PAPR Up-close: Close-up Neural Point Rendering without Holes
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Figure 1. Recent splatting-based neural point renderers [14, 44, 48] can render promising novel view images from a parsimonious point
cloud when the camera is distant from the object. However, due to the natural discreteness of the splats, these methods produce holes
and/or other artifacts when we render novel views up-close. Different from splatting-based renderers, Proximity Attention Point Rendering
(PAPR) [46] uses attention to predict the ray’s intersection by interpolating the nearby points around a given ray. While in principle it
can fill holes if the points are interpolated appropriately, PAPR still produces holes when incorrect intersections are predicted in close-up
views. In this work, we propose an extension of PAPR which significantly reduces the prevalence of holes and other artifacts in close-up

rendering, which outperforms recent neural point renderers.

Abstract

Point-based representations have recently gained popu-
larity in neural rendering. While they offer many advan-
tages, rendering them from close-up views often results in
holes. In splatting-based neural point renderers, these are
caused by gaps between different splats, which cause many
rays to not intersect with any splat when viewed close-up.
A different line of work uses attention to estimate each ray’s
intersection by interpolating between nearby points. QOur
work builds on one such method, known as Proximity Atten-
tion Point Rendering (PAPR), which learns parsimonious
and geometrically accurate point representations. While
in principle PAPR can fill holes by learning to interpolate
between nearby points appropriately, PAPR also produces
holes when rendering close-up, as the intersection point is
often predicted incorrectly. We analyze this phenomenon
and propose two novel solutions: a method for dynamically

selecting nearby points to a ray for interpolation, and a ro-
bust attention method that better generalizes to local point
configuration around unseen rays. These significantly re-
duce the prevalence of holes and other artifacts in close-up
rendering compared to recent neural point renderers.

1. Introduction

Neural point-based representations have garnered substan-
tial attention due to their explicit nature, ease of manipula-
tion, and efficient handling of complex geometries [2, 14,
17, 26, 29, 44, 48], in comparison to implicit representa-
tions such as the neural radiance fields [21]. Evaluations
of neural renderers are typically under constrained condi-
tions, for example, by using a similar distance between the
camera and the scene for both training and testing. How-
ever, in real-world scenarios, the camera-to-scene distance
often changes significantly. Therefore, photorealistic ren-



dering in the wild necessitates neural renderers that handle
the small camera-to-scene distances inherent to close-up-
views despite their absence from the training distribution.

Rendering close-up is different from zooming in: the for-
mer changes the camera position, while the latter adjusts the
focal length. When the camera moves close, the angles at
which rays intersect with the scene surface change, whereas
they remain the same when solely adjusting the focal length.
By combining these two changes, artists can create captivat-
ing effects like the dolly zoom. However, for neural render-
ers, rendering close-up is challenging as it not only changes
the sampling rate of the rays hitting the same surface area,
but also shifts the distribution of ray directions from that
seen during training. While the change in sampling rate
can lead to aliasing artifacts, which various approaches [3—
5, 13,42, 47] focus on, there is far less literature addressing
artifacts arising from the shift in ray directions—we make
this shift the focus of our paper. When a neural rendering
model overfits the distribution of ray directions in the train-
ing set, it may fail to generalize to unseen rays to predict the
correct intersection points between the scene surface and
the rays, which results in holes or see-through artifacts.

For the splatting-based point renderers, where points are
rendered with primitives known as splats whose extents are
larger than a pixel, such as discs, ellipsoids, or Gaussian
splats [14, 44], the discreteness of splats makes close-up
artifacts more obvious when rendering. While the alias-
ing artifacts could be resolved by making the size of splats
adapt to the sampling rate [20, 35, 42], there is no easy solu-
tion to fix the holes or see-through artifacts when there are
gaps between splats. While the gaps may not be observable
from the training ray directions, some rays that originally hit
some splats may not hit any after the camera moves, thereby
creating holes in the rendered image, as shown in Fig. 1 and
illustrated in Fig 2a. While increasing the splat size could
fill these holes, this can come at the cost of overly smoothed
geometry and/or blurry texture.

