
Published as a conference paper at ICLR 2024

RETRO-FALLBACK: RETROSYNTHETIC PLANNING
IN AN UNCERTAIN WORLD

Austin Tripp1∗ Krzysztof Maziarz2 Sarah Lewis2
Marwin Segler2 José Miguel Hernández-Lobato1

1University of Cambridge 2Microsoft Research AI4Science
{ajt212,jmh233}@cam.ac.uk

{krmaziar,sarahlewis,marwinsegler}@microsoft.com

ABSTRACT

Retrosynthesis is the task of planning a series of chemical reactions to create a
desired molecule from simpler, buyable molecules. While previous works have
proposed algorithms to find optimal solutions for a range of metrics (e.g. short-
est, lowest-cost), these works generally overlook the fact that we have imperfect
knowledge of the space of possible reactions, meaning plans created by algorithms
may not work in a laboratory. In this paper we propose a novel formulation of ret-
rosynthesis in terms of stochastic processes to account for this uncertainty. We
then propose a novel greedy algorithm called retro-fallback which maximizes the
probability that at least one synthesis plan can be executed in the lab. Using in-
silico benchmarks we demonstrate that retro-fallback generally produces better
sets of synthesis plans than the popular MCTS and retro* algorithms.

1 INTRODUCTION

Retrosynthesis (planning the synthesis of organic molecules via a series of chemical reactions) is a
common task in chemistry with a long history of automation (Vleduts, 1963; Corey & Wipke, 1969).
Although the combinatorially large search space of chemical reactions makes naive brute-force
methods ineffective, recently significant progress has been made by developing modern machine-
learning based search algorithms for retrosynthesis (Strieth-Kalthoff et al., 2020; Tu et al., 2023;
Stanley & Segler, 2023). However, there remain obstacles to translating the output of retrosynthesis
algorithms into real-world syntheses. One significant issue is that these algorithms have imperfect
knowledge of the space of chemical reactions. Because the underlying physics of chemical reactions
cannot be efficiently simulated, retrosynthesis algorithms typically rely on data-driven reaction pre-
diction models which can “hallucinate” unrealistic or otherwise infeasible reactions (Zhong et al.,
2023). This results in synthesis plans which cannot actually be executed.

Although future advances in modelling may reduce the prevalence of infeasible reactions, we think
it is unlikely that they will ever be eliminated entirely, as even the plans of expert chemists do not
always work on the first try. One possible workaround to failing plans is to produce multiple syn-
thesis plans instead of just a single one: the other plans can act as backup plans in case the primary
plan fails. Although existing algorithms may find multiple synthesis plans, they are generally not
designed to do so, and there is no reason to expect the plans found will be suitable as backup plans
(e.g. they may share steps with the primary plan and thereby also share the same failure points).

In this paper, we present several advancements towards retrosynthesis with backup plans. First,
in section 3 we explain how uncertainty about whether a synthesis plan will work in the lab can
be quantified with stochastic processes. We then propose an evaluation metric called successful
synthesis probability (SSP) which quantifies the probability that at least one synthesis plan found
by an algorithm will work. This naturally captures the idea of producing backup plans. Next,
in section 4 we present a novel search algorithm called retro-fallback which greedily optimizes

∗Work done partly during internship at Microsoft Research AI4Science

1

Published as a conference paper at ICLR 2024

SSP. Finally, in section 6 we demonstrate quantitatively that retro-fallback outperforms existing
algorithms on several in-silico benchmarks. Together, we believe these contributions form a notable
advancement towards translating results from retrosynthesis algorithms into the lab.

2 BACKGROUND: STANDARD FORMULATION OF RETROSYNTHESIS

Let M denote the space of molecules, and R denote the space of single-product reactions which
transform a set of reactant molecules in 2M into a product molecule in M. The set of reactions
which produce a given molecule is given by a backward reaction model B : M 7→ 2R. B can
be used to define an (implicit) reaction graph G with nodes for each molecule and each reaction,
and edges linking molecules to reactions which involve them. Figure 1a illustrates a small example
graph. Note that by convention the arrows are drawn backwards (from products towards reactants).
This kind of graph is sometimes called an AND/OR graph (see Appendix B for details).

A synthesis plan for a molecule m is a sequence of chemical reactions which produces m as the fi-
nal product. Synthesis plans usually form trees T ⊆ G (more generally directed acyclic subgraphs),
wherein each molecule is produced by at most one reaction. The set of all synthesis plans in G which
produce a molecule m is denoted Pm(G). Figure 1b provides an example (see Appendix B.2 for
a detailed definition). Not all synthesis plans are equally useful however. Most importantly, for a
synthesis plan to actually be executed by a chemist the starting molecules must all be bought. Typ-
ically this is formalized as requiring all starting molecules to be contained in an inventory I ⊆ M
(although we will propose an alternative formulation in section 3). It is also desirable for synthesis
plans to have low cost, fewer steps, and reactions which are easier to perform.

In retrosynthesis, one usually seeks to create synthesis plans for a specific target molecule m⋆. Typ-
ically this is formulated as a search problem over G. Various search algorithms have been proposed
which, at a high level, all behave similarly. First, they initialize an explicit subgraph G′ ⊆ G with
G′ ← {m⋆}. Nodes whose children have not been added to G′ form the frontier F(G′). Then, at
each iteration i they select a frontier molecule m(i) ∈ F(G′) (necessarily m⋆ on the first iteration),
query B to find reactions which produce m(i), then add these reactions and their corresponding
reactant molecules to the explicit graph G′. This process is called expansion, and is illustrated for
mc in Figure 1a. Search continues until a suitable synthesis plan is found or until the computational
budget is exhausted. Afterwards, synthesis plans can be enumerated from G′.
The most popular retrosynthesis search algorithms compute some sort of metric of synthesis plan
quality, and use a search heuristic to guide the search towards high-quality synthesis plans. For
example, Monte Carlo Tree Search (MCTS) searches for synthesis plans which maximize an ar-
bitrary scalar reward function (Segler et al., 2018). Retro* is a best-first search algorithm to find
minimum-cost synthesis plans, where the cost of a synthesis plan is defined as the sum of costs for
each reaction and each starting molecule (Chen et al., 2020). In both algorithms, frontier nodes are
chosen using the heuristic to estimate the reward (or cost) which could be achieved upon expansion.
We introduce these algorithms more extensively in Appendix E.

m⋆

r1

ma mb

r2

mc

md

r3

me

r4 r5

mf mg

expansion of mc

a) G′

T1 : m⋆

T2 : m⋆ r1

ma

mb

T3 : m⋆ r1 mb

ma r3 me

T4 : m⋆ r2 mc

mb

md

b) Pm⋆
(G′)

Figure 1: a) graph G′ with (backward) reactions m⋆ ⇒ ma+mb (r1), m⋆ ⇒ mb+mc+md (r2),
and ma ⇒ me (r3). Dashed box illustrates expansion of mc. b) All synthesis plans in Pm⋆

(G′).

2

Published as a conference paper at ICLR 2024

3 REFORMULATING RETROSYNTHESIS WITH UNCERTAINTY

The “standard” formulation of retrosynthesis presented in section 2 requires knowledge of which
reactions are possible (encoded by the backward reaction model B) and which molecules are pur-
chasable (encoded by the inventory I). In reality, neither of these things are perfectly known. As
mentioned in the introduction, predicting the outcome of chemical reactions is difficult even for
experts, and machine learning models forB can “hallucinate” unrealistic reactions. Perhaps surpris-
ingly, it is also not totally clear which molecules can be bought. Things like shipping delays mean
you might not always receive molecules which you order. However, many companies now advertise
large “virtual libraries” with billions of molecules which they believe they can synthesize upon re-
quest, but not with 100% reliability.1 This section presents our first main contribution to account for
this: a novel formulation of retrosynthesis which explicitly represents uncertainty.

3.1 STOCHASTIC PROCESSES FOR “FEASIBILITY” AND “BUYABILITY”

There are many reasons why chemists may consider a reaction unsuccessful, ranging from having a
low yield to producing the wrong product altogether. Similarly, “unsuccessfully” buying a molecule
could indicate anything from a prohibitively high cost to the molecule not being delivered. In either
case, for simplicity we propose to collapse this nuance into a binary outcome: reactions are either
feasible or infeasible, and molecules are either buyable or not. We therefore postulate the existence
of an unknown “feasibility” function f∗ : R 7→ {0, 1} and “buyability” function b∗ :M 7→ {0, 1}.
Uncertainty about f∗ and b∗ can be represented by stochastic processes (essentially distributions
over functions). We define a feasibility model ξf to be a binary stochastic process over R, and
define a buyability model ξb to be a binary stochastic process over M. This formulation is very
general: ξf and ξb not only represent beliefs of P [f∗(r) = 1] and P [b∗(m) = 1] for all molecules
m and reactions r, but also allows correlations between feasibilities and buyabilities to be modelled.

Although this formalism may seem esoteric, it is possible to re-cast almost all existing approaches
to reaction prediction as stochastic processes. Any model which implicitly assigns a probability
to each reaction (e.g. the softmax outputs of a neural network) can be trivially converted into a
stochastic process by assuming that all outcomes are independent. Correlations can be induced
via Bayesian inference over the model’s parameters (MacKay, 1992) or using a non-parametric
model like a Gaussian process (Williams & Rasmussen, 2006). Importantly however, it is not at all
clear how to produce realistic models ξf and ξb. Intuitively, producing such models is at least as
challenging as predicting reaction outcomes without uncertainty estimates, which is itself an active
(and challenging) research area. Therefore, we will generally discuss ξf /ξb in a model-agnostic way.

