected algorithmically
without any knowledge of the model parameters or access to the language model API. They categorized the vocabulary
permutation into red and green lists using a hash function seeded with several previous tokens of the context text and
proposed a reweighting strategy that simply adds a small bias to the logits of tokens in the green list. In this way, the tokens
generated by the watermarked LLM will be biased to the green list. To detect the watermark, a detector possessing the hash
function can recreate the lists and estimate the likelihood that the text is generated under reweighted probability distributions
by hypothesis testing. Follow-up works proposed improvements to the robustness of this scheme against distortion-bounded
attacks such as insertion, deletion, and substitution attacks (Kirchenbauer et al., 2024; Zhao et al., 2024).

By retaining the red-green list configuration, (Hu et al., 2024) and Dipmark (Wu et al., 2024) introduced an evolved family
of permutation-based reweighting strategies for watermarking which maintains the expected distribution of the text; i.e.,
they proposed a stealthy or unbiased reweighting strategy for LLM watermarking. However, the detector in (Hu et al., 2024)
necessitates access to both the prompt and the output distribution provided by the LLM for a given prompt, which requires
the detector possesses knowledge of the prompt used to generate the detected text. In contrast, Dipmark requires no access
to the prompts nor the LLMs. Nevertheless, the stealthiness of both (Hu et al., 2024) and Dipmark rely on independent
permutations at each generation step, which means when encountering the same seed (i.e., several previously generated
tokens) for pseudorandom permutation generation, the token is sampled without a watermark. In this way, as more and more
queries are submitted to the LLM, the available seeds for watermarking decrease dramatically, and thereby the watermark
strength is sacrificed for the stealthiness guarantee. Moreover, their approach is vulnerable to an effortless attacker who
removes the watermark during text generation.

In contrast, to develop a stealthy watermark, (Christ et al., 2024) and (Kuditipudi et al., 2024) employed another line
of sampling strategy without altering the probability distribution at all when generating the watermarked text, i.e., the
inverse sampling method. However, resilience to text corruption in (Christ et al., 2024) is still an open problem. While
the watermarking method of (Kuditipudi et al., 2024) was designed for robust detection, it requires secret key distribution
during detection, which may potentially compromise the data security and stealthiness of the watermark. Moreover, the
detection process in (Kuditipudi et al., 2024) involves hundreds of resampling steps from the secret key distribution, which
is inefficient for lengthy texts. (Zhang et al., 2024b) trained the encoder-decoder modules to facilitate watermark insertion
and extraction. However, the modules have to be learned for each LLM, which could be costly and inflexible. Besides,
each text generated by the LLM will be processed by the encoder to embed the watermark, which will alter the original
distribution of the LLM.

A.2. Multi-bit watermarking

(Wang et al., 2024) extended (Kirchenbauer et al., 2023) but used the message content as the hash key before selecting
the green list and further utilized a proxy language model for enhancing text quality. (Fernandez et al., 2023) proposed
a technique for encoding a multi-bit message by providing a message-specific green list by shifting the vocabulary
list dependent on the message. (Qu et al., 2024) built upon (Kirchenbauer et al., 2023), cyclically shifting vocabulary
permutations according to the message and bias tokens in a green list to enable efficient multi-bit decoding. They also
enhanced the embedding process by incorporating an error correction code into the message bits. However, overlapping
shifts introduce interference, weakening message distinctiveness and statistical separation. To counteract this, a stronger bias
is needed for reliable extraction, but this increases text distortion and reduces stealthiness. Crucially, these works achieved
multi-bit watermarking by enumerating all potential messages or keys. Consequently, they involve computing across a space
of potential messages that is exponentially large for the message length during decoding. This imposes a practical limit to
the message length due to computational or memory constraints.

MPAC (Yoo et al., 2024) introduced a multi-color technique wherein the pseudorandomly generated vocabulary permutation,

13

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

with previously generated tokens as the seed, is divided into multiple equal-length segments and the segments are represented
by a different color. Specifically, the message encoded into the text is formed by concatenating several message bits, each
corresponding to a specific color segment. For instance, if the vocabulary is partitioned into four distinct colors, each
message bit indicating the color interval to select should consist of two binary bits. In essence, if the message is composed
of two message bits, then the message would be 4 binary bits long, as each position of the message bit is represented by two
binary bits. During text generation, to embed the message using the next token, the index of the message bit is randomly
chosen and the logits of the token in the color segment corresponding to the message bit are increased by a constant (δ),
which biases the selection of the next token to be sampled from that color interval.