The close-up artifacts in splatting-based point render-
ers are fundamentally caused by gaps between splats. If
we had a continuous surface, we wouldn’t have this issue.
Attention-based point renderers aim to produce such contin-
uous surface by interpolating between nearby points around
each ray [7, 24, 46] using attention mechanisms. Because
this interpolation produce a continuous surface, it can in
principle avoid holes. Therefore, we build on one such
method, known as Proximity Attention Point Rendering
(PAPR) [46], which learns accurate and sparse point-based
surface representations from scratch. It works by identify-
ing a local neighborhood of points around each ray and then
estimates the intersection of the ray with the scene surface
from the neighborhood. It does so by interpolating between
the points within the neighborhood, where the interpolation
coefficients are given by attention weights. When the ren-

derer is trained, the attention mechanism learns to gener-
ate correct interpolation coefficients from the local point
configuration within the neighborhood. As the attention
weights always sum to one, PAPR guarantees that every
pixel will have points that substantially contribute to its ren-
dering, even when the ray through the pixel is far from all
points. This property is key: it enables PAPR to fill the
gaps between points even with a sparse point cloud. While
in principle PAPR is able to render a hole-free surface if
it learns to produce the correct interpolation coefficients, as
shown in Fig. 1, in practice PAPR persists in rendering holes
as the camera moves close to the scene.

In this paper, we propose an extension of PAPR that ren-
ders hole-free surfaces from novel close-up views, named
“PAPR Up-close”. We begin by analyzing the reasons why
PAPR produces holes when rendering close-up views. Our
analysis reveals that this is due to incorrect predictions of
the intersection points between rays and the scene for some
rays. We break this phenomenon down further into two sce-
narios. In the first scenario, the true intersection point is
outside the identified local neighborhood, making it impos-
sible to be predicted correctly with an interpolation of points
within the neighborhood. In the second scenario, the atten-
tion mechanism fails to predict the intersection point cor-
rectly from local point configurations around unseen rays,
even when the true intersection lies inside the identified lo-
cal neighborhood. To address the first issue, we introduce
a Dynamic Point Selection (DPS) method that dynamically
adapts the point selection strategy during training by pri-
oritizing points that receive higher attention weights. To
address the second issue, we enhance the robustness of the
attention mechanism to variations in camera-to-object dis-
tance and shifts in the distribution of ray directions, thereby
better handling unseen ray directions and distances to the
camera. We demonstrate that PAPR Up-close produces sub-
stantially fewer holes and other artifacts in rendered close-
up views compared to PAPR, yielding a relative improve-
ment of 30.4%, 19.16% and 23.5% in terms of PSNR, SSIM
and LPIPS respectively.

In summary, our main contributions are:

* We analyze why PAPR produces holes when rendering
close-up views.

* We introduce a Dynamic Point Selection (DPS) method
that adaptively adjusts the point selection strategy dur-
ing training by prioritizing points with higher attention
weights, which more frequently include the true intersec-
tion point within the local neighborhood and improve the
accuracy of intersection predictions.

* We propose a Ray Perturbation Strategy (RPS) to enhance
the robustness of the attention mechanism of PAPR to
rays originating from unseen directions and distances.



2. Related Work

In this paper, we focus on close-up rendering of sparse
point-based representations, without supervision from
close-up captured views. Point-based rendering has long
been an area of interest within computer graphics research
due to its efficiency in rendering disconnected and unstruc-
tured geometric samples [11, 19]. However, it is prone
to holes, aliasing artifacts, and discontinuities. Pioneer-
ing work on high-quality point-based rendering tackled
these challenges by splatting point primitives with an ex-
tent larger than a pixel, such as circular or elliptical discs,
ellipsoids, or surfels [1, 6, 16, 25, 27, 49]. While recent
work extended these conventional methods to exploit mod-
ern GPU architectures [32, 33], our discussion focuses on
point-based neural rendering techniques, which have been
of recent interest.

