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Abstract001

Large Language Models (LLMs) often struggle002
with complex reasoning tasks due to insuffi-003
cient in-depth insights in their training data,004
which are typically absent in publicly avail-005
able documents. This paper introduces the006
Chain of Methodologies (CoM), an innova-007
tive and intuitive prompting framework that008
enhances structured thinking by integrating hu-009
man methodological insights, enabling LLMs010
to tackle complex tasks with extended reason-011
ing. CoM leverages the metacognitive abil-012
ities of advanced LLMs, activating system-013
atic reasoning throught user-defined methodolo-014
gies without explicit fine-tuning. Experiments015
show that CoM surpasses competitive base-016
lines, demonstrating the potential of training-017
free prompting methods as robust solutions for018
complex reasoning tasks and bridging the gap019
toward human-level reasoning through human-020
like methodological insights.021

1 Introduction022

Recently, OpenAI’s o1 (OpenAI, 2024) showcases023

the possibility of using a long chain of thoughts024

to improve the reasoning ability of Large Lan-025

guage Models (LLMs). During these long thoughts,026

OpenAI’s o1 displays high-level cognitive abilities,027

such as problem decomposition, error recognition,028

and correction, which constantly steer the thoughts029

in the right direction. OpenAI confers o1 with such030

abilities through reinforcement learning.031

This paper explores whether LLMs can achieve032

similar self-guiding abilities for long, structured033

reasoning across domains using only prompts, with-034

out instruction fine-tuning. This is a challeng-035

ing problem: while fine-tuning with large datasets036

can broadly improve instruction-following, conven-037

tional prompts are typically limited to specific tasks038

with few-shot examples due to constraints like con-039

text length and information extraction accuracy. As040

a result, pure prompting methods are rarely used for041

LLM
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Figure 1: An Example of our Chain of Methodologies
reasoning process, where the generation of methodolo-
gies and reasoning interleaves. A methodology (in blue)
is selected based on the historical reasoning status, while
the next reasoning step (in green) is guided by the previ-
ously selected methodology.

cross-domain tasks, despite their advantages—low 042

cost, rapid deployment, high sample efficiency, and 043

avoidance of catastrophic forgetting or data bias. 044

Our work is inspired by prior research on 045

metacognitive knowledge in LLMs, which refers to 046

the ability to reason about one’s own reasoning pro- 047

cesses. Pedagogical studies show that enhancing 048

metacognitive knowledge improves reasoning in 049

humans, and similar benefits have been observed in 050

LLMs through prompts encouraging introspection 051

and self-reflection (Wang and Zhao, 2024). Be- 052

sides, Microsoft’s Phi-3 (et al, 2024) uses system 053

prompts like "do not hallucinate" to reduce hallu- 054

cination, while (Didolkar et al., 2024) shows im- 055

1



proved mathematical reasoning when LLMs iden-056

tify required skills to retrieve relevant examples.057

These findings provide both intuitive and empirical058

support for our approach.059

We propose the Chain of Methodologies (CoM),060

an intuitive task-agnostic prompting technique de-061

signed to enable cross-domain self-guided reason-062

ing without instruction fine-tuning. CoM uses063

methodology as catalysts to stimulate LLMs to gen-064

erate the next reasoning step based on the reasoning065

history. While LLMs often struggle with complex066

reasoning tasks due to insufficient in-depth insights067

between problems and their respective solutions in068

the training data, CoM bridges this gap and enables069

smooth transitions from a problem to its solution070

by inserting a methodological analysis before each071

solution step. This leverages the metacognitive072

knowledge of LLMs to select or generate method-073

ologies that justify or explain the next steps.074

CoM features two key components: (1) a list075

of methodologies formatted in our “when-what”076

format, which facilitates selection based on the rea-077

soning history and connects it to the next reasoning078

step, and (2) a methodology-reasoning loop that079

iteratively selects the next methodology to guide080

reasoning along an extended and well-structured081

reasoning path. An example of CoM’s interleaving082

methodology-selecting and reasoning path is illus-083

trated in Figure 1. Two examples of user-defined084

methodologies are listed in Figure 3.085

Our contributions include the simple CoM frame-086

work and extensive experiments. CoM produces087

structured, explainable, and faithful reasoning088

paths. It is also highly extensible in that users089

can enhance the framework by modifying the list090

of methodologies in plain text. We evaluated our091

task-agnostic CoM framework on two types of rep-092

resentative and challenging tasks: mathematical093

reasoning and retrieval-augmented generation. Ex-094

periments show that CoM outperforms competitive095

baselines on these tasks across diverse LLMs.096

2 Chain of Methodologies097

2.1 Overview098

We aim to use prompts to stimulate high-level cog-099

nitive (metacognitive) knowledge in existing LLMs,100

enabling them to possess the same cross-domain101

self-guiding ability as OpenAI’s o1 thereby suc-102

cessfully carrying out extended and structured rea-103

soning sequences across various domains. These104

prompts should be task-agnostic and effective in105
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Figure 2: The components in our CoM framework and
their interactions in the methodology-reasoning itera-
tions.