However, these methods (Yoo et al., 2024; Qu et al., 2024) lack statistical stealthiness for potential attackers, making them
very vulnerable to spoofing or scrubbing attacks, as we have evaluated. For example, MPAC is not stealthy according to
Definition 4.1 (see Section 4), regardless of the value of δ. To give an intuitive explanation for stealthiness, if we assume an
attacker with knowledge of the output distribution of the original non-watermarked LLM can launch a sufficient number of
queries for the same prompt and estimate the probability distribution of the first token, the attacker can easily determine
the presence of a watermark in the generated text of the above works since the probability distribution of the first token
reflected by the LLM is not the same as that of the original non-watermarked LLM. In fact, the attackers can distinguish the
watermark and launch several advanced attacks such as watermark spoofing and scrubbing attacks (Jovanović et al., 2024)
even without the knowledge of the original non-watermarked probability distribution.

In contrast to these approaches, which are unstealthy or rely on different keys to embed the messages, (Kordi Boroujeny
et al., 2024) and (Zamir, 2024) developed multi-bit watermarking techniques in which the input and output distributions
are the same, i.e., they are distortion-free. Nonetheless, since they build upon (Christ et al., 2024), the resilience of these
multi-bit watermarking schemes remains an unresolved issue. On the other hand, AWT (Abdelnabi & Fritz, 2021) achieved
unobtrusive encoding of text with a binary message through adversarial training of the encoder-decoder structure. However,
AWT is prone to errors in message extraction and occasionally yields degraded watermarked texts due to its reliance on
neural networks.

B. Proof of Theorem 4.3
At the kth query attempt, for each prompt ak and the response xk of length Lk, to ensure θk is independent, θk

i (i ∈ [1, Lk])
cannot be applied to derive the reweighted probability distribution when the seed for PRF has been used during this
query attempt. Instead, the original probability distribution PO(x

k
i |ak,xk

1:i−1) should be used. Otherwise, the reweighted
probability distribution PMk

W (xk
i |ak,xk

1:i−1,θ
k
i) is applied to embed the watermark Mk.

14

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Eθ1:K ,M1:K

[
K∏

k=1

Pwm(xk|ak,Mk,θk,a1:k−1,x1:k−1,M1:k−1)

]

= Eθ1:K ,M1:K

 K∏
k=1

Lk∏
i=1

Pwm(xk
i |ak,xk

1:i−1,M
k,θk,a1:k−1,x1:k−1,M1:k−1)

(a)
=

K∏
k=1

Eθk,Mk

Lk∏
i=1

Pwm(xk
i |ak,xk

1:i−1,M
k,θk,a1:k−1,x1:k−1,M1:k−1)

(b)
=

K∏
k=1

EMk

Lk∏
i=1

Eθi
kPwm(xk

i |ak,xk
1:i−1,M

k,θk,a1:k−1,x1:k−1,M1:k−1)

(c)
=

K∏
k=1

EMk

Lk∏
i=1

PO(x
k
i |ak,xk

1:i−1,M
1:k−1)

(d)
=

K∏
k=1

EMkPO(x
k|ak)

=

K∏
k=1

PO(x
k|ak),

(8)

where (a) follows from independence of the sequence θ1:K , (b) follows from the independence of θk1:Lk , (c) follows because
either PMk

W (xk
i |ak,xk

1:i−1) or PO(x
k
i |ak,xk

1:i−1) is applied and from the unbiasedness of the reweighted probability
distribution, and (d) follows from the chain rule for a joint distribution. The last equality follows from the randomness of the
message, e.g., the timestamp will cause the message to be random.

C. Proof of Theorem 4.4
Let V = {V1, V2, . . . , V|V |} be the vocabulary of size |V |, and let PO = {p1, p2, . . . , p|V |} denote the original probability
distribution over V . We define a permutation θ ∼ Unif{1, 2, . . . , |V |!}. The cumulative probability for the top t tokens
under permutation θ is given by

Xt(θ) =

t∑
j=1

pθ(j). (9)

With a slight abuse of notation, let token Vi appear in position t = θ−1(i) in the permutation. Then its position on the
cumulative probability axis is the interval,

Si = [xi, xi + pi], where xi =

t−1∑
j=1

pθ(j). (10)

With m-bit message M ∈ {0, . . . , 2m − 1} embedded, let k = M |V |
2m and l = (M+1)|V |

2m . Then α(θ) and β(θ) denote the
permutation-dependent intervals,

α(θ) =

k∑
j=1

pθ(j), β(θ) =

l∑
j=1

pθ(j), (11)

where α(θ) is the sum of k values sampled without replacement from PO. By standard properties of sampling without
replacement (Cohran, 1977) the expectation and variance of α are, respectively,

µα =
k

|V |
and σ2

α =
k(|V | − k)

|V | − 1
σ2, (12)

15

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

where σ2 = 1
|V |
∑|V |

i=1

(
pi − 1

|V |

)2
is the population variance of P .