2.1. Splatting-based Neural Point Rendering

Point-based neural rendering approaches typically incorpo-
rate neural networks or learnable components into a dif-
ferentiable rendering pipeline. Splatting-based neural point
renderers operate by projecting points onto the image plane
as splats, which are then blended together to create a contin-
uous image or feature map. The points could be augmented
with learnable features that capture their opacity and radi-
ance [14, 17, 26, 29, 44], and the rendering pipeline is often
end-to-end differentiable with soft rasterizers [38, 39, 44].
Some works further refine the feature map using a con-
volutional neural network (CNN) to produce the final im-
age [2, 26, 29, 48]. In splatting-based neural renderers, a
splat’s contribution to a pixel’s value is a function of its
spatial distance to the ray. Hard-boundary splatting tech-
niques ignore splats whose distance to the ray is larger than
the splat’s radius [29, 38, 39]. In soft-boundary splatting,
the contribution of a splat typically decreases rapidly as
the distance to the ray increases, for example, the Gaus-
sian splats [14, 44]. Consequently, this spatial discretization
yields holes in the rendered images when many rays do not
intersect with any splat. As these methods require a large
number of points and relatively small splats to accurately
model scene geometry and textures, this issue is especially
serious with sparse point clouds. Close-up shots compound
this issue, as many rays can be too far away from any splat
to receive contributions from them, resulting in larger holes.

2.2. Attention-based Neural Point Rendering

Instead of explicitly modeling local geometry at each point
with splat representations and determining ray intersections
through rasterization, another flavor of neural point render-
ers employs an attention mechanism [37] to infer where the
ray intersects the scene [7, 46]. Utilizing the fact that the
intersection point between the ray and surface lies along
the ray, these methods estimate the intersection by inter-

polating between the points in a local neighborhood around
the ray using attention weights. Each point is represented
by its position and additional ray-dependent point features,
which serve as keys in the attention layer. Given a ray as a
query, the attention layer learns to aggregate the point fea-
tures to produce a feature map. A rendering model—usually
an MLP or UNet [28]—is then used to generate the final im-
age from the feature map. In contrast to splatting-based ren-
derers, these methods ensure each pixel receives substantial
contribution from some points, regardless of the distance
between the pixel and the points, as the attention weights
across points within the local neighborhood always sum to
one. In principle this property makes it possible to ren-
der a sparse point-based representation without introducing
holes. Among attention-based point renderers, Neural Point
Light Field [24] focuses on rendering large scenes from cap-
tured point clouds but has limitations in synthesizing novel
views of single objects [46]. Pointersect [1 1] aims at explic-
itly predicting surface intersections from given point clouds,
but requires pre-training on ground truth meshes. Prox-
imity Attention Point Rendering (PAPR) [46] is designed
to learn a sparse and geometrically accurate point cloud
from scratch. While it can generate high-fidelity renderings
from novel views at similar distances as the captured views,
PAPR produces holes in close-up renderings, as shown in
Fig. 1. In this paper, we aim to improve the quality of its
rendering of sparse point-based representations from novel
close-up views that are much closer to the scene than the
captured training views.

2.3. Different Artifacts of Close-up Rendering

Novel view synthesis is the process of generating new im-
ages from views that differ from those of the original cap-
tures [10, 18]. When we synthesize close-up views by mov-
ing cameras closer to objects, we observe two kinds of ar-
tifacts: first, the aliasing artifacts, which occur when the
sampling rate on the image plane differs from the rate dur-
ing training, and artifacts from the shift in ray direction dis-
tribution, which happens when a model overfits to the train-
ing ray directions and fails to generalize to ray directions
that are out-of-distribution. As a fundamental issue in ren-
dering algorithms of computer graphics, aliasing happens
when a sample rate is below the Nyquist rate [23, 34]. Re-
ducing aliasing artifacts can be done by supersampling [8]
or pre-filtering [9, 12, 22, 36, 40, 50]. As supersampling
is expensive in the neural rendering as its runtime gener-
ally scales linearly with the supersampling rate [3], recent
approaches [3-5, 13, 42, 47] addressed the aliasing issue
by integrating prefiltering-based techniques. In our method,
instead of combating the aliasing artifact, we focus on the
artifacts from the shift of ray direction distribution which
manifest as holes when rendering close-up.



