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Abstract

Large Language Models (LLMs) often struggle
with complex reasoning tasks due to insuffi-
cient in-depth insights in their training data,
which are typically absent in publicly avail-
able documents. This paper introduces the
Chain of Methodologies (CoM), an innova-
tive and intuitive prompting framework that
enhances structured thinking by integrating hu-
man methodological insights, enabling LL.Ms
to tackle complex tasks with extended reason-
ing. CoM leverages the metacognitive abil-
ities of advanced LLMs, activating system-
atic reasoning throught user-defined methodolo-
gies without explicit fine-tuning. Experiments
show that CoM surpasses competitive base-
lines, demonstrating the potential of training-
free prompting methods as robust solutions for
complex reasoning tasks and bridging the gap
toward human-level reasoning through human-
like methodological insights.

1 Introduction

Recently, OpenAl’s o1 (OpenAl, 2024) showcases
the possibility of using a long chain of thoughts
to improve the reasoning ability of Large Lan-
guage Models (LLMs). During these long thoughts,
OpenAlT’s ol displays high-level cognitive abilities,
such as problem decomposition, error recognition,
and correction, which constantly steer the thoughts
in the right direction. OpenAl confers ol with such
abilities through reinforcement learning.

This paper explores whether LLMs can achieve
similar self-guiding abilities for long, structured
reasoning across domains using only prompts, with-
out instruction fine-tuning. This is a challeng-
ing problem: while fine-tuning with large datasets
can broadly improve instruction-following, conven-
tional prompts are typically limited to specific tasks
with few-shot examples due to constraints like con-
text length and information extraction accuracy. As
aresult, pure prompting methods are rarely used for
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Figure 1: An Example of our Chain of Methodologies
reasoning process, where the generation of methodolo-
gies and reasoning interleaves. A methodology (in blue)
is selected based on the historical reasoning status, while
the next reasoning step (in green) is guided by the previ-
ously selected methodology.

cross-domain tasks, despite their advantages—Ilow
cost, rapid deployment, high sample efficiency, and
avoidance of catastrophic forgetting or data bias.

Our work is inspired by prior research on
metacognitive knowledge in LLMs, which refers to
the ability to reason about one’s own reasoning pro-
cesses. Pedagogical studies show that enhancing
metacognitive knowledge improves reasoning in
humans, and similar benefits have been observed in
LLMs through prompts encouraging introspection
and self-reflection (Wang and Zhao, 2024). Be-
sides, Microsoft’s Phi-3 (et al, 2024) uses system
prompts like "do not hallucinate" to reduce hallu-
cination, while (Didolkar et al., 2024) shows im-



proved mathematical reasoning when LLMs iden-
tify required skills to retrieve relevant examples.
These findings provide both intuitive and empirical
support for our approach.

We propose the Chain of Methodologies (CoM),
an intuitive task-agnostic prompting technique de-
signed to enable cross-domain self-guided reason-
ing without instruction fine-tuning. CoM uses
methodology as catalysts to stimulate LLMs to gen-
erate the next reasoning step based on the reasoning
history. While LLMs often struggle with complex
reasoning tasks due to insufficient in-depth insights
between problems and their respective solutions in
the training data, CoM bridges this gap and enables
smooth transitions from a problem to its solution
by inserting a methodological analysis before each
solution step. This leverages the metacognitive
knowledge of LLMs to select or generate method-
ologies that justify or explain the next steps.

CoM features two key components: (1) a list
of methodologies formatted in our “when-what”
format, which facilitates selection based on the rea-
soning history and connects it to the next reasoning
step, and (2) a methodology-reasoning loop that
iteratively selects the next methodology to guide
reasoning along an extended and well-structured
reasoning path. An example of CoM’s interleaving
methodology-selecting and reasoning path is illus-
trated in Figure 1. Two examples of user-defined
methodologies are listed in Figure 3.

Our contributions include the simple CoM frame-
work and extensive experiments. CoM produces
structured, explainable, and faithful reasoning
paths. It is also highly extensible in that users
can enhance the framework by modifying the list
of methodologies in plain text. We evaluated our
task-agnostic CoM framework on two types of rep-
resentative and challenging tasks: mathematical
reasoning and retrieval-augmented generation. Ex-
periments show that CoM outperforms competitive
baselines on these tasks across diverse LLMs.