When |V | is sufficiently large, which is easily satisfied for LLMs (e.g., |V | = 32, 000 for LLAMA2-7B), by the central
limit theorem (CLT), α(θ) can be approximated by a Gaussian distribution,

α(θ) ∼ N
(
µα, σ

2
α

)
, (13)

and xi ∼ Unif[0, 1− pi]. Since

β(θ) = α(θ) + δ(θ), where δ(θ) =

l∑
j=k+1

pθ(j), (14)

Given α(θ), δ(θ) is a sum over r = |V |
2m items sampled without replacement from the remaining |V | − k tokens, which in

total have mass 1− α(θ). Then, under the CLT for sampling without replacement, we approximate

δ | α ∼ N
(
µδ(α), σ

2
δ (α)

)
, (15)

where

µδ(α) =
r(1− α)

|V | − k
, σ2

δ (α) =
r(|V | − k − r)

|V | − k − 1
σ′2, (16)

where σ′2 = 1
|V |−k

∑|V |
j=k+1

(
pθ(j) −

∑l
j=k+1 pθ(j)

|V |−k

)2

. The value of σ′2 depends on which tokens are selected into α, and

thus which tokens remain for δ. However, since we do not know the specific indices θ(1), . . . , θ(k), we approximate the
residual set of tokens as still following the original population distribution. Therefore, we assume σ′2 ≈ σ2. In this way,
σ2
δ (α) =

r(d−k−r)
(d−k−1)(d−k)σ

2.

Using the relationship β = α+ δ, the conditional distribution of β given α is

fβ|α(β | α) = 1√
2πσ2

δ (α)
exp

(
− (β − α− µδ(α))

2

2σ2
δ (α)

)
. (17)

In this way,

(α, β) ∼ fα(α) · fβ|α(β | α), (18)

and thus,

fα,β(α, β) =
1√
2πσ2

α

exp

(
− (α− µα)

2

2σ2
α

)
· 1√

2πσ2
δ (α)

exp

(
− (β − α− µδ(α))

2

2σ2
δ (α)

)
. (19)

Denote A(θ) as the interval where the portion of token intersects with A(θ) will be zeroed out, B(θ) as the interval where the
portion of token intersects with B(θ) will be doubled. Then, under the four different cases, A(θ) and B(θ) are, respectively,

Case 1 or 2: A(θ) = [α(θ), β(θ)], B(θ) = [1− β(θ), 1− α(θ)],

Case 3: A(θ) = [α(θ), 1− β(θ)], B(θ) = [β(θ), 1− α(θ)],

Case 4: A(θ) = [1− α(θ), β], B(θ) = [1− β(θ), α(θ)].

(20)

Since the updated probability of a token depends on its position on the cumulative probability axis,

pwi (θ) =

∫ xi+pi

xi

w(x; θ) dx, (21)

16

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

where w(x; θ) is defined as

w(x; θ) =

0, x ∈ A(θ),

2, x ∈ B(θ),

1, otherwise.
(22)

We denote the reweighted probability of token Vi under permutation θ as

pwi (θ) = pi − µA(θ) + µB(θ), (23)

where

µA(θ) = |Si ∩A(θ)|, µB(θ) = |Si ∩B(θ)|. (24)

We can calculate the expected reweighted probability under Case c as

Eθ[p
w
i |Case c] = pi + Eθ

[
|Si ∩B(θ)| − |Si ∩A(θ)|

∣∣Case c
]
. (25)

According to (20), in different cases,

|Si ∩B(θ)| − |Si ∩A(θ)| = min{xi + pi, B(θ)[1]} −max{xi, B(θ)[0]} −
(
min{xi + pi, A(θ)[1]} −max{xi, A(θ)[0]}

)
(26)

where for example, in Case 1 or 2, A(θ)[0] = α(θ) and A(θ)[1] = β(θ).

Above all, the expected reweighted probability is denoted as

Eθ[p
w
i] =

4∑
c=1

P[Case c] · Eθ[p
w
i |Case c], (27)

and the difference between Eθ[p
w
i] and pi is

ϵi = Eθ[p
w
i]− pi =

4∑
c=1

P[Case c] · Eθ[|Si ∩B(θ)| − |Si ∩A(θ)|
∣∣Case c]. (28)

To derive ϵi, we define ∆c
i = Eθ

[
|Si ∩B(θ)| − |Si ∩A(θ)|

∣∣Case c
]
. Therefore,

∆c
i =

∫ 1−pi

0

∫
α

∫
β

fα,β(α, β) ·
1

1− pi
· (|Si ∩B(θ)| − |Si ∩A(θ)|) dβ dα dxi. (29)

Let S
′

i = [1− xi − pi, 1− xi], which is symmetric to Si. Since A(θ) and B(θ) are symmetric,

|S
′

i ∩B(θ)| = |Si ∩A(θ)|, |S
′

i ∩A(θ)| = |Si ∩B(θ)|. (30)