3. Method
3.1. Proximity Attention Point Rendering

Given multi-view RGB images along with their correspond-
ing camera parameters, PAPR learns a point-based 3D scene
representation P consisting of /N points. Given a ray
r; = o; + md; for m > 0, PAPR identifies a local
neighborhood around the ray by selecting the K points
P; C P that are nearest to the ray. It then predicts a fea-
ture vector f; for the ray by aggregating ray-dependent fea-
tures v;; associated with the points in P; using per-point
weights {w;;}X ; produced from an attention mechanism,
by computing f; = Zfil w;;Vij. The feature vectors for
all rays are then passed through an UNet [28] to produce
the rendered image I. The model is learned end-to-end by
minimizing a weighted combination of mean squared error
(MSE) and the LPIPS metric [45] between the rendered im-
age I and the ground truth I.

Leo(T,1y) = MSE(I, Iy) + A - LPIPS(I,I,) (1)

We now describe the attention mechanism in greater de-
tail. The points {p; } X, in the local neighborhood P; for a
ray v; are represented by their positions p; along with two
ray-dependent point features, s;; and t;;, which are com-
puted as follows:

p;; = 0j + (pi — 0;,d;) - dj, 2
sij = Pi; — 9j, tij = Pi — P, 3)
where pgj is the projection of point position p; on ray r;.
These features effectively capture the spatial point configu-

ration of the local neighborhood around the ray by incorpo-
rating the features from all K points around the ray.

To find the attention weight w; ; for the i* point in the lo-
cal neighborhood P;, PAPR uses an embedded ray direction
q; = fo, (7 (dy)) as the query, and an embedded concate-
nation of the ray-dependent point features and point posi-
tions kij = fo,c ([ (si,7),7 (ti ;)7 (Pi)]) as the key. The
function -y applies a positional encoding to its input, and fy,,
and fy, are two embedding MLPs. We use the scaled dot-
product attention [37] to compute w;; = softmax(%)
, where dy is the dimension of k;;. Although PAPR does
not require explicitly predicting the ray intersections x; for
each ray, x; can be calculated by interpolating between the
positions of points in P; as x; = Zfil w; P, which is
within the convex hull of the points in P;. As shown by the
authors [46], the predicted intersection points generally lie
correctly on the scene surface, even though there is no ex-
plicit supervision on x;. Since the intersection point cannot
be predicted correctly without estimating the local geome-
try, it is important to have an appropriate set of points in P;
to estimate the local geometry. To build the local neighbor-
hood P; around each ray, PAPR selects K nearest points

(a) Splatting-based renderers (b) Attention-based renderers

Figure 2. Illustration of splatting-based and attention-based ren-
derers when rendering the same surface segment for close-up
views. In Fig. a the center rays no longer hit any splats after the
camera is moved closer. The left of Fig. b shows how PAPR inter-
polates points inside a cylinder around a ray, where points around
the true intersection may not be retained to make the right predic-
tion. On the right it shows how our method learns to retain retain
all point around the true intersection with the dynamic point selec-
tion (DPS).

(b) Failure Cases

Figure 3. Illustration of two causes of holes in PAPR’s close-up
rendering. Fig. a shows an example where the rays crossing the
hole predict incorrect intersections. Fig. b visualizes two cases
where PAPR fails to predict true intersection points. Point colors
represent attention weights (darker means higher weight), dotted
lines outline the convex hull formed by these points, green crosses
mark true intersections, and red crosses indicate predicted inter-
sections via attention-weighted interpolation of point positions.

solely based on ¢.; = ||t.;||, which is the orthogonal dis-
tance from each point to the ray.