guiding thought processes. We find prompts re- 106

lated to methodology are ideal candidates for this 107

purpose. Methodology is a critical component of 108

any discipline or field that requires a structured 109

approach to understanding, problem-solving, or 110

conducting research. It provides a framework that 111

ensures tasks are executed consistently and effec- 112

tively. 113

Our Chain of Methodologies (CoM) framework 114

consists of a list of user-defined methodologies and 115

a methodology-reasoning iteration. Each method- 116

ology provides a guideline for the next reasoning 117

step based on the reasoning history. The reasoning 118

process of CoM alternates between a methodology 119

selection step and a methodology-guided reasoning 120

step, as illustrated in Figure 1. 121

List of Methodologies: Unlike AlphaGo, which 122

operates within a defined set of rules and a closed 123

action space, the general problem-solving ability 124

of human in an open action space is more com- 125

plex and challenging to optimize. In fact, the accu- 126

mulation and evolution of human methodologies 127

have relied on fundamental processes such as trial 128

and error, reflection, and self-correction based on 129

problem-solving experiences across different eras 130

and civilizations. To navigate this complexity, we 131

integrate human knowledge and experience related 132

to task completion through established methodolo- 133

gies. Let M = {m(1),m(2), · · · ,m(n)} denote the 134

list of n user-defined methodologies. 135

Reasoning iterations: CoM conduct a maxi- 136

mum of K steps for each question Q. In step k, 137

where 1 ≤ k ≤ K, we first prompt an LLMm 138
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## Analysis
- When: In step 1.
- What: Analyze the category and solution type of the question, list the key facts, variables, relations, constraints with 
their associated values, and clarify the required output format. Break down complex problems into simpler steps while 
maintaining critical context. Propose a sequence of methodologies necessary to tackle the remaining reasoning steps 
iteratively and explain how they are related to the final result.

## Retrieval
- When: Fact-based information from the internet is needed.
- What: Write 1-3 line(s) of Python function call(s) `search([information],topk=3)` for each information needed to 
retrieve. The function `search` has been defined and imported for you, which returns a text summary for the argument 
`information`. Place your code in a single ```python\n...``` code-block. Finally, accurately simulated the retrieved output 
by yourself.

Figure 3: Two example methodology definitions in our when-what format.