Therefore,
|S

′

i ∩B(θ)| − |S
′

i ∩A(θ)| = −(|Si ∩B(θ)| − |Si ∩A(θ)|). (31)

Let g(xi) = |Si∩B(θ)|−|Si∩A(θ)|, then g(1−xi−pi) = |S′

i∩B(θ)|−|S′

i∩A(θ)|. Therefore, g(xi)+g(1−xi−pi) = 0,
which means that g(xi) is antisymmetric about 1−pi

2 . In this way, for each fixed pair (α, β), the integral of ∆c
i in the range

xi ∈ [0, 1− pi] is evaluated to zero, i.e., ∆c
i = 0. Therefore, ϵi =

∑4
c=1 P[Case c] ·∆c

i = 0.

D. Algorithm 2

17

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Algorithm 2 StealthInk decoder

Input: Text x1:L, secret key sk, texture key length h, texture key history hist, permutation generation function f , threshold
z, vocabulary size |V |, message set M, the length H of MsgSeq, unit γ = 2−m

Output: False or (True, MsgSeq)
Initiate RM

pos = 0 for M ∈ M and pos ∈ [0, 1, . . . ,H − 1]
for i = h+ 1, . . . , L do

Generate texture key si based on x−h:

Set a value pos ∈ [0, 1, . . . ,H − 1] with seed si
Generate permutation θi = f(sk, si)
for M ∈ M do

Derive red list from eq. (4)
if xi ∈ RLM then
RM

pos = RM
pos + 1

end if
end for

end for
Let M∗

pos = argminM∈M RM
pos, MsgSeq[pos] = M∗ for pos ∈ [0, 1, . . . ,H − 1]

Calculate Z(MsgSeq, x1:L) from (6)
if Z(MsgSeq, x1:L) ≤ z then

return (true, MsgSeq) Else return false
end if

E. Clarification on the Difference between StealthInk with m = 1 and Dipmark
Although we set up m = 1 for StealthInk, StealthInk is fundamentally different from Dipmark (Wu et al., 2024) in both
design and functionality, and Dipmark cannot be adapted to embed a multi-bit watermark using the multi-chunk mechanism.
In StealthInk, under m=1, if we embed bit 0 at a certain generation step, then α=0 and β is the cumulated probability of
the tokens in the first half of vocabulary permutation (see (2) and (3)). Then at the detector, the watermarked token would
not be sampled from the first half of the vocabulary permutation because its token probabilities are reweighted to zero.
Therefore, the detector knows the exact permutation and the interval of each message, and can deterministically identify
whether a token falls within the red list — enabling bit-accurate decoding. Each text generation step may have different
α which depends on the embedded message. By contrast, α as denoted in Dipmark is fixed for each text generation step,
which represents the probability interval in [0, α] will be reweighted to 0. In their detector, the secret key only determines a
permutation of the vocabulary, and the detector must guess the green/red list separator γ (e.g., 0.5) to compute a green-token
ratio over the entire text. This design works well for zero-bit watermarking, but cannot recover message bits, nor can it
guarantee bit accuracy when chunking the text to encode multiple bits. Therefore, chunking Dipmark to encode 1 bit per
segment would compromise decoding accuracy, as it lacks a per-step message-aware reweighting function and cannot verify
individual bit intervals without brute-force search over the message space.

While we fixed m = 1 in the main experiments for consistency and fair comparison with prior work, increasing m does
not necessarily degrade performance. In Fig. 4, we notice that based on our random selected prompts, m = 1 would be
better for detectability than m = 2. However, as shown in our theoretical analysis in Fig. 3a, the bit-per-token rate can
actually improve when m increases, especially under high-entropy scenarios. For instance, under uniform distribution with
maximum entropy and fixed eer of 0.01, m = 2 achieves a higher bit-per-token rate than m = 1 (e.g., 2/42 vs. 1/30). The
impact of m is content-dependent, and our framework supports varying m to trade off between capacity and detectability.

F. Discussion on the Resilience of StealthInk against Adaptive Attacks
We assume there is an attacker who knows the probability distribution of an unwatermarked model and would like to infer
the watermark by examining whether the distribution of responses generated by the watermarked model is the same as that
of the unwatermarked model. If the attacker cannot infer the watermark, then the watermark must be stealthy. He/she could
launch a large number of query attempts (e.g., 100,000 or more) for the same prompt to derive the watermarked distribution.
However, using our method, since randomness is injected through the timestamp metadata in the watermark (milliseconds),
even though the same permutation and unwatermarked probability distribution is produced for these attempts, different