3.2. Causes for Holes in PAPR

As shown in Fig. 1, PAPR struggles with rendering hole-
free images when the camera moves close-up to the scene.
In this section, we analyze the causes of holes appearing
in images rendered from close-up views using PAPR. It’s
important to note that PAPR always predicts an intersec-
tion point for any ray, regardless of the distances between
the ray and the points in the point cloud. Thus the exis-
tence of the holes is not because those rays do not intersect
with the scene, as is often the case when holes appear in
splatting-based methods. Instead, the issue arises because
the intersection points identified by the rays are incorrect.
As shown in Fig. 3b, there are two cases when the is-
sue happens. In the first case, the correct intersection point
(denoted by the green cross) falls outside the convex hull
formed by the points in the local neighborhood. As a re-



sult, there is no way for the intersection point to be pre-
dicted correctly by interpolating between points inside the
neighborhood. In the second case, PAPR fails to learn at-
tention weights that give the correct intersection, even when
the correct intersection point is inside the convex hull of the
points in the local neighborhood. This is because the atten-
tion mechanism fails to generalize to the point configuration
within the local neighborhood around an unseen ray.

Holes become more apparent when rendering close-up
views. As the camera moves close-up, the local point con-
figurations around adjacent rays become highly correlated,
since their corresponding local neighborhoods become very
similar to each other. As a result, rays with incorrect in-
tersections tend to be concentrated around some locations,
thereby creating large holes. To tackle the first failure case,
we propose a Dynamic Point Selection (DPS) method to se-
lect points that form the local neighborhood, as detailed in
Sec. 3.3. To tackle the second failure case, we enhance the
attention mechanism’s robustness to local point configura-
tions around unseen rays, as discussed in Sec. 3.4.

3.3. Dynamic Point Selection

PAPR selects the neighborhood points around a ray solely
based on the orthogonal distance from a point to the ray, and
such a selection strategy remains static during training. In
the ideal scenario where the true intersection point of each
ray is known in advance, we could select the minimal set
of surrounding points that form a convex hull enclosing this
intersection point. This subset effectively defines the ray’s
local neighborhood, allowing accurate intersection predic-
tions with minimal computational cost. In the real world
scenario, we do not know the ground truth intersections
beforehand. However, as the model iteratively improves
during training, the predictions of these intersection points
become more accurate. Furthermore, the attention mech-
anism, which assigns interpolation weights to the selected
points, learns to identify the most relevant points surround-
ing the true intersection. By giving higher weights to these
relevant points and lower weights to less important ones in
each ray’s local neighborhood, the attention effectively nar-
rows down the set of points crucial for accurate prediction.
This insight motivates us to design a point selection method
that adapts during training, to favor points that are more rel-
evant to the true intersection. We refer to this approach as
Dynamic Point Selection (DPS).

At each iteration, DPS selects the points to form the local
neighborhood around a ray r; based on a weighted sum of
two features, the orthogonal distance from a point ¢ to the

ray, denoted as t;; = ||t;;||, and the distance from a point p;
to the camera origin along the ray, denoted as s;; = ||s;;|:
dij = otij + PBsij, “4)

where « and 3 are learnable parameters. For each ray, the
points with the smallest d;; values are selected.