2 Chain of Methodologies

2.1 Overview

We aim to use prompts to stimulate high-level cog-
nitive (metacognitive) knowledge in existing LLMs,
enabling them to possess the same cross-domain
self-guiding ability as OpenAI’s ol thereby suc-
cessfully carrying out extended and structured rea-
soning sequences across various domains. These
prompts should be task-agnostic and effective in
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Figure 2: The components in our CoM framework and
their interactions in the methodology-reasoning itera-
tions.

guiding thought processes. We find prompts re-
lated to methodology are ideal candidates for this
purpose. Methodology is a critical component of
any discipline or field that requires a structured
approach to understanding, problem-solving, or
conducting research. It provides a framework that
ensures tasks are executed consistently and effec-
tively.

Our Chain of Methodologies (CoM) framework
consists of a list of user-defined methodologies and
a methodology-reasoning iteration. Each method-
ology provides a guideline for the next reasoning
step based on the reasoning history. The reasoning
process of CoM alternates between a methodology
selection step and a methodology-guided reasoning
step, as illustrated in Figure 1.

List of Methodologies: Unlike AlphaGo, which
operates within a defined set of rules and a closed
action space, the general problem-solving ability
of human in an open action space is more com-
plex and challenging to optimize. In fact, the accu-
mulation and evolution of human methodologies
have relied on fundamental processes such as trial
and error, reflection, and self-correction based on
problem-solving experiences across different eras
and civilizations. To navigate this complexity, we
integrate human knowledge and experience related
to task completion through established methodolo-
gies. Let M = {m(l),m(g), ..., m{™} denote the
list of n user-defined methodologies.

Reasoning iterations: CoM conduct a maxi-
mum of K steps for each question ). In step k,
where 1 < k < K, we first prompt an LLM,,



## Analysis

- When: In step 1.

- What: Analyze the category and solution type of the question, list the key facts, variables, relations, constraints with
their associated values, and clarify the required output format. Break down complex problems into simpler steps while
maintaining critical context. Propose a sequence of methodologies necessary to tackle the remaining reasoning steps
iteratively and explain how they are related to the final result.

## Retrieval

- When: Fact-based information from the internet is needed.

- What: Write 1-3 line(s) of Python function call(s) ‘search([information],topk=3)" for each information needed to
retrieve. The function “search™ has been defined and imported for you, which returns a text summary for the argument
‘information’. Place your code in a single python\n...""" code-block. Finally, accurately simulated the retrieved output
by yourself.

Figure 3: Two example methodology definitions in our when-what format.

with prompt template P, to select a methodology
my € M based on the reasoning history hy:

mi = LLMy(M. Q. hy,, ) (1)

, and then prompt an LLM, with prompt tem-
plate P, to generate the next reasoning sequence
ri based on methodology m; and history hy:

Tk = LLMT(MaQ7hk7mk7PT) (2)

, where the reasoning history contains all previous
reasoning sequences hy = [ry,re, -+, rg_1]. In
this paper, we simply use the same instruction fine-
tuned LLM for both LLM,, and LLM,, which is
frozen during the application of our framework.

2.2 Methodology Definition

Our emphasis is on a framework that utilizes a user-
defined list of methodologies rather than study-
ing the philosophy of finding a universally appli-
cable set of methodologies, whose existence is a
debated topic between universalism and contex-
tualism. From a pragmatic standpoint, we focus
on representing each methodology in a way that
facilitates methodology selection and methodology-
based reasoning.

To clarify the distinction between method and
methodology, a method refers a specific technique
or systematic procedure for accomplishing a task,
whereas a methodology encompasses the princi-
ples and rationale guiding the selection and applic-
tion of methods. Each methodology in our user-
defined list specifies two key fields: when and what.
The when field defines the applicable stage of the
methodology in the reasoning lifecycle, along with
the context and factors influencing the choice of

the methodology. The what field outlines the sys-
tematic approach, action selection criteria, and ex-
pected outcomes of the methodology.

Specifically, a methodology is defined in Mark-
down format with three fields: (1) its name, (2)
when: the situation and timing for its application,
and (3) what: its specification and details, includ-
ing principles, tools, techniques, and procedures.
Figure 3 provides examples of two methodology
definitions.