18

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

messages would involve different reweighting functions. Therefore, each attempt will result in a distinct watermarked
distribution of the watermarked text, including the first couple of tokens. Thus, the averaging of these probabilities renders
the spoofing attack ineffective. Additionally, because of the stealthiness property, on average, the probability distribution of
the first generated token (i.e., calculate the probability of each first token in responses) would be preserved as the probability
distribution of the first token from the original unwatermarked model. If the attacker launches these queries at the exact
same time (e.g., 10:30:51:02, 03/28/2025) using the same userID, model, etc., then the first tokens will be generated with the
same message embedded and therefore from the same distribution. In this case, the attacker could infer that the probability
distribution of the first token is distorted, i.e., a bunch of tokens’ probabilities are 0 because the red tokens across these
attempts are the same and will be reweighted to zero probability, which is different from the original distribution. However,
launching such a large number of queries at the same exact time is practically impossible.

Furthermore, in the scenario where an attacker constructs a suitable prompt to make the first few tokens almost deterministic
(e.g., using a problem template like “ANSWER:\n” to fix the first several tokens), the watermark can be embedded only
after the prefix. Any deterministic tokens can not include any watermark. Hence, as the watermarking starts after any
fixed tokens, StealthInk still satisfies K-shot stealthiness. The only problem is that the detector would also check the
prefix when detecting the watermark in the given text. Since the prefix is non-watermarked, mixing it in the watermarked
response could impact the detection performance. However, it is more like a copy-paste attack, which mixes a proportion of
non-watermarked text into the watermarked text. We discussed it in Section 6.3, and in Table 5 it shows the bit accuracy will
not be compromised significantly when the proportion of non-watermarked text is small.

G. The Relationship between lmin and eer
We derive the relationship between the minimum length of text lmin for detection and the equal error rate (eer). For
capacity m, we subdivide the interval [0, 1], formed by tokens’ cumulated probability according to the vocabulary permutation
and original distribution, into subintervals of length γ = 2−m. Then the red list of γ0 is [0, 2−m], while the red list of γ2m−1

is [1− 2−m, 1]. Theoretically, for a non-watermarked text, the number of tokens in the red list of γM follows a binomial
distribution, LγM

R ∼ Bin(L, γ), for all M ∈ M. Since FPR = P
[
minM∈M LγM

R ≤ η|LNW
]
≥ P[LγM

R ≤ η|LNW] for all
M ∈ M, we can establish a lower bound for the false positive rate by setting

Φ

(
η − Lγ√
Lγ(1− γ)

)
= FPR

=⇒ η = Φ−1 (FPR)
√
Lγ(1− γ) + Lγ,

(32)

where Φ(x) denotes the cumulative distribution function of the standard normal distribution.

On the other hand, for a watermarked text with γM∗ embedded, if α and β are as in Case 1 or Case 2 in Fig. 2, no tokens
will be sampled from the red list of γM∗ , which we call the no-overlapping case (Ō). In contrast, under Case 3 or Case 4,
tokens could be sampled from the red list of γM∗ , which we call the overlapping case (O). Obviously, P[O] = 2−m and
P[Ō] = 1− 2−m. When context n-grams are repeated, the next token will be sampled from PM , which may result in the
token falling in the watermarking region as well. Assuming that the context n-grams are repeated with probability p, denoted
as P[R] = p, the probability of non-repetition is P[R̄] = 1− p.

Next, we derive the probability that the token falls in the red list of γM∗ ∈ M:

P[rtγM∗] = P[R̄] P[rtγM∗ |R̄] + P[R] P[rtγM∗ |R] (33)

where

P[rtγM∗ |R̄] = P[O] P[rtγM∗ |R̄,O] + P[Ō] P[rtγM∗ |R̄, Ō]

= 2−m

(∫ α+β
2

α

2

(
y

α+ β

)
dy +

∫ β

α+β
2

2

(
β − y

α+ β

)
dy

)

=
β − α

2m+1
. (34)

Therefore,

P[rtγM∗] =
(1− p)(β − α)

2m+1
+ p(β − α). (35)

19

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

The distribution of LγM∗
R is binomial, i.e., LγM∗

R ∼ Bin(L,P[rtγM∗]). Similarly, LγM′
R ∼ Bin(L,P[rtγM′]) and the

probability that the token falls in the red list of γM ′ (M ′ ̸= M∗) is

P[rtγM′] =
1− P[rtγM∗]

2m − 1
. (36)

The bound on the false negative rate is given by

FNR ≥ P
[
min
M∈M

LγM

R ≥ η|LW

]
. (37)

The right-hand side of (37) can be approximated as follows:

P
[
min
M∈M

LγM

R ≥ η|LW

]
≈P
[
LγM∗
R ≥ η|LW

]
= 1− Φ

[
η − LP[rtγM∗]

LP[rtγM∗](1− LP[rtγM∗])

]
. (38)

To derive lmin, we start from the estimate of L = lmin = l0 and derive η using (32). Then using that η, we derive the lower
bound for the false positive rate as shown in (37). If the lower bound is larger than FNR, we increase lmin by 1, where the
process is iterated until the lower bound is smaller than FNR. In this way, we can derive the theoretical relationship between
lmin and eer.