with prompt template Pp to select a methodology139

mk ∈ M based on the reasoning history hk:140

mk = LLMp(M,Q, hk, Pp) (1)141

, and then prompt an LLMr with prompt tem-142

plate Pr to generate the next reasoning sequence143

rk based on methodology mk and history hk:144

rk = LLMr(M,Q, hk,mk, Pr) (2)145

, where the reasoning history contains all previous146

reasoning sequences hk = [r1, r2, · · · , rk−1]. In147

this paper, we simply use the same instruction fine-148

tuned LLM for both LLMm and LLMr, which is149

frozen during the application of our framework.150

2.2 Methodology Definition151

Our emphasis is on a framework that utilizes a user-152

defined list of methodologies rather than study-153

ing the philosophy of finding a universally appli-154

cable set of methodologies, whose existence is a155

debated topic between universalism and contex-156

tualism. From a pragmatic standpoint, we focus157

on representing each methodology in a way that158

facilitates methodology selection and methodology-159

based reasoning.160

To clarify the distinction between method and161

methodology, a method refers a specific technique162

or systematic procedure for accomplishing a task,163

whereas a methodology encompasses the princi-164

ples and rationale guiding the selection and applic-165

tion of methods. Each methodology in our user-166

defined list specifies two key fields: when and what.167

The when field defines the applicable stage of the168

methodology in the reasoning lifecycle, along with169

the context and factors influencing the choice of170

the methodology. The what field outlines the sys- 171

tematic approach, action selection criteria, and ex- 172

pected outcomes of the methodology. 173

Specifically, a methodology is defined in Mark- 174

down format with three fields: (1) its name, (2) 175

when: the situation and timing for its application, 176

and (3) what: its specification and details, includ- 177

ing principles, tools, techniques, and procedures. 178

Figure 3 provides examples of two methodology 179

definitions. 180

Next, we discuss different types of methodolo- 181

gies. We categorize methodology definitions into 182

three broad types: analysis, coding, and reflection. 183

Analysis methodologies guide the LLM in organiz- 184

ing information, such as extracting facts, variables, 185

relations, constraints, and objectives from the ques- 186

tion; breaking down the initial question into man- 187

ageable sub-problems; planning the sequence of ac- 188

tions; and summarizing, rearranging, and distilling 189

the information obtained so far. Coding methodolo- 190

gies prompt the LLM to generate formal languages 191

for execution by solvers to obtain accurate results, 192

or to use external tools (e.g., search engines) by 193

calling predefined functions attached to the solvers. 194

Reflection methodologies encourage the LLM to 195

identify errors and provide constructive feedback 196

through self-reflection or self-verification, enabling 197

adjustments to the approach and proposing alter- 198

native strategies for subsequent steps. Figure 8 in 199

Appendix A.1 lists the task-agnostic methodology 200

definitions we used in our experiments. 201

In summary, the use of methodologies serves a 202

multifaceted purpose: (1) providing human-input 203

methodologies to stimulate the metacognitive abil- 204

ity of LLMs, compensating for the lack of in-depth 205

insights in their training data for complex reasoning 206
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Figure 4: Results of Qwen2-72B-Instruct on AIME, GSM8K, and Hard HotpotQA.

task; (2) establishing a natural connection through207

explanation or justification between the current rea-208

soning situation and its solution in the next step;209

and (3) offering an educated guess for the next step,210

avoiding the formidable complexity of stochastic211

search methods like MCTS (Qi et al., 2024) and212

RL (OpenAI, 2024; Snell et al., 2024; Zelikman213

et al., 2022), which operate over a general reason-214

ing space that is much larger than those in games215

like AlphaGo.216

Finally, our framework is designed for easy ex-217

tensibility: users can update the list of methodology218

definitions in plain text to make it more compre-219

hensive for general thinking or tailor it to a specific220

set of skills that accurately target a particular task.221

2.3 Methodology-Reasoning Iterations222

As illustrated in Figure 2, CoM alternates between223

prompting the LLM to generate the next method-224

ology and the next methodology-based reasoning225

sequence for a maximum of K iterations.226

The first prompt instructs the LLM to se-227

lect a methodology for the next reasoning steps.228

This prompt concatenates the list of user-defined229

methodology definitions, the question, the his-230

tory of previous methodology-based reasoning se-231

quences, and an instruction that provides additional232

information about the reasoning stage and the out-233

put format. It enables the LLM to choose the most234

suitable methodology for the task.235

The second prompt includes all the information236

from the first prompt, along with the methodol-237

ogy selected using the first prompt. It directs the238

LLM to adhere the guidance outlined in the chosen239

methodology while reasoning. Additionally, the240

second prompt requires the output to include the241

following elements: (1) an acknowledgment of the242

selected methodology by restating its name, (2) a243

chain-of-thought reasoning process or a program244

that implements the methodology, and (3) a sum-245

marized result of the reasoning or a guessed output246

of the program.247

Following the second prompt, a solver is invoked248

to post-process the LLM’s output. This step facili-249

tates the LLM’s programming ability (Chen et al., 250

2023). Currently, we have only implemented a 251

Python interpreter, which is triggered when Python 252

code blocks are detected in the output. This inter- 253

preter executes the code in a secure environment 254

with several common packages pre-imported. Af- 255

ter execution, the predicted output of the program 256

in the LLM’s response is replaced with the actual 257

stdout output from the code’s execution. This ap- 258

proach ensures accurate reasoning on tasks that 259

require computation, such as mathematical tasks, 260

effectively implementing the human methodology: 261

“You should use a calculator for tasks that involve 262

complex calculations.” Furthermore, it enables var- 263

ious types of tool-using via Python APIs during the 264

reasoning process, including web searches, knowl- 265

edge base retrieval, and even invocation of other 266

LLMs or manipulation of the LLM’s own reason- 267

ing process (Cao et al., 2023). 268

Our Python interpreter executes code in a sand- 269

boxed environment, which operates as a new pro- 270

cess with a safe global scope. In this environment, 271

the code can only access a limited set of built-in 272

functions and import from a predefined list of pack- 273

ages. We enforce a timeout of 1 minute for each 274

process, as we empirically determined that larger 275

timeouts do not significantly improve performance 276

on our experimental tasks. Users can extend the 277

tool-using capabilities of the CoM framework by 278

adding corresponding methodology definitions and 279

implementing relevant functions in the Python in- 280

terpreter. For instance, to enable Google search, 281

one could add a methodology definition specifying 282

the existence of a function named “search” and the 283

meaning of its arguments, followed by implement- 284

ing and adding this function to the global scope of 285

the Python interpreter. 286

Our prompts for methodology selection and 287

methodology-based reasoning are provided in Fig- 288

ure 7 in the Appendix A.1. 289
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Figure 5: Results of DeepSeek-V3 on AIME, GSM8K, and Hard HotpotQA.