3.2 NEW EVALUATION METRIC: SUCCESSFUL SYNTHESIS PROBABILITY (SSP)

Given f and b, a synthesis plan T is successful if all its reactions r are feasible (f(r) = 1) and all
its starting molecules m are buyable (b(m) = 1). We formalize this with the function

σ(T ; f, b) =

{
1 f(r) = 1 ∀r ∈ T, b(m) = 1 and ∀m ∈ F(T)
0 otherwise

. (1)

Finding successful synthesis plans is a natural goal of retrosynthesis. Of course, because f and b
are unknown, we can at best search for synthesis plans with a high probability of being successful.
Given a set of synthesis plans T , we define the successful synthesis probability (SSP) as:

SSP(T ; ξf , ξb) = Pf∼ξf ,b∼ξb [∃ T ∈ T with σ(T ; f, b) = 1] (2)

Given just a single plan T , SSP({T}; ξf , ξb) = Ef,b [σ(T ; f, b)] and represents the probability that
T is successful, which we will hereafter refer to as the success probability of T . When T contains
multiple synthesis plans, then SSP quantifies the probability that any of these synthesis plans is
successful. We argue that SSP is a good evaluation metric for the synthesis plans produced by
retrosynthesis search algorithms. It simultaneously captures the goals of producing synthesis plans
with high success probability and producing “backup” plans which could succeed if the primary
synthesis plan does not. Note that by definition, SSP is non-decreasing with respect to T , implying
that an algorithm will never be penalized for producing additional synthesis plans.

1For example, Enamine a popular supplier, only claims that 80% of its virtual “REAL” library can be made.

3

https://enamine.net/
https://enamine.net/compound-collections/real-compounds

Published as a conference paper at ICLR 2024

3.3 EFFICIENTLY ESTIMATING SSP FOR ALL SYNTHESIS PLANS IN Pm⋆
(G′)

Recall from section 2 that many retrosynthesis search algorithms do not directly output synthesis
plans: they produce a search graph G′ which (implicitly) contains a set of synthesis plans Pm⋆

(G′).
Therefore, it is natural to calculate the SSP of the entire set Pm⋆

(G′). However, this set may be
combinatorially large, making calculating SSP by enumerating Pm⋆

(G′) intractable. Instead, we
propose a method to estimate SSP using functions sampled from ξf and ξb.

Let s(n;G′, f, b) : M∪R 7→ {0, 1} define the success of a node n ∈ G: whether any successful
synthesis plan in G contains n (we write s(n) when G′, f, b are clear from context). s(n) will satisfy

s(n;G′, f, b) (A)
= σ(T ∗; f, b)

(B)
= s(n;T ∗, f, b), T ∗ ∈ argmax

T∈P∗(G′): n∈T
σ(T ; f, b) , (3)

where P∗(G′) =
⋃
m∈G′ Pm(G′) is the set of all synthesis plans for all molecules in G′. Equality

(A) follows directly from the definition above, and equality (B) holds because T ∗ would still satisfy
the argmax if nodes not in T ∗ were pruned from G′. Let ChG′(n) denote the children of node n.
For a reaction r ∈ G′ to succeed, it must be feasible (f(r) = 1) and have all its reactant molecules
m′ ∈ ChG′(r) succeed. Conversely, a molecule m ∈ G′ will succeed if it is buyable (b(m) = 1) or
if any reaction producing m succeeds. This suggests s(·) will satisfy the recursive equations

s(m;G′, f, b) = max

[
b(m), max

r∈ChG′ (m)
s(r;G′, f, b)

]
, (4)

s(r;G′, f, b) = f(r)
∏

m∈ChG′ (r)

s(m;G′, f, b) . (5)

SSP can then be estimated by averaging s(m⋆) over k i.i.d. functions sampled from ξf and ξb:

SSP(Pm⋆
(G′); ξf , ξb)

(A)
= Pf∼ξf ,b∼ξb [s(m⋆;G′, f, b) = 1] ≈ 1

k

k∑
i=1

s(m⋆;G′, fk, bk) . (6)

Note that equality (A) above follows directly from equations 2 and 3. The existence of such re-
cursive equations suggests that s(·) could be efficiently computed for all nodes in G′ in polynomial
time using dynamic programming (we discuss this further in Appendix D.2), allowing an overall
polynomial time estimate of SSP. That being said, it is still only an estimate. Unfortunately, we are
able to prove that an exact calculation is generally intractable.
Theorem 3.1. Unless P = NP , there does not exist an algorithm to compute SSP(Pm⋆(G′); ξf , ξb)
for arbitrary ξf , ξb whose time complexity grows polynomially with the number of nodes in G′.

The proof is given in Appendix D.1. We therefore conclude that estimating SSP using equation 6 is
the best realistic option given limited computational resources.

4 RETRO-FALLBACK: A GREEDY ALGORITHM TO MAXIMIZE SSP

4.1 INGREDIENTS FOR AN INFORMED, GREEDY SEARCH ALGORITHM

Intuitively, a greedy search algorithm would expand molecules in F(G′) which are predicted to
improve SSP. Given that calculating SSP exactly is intractable, calculating potential changes is likely
to be intractable as well. Therefore, we will estimate SSP changes by averaging over samples from
ξf and ξb, and will consider how expansion might change s(m⋆;G′, f, b) for fixed samples f, b.

Specifically, we consider the effect of simultaneously expanding every frontier molecule on a fixed
synthesis plan T ∈ P∗(G′).2 We represent the hypothetical effect of such an expansion with a
random function eT : M 7→ {0, 1}, where eT (m) = 1 implies that expanding m produces a new
successful synthesis plan for m. We assume the value of eT is independently distributed for every
molecule, with probabilities given by a search heuristic function h :M 7→ [0, 1]

PeT [eT (m) = 1] =

{
h(m) m ∈ F(G′) ∩ T
0 m /∈ F(G′) ∩ T . (7)

2We do not consider expanding just a single node because, for a reaction with multiple non-buyable reactant
molecules in F(G′), expanding just one reactant will never produce a new successful synthesis plan.

4

Published as a conference paper at ICLR 2024

The effect of this expansion on the success of T is given by σ′ : P∗(G′) 7→ {0, 1}, defined as

σ′(T ; f, b, eT) =

{
1 f(r) = 1 ∀r ∈ T and (b(m) = 1 or eT (m) = 1)∀m ∈ F(T)
0 otherwise

. (8)

Equation 8 for σ′ is almost identical to equation 1 for σ. The key difference (highlighted) is that T
can be successful if a starting moleculem is not buyable (b(m) = 0) but has instead had eT (m) = 1.
Recalling that eT is a random function, we define σ̄′ : P∗(G′) 7→ [0, 1] as

σ̄′(T ; f, b, h) = EeT [σ′(T ; f, b, eT] , (9)

namely the probability that a synthesis plan T will be successful upon expansion.3 A natural
choice for a greedy algorithm could be to expand frontier nodes on synthesis plans T with high
σ̄′(T ; f, b, h). However, not all synthesis plans contain frontier nodes (e.g. plan T1 in Figure 1b) or
produce m⋆. To select frontier nodes for expansion, we define the function ρ̃ :M∪R 7→ [0, 1] by

ρ̃(n;G′, f, b, h) = max
T∈Pm⋆ (G′): n∈T

σ̄′(T ; f, b, h) , n ∈ G′ . (10)

For m ∈ F(G′), ρ̃(m) represents the highest estimated success probability of all synthesis plans for
m⋆ which also contain m (conditioned on a particular f, b). Therefore, a greedy algorithm could
sensibly expand frontier molecules m with maximal ρ̃(m).

Unfortunately, the combinatorially large number of synthesis plans in a graph G′ makes evaluating
ρ̃ potentially infeasible. To circumvent this, we assume that no synthesis plan in G′ uses the same
molecule in two separate reactions, making all synthesis plans trees (we will revisit this assumption
later). This assumption guarantees that the outcomes from different branches of a synthesis plan will
always be independent. Then, to help efficiently compute ρ̃, we will define the function

ψ̃(n;G′, f, b, h) = max
T∈P∗(G′): n∈T

σ̄′(T ; f, b, h) (11)

for every node n ∈ G′. ψ̃ is essentially a less constrained version of ρ̃. The key difference in their
definitions is that ψ̃ maximizes over all synthesis plans containing n, including plans which do not
produce m⋆. The independence assumption above means that ψ̃ has a recursively-defined analytic
solution ψ(·;G′, f, b, h) :M∪R 7→ [0, 1] given by the equations

ψ(m;G′, f, b, h) =
{
max [b(m), h(m)] m ∈ F(G′)
max

[
b(m),maxr∈ChG′ (m) ψ(r;G′, f, b, h)

]
m /∈ F(G′) , (12)

ψ(r;G′, f, b, h) = f(r)
∏

m∈ChG′ (r)

ψ(m;G′, f, b, h) . (13)

Details of this solution are presented in Appendix C.1. ψ(n) can be roughly interpreted as “the best
expected success value for n upon expansion.” In fact, the relationship between ψ and σ̄′ is exactly
analogous to the relationship between s and σ in equation 3.

To compute ρ̃, first note that ρ̃(m⋆) = ψ̃(m⋆), as for m⋆ the constraints in equations 10 and 11 are
equivalent. Second, because of the independence assumption above, the best synthesis plan contain-
ing both a node n and its parent n′ can be created by taking an optimal synthesis plan for n′ (which
may or may not contain n), removing the part “below” n′, and adding in an (unconstrained) optimal
plan for n. Letting PaG′(·) denote a node’s parents,4 under this assumption ρ̃ has a recursively-
defined analytic solution ρ(·;G′, f, b, h) :M∪R 7→ [0, 1] defined as

ρ(m;G′, f, b, h) =
{
ψ(m;G′, f, b, h) m is target molecule m⋆

maxr∈PaG′ (m) ρ(r;G′, f, b, h) all other m
, (14)

ρ(r;G′, f, b, h) =

{
0 ψ(r;G′, f, b, h) = 0

ρ(m′;G′, f, b, h) ψ(r;G′,f,b,h)
ψ(m′;G′,f,b,h) ψ(r;G′, f, b, h) > 0,m′ ∈ PaG′(r)

. (15)

3The dependence on h is because it defines the distribution of eT in equation 8.
4Recall that because we consider only single-product reactions, all reaction nodes will have exactly one

parent, making equation 15 well-defined.

5

Published as a conference paper at ICLR 2024

Details of this solution are presented in Appendix C.1. Like s(·), ψ and ρ have recursive definitions,
and can therefore be calculated with dynamic programming techniques. Since ψ depends on a node’s
children, it can generally be calculated “bottom-up”, while ρ can be calculated “top-down” because
it depends on a node’s parents. We discuss details of computing ψ and ρ in Appendix C.1, and
provide a full worked-through example in Appendix C.2.