H. Experimental Details
Following Dipmark, we evaluate StealthInk on three tasks: machine translation, text summarization, and text completion.
All experiments are conducted on the Nvidia A100 GPU with 40 GB of memory. We use SHA-256 as the pseudorandom
function and a 1024-bit random bit string as the secret key sk. The default temperature is 1.0 and the texture key length h is
3. The multinomial sampling strategy is applied during text generation. For the machine translation task, we utilize the
WMT’16 English (En) to Romanian (Ro) dataset, comprising 1,999 examples in the test set. We employ the Multilingual
Bart (MBart) model (Liu et al., 2020) along with its official tokenizer. In the text summarization task, we use the test set
from the CNN-DM corpus (Hermann et al., 2015), consisting of 11,490 examples on BART-large (Liu et al., 2020). We
compare StealthInk with MPAC and the watermarking schemes of (Qu et al., 2024) and (Fernandez et al., 2023). In MPAC,
the green list bias δ = 2, and (Qu et al., 2024) set δ = 6, while in (Fernandez et al., 2023), δ = 0.5, which follow their
original settings, respectively.

To evaluate text quality, we show the ROUGE score, the BLEU score, the BERTS score, and the perplexity of the text.

ROUGE Score. For the summarization task, we evaluate the effectiveness of summaries using the ROUGE score (Lin, 2004),
which measures n-gram overlap to determine how well the generated summaries capture key content from the reference
summaries.

BLEU score. For the machine translation task, we utilize the BLEU score (Papineni et al., 2002), which highlights the lexical
similarity between machine-generated translations and human reference translations.

BERTScore. BERTScore (Zhang et al., 2019) evaluates the similarity between two sentences by summing the cosine
similarities of their token embeddings. We use BERTScore-F1 to assess performance in both text summarization and
machine translation tasks.

Perplexity. Perplexity quantifies how well a probability model predicts a given sample. Lower perplexity values indicate
better predictive accuracy of the model.

To demonstrate the detectability performance of watermarking schemes, we evaluate them using metrics such as AUC, bit
accuracy, TPR@1%FPR, and extraction time. AUC reflects the overall detection capability, while TPR@1%FPR represents
the true positive rate when the false negative rate is below 1%. Bit accuracy measures the number of bits correctly extracted,
and extraction time quantifies the time required to extract the watermarked message from a given text.

I. Text quality comparison on text completion tasks
Fig. 6 compares the perplexity (PPL) of different watermarking schemes at a generation length of 200 tokens. As the
payload increases from 24 to 48 bits, the impact on text quality becomes more evident. StealthInk consistently preserves the

20

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

lowest perplexity among all watermarked outputs, closely aligning with the non-watermarked baseline, which indicates
minimal degradation in text quality. In contrast, MPAC introduces moderate increases in perplexity, while the (Qu et al.,
2024) method exhibits substantial degradation, especially under higher payloads. At 48 bits, the (Fernandez et al., 2023)
method performs better than that of (Qu et al., 2024) but still lags behind StealthInk.

(a) 24 bits (b) 36 bits (c) 48 bits

Figure 6. Text quality of watermarking schemes at 200 tokens. For 36 and 48 bits, we omit (Fernandez et al., 2023) due to its high
computational cost (see extraction time in Table 4).

J. Explanation for lower PPL of StealthInk compared to non-watermarked sequences in Table 4
We show the PPL with various number of generations as in Table 7 and Table 8, which present the PPL statistics over
responses of 200 tokens or 1000 tokens to 100 or 200 prompts. It is important to note that increasing the number of tokens
per response leads to faster convergence in statistical properties compared to increasing the number of prompts, since the
former reduces per-sample variance more effectively. As shown in the 1000-token results, the PPL gap is notably smaller
across all watermark capacities, and the median values between non-watermarked and watermarked texts are very close.

Therefore, if we further increase the number of prompts or use even longer generated sequences, we expect the PPL statistics
of StealthInk and non-watermarked text to converge more closely with a certain number of prompts or generated tokens per
response. This aligns with the theoretical stealthiness guarantee, which holds in expectation over sufficient generations. The
small residual gap in practice is a natural result of finite-sample variance rather than a violation of the stealthy design.