Next, we discuss different types of methodolo-
gies. We categorize methodology definitions into
three broad types: analysis, coding, and reflection.
Analysis methodologies guide the LLLM in organiz-
ing information, such as extracting facts, variables,
relations, constraints, and objectives from the ques-
tion; breaking down the initial question into man-
ageable sub-problems; planning the sequence of ac-
tions; and summarizing, rearranging, and distilling
the information obtained so far. Coding methodolo-
gies prompt the LLM to generate formal languages
for execution by solvers to obtain accurate results,
or to use external tools (e.g., search engines) by
calling predefined functions attached to the solvers.
Reflection methodologies encourage the LLM to
identify errors and provide constructive feedback
through self-reflection or self-verification, enabling
adjustments to the approach and proposing alter-
native strategies for subsequent steps. Figure 8 in
Appendix A.1 lists the task-agnostic methodology
definitions we used in our experiments.

In summary, the use of methodologies serves a
multifaceted purpose: (1) providing human-input
methodologies to stimulate the metacognitive abil-
ity of LLMs, compensating for the lack of in-depth
insights in their training data for complex reasoning
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Figure 4: Results of Qwen2-72B-Instruct on AIME, GSM8K, and Hard HotpotQA.

task; (2) establishing a natural connection through
explanation or justification between the current rea-
soning situation and its solution in the next step;
and (3) offering an educated guess for the next step,
avoiding the formidable complexity of stochastic
search methods like MCTS (Qi et al., 2024) and
RL (OpenAl, 2024; Snell et al., 2024; Zelikman
et al., 2022), which operate over a general reason-
ing space that is much larger than those in games
like AlphaGo.

Finally, our framework is designed for easy ex-
tensibility: users can update the list of methodology
definitions in plain text to make it more compre-
hensive for general thinking or tailor it to a specific
set of skills that accurately target a particular task.

2.3 Methodology-Reasoning Iterations

As illustrated in Figure 2, CoM alternates between
prompting the LLM to generate the next method-
ology and the next methodology-based reasoning
sequence for a maximum of K iterations.

The first prompt instructs the LLM to se-
lect a methodology for the next reasoning steps.
This prompt concatenates the list of user-defined
methodology definitions, the question, the his-
tory of previous methodology-based reasoning se-
quences, and an instruction that provides additional
information about the reasoning stage and the out-
put format. It enables the LLM to choose the most
suitable methodology for the task.

The second prompt includes all the information
from the first prompt, along with the methodol-
ogy selected using the first prompt. It directs the
LLM to adhere the guidance outlined in the chosen
methodology while reasoning. Additionally, the
second prompt requires the output to include the
following elements: (1) an acknowledgment of the
selected methodology by restating its name, (2) a
chain-of-thought reasoning process or a program
that implements the methodology, and (3) a sum-
marized result of the reasoning or a guessed output
of the program.

Following the second prompt, a solver is invoked
to post-process the LLM’s output. This step facili-

tates the LLM’s programming ability (Chen et al.,
2023). Currently, we have only implemented a
Python interpreter, which is triggered when Python
code blocks are detected in the output. This inter-
preter executes the code in a secure environment
with several common packages pre-imported. Af-
ter execution, the predicted output of the program
in the LLM’s response is replaced with the actual
stdout output from the code’s execution. This ap-
proach ensures accurate reasoning on tasks that
require computation, such as mathematical tasks,
effectively implementing the human methodology:
“You should use a calculator for tasks that involve
complex calculations.” Furthermore, it enables var-
ious types of tool-using via Python APIs during the
reasoning process, including web searches, knowl-
edge base retrieval, and even invocation of other
LLMs or manipulation of the LLM’s own reason-
ing process (Cao et al., 2023).

Our Python interpreter executes code in a sand-
boxed environment, which operates as a new pro-
cess with a safe global scope. In this environment,
the code can only access a limited set of built-in
functions and import from a predefined list of pack-
ages. We enforce a timeout of 1 minute for each
process, as we empirically determined that larger
timeouts do not significantly improve performance
on our experimental tasks. Users can extend the
tool-using capabilities of the CoM framework by
adding corresponding methodology definitions and
implementing relevant functions in the Python in-
terpreter. For instance, to enable Google search,
one could add a methodology definition specifying
the existence of a function named “search” and the
meaning of its arguments, followed by implement-
ing and adding this function to the global scope of
the Python interpreter.

Our prompts for methodology selection and
methodology-based reasoning are provided in Fig-
ure 7 in the Appendix A.1.
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Figure 5: Results of DeepSeek-V3 on AIME, GSM8K, and Hard HotpotQA.