During training, v and 3 are optimized to ensure that the
selected points align closely with those suggested by the at-
tention mechanism. We achieve this by minimizing a binary
cross-entropy (BCE) loss that measures the divergence be-
tween the points selected by DPS and those suggested by
the attention mechanism. Specifically, given the attention
weights for the K points in the local neighborhood around
aray r;, we classify the points with attention weights be-
low the ¢ 10-quantiles of the K weights as negative sam-
ples, and the remaining points as positive samples, where
g € {1,2,...,10}. Each of the K point is assigned a label:

1 if point ¢ a positive sample of r;,

Yij = (5)

0 otherwise

The BCE loss over a batch of M rays is given by:

| MK
Lpck = “UE 2 ;Pij [Yij In (1 — o (dij)) ©)

+ (1= yi;) Ino(diy)],
where o is the sigmoid function, and p;; is a scaling factor
that balances the positive and negative samples.

o — ﬁ if point i a positive sample of r;,
ij = 5

: (N
otherwise

The loss £ pc g is minimized when o(d; ;) approaches 0 for
positive samples and 1 for negative samples. By selecting
the points with the smallest d values, DPS effectively pri-
oritizes the more relevant points for accurate intersections
according to the attention mechanism, thus refining the lo-
cal neighborhood around each ray. This dynamic selection
process continues throughout training, allowing the model
to adjust the neighborhood points based on learned features,
rather than relying on a fixed selection strategy. By the
end of training, o and 3 have been adjusted to effectively
capture the underlying patterns of point relevance in vari-
ous spatial configurations observed during training. At test
time, the optimized « and /3 are used to select points for
unseen rays. As shown in Sec. 4.5, DPS enhances the hole-
filling ability of the model when rendering close-up views.

3.4. Robust Attention

To tackle the second issue, as illustrated in Fig. 3b, where
the attention mechanism fails to generalize to the local point
configurations around unseen rays and consequently pre-
dicts incorrect intersection points, we improve the attention
mechanism’s robustness to these unseen configurations.

As discussed in Sec. 3.1, PAPR uses a vector s;; as a
ray-dependent point feature for the points within the local
neighborhood to capture the local point configuration. This
vector is defined from the camera center o; to the point pro-
jection p;; on the view direction d;. As the camera moves
closer to the object, the scale of s;; changes significantly,



resulting in local point configurations that are highly out-of-
distribution, and the attention mechanism may fail to gen-
eralize across this variation. Therefore, we normalize s;;
by subtracting the vector with the s;; that has the smallest
length among the K vectors. This normalization ensures
that the vector’s scale remains consistent, thereby reducing
the sensitivity of the attention to the distance to the camera.
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Figure 4. Illustration of the ray perturbation method described in
Sec. 3.4 in the camera coordinate.

To further enhance the robustness of the attention mech-
anism to unseen local point configurations, we introduce a
Ray Perturbation Strategy (RPS), by adding noise to the ray
directions during training. The intuition is when we move
the camera closer, the change of local point configurations
is caused by the change of the ray directions, if s;; has been
normalized. By introducing augmented ray directions, we
create a more diverse range of ray-dependent local point
configurations during training. This allows the attention to
better generalize to previously unseen point configurations
during testing. As shown in Fig. 4, we denote r, ; as the
ray shooting at the center of pixel g, on the image plane,
wherea € {1...H} and b € {1... W}, indexes from top
to bottom and left to right. Specifically, for a given ray r, 3
in the world coordinate during training, we first transform it
into the camera coordinate by:

r{y, = Prgy, (®)

where P is the world-to-camera transformation matrix of
this view. rg , 18 the coordinate of the pixel g, 3 in the cam-
era coordinate, corresponding to a ground truth RGB value
Cq,p- We perturb ray raC » by applying a translation:

-C c be

ra,b = ra,b + béd ) (9)
where b, and b, are two random numbers from a normal
distribution N(0,02), clamped by the size of a pixel to
make sure the perturbed ray remains within its pixel:

b, ~ min (max (N (0,0%) ,—%) , %) , (10)

b, ~ min (max (/\f (0,0?) ,—;L) ,Z) . (11)

where w and h are the width and height of a pixel on the im-
age plane in the camera coordinate. In practice, we choose