3 Related Work290

Prompting A significant body of work has ex-291

plored various prompt designs to enhance the rea-292

soning capabilities of LLMs. Notable approaches293

include Chain-of-Thought (Wei et al., 2022), Least-294

to-Most (Zhou et al., 2023), Self-Consistency295

(Wang et al., 2023b), and Tree-of-Thoughts (Cao296

et al., 2023). Methods to enhance problem-specific297

performance, include question rephrasing, dividing298

subtasks, verification, symbolic grounding (Lyu299

et al., 2023; Xu et al., 2024a; Wang et al., 2023a;300

Zelikman et al., 2022; Wang et al., 2024), factuality301

and faithfulness verification for reasoning chains302

(Wang et al., 2024), as well as explicit separation of303

knowledge retrieval and reasoning steps to organize304

decision-making (Jin et al., 2024).305

Iterative Prompting Prior research has also in-306

vestigated iterative prompting methods to struc-307

ture reasoning processes. Examples include Self-308

Refine (Madaan et al., 2023), IRCoT (Trivedi et al.,309

2023), iCAP (Wang et al., 2022), MetaGPT (Hong310

et al., 2024), and Chain of Ideas (Anonymous,311

2024b). These approaches typically rely on pre-312

defined, hardcoded actions to guide reasoning. In313

contrast, our work introduces a task-agnostic frame-314

work that leverages the metacognitive abilities of315

LLMs to dynamically select methodologies based316

on reasoning history. Furthermore, while prior317

work focuses on generating the next reasoning step,318

our approach adopts a justification-before-action319

style, where the model introspectively justifies why320

a specific methodology is needed before executing321

it. This mirrors human metacognitive processes322

and distinguishes our work from implicit context-323

aware token generation.324

Metacognition-based Several contemporary325

works are closely related to our approach. Buffer326

of Thoughts (Yang et al., 2024c) derives high-level327

guidelines from previously completed tasks and328

stores them in a buffer for future reuse, enabling329

learning from experience and improving efficiency330

by distilling level-2 slow thinking into level-1331

fast thinking. However, unlike our work, its332

high-level guidelines contain problem-specific 333

reasoning chains or code templates tailored to 334

particular tasks, such as complex multi-query 335

tasks. Skill-based CoT (Didolkar et al., 2024) 336

explores the metacognitive capabilities of LLMs in 337

mathematical problem-solving by labeling ques- 338

tions with corresponding skills, clustering them to 339

reduce redundancy, and retrieving skill-relevant 340

examples for in-context learning during inference. 341

Induction-augmented generation (Zhang et al., 342

2023b) identifies key concepts in questions and 343

uses inductive prompting templates to extract their 344

close concepts and common attributes, facilitating 345

more accurate reasoning processes. 346

Search-based rStar (Qi et al., 2024) introduces a 347

self-play mutual reasoning approach that signifi- 348

cantly improves the reasoning capabilities of small 349

language models without fine-tuning. This method 350

employs a costly Monte Carlo Tree Search (MCTS) 351

with a set of five reasoning-inducing prompts. 352

Training-based Finally, training-based methods 353

have been developed to enable LLMs to handle 354

long chains of thought. For example, STaR (Zelik- 355

man et al., 2022) demonstrates that iterative train- 356

ing on reasoning histories leading to correct an- 357

swers enables models to solve increasingly com- 358

plex problems. Similarly, (Snell et al., 2024) 359

fine-tunes small models to perform more reason- 360

ing steps using reinforcement learning with beam 361

search, lookahead search, and best-of-N verifiers. 362

ReST-MCTS (Zhang et al., 2024) integrates pro- 363

cess reward guidance with tree search MCTS 364

to collect higher-quality reasoning traces, while 365

AFlow (Anonymous, 2024a) iteratively refines task- 366

specific workflows. These methods highlight the 367

potential of training-based approaches but often 368

require significant computational resources. 369

4 Experiments 370

4.1 Experiment Setup 371

We evaluate the effectiveness of two components 372

in CoM: methodology selection and methodology- 373

guided reasoning. 374
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Figure 6: Results of Qwen2.5-7B-Instruct, a small LLM, on AIME, GSM8K, MATH, ARC, and Hard HotpotQA.

Table 1: LLMs used in our experiments. Results on the
last three LLMs are reported in Appendix A.2.