However, in deriving ψ and ρ we assumed that all synthesis plans T ∈ P∗(G′) were trees. In prac-
tice, this assumption may not hold (see Figure C.1 for an example). If this assumption is violated, ψ
and ρ can both still be calculated, but will effectively double-count molecules which occur multiple
times in a synthesis plan, and therefore not equal ψ̃ and ρ̃. This is a well-known issue in AND/OR
graphs: for example, Nilsson (1982, page 102) describes the essentially same issue when calculat-
ing minimum cost synthesis plans. Ultimately we will simply accept this and use ψ/ρ instead of
ψ̃/ρ̃ despite their less principled interpretation, chiefly because the recursive definitions of ψ/ρ are
amenable to efficient computation. Synthesis plans which use the same molecule twice are unusual
in chemistry; therefore we do not expect this substitution to be problematic in practice.

4.2 RETRO-FALLBACK: A FULL GREEDY ALGORITHM

Recall our original goal at the start of section 4.1: to estimate how expansion might affect SSP.
We considered a single sample f ∼ ξf and b ∼ ξb, and developed the function ρ, which for each
frontier molecule m ∈ F(G′) gives the best estimated synthesis plan for m⋆ if m is expanded
(simultaneously along with other frontier molecules on an optimally chosen synthesis plan). We
will now use ρ to construct a full algorithm.

Expanding a frontier molecule can improve SSP if, for samples f and b where s(m⋆;G′, f, b) =
0, the expansion changes this to 1. In this scenario, expanding a frontier molecule m∗ ∈
argmaxm∈F(G′) ρ(m;G′, f, b, h) is a prudent choice, as it lies on a synthesis plan with the high-
est probability of “flipping” s(m⋆;G′, f, b) to 1. In contrast, because s(·) will never decrease as
nodes are added, if s(m⋆;G′, f, b) = 1 then it does not matter which molecule is expanded. There-
fore, when aggregating over samples of f and b to decide which molecules to expand to improve
SSP, we will consider the value of ρ only in cases when s(m⋆;G′, f, b) = 0.

For our greedy algorithm, we propose to simply expand the molecule with the highest expected
improvement of SSP. Letting 1(·) be the indicator function, this is a molecule m ∈ F(G′) which
maximizes

α(m;G′, ξf , ξb, h) = Ef∼ξf ,b∼ξb
[
1s(m⋆;G′,f,b)=0 [ρ(m;G′, f, b, h)]

]
(16)

In practice, α would be estimated from a finite number of samples from ξf and ξb. Using ρ to select
a single molecule may seem odd, especially because ρ is defined as a hypothetical outcome of simul-
taneously expanding multiple nodes. However, note that in principle there is nothing problematic
about expanding these nodes one at a time.

We call our entire algorithm retro-fallback (from “retrosynthesis with fallback plans”) and state it
explicitly in Algorithm 1. The sections are colour-coded for clarity. After initializing G′, the algo-
rithm performs L iterations of expansion (although this termination condition could be changed as
needed). In each iteration, first the values of s, ψ, and ρ are computed for each sample of f and
b.5 Next, the algorithm checks whether there are no frontier nodes or whether the estimated SSP
is 100%, and if so terminates (both of these conditions mean no further improvement is possible).
Finally, a frontier node maximizing α (16) is selected and expanded. Of course, a practical imple-
mentation of retro-fallback may look slightly different from Algorithm 1. We refer the reader to
Appendix C for further discussion about the design and implementation of retro-fallback.

5 RELATED WORK

Retro-fallback is most comparable with other retrosynthesis search algorithms including MCTS
(Segler et al., 2018), retro* (Chen et al., 2020), and proof number search (Heifets & Jurisica, 2012;
Kishimoto et al., 2019). At a high level these algorithms are all similar: they use a heuristic to

5This order is chosen because s depends only on f & b, ψ depends on s, and ρ depends on ψ. Because the
optimal algorithm to compute s, ψ, ρ may depend on G′, we only specify this computation generically.

6

Published as a conference paper at ICLR 2024

Algorithm 1 Retro-fallback algorithm (see 4.2)
Require: target molecule m⋆, max iterations L, backward reaction model B, search heuristic h
Require: samples f1, . . . , fk ∼ ξf , b1, . . . , bk ∼ ξb

1: G′ ← {m⋆}
2: for i in 1, . . . , L do
3: for j in 1, . . . , k do
4: Compute s(·;G′, fj , bj) for all nodes using equations 4–5
5: Compute ψ(·;G′, fj , bj , h) for all nodes using equations 12–13
6: Compute ρ(·;G′, fj , bj , h) for all nodes using equations 14–15
7: end for
8: Terminate early if |F(G′)| = 0 OR s(m⋆;G′, fj , bj) = 1∀j
9: m(i) ← argmaxm∈F(G′) α(m;G′, ξf , ξb, h) (equation 16, breaking ties arbitrarily)

10: Add all reactions and molecules from B(m(i)) to G′
11: end for
12: return G′

guide the construction of an explicit search graph. However, previous algorithms may struggle to
maximize SSP because their internal objectives consider only individual synthesis plans, while SSP
depends on multiple synthesis plans simultaneously. In Appendix E.2 we argue that for most algo-
rithms the best proxy for SSP is the success probability of individual synthesis plans, but illustrate
in Appendix E.3 that this objective does not always align with SSP. In contrast, retro-fallback is
specifically designed to maximize SSP.

Mechanistically, retro-fallback most closely resembles retro* (Chen et al., 2020), which is a variant
of the older AO* algorithm (Chang & Slagle, 1971; Martelli & Montanari, 1978; Nilsson, 1982;
Mahanti & Bagchi, 1985). Both retro* and retro-fallback perform a bottom-up and top-down update
to determine the value of each potential action, then select actions greedily. In fact, retro-fallback’s
updates have cost-minimization interpretation, presented in Appendix C.1.4. The key difference
between the algorithms is the node selection step: retro* considers just a single cost for each node,
while retro-fallback aggregates over a vector of samples to directly optimize SSP.

Lastly, we briefly comment on several research topics which are only tangentially related (deferring
fuller coverage to Appendix F). Works proposing search heuristics for retrosynthesis search algo-
rithms (F.1) complement rather than compete with our work: such heuristics could also be applied
to retro-fallback. Generative models to produce synthesis plans (F.2) effectively also function as
heuristics. Methods to predict individual chemical reactions are sometimes also referred to as “ret-
rosynthesis models” (F.3), but solve a different problem than multi-step synthesis. Finally, other
works have considered generally planning in stochastic graphs (F.5), but typically in a scenario
where the agent is embedded in the graph.

6 EXPERIMENTS

In this section we evaluate retro-fallback experimentally. The key question we seek to answer is
whether retro-fallback does indeed maximize SSP more effectively than existing algorithms. We
present additional results and explain details of the setup experimental in Appendix G.

6.1 EXPERIMENT SETUP

We have based our experiment design on the USPTO benchmark from Chen et al. (2020), which has
been widely used to evaluate multi-step retrosynthesis algorithms. However, because this benchmark
does not include a feasibility or buyability model we have made some adaptations to make it suitable
for our problem setting. Importantly, because we do not know what the “best” feasibility model is,
we instead test multiple feasibility models in the hope that the conclusions of our experiments could
potentially generalize to future, more advanced feasibility models. We summarize the setup below
and refer the reader to Appendix G.1 for further details.

We base all of our feasibility models on the pre-trained template classifier from Chen et al. (2020)
restricted to the top-50 templates. We vary our feasibility model across two axes: the marginal fea-

7

Published as a conference paper at ICLR 2024

100 101 102

num. calls to B

0.0

0.2

0.4

0.6
m

ea
n

SS
P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

Figure 2: Mean SSP across all 190 test molecules vs. time using the SA score heuristic. 3 trials are
done for each molecule. Solid lines are sample means (averaged across molecules), and error bars
represent standard errors. “ind.” means “independent”.

sibility assigned to each reaction and the correlation between feasibility outcomes. Marginally, we
consider a constant value of 0.5, and a value which starts at 0.75 and decreases with the rank of the
reaction in the template classifier’s output. For correlations, we consider all outcomes being inde-
pendent or determined by a latent GP model which positively correlates similar reactions. Details of
these models are given in Appendix G.1.2. Analogous to Chen et al. (2020), we create a buyability
model based on the eMolecules library which designates only chemicals shipped within 10 business
days as 100% buyable. See Appendix G.1.3 for details.

We compare retro-fallback to breadth-first search (an uninformed search algorithm) and the
heuristic-guided algorithms retro* (Chen et al., 2020) and MCTS (Segler et al., 2018; Genheden
et al., 2020; Coley et al., 2019b). All algorithms were implemented using the SYNTHESEUS library
(Maziarz et al., 2023) and run with a fixed budget of calls to B. MCTS and retro* were configured
to maximize SSP by replacing costs or rewards from the backward reaction model B with quantities
derived from ξf and ξb (see Appendices E.2 and G.1.5 for details). However, the presence of heuris-
tics makes comparing algorithms difficult. Because the choice of heuristic will strongly influence
an algorithm’s behaviour, we tried to use similar heuristics for all algorithms to ensure a meaningful
comparison. Specifically, we tested an optimistic heuristic (which gives the best possible value for
each frontier node) and a heuristic based on the synthetic accessibility (SA) score (Ertl & Schuf-
fenhauer, 2009), which has been shown to be a good heuristic for retrosynthesis in practice despite
its simplicity (Skoraczyński et al., 2023). The SA score heuristic was minimally adapted for each
algorithm to roughly have the same interpretation (see Appendix G.1.6 for details).

We tested all algorithms on the set of 190 “hard” molecules from Chen et al. (2020), which do not
have straightforward synthesis plans. Our primary evaluation metric is the SSP values estimated
with k = 10 000 samples, averaged over all test molecules.