0? = kL;rh) to be adaptive to the pixel size, where k is
a hyperparameter that controls the magnitude of the pertur-
bation. The RGB label ¢, ; of ray f'ﬁb is then the bilinear
interpolation of the colors of the nearby pixels, based on the

coordinates of ¥¢,. For example, when b, > 0 and b, < 0,

~ 1 Ca+1,b Catl, [by|
Gap = = [w=lbel Inel][ %253 Suiealll PRI RIQE)

We then get ¥, = P'F, as the perturbed ray in the
world coordinate, paired with ¢, ; for training. We only
perturb the rays that are not shooting at the pixels on the
boundaries of an image. When rendering unseen images,
we predict the color for each pixel by shooting only a single
ray through the pixel center. Results presented in Sec. 4.5
demonstrate that our proposed robust attention mechanism
significantly improves the model’s ability to fill holes dur-
ing the rendering of close-up views.

3.5. Training Details

In Dynamic Point Selection we initialize o and (3 in Eq. (4)
to be 1 and 0. We fix o during training as it makes the learn-
ing process more stable. We use the second 10-quantile
value for the binary partition mentioned in Section 3.3 dur-
ing training. In the robust attention we add an € = le—6
to the normalized s;; to avoid gradient vanishing. For the
ray perturbation strategy, we choose 1 or 5 as the value of
k mentioned in Section 3.4. We train our model end to end
using a weighted combination of the multi-view image loss
Lc and LpcE,

L=Lc+vLBcE, (13)

where we choose v = 0.01 for all experiments.

4. Experiments
4.1. Close-up Synthetic and Real Datasets

We evaluate our model on a new dataset that contains close-
up views rendered from the synthetic scenes in NeRF-
synthetic dataset [21]. For each training view in the NeRF-
synthetic dataset, we translate the camera center along the
optical axis to get the close-up camera and rendering in our
new dataset, resulting in around 3x closer camera views.
In order to demonstrate the effectiveness of the proposed
method in real-world scenarios, we capture two real-world
scenes, Bowser and Cup, from views surrounding the object
at two distances. We use COLMAP [30, 31] to reconstruct
the camera poses. Please refer to the supplementary mate-
rials for data generation details and images sampled from
the close-up datasets. In all our experiments, we train our
model and baselines on the training set with distant views
and test on the close-up views.
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Figure 5. Qualitative comparison of novel view synthesis on the close-up synthetic dataset.

Cup

R

Bowser

~

y

2
o - s 7
‘, =473 ™
s -
[

Point-NeRF [41] 3DGS [14]

SNP [45]

3 )
DPBRF [44]

eyl RS
Mip-Splatting [42] PAPR [46] Ours Ground Truth

Figure 6. Qualitative comparison of novel view synthesis on the close-up real dataset.

4.2. Baselines

We compare our method with recent point-based neural ren-
derers. Point-NeRF [41] renders a volumetric featured point
cloud with volumetric ray marching. SNP [48] improves the
rendering robustness to the holes in a featured point cloud
with a point sculpting strategy, and renders the rasterized
feature map with a UNet to further enhance the hole-filling
capability. DPBRF [44] renders a point cloud via differen-
tiable rasterization, where each splat is a 2D Gaussian on
the image plane. 3D Gaussian Splatting [14] treats each
point as a 3D Gaussian, rendered with a differentiable ras-
terizer by splatting the 3D Gaussians on the image plane.
Mip-Splatting [42] enhances 3DGS by introducing a 3D
smoothing filter and a 2D Mip filter, effectively eliminat-
ing aliasing artifacts. In contrast to the volumetric rendering
and splatting-based rasterization methods, PAPR [46] learns
and renders a surface point cloud using the attention mech-
anism, as described in Sec. 3.1. In all our experiments we
evaluate the performance of these baselines and our method
with a sparse point cloud of 30,000 points initialized using
the methods proposed by respective authors.