3 Related Work

Prompting A significant body of work has ex-
plored various prompt designs to enhance the rea-
soning capabilities of LLMs. Notable approaches
include Chain-of-Thought (Wei et al., 2022), Least-
to-Most (Zhou et al., 2023), Self-Consistency
(Wang et al., 2023b), and Tree-of-Thoughts (Cao
et al., 2023). Methods to enhance problem-specific
performance, include question rephrasing, dividing
subtasks, verification, symbolic grounding (Lyu
et al., 2023; Xu et al., 2024a; Wang et al., 2023a;
Zelikman et al., 2022; Wang et al., 2024), factuality
and faithfulness verification for reasoning chains
(Wang et al., 2024), as well as explicit separation of
knowledge retrieval and reasoning steps to organize
decision-making (Jin et al., 2024).

Iterative Prompting Prior research has also in-
vestigated iterative prompting methods to struc-
ture reasoning processes. Examples include Self-
Refine (Madaan et al., 2023), IRCoT (Trivedi et al.,
2023), iCAP (Wang et al., 2022), MetaGPT (Hong
et al., 2024), and Chain of Ideas (Anonymous,
2024b). These approaches typically rely on pre-
defined, hardcoded actions to guide reasoning. In
contrast, our work introduces a task-agnostic frame-
work that leverages the metacognitive abilities of
LLMs to dynamically select methodologies based
on reasoning history. Furthermore, while prior
work focuses on generating the next reasoning step,
our approach adopts a justification-before-action
style, where the model introspectively justifies why
a specific methodology is needed before executing
it. This mirrors human metacognitive processes
and distinguishes our work from implicit context-
aware token generation.

Metacognition-based Several contemporary
works are closely related to our approach. Buffer
of Thoughts (Yang et al., 2024c) derives high-level
guidelines from previously completed tasks and
stores them in a buffer for future reuse, enabling
learning from experience and improving efficiency
by distilling level-2 slow thinking into level-1
fast thinking. However, unlike our work, its

high-level guidelines contain problem-specific
reasoning chains or code templates tailored to
particular tasks, such as complex multi-query
tasks. Skill-based CoT (Didolkar et al., 2024)
explores the metacognitive capabilities of LLMs in
mathematical problem-solving by labeling ques-
tions with corresponding skills, clustering them to
reduce redundancy, and retrieving skill-relevant
examples for in-context learning during inference.
Induction-augmented generation (Zhang et al.,
2023b) identifies key concepts in questions and
uses inductive prompting templates to extract their
close concepts and common attributes, facilitating
more accurate reasoning processes.
Search-based rStar (Qi et al., 2024) introduces a
self-play mutual reasoning approach that signifi-
cantly improves the reasoning capabilities of small
language models without fine-tuning. This method
employs a costly Monte Carlo Tree Search (MCTS)
with a set of five reasoning-inducing prompts.
Training-based Finally, training-based methods
have been developed to enable LLMs to handle
long chains of thought. For example, STaR (Zelik-
man et al., 2022) demonstrates that iterative train-
ing on reasoning histories leading to correct an-
swers enables models to solve increasingly com-
plex problems. Similarly, (Snell et al., 2024)
fine-tunes small models to perform more reason-
ing steps using reinforcement learning with beam
search, lookahead search, and best-of-N verifiers.
ReST-MCTS (Zhang et al., 2024) integrates pro-
cess reward guidance with tree search MCTS
to collect higher-quality reasoning traces, while
AFlow (Anonymous, 2024a) iteratively refines task-
specific workflows. These methods highlight the
potential of training-based approaches but often
require significant computational resources.

4 Experiments

4.1 Experiment Setup

We evaluate the effectiveness of two components
in CoM: methodology selection and methodology-
guided reasoning.
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Table 1: LLMs used in our experiments. Results on the
last three LLMs are reported in Appendix A.2.

LLM Size
DeepSeek-V3 (DeepSeek-Al, 2024) 671B
Qwen2-72B-Instruct (Yang et al., 2024a) 72B
Qwen2.5-7B-Instruct (Yang et al., 2024a) 7B

Macro-ol (Zhao et al., 2024) 7B
Yi-1.5-9B-Chat (01.AIL: Alex Young, 2024) 9B
InternLM2.5-7B-chat (Cai et al., 2024) 7B
GLM-4-9b-chat (GLM, 2024) 9B

LLMs As listed in Table 1, we report experi-
ment results conducted on a relatively large and
small LL.Ms as well as a recent open-source model
reminiscent of OpenAl’s ol, named Macro-ol,
which is a fine-tuned Qwen2-7B-Instruct with a
combination of the filtered Open-O1 CoT dataset
(Team, 2024), Macro-ol CoT dataset, and Macro-
ol Instruction dataset. We use the LLM API pro-
vided by Siliconflow (sil) and Baidu Cloud (clo),
with settings: max_tokens=1024, temperature=0.2,
top_k=40, top_p=0.95, n=1.