6.2 HOW EFFECTIVE IS RETRO-FALLBACK AT MAXIMIZING SSP?

Figure 2 plots the average SSP for all test molecules as a function of the number of calls to the reac-
tion model B using the SA score heuristic. Retro-fallback clearly outperforms the other algorithms
in all scenarios by a significant margin. The difference is particularly large for the feasibility models
with no correlations between reactions (“ind.”). We suspect this is because the reaction model B
tends to output many similar reactions, which can be used to form backup plans when feasibility
outcomes are independent. Retro-fallback will naturally be steered towards these plans. However,
when GP-induced correlations are introduced, these backup plans disappear (or become less effec-
tive), since similar reactions will likely both be feasible or both be infeasible. The same trends are
visible when using the optimistic heuristic (Figure G.4) and on a test set of easier molecules (Fig-
ure G.5) Overall, this result shows us what we expect: that retro-fallback maximizes the metric it
was specifically designed to maximize more effectively than baseline algorithms.

We investigate the origin of these performance differences in Appendix G.2.1 by plotting SSP over
time for a small selection of molecules (repeated over several trials). It appears that, rather than retro-

8

https://www.emolecules.com/

Published as a conference paper at ICLR 2024

fallback being consistently a little bit better, the performance gap is driven by a larger difference for
a small number of molecules. This is actually not surprising: the advantage of different approaches
will vary depending on the graph, and for some graphs finding individual feasible plans is probably
a promising strategy.

A natural follow-up question is whether retro-fallback also performs well by metrics other than SSP.
In Figures G.8–G.10 we plot the highest success probability of any individual synthesis plan found,
plus two metrics frequently used by previous papers: the fraction of molecules with any synthesis
plan (called “fraction solved” in prior works) and the length of the shortest synthesis plan found
(a proxy for quality). The SSP of the single best plan is generally similar for all algorithms. This
suggests that in general all algorithms find similar “best” plans, and retro-fallback’s extra success
comes from finding more effective “backup” plans. Retro-fallback seems slightly better than other
algorithms in terms of fraction solved and similar to other algorithms in terms of shortest plan length
(although retro* is better in some cases). Finally, Appendix G.2.3 shows that retro-fallback is able
to find synthesis plans which use the same starting molecules as real-world syntheses: a metric
proposed by Liu et al. (2023b). Overall, these results suggest that retro-fallback is also an effective
search algorithm if metrics from past papers which do not account for uncertainty are used.

6.3 SPEED AND VARIABILITY OF RETRO-FALLBACK

First we consider the speed of retro-fallback. Retro-fallback requires calculating s, ψ, and ρ for every
node at every iteration. The complexity of this calculation could scale linearly with the number of
nodes in the graph (which we denote |G′|), or potentially sub-linearly if the s/ψ/ρ values for many
nodes do not change every iteration. Therefore, from this step we would expect a time complexity
which is between linear and quadratic in |G′|. However, retro-fallback also requires sampling f and b
for all nodes created during an expansion: a process which will scale asO(1) for independent models
and O(|G′|2) for GP-correlated models. This yields an overall O(|G′|)–O(|G′|3) complexity from
the sampling step. Figure G.12 plots the empirical scaling for the experiments from the previous
section, and suggests an overall scaling between O(|G′|1.1)–O(|G′|1.8), with considerable variation
between different feasibility models and heuristics.

To study the effect of the number of samples k from ξf and ξb, we run retro-fallback 10 times
on a sub-sample of 25 molecules with a variety of different sample sizes. Figure G.13 shows that
as k decreases, the mean SSP value achieved by retro-fallback decreases and the variance of SSP
increases. This is not surprising, since when the number of samples is small the internal estimates of
SSP used by retro-fallback deviate more from their expected values, enabling suboptimal decisions.
Empirically, k > 100 seems sufficient (minimal further improvement is seen for higher k).

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

In this paper we reformulated retrosynthesis using stochastic processes, presented a novel evaluation
metric called “successful synthesis probability” (SSP), and proposed a novel algorithm called retro-
fallback which greedily maximizes SSP. In our experiments, retro-fallback was more effective at
maximizing SSP than previously-proposed algorithms.

Our work has some important limitations. Conceptually, chemists may also care about the length or
quality of synthesis plans, and may only be willing to consider a limited number of backup plans.
These considerations do not fit into our formalism. Practically, retro-fallback is slower than other
algorithms and may not scale as well. We discuss these limitations further in Appendix H.

The most important direction for future work is creating better models of reaction feasibility, as
without high-quality models the estimates of SSP are not meaningful. We see collaborations with
domain experts as the best route to achieve this. Since retro-fallback uses a search heuristic, learning
this heuristic using the results of past searches (“self-play”) would likely improve performance. We
elaborate on other potential directions for future work in Appendix I.

Overall, even though retro-fallback is far from perfect, we believe that modelling uncertainty about
reaction outcomes is at least a step in the right direction, and hope it inspires further work in this
area.

9

Published as a conference paper at ICLR 2024

ETHICS

Our work is foundational algorithm development and we do not see any direct ethical implications.
The most likely use case for our algorithm is to automate the production of synthesis plans in drug
discovery, which we hope can aid the development of new medicines. We acknowledge the possi-
bility that such algorithms could be used by bad actors to develop harmful chemicals, but do not see
this as a probable outcome: countless harmful chemicals already exist and can be readily obtained. It
is therefore hard to imagine why bad actors would expend significant effort to develop new harmful
chemicals with complicated syntheses.

REPRODUCIBILITY

We aim for a high standard of reproducibility in this work. We explicitly state our proposed algo-
rithm in the paper (Algorithm 1) and dedicate Appendix C to discussing its minor (but still impor-
tant) details, including guidance for future implementations (C.5). Proofs of all theorems are given
in Appendix D. The experimental setup is described in more detail in Appendix G (including hyper-
parameters, etc). Code to reproduce all experiments6 is available at:
https://github.com/AustinT/retro-fallback-iclr24.

Our code was thoroughly tested with unit tests and builds on libraries which are widely-used, mini-
mizing the chance that our results are corrupted by software errors. We include the results generated
by our code in json format, and also include code to read the results and reproduce the plots7

from the paper. The inclusion of raw data will freely allow future researchers to perform alternative
analyses.

Note that this paper will be kept updated at https://arxiv.org/abs/2310.09270.

AUTHOR CONTRIBUTIONS

The original idea of SSP was proposed by Sarah and jointly developed by Sarah, Austin, Krzysztof,
and Marwin. Sarah and Austin jointly developed an initial version of retro-fallback for AND/OR
trees. Sarah originally proposed an algorithm using samples in a different context. Austin adapted
these two algorithms to yield the version of retro-fallback proposed in this paper. Krzysztof pro-
posed and proved Theorem 3.1. Writing was done collaboratively but mostly by Austin. All code
was written by Austin with helpful code review from Krzysztof. Marwin and José Miguel advised
the project. Marwin in particular provided helpful feedback about MCTS estimated feasibility of
chemical reactions from the model. José Miguel provided extensive feedback on the algorithm de-
tails and the clarity of writing.

ACKNOWLEDGMENTS

Thanks to Katie Collins for proofreading the manuscript and providing helpful feedback. Austin
Tripp acknowledges funding via a C T Taylor Cambridge International Scholarship and the Canadian
Centennial Scholarship Fund. José Miguel Hernández-Lobato acknowledges support from a Turing
AI Fellowship under grant EP/V023756/1.

Austin is grateful for the affordable meals (with generous portion sizes) from Queens’ College Cam-
bridge which greatly expedited the creation of this manuscript.

REFERENCES

John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato.
A model to search for synthesizable molecules. Advances in Neural Information Processing
Systems, 32, 2019.

6Note that because all algorithms in the paper use randomness, re-running the code is unlikely to reproduce
our exact results.

7Because we include the exact data, the reproduction of the plots will be exact. We were inspired to include
this by the thought-provoking paper of Burnell et al. (2023).

10

https://github.com/AustinT/retro-fallback-iclr24
https://arxiv.org/abs/2310.09270

Published as a conference paper at ICLR 2024

John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato.
Barking up the right tree: an approach to search over molecule synthesis dags. Advances in neural
information processing systems, 33:6852–6866, 2020.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Ryan Burnell, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed,
Joshua B Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie Mitchell,
et al. Rethink reporting of evaluation results in ai. Science, 380(6641):136–138, 2023.

PP Chakrabarti. Algorithms for searching explicit and/or graphs and their applications to problem
reduction search. Artificial Intelligence, 65(2):329–345, 1994.

Chin-Liang Chang and James R. Slagle. An admissible and optimal algorithm for searching and/or
graphs. Artificial Intelligence, 2(2):117–128, 1971.

Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning
with neural guided a* search. In International Conference on Machine Learning, pp. 1608–1616.
PMLR, 2020.

Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity and
global attention. JACS Au, 1(10):1612–1620, 2021.

Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. Scscore: synthetic com-
plexity learned from a reaction corpus. Journal of chemical information and modeling, 58(2):
252–261, 2018.

Connor W Coley, William H Green, and Klavs F Jensen. Rdchiral: An rdkit wrapper for handling
stereochemistry in retrosynthetic template extraction and application. Journal of chemical infor-
mation and modeling, 59(6):2529–2537, 2019a.

Connor W Coley, Dale A Thomas III, Justin AM Lummiss, Jonathan N Jaworski, Christopher P
Breen, Victor Schultz, Travis Hart, Joshua S Fishman, Luke Rogers, Hanyu Gao, et al. A robotic
platform for flow synthesis of organic compounds informed by ai planning. Science, 365(6453):
eaax1566, 2019b.

Elias James Corey and W Todd Wipke. Computer-assisted design of complex organic syntheses:
Pathways for molecular synthesis can be devised with a computer and equipment for graphical
communication. Science, 166(3902):178–192, 1969.

Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with
conditional graph logic network. Advances in Neural Information Processing Systems, 32, 2019.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

Wenhao Gao, Rocı́o Mercado, and Connor W Coley. Amortized tree generation for bottom-up
synthesis planning and synthesizable molecular design. In International Conference on Learning
Representations, 2021.

Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist, and
Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic
planning. Journal of cheminformatics, 12(1):70, 2020.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the
synthetically accessible chemical space using reinforcement learning. In International conference
on machine learning, pp. 3668–3679. PMLR, 2020.

11

Published as a conference paper at ICLR 2024

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and func-
tion using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Abraham Heifets and Igor Jurisica. Construction of new medicines via game proof search. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pp. 1564–1570, 2012.

Dušan Hvalica. Best first search algorithm in and/or graphs with cycles. Journal of Algorithms, 21
(1):102–110, 1996. ISSN 0196-6774. doi: https://doi.org/10.1006/jagm.1996.0039.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology, 3
(1):015022, 2022.

Pablo Jiménez and Carme Torras. An efficient algorithm for searching implicit and/or graphs with
cycles. Artificial Intelligence, 124(1):1–30, 2000.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2 9.

Junsu Kim, Sungsoo Ahn, Hankook Lee, and Jinwoo Shin. Self-improved retrosynthetic planning.
In International Conference on Machine Learning, pp. 5486–5495. PMLR, 2021.

Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-first proof-number search with
heuristic edge cost and application to chemical synthesis planning. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Greg Landrum, Paolo Tosco, Brian Kelley, Ric, sriniker, gedeck, Riccardo Vianello, David Cos-
grove, NadineSchneider, Eisuke Kawashima, Dan N, Andrew Dalke, Gareth Jones, Brian Cole,
Matt Swain, Samo Turk, AlexanderSavelyev, Alain Vaucher, Maciej Wójcikowski, Ichiru Take,
Daniel Probst, Vincent F. Scalfani, Kazuya Ujihara, guillaume godin, Axel Pahl, Francois
Berenger, JLVarjo, jasondbiggs, strets123, and JP. rdkit/rdkit: 2022 09 4 (q3 2022) release, Jan-
uary 2023.

Baiqing Li and Hongming Chen. Prediction of compound synthesis accessibility based on reaction
knowledge graph. Molecules, 27(3):1039, 2022.

Cheng-Hao Liu, Maksym Korablyov, Stanisław Jastrzebski, Paweł Włodarczyk-Pruszynśki, Yoshua
Bengio, and Marwin Segler. Retrognn: fast estimation of synthesizability for virtual screening and
de novo design by learning from slow retrosynthesis software. Journal of Chemical Information
and Modeling, 62(10):2293–2300, 2022.

Guoqing Liu, Di Xue, Shufang Xie, Yingce Xia, Austin Tripp, Krzysztof Maziarz, Marwin Segler,
Tao Qin, Zongzhang Zhang, and Tie-Yan Liu. Retrosynthetic planning with dual value networks.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 22266–22276. PMLR, 23–29 Jul
2023a.

Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying, Jian Tang, Peilin Zhao,
and Dinghao Wu. FusionRetro: Molecule representation fusion via in-context learning for ret-
rosynthetic planning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 22028–22041.
PMLR, 23–29 Jul 2023b. URL https://proceedings.mlr.press/v202/liu23ah.
html.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448–472, 1992.

12

https://proceedings.mlr.press/v202/liu23ah.html
https://proceedings.mlr.press/v202/liu23ah.html

Published as a conference paper at ICLR 2024

A. Mahanti and A. Bagchi. And/or graph heuristic search methods. J. ACM, 32(1):28–51, jan 1985.
ISSN 0004-5411. doi: 10.1145/2455.2459. URL https://doi.org/10.1145/2455.
2459.

Alberto Martelli and Ugo Montanari. Optimizing decision trees through heuristically guided search.
Communications of the ACM, 21(12):1025–1039, 1978.

Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp
Seidl, and Marwin Segler. Re-evaluating retrosynthesis algorithms with syntheseus. arXiv
preprint arXiv:2310.19796, 2023.

N.J. Nilsson. Principles of Artificial Intelligence. Symbolic Computation. Springer Berlin Heidel-
berg, 1982. ISBN 9783540113409.

Christos H Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84(1):127–150, 1991.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., 1984.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical informa-
tion and modeling, 50(5):742–754, 2010.

Mikołaj Sacha, Mikołaj Błaz, Piotr Byrski, Paweł Dabrowski-Tumanski, Mikołaj Chrominski, Rafał
Loska, Paweł Włodarczyk-Pruszynski, and Stanisław Jastrzebski. Molecule edit graph attention
network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Infor-
mation and Modeling, 61(7):3273–3284, 2021.

Nadine Schneider, Daniel M Lowe, Roger A Sayle, and Gregory A Landrum. Development of a
novel fingerprint for chemical reactions and its application to large-scale reaction classification
and similarity. Journal of chemical information and modeling, 55(1):39–53, 2015.

Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas Haeuselmann,
Riccardo Pisoni, Costas Bekas, Anna Iuliano, and Teodoro Laino. Predicting retrosynthetic path-
ways using transformer-based models and a hyper-graph exploration strategy. Chemical science,
11(12):3316–3325, 2020.

Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for retrosynthesis and
reaction prediction. Chemistry–A European Journal, 23(25):5966–5971, 2017.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic ai. Nature, 555(7698):604–610, 2018.

Philipp Seidl, Philipp Renz, Natalia Dyubankova, Paulo Neves, Jonas Verhoeven, Marwin Segler,
Jörg K Wegner, Sepp Hochreiter, and Günter Klambauer. Modern hopfield networks for few-and
zero-shot reaction template prediction. arXiv preprint arXiv:2104.03279, 2021.

Ryosuke Shibukawa, Shoichi Ishida, Kazuki Yoshizoe, Kunihiro Wasa, Kiyosei Takasu, Yasushi
Okuno, Kei Terayama, and Koji Tsuda. Compret: a comprehensive recommendation framework
for chemical synthesis planning with algorithmic enumeration. Journal of cheminformatics, 12
(1):1–14, 2020.

Grzegorz Skoraczyński, Mateusz Kitlas, Błażej Miasojedow, and Anna Gambin. Critical assessment
of synthetic accessibility scores in computer-assisted synthesis planning. Journal of Cheminfor-
matics, 15(1):6, 2023.

13

https://doi.org/10.1145/2455.2459
https://doi.org/10.1145/2455.2459

Published as a conference paper at ICLR 2024

Megan Stanley and Marwin Segler. Fake it until you make it? generative de novo design and virtual
screening of synthesizable molecules. Current Opinion in Structural Biology, 82:102658, 2023.

Felix Strieth-Kalthoff, Frederik Sandfort, Marwin HS Segler, and Frank Glorius. Machine learn-
ing the ropes: principles, applications and directions in synthetic chemistry. Chemical Society
Reviews, 49(17):6154–6168, 2020.

Amol Thakkar, Veronika Chadimová, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Rey-
mond. Retrosynthetic accessibility score (rascore)–rapid machine learned synthesizability classi-
fication from ai driven retrosynthetic planning. Chemical Science, 12(9):3339–3349, 2021.

Austin Tripp, Sergio Bacallado, Sukriti Singh, and José Miguel Hernández-Lobato. Tanimoto ran-
dom features for scalable molecular machine learning. In A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 33656–33686. Curran Associates, Inc., 2023.

Zhengkai Tu, Thijs Stuyver, and Connor W Coley. Predictive chemistry: machine learning for
reaction deployment, reaction development, and reaction discovery. Chemical Science, 2023.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

GE Vleduts. Concerning one system of classification and codification of organic reactions. Infor-
mation Storage and Retrieval, 1(2-3):117–146, 1963.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006.

Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu, Chenjuan Guo, Bin Yang, and Tao Qin.
Retrograph: Retrosynthetic planning with graph search. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2120–2129, 2022.

Yemin Yu, Ying Wei, Kun Kuang, Zhengxing Huang, Huaxiu Yao, and Fei Wu. Grasp: Navigat-
ing retrosynthetic planning with goal-driven policy. Advances in Neural Information Processing
Systems, 35:10257–10268, 2022.

Weihe Zhong, Ziduo Yang, and Calvin Yu-Chian Chen. Retrosynthesis prediction using an end-to-
end graph generative architecture for molecular graph editing. Nature Communications, 14(1):
3009, 2023.

Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun
Hou, and Mingli Song. Root-aligned smiles: a tight representation for chemical reaction predic-
tion. Chemical Science, 13(31):9023–9034, 2022.

14

Published as a conference paper at ICLR 2024

Appendix

Table of Contents
A Summary of Notation 16

B Details of search graphs in retrosynthesis 18
B.1 AND/OR graphs . 18
B.2 Synthesis plans . 20
B.3 OR graphs . 21

C Further details of retro-fallback 22
C.1 Details of s(·), ψ(·) and ρ(·) . 22
C.2 Example of calculating s, ψ and ρ . 26
C.3 Justification of node selection . 28
C.4 Rejected alternative algorithms . 28
C.5 Practical implementation details . 28

D Proofs and Theoretical Results 30
D.1 Proof of Theorem 3.1 . 30
D.2 Computing s(·), ψ(·) and ρ(·) polynomial time 30

E Discussion of previous search algorithms and why they might struggle to optimize
SSP 32
E.1 Can we say anything definitive about the ability of different algorithms to maxi-

mize SSP? . 32
E.2 Existing algorithms and their configurability 32
E.3 Finding individually successful synthesis plans may not be enough to maximize

SSP . 34

F Extended related work (excluding previous search algorithms) 36
F.1 Search heuristics for retrosynthesis . 36
F.2 Generative models . 36
F.3 Single-step retrosynthesis . 36
F.4 FusionRetro . 36
F.5 Planning in stochastic graphs . 37

G Extended experiment section 38
G.1 Details of experimental setup . 38
G.2 Additional results for section 6.2 (how effective is retro-fallback at maximizing

SSP) . 44
G.3 Plots for time complexity and variability of retro-fallback for section 6.3 55

H Limitations 57

I Future work 58

15

Published as a conference paper at ICLR 2024

A SUMMARY OF NOTATION

Although we endeavoured to introduce all notation in the main text of the paper in the section where
it is first used, we re-state the notation here for clarity.