4.3. Qualitative Results

Fig. 5 and 6 shows a qualitative comparison between our
method, PAPR Up-close, and the baselines on the close-up

synthetic and real datasets. Our method produces images
with hole-free and smoother surfaces compared to the base-
lines, without losing the high-frequency details. Notably,
our method captures fine texture details on the bulldozer’s
shovel, the details textures on the hotdog and chair, and the
mesh on the mic. In contrast, the baselines either fail to ren-
der hole-free surfaces, or introduce artifacts. The compari-
son of our method and PAPR in Fig. 7 further shows that our
method maintains high-quality renderings of distant views
while significantly improving the model’s hole-filling abil-
ity for the close-up renderings.

Close-up Synthetic Dataset Close-up Real Dataset

PSNR1 SSIM1 LPIPS| PSNRT SSIMt LPIPS|
DPBRF [44] 13.06 0352 0525  7.301 0076  0.779
SNP [48] 1441 0573 0451 1349 0599  0.608
Point-NeRF [41] 1948  0.746 0396  13.90  0.706  0.551
3DGS [14] 2145 0763 0291 1815  0.782  0.423
Mip-Splating [42] ~ 22.96  0.786  0.286  18.97  0.794  0.404
PAPR [46] 1855  0.720 0357 1641  0.728  0.499
Ours 2418 0.858 0273 19.20 0.825  0.400

Table 1. Comparison of image quality metrics (PSNR, SSIM and
LPIPS [45]) on both the close-up synthetic and real datasets.

4.4. Quantitative Results

Table 1 shows the average image quality metric scores on
the close-up synthetic and real datasets. Our method consis-



PAPR [46] Ours PAPR [46]

Ours

L =40 L =35 L =3.0

L =25

L=1.0

L =20 L=1.5

Figure 7. Qualitative comparison of our method and PAPR [46] on Lego and Hotdog scenes. The images are rendered from the cameras
located at different distances L from the object along the same view direction.

Hotdog

Chair
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Ground Truth

PAPR [46] + Robust Attention + DPS (Full Model)

Figure 8. Ablation study on proposed components in Sec. 3.

tently outperforms the baselines across all metrics on both
datasets. These results demonstrate significant improve-
ment in the hole-filling ability of unseen close-up views.

4.5. Ablation Study

We evaluate the effectiveness of each proposed component
in Fig. 8. Starting from the vanilla PAPR [46], we first
add the robust attention proposed in Sec. 3.4, which sig-
nificantly improves the model’s hole-filling ability. We
then add the Dynamic Point Selection selection method pro-
posed in Sec. 3.3 and get our full model. The result shows
that the Dynamic Point Selection selection method enables
our model to further fill the remaining holes and refines the
surface geometry in the rendered image.

5. Discussion and conclusion

Limitations As shown in Fig. 7, there is a slight quality
degradation in the high-frequency details, which is a side
effect of the ray perturbation augmentation. The amount
of ray perturbation seems to introduce a tradeoff between
the robustness of the attention mechanism and sharpness in
the high-frequency texture. Incorporating a frequency reg-
ularizer, such as the one proposed in[43], could help mit-
igate this degradation. Our method also inherits the as-
sumptions PAPR of a near-constant background color and
object-centric scenes. We leave the exploration of possible
solutions to the limitations for future work.

Conclusion In this paper, we extend Proximity Attention
Point Rendering (PAPR) to address the challenge of render-
ing sparse point clouds from close-up views without holes.
PAPR produces holes when rendering close-up views — we
analyzed the cause and found it is due to some rays’ inter-
section points being predicted incorrectly. To address this
issue, we introduced a Dynamic Point Selection (DPS) that
effectively leverages the point selection patterns learned
from the attention mechanism to prioritize the most rele-
vant points for accurate intersection prediction, and a Ray
Perturbation Strategy (RPS) to improve the attention mech-
anism’s robustness. Our experiments demonstrated a signif-
icant reduction in the prevalence of holes and other artifacts
from close-up views compared to PAPR, and the results also
outperform those of other recent neural point renderers.
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