Dataset We evaluate CoM using the same method-
ology definitions (Figure 8) on the test splits of the
datasets listed in Table 2.

AIME: The 1983-2024 part of the American In-
vitational Mathematics Examination, includes com-
plex algebraic equations, geometric puzzles, and
advanced number theory problems to assess mathe-
matical understanding and problem-solving skills.

GSMSK: Linguistically diverse grade school
math word problems requiring 2 to 8 steps of ele-
mentary calculations to solve.

MATH-500: 500 problems from the MATH
benchmark created by OpenAl.

HotpotQA: The hard portion of a multi-hop,
multi-step QA dataset. We simulate retrieval-
augmented generation (Anonymous, 2025) by pre-
senting only the question to LLMs. When LLMs
generate code calling a search with keywords, we
use fuzzy string matching to retrieve the top-k most
similar supporting facts.

ARC: Al2’s Reasoning Challenge dataset, which
is a multiple-choice QA dataset with science exam
questions from grades 3 to 9.

Hﬂﬁﬁ
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Table 2: Datasets used in our experiments.

Dataset Size
AIME (Zhang et al., 2023a) 933
GSMB8K (Cobbe et al., 2021) 1319

MATH-500 (Lightman et al., 2023) 500
ARC (Clark et al., 2018) 1172
HotpotQA (GLM, 2024) 100

4.2 Baselines

We evaluate CoM using zero-shot prompting, as
few-shot approaches rely on task-specific exam-
ples, making them unsuitable for cross-domain
comparisons. We compare CoM with three base-
lines that use recent prompting techniques and the
same methodology definitions (Figure 8), as well as
Macro-ol (Zhao et al., 2024), a recent open-source
model similar to OpenAl ol.

CoT (Wei et al., 2022) prompts the LLM to gen-
erate a chain of reasoning steps and shows the final
result format.

MCoT provides the same methodology defini-
tions as CoM, along with a CoT instruction to guide
the LLM in using these methodologies in an appro-
priate order. MCoT evaluates whether methodolo-
gies can enhance reasoning in a single-turn, non-
interactive setting, drawing on ideas from Least-
to-Most (Zhou et al., 2023) and Metacognitive-
Prompting (Wang and Zhao, 2024).

Both CoT and MCoT prompt the LLM once and
do not allow code generation, as a second prompt
is needed to synthesize code output.

Workflow is similar to CoM but uses a fixed
methodology sequence per task, derived from the
most frequent sequences chosen by CoM (Table 4).
It guides the LLM through multiple reasoning
turns, with sequences [Analysis, Coding, Varia-
tion, Conclusion] for AIME, GSMS8K, and MATH,
and [Analysis, Retrieval, Conclusion] for Hard Hot-
pot and ARC. Workflow incorporates ideas from
Program-of-Thoughts (Chen et al., 2023), Cog-
nitive Prompting (Wang and Zhao, 2024), work-
flow/pipeline (Jin et al., 2024; Anonymous, 2024b),
and RAG (Anonymous, 2025).



Table 3: Performance of Macro-ol and Qwen2.5-7B-
Instruct on AIME Tasks and Hard Hotpot

AIME Hard Hotpot

Acc EM F1 Prec Rec
Macro-ol
CoT 1447 | 0.12 020 0.20 0.27
MCoT 10.50 | 0.09 0.19 0.19 0.25
Qwen2.5-7B-Instruct
CoT 20.15 | 0.17 025 025 024
MCoT 17.58 | 0.15 0.22 022 0.22
CoM 254 1033 042 042 051

4.3 Performance Comparison

Using the large LLM Qwen2-72B-Instruct, Fig-
ure 4 shows that CoM outperforms baselines on
AIME and Hard Hotpot, with accuracy and F1 im-
provements of 38.5% and 28.7%, respectively, over
CoT. Results are similar for DeepSeek-V3 in Fig-
ure 5. However, CoT slightly outperforms CoM
on GSMSK, likely due to its simplicity and bench-
mark leakage (Xu et al., 2024b). Workflow, which
is task-specifically optimized, ranks second, while
MCoT results suggest minimal benefits from single-
prompt methodologies.