General Math

2S Power set of set S (set of all subsets of S)

P[event] Probability of an event

1event Indicator function: 1 if “event” is True, otherwise 0

O(Np) Big-O notation (describing scaling of an algorithm)

Õ(Np) Big-O notation, omitting poly-logarithmic factors (e.g.
O(N logN) is equivalent to Õ(N))

Molecules and reactions

m a molecule

r a (single-product) reaction

M space of molecules

R space of (single-product) reactions

I Inventory of buyable molecules

B backward reaction modelM 7→ 2R

→ Forward reaction arrow (e.g. A+B → C)

⇒ Backward reaction arrow (e.g. C ⇒ A+B)

Search Graphs

m⋆ target molecule to be synthesized

G implicit search graph with molecule (OR) nodes inM and
reaction (AND) nodes inR

G′ explicit graph stored and expanded for search. G′ ⊆ G
PaG′(x) The parents of molecule or reaction x in G′

ChG′(x) The children of molecule or reaction x in G′

T A synthesis plan in G or G′ (conditions in Appendix B.2)

Pm(G′) set of all synthesis plans in G′ that produce molecule m

P∗(G′) set of all synthesis plans in G′ producing any molecule

16

Published as a conference paper at ICLR 2024

Feasibility and Buyability

f Feasible function (assigns whether a reaction is feasible)

b Buyable function (assigns whether a molecule is buyable)

ξf feasibility stochastic process (distribution over f)

ξb buyability stochastic process (distribution over b)

σ(T ; f, b) success of an individual synthesis plan T (equation 1)

SSP(T ; ξf , ξb) Successful synthesis probability: probability that any syn-
thesis plan T ∈ T is successful (equation 2)

s(m;G′, f, b) Whether a molecule is synthesizable using reac-
tions/starting molecules in G′, with feasible/buyable
outcomes given by f, b. Takes values in {0, 1}. Defined in
equations 4–5

s(m) Shorthand for s(m;G′, f, b) when G′, f, b are clear from
context.

Retro-fallback

h Search heuristic functionM 7→ [0, 1]

eT random expansion function (equation 7)

σ̄′(T ; ξf , ξb, h) estimated expected success of synthesis plan T if all its
frontier nodes are expanded (equation 8)

ρ̃(n;G′, f, b, h) σ̄′ value of best synthesis plan for m⋆ including node n
(equation 10)

ψρ(n;G′, f, b, h) σ̄′ value of best synthesis plan including node n (equa-
tion 11)

ψ(m;G′, f, b, h) Analytic solution for ψ̃ under independence assumption.
Defined in equations 12–13

ρ(m;G′, f, b, h) Analytic solution for ρ̃ under independence assumption.
Defined in equations 14–15

α(m;G′, ξf , ξb, h) expected improvement in SSP for expanding a frontier
node (equation 16).

We also use the following mathematical conventions throughout the paper:

• log 0 = −∞
• maxx∈∅ f(x) = −∞ (the maximum of an empty set is always −∞)

17

Published as a conference paper at ICLR 2024

B DETAILS OF SEARCH GRAPHS IN RETROSYNTHESIS

Here we provide details on the type of search graphs considered in this paper. Section 2 introduced
AND/OR graphs. These are defined more formally in section B.1. Section 2 also informally in-
troduced synthesis plans without giving a proper definition. Section B.2 provides a more precise
introduction. Finally, AND/OR graphs are not the only kind of graph in retrosynthesis: MCTS
typically uses an OR graph, which is introduced in section B.3.

B.1 AND/OR GRAPHS

Definition An AND/OR graph is a directed graph containing two types of nodes: AND nodes
(corresponding to reactions) and OR nodes (corresponding to molecules). The name “AND/OR”
originates from general literature on search. “AND” suggests that all child nodes must be “solved”
for the node to be considered “solved”, while “OR” suggests that at least one child node must be
“solved” for the node to be considered “solved.” AND nodes correspond to reactions because a
reaction requires all input molecules, while OR nodes correspond to molecules because a molecule
can be made from any one reaction. The connectivity of AND/OR graphs satisfies the following
properties:

1. Edges only exist between molecules and reactions producing them, and between reactions
and their reactant molecules. This makes the graph bipartite.

2. All reactions have at least one reactant (you cannot make something from nothing).

3. All reaction nodes must be connected to their product and reaction molecule nodes.

4. No molecule appears as both the product and a reactant in a single reaction. This implies
that at most a single directed edge will exist between any two nodes.

5. All molecules are the product of a finite (and bounded) number of reactions, and all re-
actions have a finite (and bounded) number of molecules. This means all nodes in and
AND/OR graph will always have a finite number of children.

6. Reactions contain exactly one product molecule. Although this may seem restrictive, the
reaction A + B → C + D could simply be encoded as two reactions: A + B → C and
A+B → D.

Reaction cycles: graph and tree formulations Reactions can form cycles (e.g. A⇒ B ⇒ A⇒
. . .). There are two general ways of handling such cycles, illustrated in Figure B.1. One is to
simply allow the graph to have cycles (Figure B.1a). The second is to “unroll” all cycles into a tree
(Figure B.1b). Both of these ways are legitimate. Importantly however, in the tree version of an
AND/OR graph molecules and reactions may not be unique: i.e. a molecule or reaction may occur
multiple times in the graph. Because of this, in general, we assume that all functions in this paper
which act on the space of molecules or reactions (e.g. s(·), ψ(·)) really act on the space of molecule
and reaction nodes. For example, this means that the same molecule may have different ψ values at
different locations in the graph.

Implicit Search Graph In section 2 we stated that the implicit search graph G is defined by the
backward reaction model. This can be either a (possibly cyclic) graph or a tree (as described above).
In either case, the nodes in G are defined in the following way:

1. G contains the target molecule m⋆.

2. If a molecule m ∈ G, then all reactions in B(m) are also in G.

3. If G contains the reaction r (with product m), then r ∈ B(m) (i.e. r is the output of the
backward model).

G can also be defined constructively by initializing G0 ← {m⋆}, and Gi+1 is produced by using
B(m) to add reactions to add leaf nodes in Gi. G is the product of repeating this infinitely many times
(essentially G∞). Note that by this definition, G could very well be an infinite graph,8 especially if

8Hence the limit limi→∞ Gi is not well-defined.

18

Published as a conference paper at ICLR 2024

m⋆

r1

ma

r2

mb

r3

mc

r4

a) Graph version

m⋆

r1

ma

r2

mb

r3

mc

r4

m⋆

r3

.

.

.

b) Tree version

Figure B.1: Graph and tree representation of the reaction set m⋆ ⇒ ma (r1), ma ⇒ mb (r2),
m⋆ ⇒ mc (r3), and mc ⇒ m⋆ (r4).

the tree construction is used (the presence of a single cycle will make G infinitely deep). This
procedure guarantees the following properties of G:

1. G is (weakly) connected. Every node in G is reachable from the target molecule m⋆ by
following directed edges.

2. Only molecule nodes will have no children (reaction nodes always include their children).

Explicit Search Graph The explicit search graph G′ ⊆ G is a subgraph of G which is stored
explicitly during search. G′ will satisfy the following properties:

1. G′ will always include the target molecule m⋆.

2. G′ always contains a finite number of nodes and edges (even if G is infinite).

3. If two nodes n1, n2 ∈ G′, G′ will contain an edge between n1 and n2 if any only if G
contains an edge between n1 and n2. This means G′ will not “drop” any edges originally
present in G.

4. For a node n ∈ G′, if ChG′(n) ̸= ∅, then no further children can be added to n. This means
that nodes are only expanded once. Typically ChG′(n) = ChG(n), although some children
may potentially be excluded.

5. If a reaction r ∈ G′, then ChG′(r) = ChG(r). This means that reaction nodes will always
be expanded. Expansion of a molecule node m therefore involves adding all reactions in
B(m) and also adding the reactant molecules for all those reactions. This also means that
all leaf nodes (i.e. childless nodes) in G′ will be molecule nodes.

6. The conditions above imply that G′ will also be weakly connected, with every node reach-
able from m⋆.

Frontier The frontier of the implicit graph G′ is the set of nodes whose children in G have not
been added to G′: i.e. they are non-expanded. The frontier is denoted by F(G′). Note that the
frontier of the implicit search graph G is empty by definition: the graph is “maximally expanded”
(and therefore possibly infinite in size). However, there is one ambiguous case which must be dealt
with in practice: molecules m which are not the product of any reaction (i.e. B(m) = ∅). These
nodes have no children in G, and therefore expanding them will not add any children. In practice,
because B(m) is only calculated upon expansion, we treat these molecules as on the frontier when
they are first added to the graph, and then remove them from the frontier when they are expanded.
This has two practical implications:

19

Published as a conference paper at ICLR 2024

1. F(G′) is not just the set of leaf nodes in G′: there may be some leaf nodes not on the
frontier because they have no child reactions.

2. The frontier therefore cannot be determined simply by looking at the connectivity of G′.
Our code therefore explicitly stores whether each leaf node is on the frontier. However,
F(G′) will always be a subset of all leaf nodes in G′.

B.2 SYNTHESIS PLANS

Synthesis plans were defined informally in section 2. More formally, a synthesis plan T is a subgraph
of G (either as a graph or a tree) satisfying the following properties:

1. T is a weakly connected subgraph of G.
2. If two nodes n1, n2 ∈ T share an edge in G, this edge will also be present in T .
3. T is acyclic. This means there will always be a meaningful order to “execute” T .
4. Every molecule m ∈ T has at most one child reaction (which will also be in G). This

means that there is a unique way to make each molecule in T . Molecules with no child
reactions form the frontier F(T).9

5. If a reaction r ∈ T , then all its children must all be in T (i.e. ChG(r) ⊆ T).
6. T contains a special “root molecule” m†, which can be thought of as the “product” of the

synthesis plan. m† has no parents in T (hence the plan “terminates” at m†).

Note in particular that each molecule m has a valid synthesis plan {m}, i.e. a singleton synthesis
plan. This is not a mistake; such synthesis plans would be a prudent choice for buyable molecules
(and would correspond to just buying the molecule). Jiménez & Torras (2000) contains a more
thorough discussion of what constitutes a synthesis plan (although using different terminology).