LLM Size
DeepSeek-V3 (DeepSeek-AI, 2024) 671B
Qwen2-72B-Instruct (Yang et al., 2024a) 72B
Qwen2.5-7B-Instruct (Yang et al., 2024a) 7B
Macro-o1 (Zhao et al., 2024) 7B
Yi-1.5-9B-Chat (01.AI: Alex Young, 2024) 9B
InternLM2.5-7B-chat (Cai et al., 2024) 7B
GLM-4-9b-chat (GLM, 2024) 9B

LLMs As listed in Table 1, we report experi-375

ment results conducted on a relatively large and376

small LLMs as well as a recent open-source model377

reminiscent of OpenAI’s o1, named Macro-o1,378

which is a fine-tuned Qwen2-7B-Instruct with a379

combination of the filtered Open-O1 CoT dataset380

(Team, 2024), Macro-o1 CoT dataset, and Macro-381

o1 Instruction dataset. We use the LLM API pro-382

vided by Siliconflow (sil) and Baidu Cloud (clo),383

with settings: max_tokens=1024, temperature=0.2,384

top_k=40, top_p=0.95, n=1.385

Dataset We evaluate CoM using the same method-386

ology definitions (Figure 8) on the test splits of the387

datasets listed in Table 2.388

AIME: The 1983-2024 part of the American In-389

vitational Mathematics Examination, includes com-390

plex algebraic equations, geometric puzzles, and391

advanced number theory problems to assess mathe-392

matical understanding and problem-solving skills.393

GSM8K: Linguistically diverse grade school394

math word problems requiring 2 to 8 steps of ele-395

mentary calculations to solve.396

MATH-500: 500 problems from the MATH397

benchmark created by OpenAI.398

HotpotQA: The hard portion of a multi-hop,399

multi-step QA dataset. We simulate retrieval-400

augmented generation (Anonymous, 2025) by pre-401

senting only the question to LLMs. When LLMs402

generate code calling a search with keywords, we403

use fuzzy string matching to retrieve the top-k most404

similar supporting facts.405

ARC: AI2’s Reasoning Challenge dataset, which406

is a multiple-choice QA dataset with science exam407

questions from grades 3 to 9.408

Table 2: Datasets used in our experiments.

Dataset Size
AIME (Zhang et al., 2023a) 933
GSM8K (Cobbe et al., 2021) 1319
MATH-500 (Lightman et al., 2023) 500
ARC (Clark et al., 2018) 1172
HotpotQA (GLM, 2024) 100

4.2 Baselines 409

We evaluate CoM using zero-shot prompting, as 410

few-shot approaches rely on task-specific exam- 411

ples, making them unsuitable for cross-domain 412

comparisons. We compare CoM with three base- 413

lines that use recent prompting techniques and the 414

same methodology definitions (Figure 8), as well as 415

Macro-o1 (Zhao et al., 2024), a recent open-source 416

model similar to OpenAI o1. 417

CoT (Wei et al., 2022) prompts the LLM to gen- 418

erate a chain of reasoning steps and shows the final 419

result format. 420

MCoT provides the same methodology defini- 421

tions as CoM, along with a CoT instruction to guide 422

the LLM in using these methodologies in an appro- 423

priate order. MCoT evaluates whether methodolo- 424

gies can enhance reasoning in a single-turn, non- 425

interactive setting, drawing on ideas from Least- 426

to-Most (Zhou et al., 2023) and Metacognitive- 427

Prompting (Wang and Zhao, 2024). 428

Both CoT and MCoT prompt the LLM once and 429

do not allow code generation, as a second prompt 430

is needed to synthesize code output. 431

Workflow is similar to CoM but uses a fixed 432

methodology sequence per task, derived from the 433

most frequent sequences chosen by CoM (Table 4). 434

It guides the LLM through multiple reasoning 435

turns, with sequences [Analysis, Coding, Varia- 436

tion, Conclusion] for AIME, GSM8K, and MATH, 437

and [Analysis, Retrieval, Conclusion] for Hard Hot- 438

pot and ARC. Workflow incorporates ideas from 439

Program-of-Thoughts (Chen et al., 2023), Cog- 440

nitive Prompting (Wang and Zhao, 2024), work- 441

flow/pipeline (Jin et al., 2024; Anonymous, 2024b), 442

and RAG (Anonymous, 2025). 443
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Table 3: Performance of Macro-o1 and Qwen2.5-7B-
Instruct on AIME Tasks and Hard Hotpot

AIME Hard Hotpot
Acc EM F1 Prec Rec

Macro-o1
CoT 14.47 0.12 0.20 0.20 0.27
MCoT 10.50 0.09 0.19 0.19 0.25
Qwen2.5-7B-Instruct
CoT 20.15 0.17 0.25 0.25 0.24
MCoT 17.58 0.15 0.22 0.22 0.22
CoM 25.4 0.33 0.42 0.42 0.51