Table 7. PPL on responses to 100 prompts
of Tokens in Responses to 100 Prompts 200 1000

Statistics of PPL Mean Median Mean Median
Non-Watermark 8.0437 8.0362 7.2706 7.3512

StealthInk (24 Bit) 7.4190 7.1819 7.1235 6.6913
StealthInk (36 Bit) 7.2576 7.1126 7.0746 7.0144
StealthInk (48 Bit) 7.1256 6.8348 6.9887 6.7862

Table 8. PPL on responses to 200 prompts
of Tokens in Responses to 200 Prompts 200 1000

Statistics of PPL Mean Median Mean Median
Non-Watermark 8.1686 7.9392 7.2442 7.3142

StealthInk (24 Bit) 7.3745 7.2002 6.9904 6.7184
StealthInk (36 Bit) 7.2754 7.0635 7.0528 7.0834
StealthInk (48 Bit) 7.2118 6.9258 6.9232 6.6822

For additional clarification, please refer to Fig. 6. While the central body of the violin plots for StealthInk and non-
watermarked text are similar—indicating comparable overall quality—some non-watermarked responses exhibit extremely
high PPL (up to 30), which raises their median and average values. These outliers are not present in StealthInk-generated

21

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

text due to its filtering of low-probability tokens, which can incidentally lower PPL. If we instead evaluate PPL across a
large number of responses to the same prompt, both StealthInk and non-watermarked text would converge to similar PPL
values. That is because over many samples, StealthInk’s reweighting does not introduce any overall bias into the output
distribution; instead, it applies small, randomized modifications based on each specific prompt and embedded message to
encode the watermark while maintaining stealthiness.

K. Fig. 7: AUC and Bit Accuracy of StealthInk with Number of Tokens

Figure 7. Performance of StealthInk across increasing number of tokens.

L. Capacity Enhancement through Key Iteration
Intuitively, the watermark keys can be used to embed messages. For instance, to embed a 2-bit message, the watermark key
can be selected from 4 possible candidates. Consequently, the embedding capacity can be improved along two dimensions
simultaneously: first, by refining the watermarking scheme itself, such as with StealthInk, and second, by incorporating key
iteration.

To evaluate this enhancement, we compare the performance of StealthInk with 24 bits embedded using its reweighting
strategy and additional m′ bits embedded via key iteration over 200 tokens. As a result, a total of (24 + m′) bits are
embedded across these two dimensions. See the details in Algorithm 3 and Algorithm 4.

Algorithm 3 StealthInk Encoder Enhanced by Key Iteration

Input: Prompt a, secret key set SK = {sk0, sk1, . . . , sk2m′−1}, generation length L, texture key length h, permutation
generation function f , unit γ, embedded message [Mkey,MsgSeq] where Mkey ∈ {0, 1, . . . , 2m′ − 1} and MsgSeq is
a message sequence of length H , texture key history hist = ∅.
for i = 1, . . . , L do

Calculate PO(· |a,x:i−1)
Generate texture key si based on x−h:

Set a value pos ∈ {0, 1, . . . ,H − 1} with seed si; let M = MsgSeq[pos] and γM = Mγ.
if si ∈ hist then

Sample xi from PO(· |a,x:i−1)
else
hist.add(si)
Generate permutation θi = f(skMkey

, si)
Calculate α and β using (2) and (3)
Calculate PM

W (· |a,x:i−1, θi) from (5)
Sample xi from PM

W (· |a,x:i−1, θi)
end if

end for

Fig. 8 presents the AUC, TPR@1%FPR, and bit accuracy when enhancing the capacity of StealthInk along these two

22

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Algorithm 4 StealthInk decoder under Key Iteration

Input: Text x1:L, secret key set SK = {sk0, sk1, . . . , sk2m′−1}, texture key length h, texture key history hist = ∅,
permutation generation function f , threshold z, vocabulary size |V |, message set M, the length H of MsgSeq, unit
γ = 2−m

Output: False or (True, [Mkey , MsgSeq])
for Mkey ∈ {0, 1, . . . , 2m′ − 1} do

Initiate R
skMkey

,M
pos = 0 for pos ∈ {0, 1, . . . ,H − 1} and M ∈ M

for i = h+ 1, . . . , L do
Generate texture key si based on x−h:

if si ∈ hist then
Continue

end if
hist.add(si)
Set a value pos ∈ {0, 1, . . . ,H − 1} with seed si
for M ∈ M do

Generate permutation θi = f(skMkey
, si)