Pm(G′) denotes the set of all synthesis plans in G′ whose product is m. Pm(G′) can be enumerated
recursively, for example using Algorithm 2.10 Shibukawa et al. (2020) provides another method to
do this.

Algorithm 2 Simple algorithm to enumerate all synthesis plans.
Require: Explicit graph G′, product molecule m†.

1: S ← ∅ {Initialize the set of plans to be returned}
2: S ← S ∪ {m†} {Include the “singleton” plan}
3: for r ∈ ChG′(m†) do
4: m1, . . . ,mℓ ← ChG′(r) {Extract reactant molecules}
5: Recursively compute Pm1(G′), . . . ,Pmℓ

(G′)
6: for every combination of T1 ∈ Pm1(G′), . . . , Tℓ ∈ Pmℓ

(G′) do
7: Form the subgraph T̃ ← {m†, r} ∪ [

⋃
i Ti]

8: if T̃ is acyclic then
9: S ← S ∪ {T̃} {T̃ is a valid synthesis plan}

10: end if
11: end for
12: end for
13: return S

9This is almost identical to the definition of the frontier for AND/OR graphs from section B.1, except all
leaf nodes are considered frontier nodes (i.e. there no special treatment for leaf nodes with no children in G).

10However, this particular algorithm as stated may not terminate unless care is taken to avoid subgraphs
which include m† when recursively computing synthesis plans for reactant molecules.

20

Published as a conference paper at ICLR 2024

B.3 OR GRAPHS

AND/OR graphs are not the only type of graph in retrosynthesis. Other works, notably MCTS
(Segler et al., 2018), use OR graphs: a graph type where each node corresponds to a set of molecules.
Synthesis plans in such graphs are simple paths. An example of an OR graph (specifically a tree) is
given in Figure B.2.

{m⋆}

{ma}

{mb}

{mc}

{m⋆}

{mc}

.

.

.

Figure B.2: OR graph for same set of reactions as Figure B.1.

21

Published as a conference paper at ICLR 2024

C FURTHER DETAILS OF RETRO-FALLBACK

C.1 DETAILS OF s(·), ψ(·) AND ρ(·)

C.1.1 MNEMONICS

The names of s, ψ, and ρ were chosen in an attempt to make them as intuitive as possible:

• s was chosen to represent “success”.

• ψ (psi) was chosen from the phrase “probability of success,” as it can more or less be
interpreted as the probability that a node could be successful upon expansion.

• ρ was chosen as the probability of success of the root molecule of the search graph, which
is another term for the target molecule m⋆.

We hope the reader finds these mnemonics useful.

C.1.2 RELATIONSHIPS BETWEEN s(·), ψ(·), AND ρ(·)

Note that, for all T ∈ P∗(G′) and eT

σ(T ; f, b)︸ ︷︷ ︸
equation 1

≤ σ′(T ; f, b, eT)︸ ︷︷ ︸
equation 7

. (17)

Taking an expectation with respect to eT on both sides gives

σ(T ; f, b) ≤ σ̄′(T ; f, b, h) . (18)

Noting the relationship between s(·) and ψ(·), this implies for all nodes n ∈ G′ and heuristics h

s(n;G′, f, b) ≤ ψ(n;G′, f, b, h) . (19)

Finally, since the set of synthesis plans considered for ρ̃ is a subset of the plans considered for ψ̃, it
must be that

ρ(n;G′, f, b, h) ≤ ψ(n;G′, f, b, h) . (20)

C.1.3 ANALYTIC SOLUTIONS FOR ψ(·) AND ρ(·)

First, we state more formally the assumptions under which these analytic solutions hold.

Assumption C.1 (No synthesis plan uses the same molecule twice). Assume for all T ∈ P∗(G′), if
r1, r2 ∈ T are distinct reactions in T (i.e. r1 ̸= r2), then ChT (r1) ∩ ChT (r2) = ∅ (i.e. r1 and r2
share no children in T).

Furthermore, if m1,m2 ∈ T are distinct molecule nodes, then m1 and m2 are themselves distinct
molecules.11

Corollary C.2. Under assumption C.1, all synthesis plans T ∈ P∗(G′) are trees

Proof. Synthesis plans were explicitly defined to be acyclic in Appendix B.2, so it is sufficient to
show that no two nodes in an arbitrary T share the same parent. Two reaction nodes cannot share
the same parent (synthesis plans were defined as having at most one child for each molecule node),
and if a molecule node has two reaction parents assumption C.1 would be violated.

Next, we state a useful lemma for the upcoming proofs about ψ and ρ. This lemma and the following
propositions all assume a fixed (and arbitrary) graph G′ and functions f , b, h.

Lemma C.3. If T1 and T2 are synthesis plans, and F(T1) ⊆ F(T2) (i.e. all frontier nodes in T1 are
in T2), then σ̄′(T1; f, b, h) ≤ σ̄′(T2; f, b, h).

11This additional statement is necessary for tree-structured search graphs, wherein the same molecule may
occur in several different nodes.

22

Published as a conference paper at ICLR 2024

Proof. Equation 8 imposes a condition on all frontier nodes for a synthesis plan, so clearly for all
eT ,

σ′(T1; f, b, eT) ≤ σ′(T2; f, b, eT) .

Since this equality holds for all eT , it will also hold in expectation over eT , which is the definition
of σ̄′ (equation 9).

Now we prove the statements from the main text. First, we consider ψ̃(·) (equation 11).

Proposition C.4. Under assumption C.1, ψ̃(·;G′, f, b, h) satisfies equations 12–13.

Proof. Nodes in G′ can be partitioned into the following sets, for which the result is shown sepa-
rately.

1. Frontier molecules m ∈ F(G′): the synthesis plan Tm = {m} has σ̄′(Tm; f, b, h) =
max [b(m), h(m)] (from equation 8 and equation 7). All other synthesis plans T ′ in-
cluding m will include it as a leaf node, and by lemma C.3 will have σ̄′(T ′; f, b, h) ≤
σ̄′(Tm; f, b, h). Therefore Tm maximizes σ̄′ (although it might not be unique), justifying
the first case of equation 12.

2. Non-frontier moleculesm /∈ F(G′): first, ifm is a non-frontier node with no children, then
all synthesis plans including m will terminate in m, giving ψ(m) = b(m). Equation 12
matches this (because we use the convention max ∅ = −∞).

Otherwise, first consider the case where b(m) = 1. Clearly Tm = {m} maximizes equa-
tion 11, so ψ(m;G′, f, b, h) = b(m) = 1.

Otherwise, consider b(m) = 0. In this case, σ̄′(Tm; f, b, h) = 0, so all other synthesis plans
will be equal to or better than Tm. Therefore we look to m’s child reactions. Synthesis
plans containing one of m’s child reactions will necessarily contain m, making ψ(m) =
maxr∈ChG′ (m) ψ(r): exactly what is in equation 12.

3. Reaction nodes r: Because of assumption C.1 and the fact that eT (equation 7) is indepen-
dent for every node, the optimal synthesis plan including r will be formed by combining
the optimal synthesis plans for all reactions m ∈ ChG′(r). Due to independence, the
probability of them all being successful is simply the product of each synthesis plan being
successful, justifying equation 13.

Finally, we consider ρ̃ (equation 10).

Proposition C.5. Under assumption C.1, ρ̃(·;G′, f, b, h) satisfies equations 14–15.

Proof. First, note that from our definition of AND/OR graphs in section B.1 all nodes in G′ will be
included on at least one synthesis plan which produces m⋆.

We partition nodes in G′ into the following sets and provide a separate proof for each set.

1. The target molecule m⋆: first, any synthesis plan T including m⋆ as an intermediate
molecule (i.e. not the product of the synthesis plan) will have σ̄′(T ; f, b, h) bounded by
σ̄′(T ′; f, b, h) for some synthesis plan T ′ whose final product is m⋆ (by lemma C.3).
Therefore, and synthesis plan achieving ψ(m⋆;G′, f, b, h) will also maximize ρ̃. So,
ρ(m⋆;G′, f, b, h) = ψ(m⋆;G′, f, b, h).

2. A non-target molecule m: m will have at least one parent r. Any synthesis plan for m⋆

which includes r must necessarily include m (because synthesis plans will always contain
all reactants for every reaction). Therefore, the set of synthesis plans for m⋆ which also
contain m is given by

∪r∈PaG′ (m) {T ∈ P∗(G′) : r ∈ T} .
ρ(m) will simply be the maximum of these values.

23

Published as a conference paper at ICLR 2024

Together with the previous case, this justifies equation 14.

3. A reaction r. First, if ψ(r;G′, f, b, h) = 0 then clearly ρ(r;G′, f, b, h) = 0 as ψ maximizes
over a larger set of synthesis plans than ρ.

Otherwise, let m be the single parent of r. The synthesis plan T justifying ρ(m;G, f, b, h)
will be composed of a synthesis plan Tm form (i.e. “below”m) and a partial synthesis plan
T \ Tm which uses m as an intermediate molecule (or potentially the product molecule if
m = m⋆). Because of the independence of different branches resulting from equation 7 and
assumption C.1, σ̄′(T ; f, b, h) will be the product of σ̄′(Tm;G′, f, b, h) = ψ(m;G′, f, b, h)
and a term for T \ Tm. The optimal synthesis plan which includes r can therefore be
constructed by removing Tm (and dividing by its probability ψ(m;G′, f, b, h)) and adding
the optimal synthesis plan for m which includes r (with probability ψ(r;G′, f, b, h)).
Together, these cases justify equation 15.

C.1.4 COST-MINIMIZATION INTERPRETATION

The functions s(·), ψ(·), and ρ(·) have a cost minimization interpretation when transformed by
mapping f(·) 7→ − log f(·) (using the convention that log 0 = −∞). To see, this, we write the
transformed equations explicitly. To simplify notation, we write:

ḃ(m) = − log b(m) (21)

ḟ(r) = − log f(r) (22)

ḣ(m) = − log h(m) (23)
ṡ(·) = − log s(·) (24)

ψ̇(·) = − logψ(·) (25)
ρ̇(·) = − log ρ(·) . (26)

For s(·) (equations 4–5), we have

ṡ(m;G′, f, b) = min

[
ḃ(m), min

r∈ChG′ (m)
ṡ(r;G′, f, b)

]
, (27)

ṡ(r;G′, f, b) = ḟ(r) +
∑

m∈ChG′ (r)

ṡ(m;G′, f, b) . (28)

Since s(·) ∈ {0, 1}, this corresponds to a pseudo-cost of 0 if a molecule is synthesizable and a cost
of +∞ otherwise.