4.3 Performance Comparison444

Using the large LLM Qwen2-72B-Instruct, Fig-445

ure 4 shows that CoM outperforms baselines on446

AIME and Hard Hotpot, with accuracy and F1 im-447

provements of 38.5% and 28.7%, respectively, over448

CoT. Results are similar for DeepSeek-V3 in Fig-449

ure 5. However, CoT slightly outperforms CoM450

on GSM8K, likely due to its simplicity and bench-451

mark leakage (Xu et al., 2024b). Workflow, which452

is task-specifically optimized, ranks second, while453

MCoT results suggest minimal benefits from single-454

prompt methodologies.455

As shown in Figure 4, when compared with the456

task-specifically optimized Workflow, CoM’s accu-457

racy is 1.7% higher on AIME, and 9.8% higher on458

Hard Hotpot, demonstrating CoM’s superior flexi-459

bility in methodology selection. This highlights the460

effectiveness of metacognitive abilities in LLMs461

for choosing appropriate methodology sequences462

and validates our step-by-step reasoning approach.463

With the smaller LLM Qwen2.5-7B-Instruct464

(Figure 6), CoM remains the best performer on465

AIME, MATH, and ARC. Likely due to bench-466

mark leakage (Xu et al., 2024b), both CoM and467

Workflow show lower accuracy. On Hard Hotpot,468

CoM slightly underperforms Workflow, suggesting469

weaker metacognitive abilities in smaller models470

for methodology selection.471

Finally, we compare CoM with Macro-o1 (Zhao472

et al., 2024) in Table 3. Results reveal that fine-473

tuning fails to improve Macro-o1 on AIME and474

Hard Hotpot, indicating insufficient generality in475

the fine-tuning data.476

4.4 Methodology Selection Patterns477

We analyzed the reasoning history from the exper-478

iment to identify the most frequent methodology479

sequences selected by CoM. Table 4 presents the480

top five patterns, which account for 52% of CoM’s481

responses using Qwen2-72B-Instruct.482

In 22.0% of cases, CoM followed a structured ap-483

Table 4: Top 52.2% selected methodology sequences on
AIME

Methodology Sequence
22.0% Analysis Coding Validation Conclusion
16.2% Analysis Coding Conclusion
5.4% Analysis Coding Validation Reflection Flexibil-

ity Conclusion
4.4% Analysis Coding Validation Reflection Conclu-

sion
4.3% Analysis Coding Validation Reflection Flexibil-

ity Validation Conclusion

Table 5: Ablation Study Results for COM Method

CoM AIME (%) Hard Hotpot
No Ablation 25.4 0.4174
- Interpreter 14.1 (-44.5%) 0.25 (-40.2%)
- Analysis 18.7 (-26.6%) 0.38 (-8.4%)
- Coding 23.3 (-8.3%) 0.38 (-8.8%)
- Retrieval - 0.22 (-46.8%)
- Validation 23.9 (-7.2%) 0.4 (-3%)
- Reflection 22.8 (-10.5%) 0.38 (-9%)
- Synthesis 23 (-9.3%) 0.4 (-3%)

proach: analyzing, generating and executing code, 484

validating results, and drawing conclusions. In 485

16.2% of cases, the model skipped validation, sug- 486

gesting high confidence in its code. The remain- 487

ing patterns involved additional error correction 488

steps, indicating potential validation issues. These 489

findings suggest that LLMs exhibit metacognitive 490

abilities by planning their reasoning steps during 491

problem-solving. 492

4.5 Ablation Study 493

We study the relative importance of each compo- 494

nent of our CoM, including the Python interpreter, 495

and each of the methodologies we used. Here, in 496

contrast to excluding the code methodology, which 497

prevents CoM from generating code, removing the 498

Python interpreter still allows the LLM to generate 499

code, but the LLM then needs to guess the output of 500

the code by itself without an interpreter. Our abla- 501

tion study is conducted with Qwen2.5-7B-Instruct. 502

As listed in Table 5, the interpreter is very im- 503

portant for both tasks, which shows that the code 504

output guessed by the LLM without using the code 505

interpreter for both math calculation and knowl- 506

edge retrieval is unreliable. Secondly, for hard 507

math problems in AIME, systematic analysis of 508

the data and constraints in the problem is vital for 509

the correctness of the reasoning. For AIME, all 510

methodologies we provided are useful, each con- 511

tributing to a 7-10% improvement in accuracy. In 512

AIME, we disable retrieval for experimental sim- 513

plicity. For Hard Hotpot, where reasoning relies on 514
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Table 6: Average Speed of Experiments in Seconds per
Iteration (Multiplied by 50)