As shown in Figure 4, when compared with the
task-specifically optimized Workflow, CoM’s accu-
racy is 1.7% higher on AIME, and 9.8% higher on
Hard Hotpot, demonstrating CoM’s superior flexi-
bility in methodology selection. This highlights the
effectiveness of metacognitive abilities in LLMs
for choosing appropriate methodology sequences
and validates our step-by-step reasoning approach.

With the smaller LLM Qwen2.5-7B-Instruct
(Figure 6), CoM remains the best performer on
AIME, MATH, and ARC. Likely due to bench-
mark leakage (Xu et al., 2024b), both CoM and
Workflow show lower accuracy. On Hard Hotpot,
CoM slightly underperforms Workflow, suggesting
weaker metacognitive abilities in smaller models
for methodology selection.

Finally, we compare CoM with Macro-ol (Zhao
et al., 2024) in Table 3. Results reveal that fine-
tuning fails to improve Macro-ol on AIME and
Hard Hotpot, indicating insufficient generality in
the fine-tuning data.

4.4 Methodology Selection Patterns

We analyzed the reasoning history from the exper-
iment to identify the most frequent methodology
sequences selected by CoM. Table 4 presents the
top five patterns, which account for 52% of CoM’s
responses using Qwen2-72B-Instruct.

In 22.0% of cases, CoM followed a structured ap-

Table 4: Top 52.2% selected methodology sequences on
AIME

Methodology Sequence

22.0%  Analysis Coding Validation Conclusion

16.2%  Analysis Coding Conclusion

5.4%  Analysis Coding Validation Reflection Flexibil-
ity Conclusion

4.4%  Analysis Coding Validation Reflection Conclu-
sion

4.3%  Analysis Coding Validation Reflection Flexibil-

ity Validation Conclusion

Table 5: Ablation Study Results for COM Method

CoM AIME (%) Hard Hotpot
No Ablation 254 0.4174

- Interpreter  14.1 (-44.5%)  0.25 (-40.2%)
- Analysis 18.7 (-26.6%)  0.38 (-8.4%)
- Coding 23.3 (-8.3%) 0.38 (-8.8%)
- Retrieval - 0.22 (-46.8%)
- Validation 23.9 (-7.2%) 0.4 (-3%)

- Reflection  22.8 (-10.5%) 0.38 (-9%)

- Synthesis 23 (-9.3%) 0.4 (-3%)

proach: analyzing, generating and executing code,
validating results, and drawing conclusions. In
16.2% of cases, the model skipped validation, sug-
gesting high confidence in its code. The remain-
ing patterns involved additional error correction
steps, indicating potential validation issues. These
findings suggest that LLMs exhibit metacognitive
abilities by planning their reasoning steps during
problem-solving.

4.5 Ablation Study

We study the relative importance of each compo-
nent of our CoM, including the Python interpreter,
and each of the methodologies we used. Here, in
contrast to excluding the code methodology, which
prevents CoM from generating code, removing the
Python interpreter still allows the LLM to generate
code, but the LLM then needs to guess the output of
the code by itself without an interpreter. Our abla-
tion study is conducted with Qwen2.5-7B-Instruct.

As listed in Table 5, the interpreter is very im-
portant for both tasks, which shows that the code
output guessed by the LLM without using the code
interpreter for both math calculation and knowl-
edge retrieval is unreliable. Secondly, for hard
math problems in AIME, systematic analysis of
the data and constraints in the problem is vital for
the correctness of the reasoning. For AIME, all
methodologies we provided are useful, each con-
tributing to a 7-10% improvement in accuracy. In
AIME, we disable retrieval for experimental sim-
plicity. For Hard Hotpot, where reasoning relies on



Table 6: Average Speed of Experiments in Seconds per
Iteration (Multiplied by 50)

AIME GSMS8K Hard Hotpot

Macro-ol

CoT 96.0 33.5 19.0
MCoT 84.5 42.5 20.0
Qwen2.5-7B-Instruct

CoM 91.0 34.0 50.5
Workflow 36.0 18.0 21.5
CoT 19.0 5.0 3.5

MCoT 19.0 8.0 3.5

retrieved information, retrieval is clearly the most
important methodology.