Denote red list RLM = θi[γM |V | : (γM + γ)|V |]
if xi ∈ RLM then
R

skMkey
,M

pos = R
skMkey

,M
pos + 1

end if
end for

end for
end for
Let MsgSeqMkey [pos] = argminM∈MR

skMkey
,M

pos

Calculate z-score = Z(MsgSeqM
∗
key , x1:L) from eq.(6) where M∗

key = argminskMkey
∈SK Z(MsgSeqMkey , x1:L)

if z-score≤ z then
return (true, [M∗

key,MsgSeqM
∗
key]) Else return false

end if

23

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

dimensions. The red dashed line represents the performance of StealthInk with 36 bits embedded at 200 tokens, without any
capacity enhancement via key iteration. We observe that the performance without key iteration significantly outperforms the
approach that enhances capacity through both dimensions. For instance, under the same number of tokens, the AUC of
StealthInk with 36 bits embedded is 12% higher than that of StealthInk with 31 bits embedded, where m′ = 7. Table 9
shows the detection time when detecting a text watermarked by StealthInk with 24 +m′ bits. We can observe exponentially
increased detection delay is introduced as m′ grows. Although the detection time for various watermark keys can be reduced
by performing parallel detection across different watermark keys, the computational cost also increases as m′ grows, this
additional overhead may limit the practicality of using multiple watermark keys.

Therefore, while key iteration can increase embedding capacity, it may introduce performance trade-offs, potentially reducing
detectability and increasing the detection delay.

Figure 8. Performance when enhancing the capacity of StealthInk through two dimensions, with a total of 24 +m′ bits embedded, where
m′ ∈ [0, 1, 2, 3, 4, 5, 6].

Table 9. Dection time when enhancing the capacity of StealthInk through two dimensions, with totally 24 +m′ bits embedded.
m′ 0 1 2 3 4 5 6 7

Detection time (s) 0.01 0.019 0.041 0.08 0.165 0.322 0.647 1.3

M. Limitations and Future Works
Our approach offers valuable insights into the design of a stealthy and multi-bit watermarking system for LLMs; however, it
does have some limitations. Firstly, our method is effective primarily for original outputs with high entropy. For generated
text with low entropy, where there are a large number of tokens with high probabilities, our reweighting mechanism tends to
apply Case 3 or Case 4 in Fig. 2. Consequently, some tokens within the watermarking interval may still be sampled, causing
the text to be detected as non-watermarked. Secondly, while the stealthiness of our method makes it robust against spoofing
attacks, it is equally important to develop a mechanism that can withstand sophisticated paraphrasing attacks, particularly
given the advanced paraphrasing capabilities of modern LLMs. Moreover, as illustrated by (Zhang et al., 2024a), it is
always possible to find a high-quality non-watermarked text that preserves the semantics of a watermarked text. However,
a watermarking scheme that is robust against paraphrasing attacks can significantly increase the difficulty of identifying
such a text. Future research should focus on strengthening watermarking techniques to further raise this barrier, making it
more challenging for adversaries to remove or evade watermarks through paraphrasing. The spoofing attack of (Jovanović
et al., 2024) targets zero-bit watermarking and may not easily extend to multi-bit schemes especially when the number of
embedded bits increases. Thus, developing a more advanced spoofing attack for multi-bit watermarking and assessing the
role of stealthiness is crucial.

N. Watermarked Example

24

StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models

Table 10. Example of non-watermarked and watermarked texts generated by LLAMA-2-7B and StealthInk with 24 bits embedded at 200
tokens.

Prompt: Earthquake research has found that earthquakes are not evenly distributed across the earth, but are concen-
trated in certain specific strips. These strips where earthquakes are concentrated are called seismic belts.
Message: 111000110110110001010111
Non-watermarked:
The north coast of the Pacific Ocean and the east coast of Africa, these are the well-known zones or strips where
earthquakes occur. This makes you wonder if earthquakes are random in occurrence. No, they are not. They occur
due to the interaction of the plates and the stress they are exerting on the Earth.
Seismic Hazard Areas or Zones
After studying the geographical regions where earthquakes occur more frequently, it was found that these places are in
areas with volcanoes or subduction zones. However, not all the volcanoes or subduction zones are exactly the same.
Some are more active, and there are fewer earthquakes that occur in these areas. However, there are many volcanoes
that are rarely seen or felt by the people in that area. So, what is the difference between these volcanoes? Are there
some volcanoes that are more active than others?
Watermarked:
In a seismic belt, one can observe a geographical zone where the earth’s tectonic plates are interacting and forming
tectonic boundaries. Also, these seismic belts or tectonic boundaries between the plates are usually found in areas
where earthquakes occur. In these areas, there are usually complex subsurface structures such as volcanoes, subduction
zones, and mountains. These structures and boundaries between plates generate stress that is observed by the people
as earthquakes. There are many well-known seismic belts all over the world. However, most of the seismic belts or
zones are found in places such as near the mid-ocean ridges. The mid-ocean ridges are located near the edges of the
plates. Therefore, they contain seismic belts that separate plates from each other. The seismic belts are found in places
such as
Extracted Message: 11100011011011000101011
Bit Accuracy: 0.96
Non-watermarked text P Value: 0.0006364708785215253
Watermarked text P Value: 1.0457118616738534e-09

25