AIME GSM8K Hard Hotpot
Macro-o1
CoT 96.0 33.5 19.0
MCoT 84.5 42.5 20.0
Qwen2.5-7B-Instruct
CoM 91.0 34.0 50.5
Workflow 36.0 18.0 21.5
CoT 19.0 5.0 3.5
MCoT 19.0 8.0 3.5

retrieved information, retrieval is clearly the most515

important methodology.516

4.6 Error Analysis517

Errors made in CoM are conventional LLM er-518

rors such as hallucination, misunderstanding, and519

instruction-following errors. We manually in-520

spected the first 10 error cases in CoM on the521

GSM8K dataset. We found that in most of these522

cases, methodology selection is not perfect. Three523

error cases are due to hallucination, where the524

wrong answers are given directly without the nec-525

essary calculation process. Two cases are due to526

translation errors from natural language to math;527

for example, “born early” is translated to a reduc-528

tion in age. Three cases are due to language under-529

standing errors; for instance, “restart downloading”530

is understood as “continue downloading”, and “ev-531

ery second” is understood as “from the second”. In532

one error case, the initial calculation is correct, but533

then a validation step causes an error because the534

LLM believes “servings” must be an integer. In one535

error case, the LLM generates more than one code536

block, although the methodology definition con-537

tains an instruction to generate a single standalone538

code block.539

4.7 Efficiency540

We examine the inference efficiency in terms of541

total inference time for speed and the number of542

inferences for cost. Table 6, shows that the speed543

of CoM is around 5 times that of CoT in AIME and544

7 times in Hard Hotpot. However, CoM is compara-545

ble to the fine-tuned model, which generates longer546

reasoning traces with a lower speed per token.547

Table 7 compares the number of prompts made548

by CoM with those made by Workflow. The results549

show that although we set the maximum iteration550

K = 8, CoM stops at a smaller number of steps551

on average, generates more reasoning steps for the552

harder AIME problems, and a smaller number of553

Table 7: Average Number of Prompts

AIME GSM8K Hard Hotpot
CoM 2×5.76 2×3.99 2×5.98
Workflow 4 4 3

steps for the easier GSM8K problems. 554

4.8 Summary of Experiments 555

The experiments on complex mathematical prob- 556

lems (AIME and GSM8K) and multi-hop question 557

answering (HotpotQA) evaluate the effectiveness 558

of CoM in methodology selection and guided rea- 559

soning using a 72B, a 7B LLM, and a fine-tuned 560

LLM for structured reasoning. 561

Results show that our CoM is effective in im- 562

proving the performance of two challenging tasks 563

over baselines that embody recent prompt engineer- 564

ing approaches. This result supports our hypothesis 565

that we can use a training-free solution that inte- 566

grates human methodological insights to enhance 567

the performance of LLMs in complex reasoning. 568

Methodology selection patterns reveal that CoM 569

effectively generates reasonable methodology se- 570

quences, which guide its reasoning in the right 571

direction. Error analysis identifies that common 572

LLM issues contribute to the majority of errors 573

made by CoM. Finally, the ablation study confirms 574

that the methodologies we employed are critical 575

for solving complex reasoning tasks. 576

5 Conclusion and Future Work 577

This paper enhances LLMs’ reasoning capabili- 578

ties for complex tasks by simulating metacognitive 579

processes and leveraging user-defined methodolo- 580

gies, enabling effective navigation of complex rea- 581

soning tasks without extensive retraining. Take- 582

aways include: (1) LLMs exhibit latent metacog- 583

nitive abilities that can be activated through struc- 584

tured, justification-driven prompting–eliminating 585

the need for fine-tuning; and (2) generating explicit 586

methodology justifications improves traceability 587

and task comprehension, boosting zero-shot accu- 588

racy and cross-domain adaptation, which is often 589

constrained by limited in-context examples. 590

A promising direction for future work is the au- 591

tomated search for optimal methodologies and rea- 592

soning chains, inspired by approaches like (Yang 593

et al., 2024b), to identify and apply methodologies 594

that enhance reasoning performance through better 595

prompt construction. 596
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Limitations597

The approach proposed in this paper assumes that598

the LLM possesses metacognitive abilities. We599

found that other LLMs, despite demonstrating com-600

petitive performance in various benchmarks, fail in601

methodology selection, even with extensive prompt602

tuning efforts. For instance, one of these LLMs603

consistently selects the first methodology it initially604

chose. Additional experimental results illustrating605

these failures are provided in Appendix A.2.606

Currently, our method requires two distinct607

prompts at each step: one for methodology se-608

lection and another for methodology-based rea-609

soning. We attempted to consolidate these two610

prompts into a single one; however, we observed611

that even the most advanced LLMs we tested, in-612

cluding DeepSeek-V3, struggled to follow instruc-613

tions with the combined, more complex prompt.614

We anticipate that future advancements in LLMs’615

instruction-following capabilities will enable the616

use of a single prompt, thereby improving the effi-617

ciency of our method.618

The methodologies included in our framework619

are not exhaustive, leaving room for future research620

to expand and refine the list. Incorporating a wider621

range of strategies could enhance the adaptability622

and robustness of the CoM framework, opening623

new avenues for exploration and improvement.624
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icy. We declare that there are no ethical issues in627
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A Appendix 889