4.6 Error Analysis

Errors made in CoM are conventional LLM er-
rors such as hallucination, misunderstanding, and
instruction-following errors. We manually in-
spected the first 10 error cases in CoM on the
GSMSK dataset. We found that in most of these
cases, methodology selection is not perfect. Three
error cases are due to hallucination, where the
wrong answers are given directly without the nec-
essary calculation process. Two cases are due to
translation errors from natural language to math;
for example, “born early” is translated to a reduc-
tion in age. Three cases are due to language under-
standing errors; for instance, “restart downloading”
is understood as “continue downloading”, and “ev-
ery second” is understood as “from the second”. In
one error case, the initial calculation is correct, but
then a validation step causes an error because the
LLM believes “servings” must be an integer. In one
error case, the LLLM generates more than one code
block, although the methodology definition con-
tains an instruction to generate a single standalone
code block.

4.7 Efficiency

We examine the inference efficiency in terms of
total inference time for speed and the number of
inferences for cost. Table 6, shows that the speed
of CoM is around 5 times that of CoT in AIME and
7 times in Hard Hotpot. However, CoM is compara-
ble to the fine-tuned model, which generates longer
reasoning traces with a lower speed per token.
Table 7 compares the number of prompts made
by CoM with those made by Workflow. The results
show that although we set the maximum iteration
K = 8, CoM stops at a smaller number of steps
on average, generates more reasoning steps for the
harder AIME problems, and a smaller number of

Table 7: Average Number of Prompts

AIME GSMS8K Hard Hotpot
CoM 2x576  2x3.99 2x5.98
Workflow 4 4 3

steps for the easier GSM8K problems.

4.8 Summary of Experiments

The experiments on complex mathematical prob-
lems (AIME and GSM8K) and multi-hop question
answering (HotpotQA) evaluate the effectiveness
of CoM in methodology selection and guided rea-
soning using a 72B, a 7B LLM, and a fine-tuned
LLM for structured reasoning.

Results show that our CoM is effective in im-
proving the performance of two challenging tasks
over baselines that embody recent prompt engineer-
ing approaches. This result supports our hypothesis
that we can use a training-free solution that inte-
grates human methodological insights to enhance
the performance of LLMs in complex reasoning.

Methodology selection patterns reveal that CoM
effectively generates reasonable methodology se-
quences, which guide its reasoning in the right
direction. Error analysis identifies that common
LLM issues contribute to the majority of errors
made by CoM. Finally, the ablation study confirms
that the methodologies we employed are critical
for solving complex reasoning tasks.

5 Conclusion and Future Work

This paper enhances LLMs’ reasoning capabili-
ties for complex tasks by simulating metacognitive
processes and leveraging user-defined methodolo-
gies, enabling effective navigation of complex rea-
soning tasks without extensive retraining. Take-
aways include: (1) LLMs exhibit latent metacog-
nitive abilities that can be activated through struc-
tured, justification-driven prompting—eliminating
the need for fine-tuning; and (2) generating explicit
methodology justifications improves traceability
and task comprehension, boosting zero-shot accu-
racy and cross-domain adaptation, which is often
constrained by limited in-context examples.

A promising direction for future work is the au-
tomated search for optimal methodologies and rea-
soning chains, inspired by approaches like (Yang
et al., 2024b), to identify and apply methodologies
that enhance reasoning performance through better
prompt construction.



Limitations

The approach proposed in this paper assumes that
the LLM possesses metacognitive abilities. We
found that other LLMs, despite demonstrating com-
petitive performance in various benchmarks, fail in
methodology selection, even with extensive prompt
tuning efforts. For instance, one of these LLMs
consistently selects the first methodology it initially
chose. Additional experimental results illustrating
these failures are provided in Appendix A.2.

Currently, our method requires two distinct
prompts at each step: one for methodology se-
lection and another for methodology-based rea-
soning. We attempted to consolidate these two
prompts into a single one; however, we observed
that even the most advanced LLMs we tested, in-
cluding DeepSeek-V3, struggled to follow instruc-
tions with the combined, more complex prompt.
We anticipate that future advancements in LLMs’
instruction-following capabilities will enable the
use of a single prompt, thereby improving the effi-
ciency of our method.

The methodologies included in our framework
are not exhaustive, leaving room for future research
to expand and refine the list. Incorporating a wider
range of strategies could enhance the adaptability
and robustness of the CoM framework, opening
new avenues for exploration and improvement.
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A Appendix

A.1 Prompts

Our list of methodologies is displayed in Figure 8,
and our methodology-selection and methodology-
based reasoning prompts are listed in Figure 7.

A.2 Additional Experiment Results

The approach proposed in this paper assumes that
the LLM possesses metacognitive abilities. This
section presents additional experimental results in
Figures 9, 10, and 11, which reveal that some
LLMs, despite demonstrating competitive perfor-
mance across various benchmarks, struggle with
methodology selection even after extensive prompt
tuning efforts. For example, one of these LLMs
consistently defaults to selecting the first methodol-
ogy it initially identifies, highlighting a limitation
in its decision-making process.
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(. L . N ( )
RS I P # List of Existing Methodologies

e {example_methodologies}

historical i L .
eIzl e T St {historical_reasoning_steps}
# Question

# Question
- {question} 2

- {question}

# Step Instruction

- You are currently on {cur_step} out of a
total of a maximum of {max_steps} steps
to solve the question. Please select the
most suitable methodology from the list,
considering the reasoning history and the
timing for applying each methodology.
Try to diversify your choices to advance
the resolution of the question, and avoid
redundant or repeated methodologies.
Select and output a single methodology
succinctly in the following format,
without any additional text:

# Selected Methodology
{selected_methodology}

# Step Instruction

- You are currently on {cur_step} out of a total of a
maximum of {max_steps} steps to solve the
question. Please conduct an innovative next
reasoning step for the question, using the selected
methodology "{selected_methodology_name}"

based on the current reasoning history. Please
output your reasoning step succinctly in the

following format, without any additional text:

i [Me?hodolggy LT . - Methodology: [Name of the selected
- When: [The timing for applying the

methodology]
methodology]

- Reasoning/Code: [A structural and systematic
reasoning step that uses the selected methodology
and improves on your past reasoning steps. Or a
Python snippet with such reasoning inside its
comments in a python\n...”" code-block.]

- Result: [A short result of your reasoning, or an
accurate simulated outpout from the code.]

_ J U _J

- What: [The characteristics and details of
the methodology]

Figure 7: Our methodology-selection prompt (left) and methodology-based reasoning prompt (right).
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## Analysis

- When: In step 1.

- What: Analyze the category and solution type of the question, list the key facts, variables,
relations, constraints with their associated values, and clarify the required output format. Break
down complex problems into simpler steps while maintaining critical context. Propose a sequence
of methodologies necessary to tackle the remaining reasoning steps iteratively and explain how
they are related to the final result.

## Retrieval

- When: Fact-based information from the internet is needed.

- What: Write 1-3 line(s) of Python function call(s) ‘search([information],topk=3)" for each
information needed to retrieve. The function ‘search’ has been defined and imported for you,
which returns a text summary for the argument “information’. Place your code in a single
““python\n..."" code-block. Finally, accurately simulated the retrieved output by yourself.

## Coding
- When: Coding is necessary.

- What: A standalone Python snippet with structural and systematic reasoning in comments, using
the **print** function to output the result. Place your code in a single *“python\n..."" code-

block. Finally, accurately simulated the output of your Python snippet by yourself without using a
computer.

## Validation

- When: A temporary or a final the result is resulting from a previous reasoning step.

- What: Identify the result, and analyze its correctness from a different angle. You may write a
test-case function that prints True/False to validate the result and then simulate its output.

## Reflection
- When: An error is detected or validation fails.

- What: Analyze the reasoning steps to identify errors and provide constructive self-critic or
feedback for improvement.

## Flexibility

- When: The previous step fails to obtains the expected result or when a reflective or critic
feedback is available.

- What: Adjust the approach based on insights gained and propose alternative strategies for the
next steps.

## Conclusion

- When: A confident final answer is available, or in the last step.

- What: Clarify the output format required by the question. Compile the reasoning process and
generate the answer in the required format.

Figure 8: Our list of methodologies.
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Figure 9: Results of Yi-1.5-9B-Chat (01.Al: Alex Young, 2024) on AIME, GSMS8K, and Hard HotpotQA.
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Figure 10: Results of InternL.M2.5-7B-chat (Cai et al., 2024) on AIME, GSMS8K, and Hard HotpotQA.
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Figure 11: Results of GLM-4-9b-chat (GLM, 2024) on AIME, GSM8K, and Hard HotpotQA.
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