A.1 Prompts 890

Our list of methodologies is displayed in Figure 8, 891

and our methodology-selection and methodology- 892

based reasoning prompts are listed in Figure 7. 893

A.2 Additional Experiment Results 894

The approach proposed in this paper assumes that 895

the LLM possesses metacognitive abilities. This 896

section presents additional experimental results in 897

Figures 9, 10, and 11, which reveal that some 898

LLMs, despite demonstrating competitive perfor- 899

mance across various benchmarks, struggle with 900

methodology selection even after extensive prompt 901

tuning efforts. For example, one of these LLMs 902

consistently defaults to selecting the first methodol- 903

ogy it initially identifies, highlighting a limitation 904

in its decision-making process. 905
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# List of Existing Methodologies

{example_methodologies}

{historical_reasoning_steps}

# Question
- {question}

# Step Instruction
- You are currently on {cur_step} out of a 
total of a maximum of {max_steps} steps 
to solve the question. Please select the 
most suitable methodology from the list, 
considering the reasoning history and the 
timing for applying each methodology. 
Try to diversify your choices to advance 
the resolution of the question, and avoid 
redundant or repeated methodologies. 
Select and output a single methodology 
succinctly in the following format, 
without any additional text:

## [Methodology name]
- When: [The timing for applying the 
methodology]
- What: [The characteristics and details of 
the methodology]

# List of Existing Methodologies

{example_methodologies}

{historical_reasoning_steps}

# Question
- {question}

# Selected Methodology

{selected_methodology}

# Step Instruction
- You are currently on {cur_step} out of a total of a 
maximum of {max_steps} steps to solve the 
question. Please conduct an innovative next 
reasoning step for the question, using the selected 
methodology "{selected_methodology_name}" 
based on the current reasoning history. Please 
output your reasoning step succinctly in the 
following format, without any additional text:

- Methodology: [Name of the selected 
methodology]
- Reasoning/Code: [A structural and systematic 
reasoning step that uses the selected methodology 
and improves on your past reasoning steps. Or a 
Python snippet with such reasoning inside its 
comments in a ```python\n...``` code-block.]
- Result: [A short result of your reasoning, or an 
accurate simulated outpout from the code.]

Figure 7: Our methodology-selection prompt (left) and methodology-based reasoning prompt (right).
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## Analysis
- When: In step 1.
- What: Analyze the category and solution type of the question, list the key facts, variables, 
relations, constraints with their associated values, and clarify the required output format. Break 
down complex problems into simpler steps while maintaining critical context. Propose a sequence 
of methodologies necessary to tackle the remaining reasoning steps iteratively and explain how 
they are related to the final result.

## Retrieval
- When: Fact-based information from the internet is needed.
- What: Write 1-3 line(s) of Python function call(s) `search([information],topk=3)` for each 
information needed to retrieve. The function `search` has been defined and imported for you, 
which returns a text summary for the argument `information`. Place your code in a single 
```python\n...``` code-block. Finally, accurately simulated the retrieved output by yourself.

## Coding
- When: Coding is necessary.
- What: A standalone Python snippet with structural and systematic reasoning in comments, using 
the **print** function to output the result. Place your code in a single ```python\n...``` code-
block. Finally, accurately simulated the output of your Python snippet by yourself without using a 
computer.

## Validation
- When: A temporary or a final the result is resulting from a previous reasoning step.
- What: Identify the result, and analyze its correctness from a different angle. You may write a 
test-case function that prints True/False to validate the result and then simulate its output.

## Reflection
- When: An error is detected or validation fails.
- What: Analyze the reasoning steps to identify errors and provide constructive self-critic or 
feedback for improvement.

## Flexibility
- When: The previous step fails to obtains the expected result or when a reflective or critic 
feedback is available.
- What: Adjust the approach based on insights gained and propose alternative strategies for the 
next steps.

## Conclusion
- When: A confident final answer is available, or in the last step.
- What: Clarify the output format required by the question. Compile the reasoning process and 
generate the answer in the required format.

Figure 8: Our list of methodologies.
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Figure 9: Results of Yi-1.5-9B-Chat (01.AI: Alex Young, 2024) on AIME, GSM8K, and Hard HotpotQA.
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Figure 10: Results of InternLM2.5-7B-chat (Cai et al., 2024) on AIME, GSM8K, and Hard HotpotQA.
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Figure 11: Results of GLM-4-9b-chat (GLM, 2024) on AIME, GSM8K, and Hard HotpotQA.
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