For ψ(·) (equations 12–13) and ρ(·) (equations 14–15) we have:

ψ̇(m;G′, f, b, h) =

min
[
ḃ(m), ḣ(m)

]
m ∈ F(G′)

min
[
ḃ(m),minr∈ChG′ (m) ψ̇(r;G′, f, b, h)

]
m /∈ F(G′)

, (29)

ψ̇(r;G′, f, b, h) = ḟ(r) +
∑

m∈ChG′ (r)

ψ̇(m;G′, f, b, h) . (30)

ρ̇(m;G′, f, b, h) =

{
ψ̇(m;G′, f, b, h) m is target molecule m⋆

minr∈PaG′ (m) ρ̇(r;G′, f, b, h) all other m
, (31)

ρ̇(r;G′, f, b, h) =

+∞ ψ̇(r;G′, f, b, h) = +∞
ρ̇(m′;G′, f, b, h)

−ψ̇(m′;G′, f, b, h)
+ψ̇(r;G′, f, b, h) ψ̇(r;G′, f, b, h) <∞,m′ ∈ PaG′(r)

. (32)

Since ψ(·) and ρ(·) have ranges [0, 1], ψ̇(·) and ρ̇(·) have ranges [0,+∞] (i.e. explicitly including
infinity).

24

Published as a conference paper at ICLR 2024

C.1.5 CLARIFICATION OF rs, ψ, AND ρ FOR CYCLIC GRAPHS

If G′ is an acyclic graph, the recursive definitions of s(·), ψ(·), and ρ(·) will always have a unique
solution obtained by direct recursion (from children to parents for s(·) and ψ(·), and from parents
to children for ρ(·)). However, for cyclic graphs, such recursion is not possible and therefore these
equations do not (necessarily) uniquely define the functions s(·), ψ(·), and ρ(·).
The minimum cost interpretation from section C.1.4 provides a resolution. Minimum cost solutions
in AND/OR graphs with cycles have been extensively studied (Hvalica, 1996; Jiménez & Torras,
2000) and do indeed exist. Hvalica (1996, Lemma 1) in particular suggests that the presence of
multiple solutions will happen only because of the presence of zero-cost cycles (which could be
caused by a cycle of feasible reactions). To produce a unique solution, we re-define all costs to 0 to
be a constant ϵ > 0 (for which there will be a unique solution for ṡ, ψ̇, and ρ̇), and take the limit as
ϵ→ 0 to produce a unique solution which includes 0 costs.

C.1.6 COMPUTING s, ψ, AND ρ

The best method of computation will depend on G′. If G′ is acyclic (for example, as will always
be the case for tree-structured search graphs) then direct recursion is clearly the best option. This
approach also has the advantage that the computation can stop early if the value of a node does not
change.

In graphs with cycles, any number of algorithms to find minimum costs in AND/OR graphs can be
applied to the minimum-cost formulations of s(·), ψ(·), and ρ(·) from section C.1.4 (Chakrabarti,
1994; Hvalica, 1996; Jiménez & Torras, 2000).

25

Published as a conference paper at ICLR 2024

m⋆

b : 0
s : 0
ψ : 0.9
ρ : 0.9

r1

ma mb

r2 r3

mc md me

b : 1
h : 0.5
s : 1
ψ : 1
ρ : 0.01

b : 0
h : 0.1
s : 0
ψ : 0.1
ρ : 0.01

b : 1
h : 0.5
s : 1
ψ : 1
ρ : 0.01

f : 1
s : 0
ψ : 0.1
ρ : 0.01

f : 1
s : 0
ψ : 0.1
ρ : 0.01

b : 0
s : 0
ψ : 0.1
ρ : 0.01

b : 0
s : 0
ψ : 0.1
ρ : 0.01

f : 1
s : 0
ψ : 0.01
ρ : 0.01

r4

mf

f : 0
s : 0
ψ : 0
ρ : 0

b : 0
h : 0.8
s : 0
ψ : 0.8
ρ : 0

r5

mg

mh

r6

mi

b : 0
h : 0.5
s : 0
ψ : 0.5
ρ : 0.45

f : 1
s : 0
ψ : 0.5
ρ : 0.45

b : 1
s : 1
ψ : 1
ρ : 0.9

f : 1
s : 0
ψ : 0.9
ρ : 0.9

b : 0
h : 0.9
s : 0
ψ : 0.9
ρ : 0.9

Figure C.1: A search graph G′ with values for s, ψ, and ρ worked out. A detailed explanation is
given in Appendix C.2.

C.2 EXAMPLE OF CALCULATING S, ψ AND ρ

Figure C.1 presents a search graph G′ with labels from one sample of f, b, and heuristic values h.
The graph contains three branches stemming from m⋆, starting with r1, r4, and r5 respectively. It
is designed to highlight several interesting corner cases, which will be emphasized below. We will
work through the calculations of s, ψ, and ρ for all nodes below. To simplify notation, we will omit
the dependence of these quantities on G′, f, b, h, as this is implicit.

C.2.1 CALCULATION OF s

Note that only molecules mc, me, and mh are buyable (b(·) = 1); the rest are non-buyable. All
reactions are feasible (f(·) = 1), except for r4. This means that s(·) = 1 only for mc, me, and
mh. Their parent reactions all have one other reactant with s(·) = 0; therefore all other nodes in the
graph have s(·) = 0.

C.2.2 CALCULATION OF ψ

Since ψ depends only on a node’s children, we will show the calculation bottom-up for each branch.

r1 branch:

• Leaf nodes: mc and me are buyable molecules whose heuristic values are less than 1.
Therefore, h(mc) = h(md) = 0.5 is dominated by b(·) = 1, in the max of equation 12,
yielding ψ(·) = 1. For md which is not buyable, ψ(md) = h(md) = 0.1.

• r2, r3: Both these reactions are feasible (f(·) = 1), so ψ(·) will just be the product of ψ
values of its children, which in this case yields ψ(r2) = ψ(r3) = 0.1.

• ma,mb: Both molecules inherit ψ values from their children, so ψ(ma) = ψ(mb) = 0.1.

• r1: f(r1) = 1, so by equation 13 ψ(r1) = ψ(ma)ψ(mb) = 0.01. Note however that this
is an instance of double counting, because md occurs twice in this synthesis plan. ψ(r1)
calculates a success probability for r1 as if md needs to independently succeed twice,
yielding a value of 0.01 instead of 0.1. Synthesis plans like this are unusual however, and

26

Published as a conference paper at ICLR 2024

as explained previously we simply accept that to calculate ψ efficiently it may occasionally
double-count certain nodes.

r4 branch:

• mf : Here, ψ(mf) = h(mf) = 0.8 (since b(mf) = 0).
• r4: ψ(r4) = f(r4)ψ(mf) = 0(0.8) = 0. Essentially, because this reaction is infeasible, ψ

will be 0, since no amount of expansion below r4 will make it feasible.

r5 branch:

• mi: Here, ψ(mi) = h(mi) = 0.5.
• r6: ψ(r6) = f(r6)ψ(mi) = (1)(0.5) = 0.5.
• mh: This is another edge case: a buyable molecule with child nodes. Here, ψ(mh) =
max [b(mh), ψ(r6)] = 1. Essentially, it inherits its ψ value from b, not from ψ values of its
children.

• mg: Here, ψ(mg) = h(mg) = 0.9.
• r5: ψ(r5) = f(r5)ψ(mg)ψ(mh) = (1)(0.9)(1) = 0.9.

m⋆:

ψ(m⋆) = max [b(m⋆), ψ(r1), ψ(r4), ψ(r5)]

= max [0, 0.01, 0, 0.9]

= 0.9

The optimal synthesis plan achieving this success probability is

{m⋆, r5,mg (expanded),mh (bought)} .

C.2.3 CALCULATION OF ρ

Since ρ depends only on a node’s parents, we will show the calculation top-down.

m⋆: By definition in equation 14, ρ(m⋆) = ψ(m⋆) = 0.9.

r5 branch: Note that the optimal synthesis plan which justifies ψ(m⋆) comes from this branch, so
we should expect many nodes to have ρ(·) = ψ(m⋆).

• r5: From equation 15, ρ(r5) = ρ(m⋆)
ψ(r5)
ψ(m⋆)

= 0.9 0.9
0.9 = 0.9. As expected, this equals

ψ(m⋆).
• mg,mh: From equation 14 ρ(mg) = ρ(mh) = ρ(r5) = 0.9.
• r6: This is an interesting edge case because r6’s parent,mh, is buyable. From the definition

of ρ, ρ(r6) should be a quantity which only considers synthesis plans which include r6, and
therefore must not buy mh. We can work out:

ρ(r6) = ρ(mh)
ψ(r6)

ψ(mh)

= 0.9
0.5

1
= 0.45

Intuitively this lower value makes sense: using r6, which is only predicted to succeed with
50% probability, reduces the success probability of the best synthesis route by half.

• mi: ρ(mi) = ρ(r6) = 0.5

r4 branch: This branch uses an infeasible reaction, so any synthesis plan forced to contain nodes in
this branch should have a success probability of 0. Indeed we see this below:

• r4: ρ(r4) = ρ(m⋆)
ψ(r4)
ψ(m⋆)

= 0.9 0
0.9 = 0.

27

Published as a conference paper at ICLR 2024

• mf : ρ(mf) = ρ(r4) = 0.

r1 branch: This branch contains just one synthesis plan with predicted success of 0.01 (due to
the double counting). Calculating ρ should therefore propagate this value down to the leaf nodes.
Indeed, this is what we see below:

• r1: ρ(r1) = ρ(m⋆)
ψ(r1)
ψ(m⋆)

= 0.9 0.01
0.9 = 0.01.

• ma,mb: ρ(ma) = ρ(mb) = ρ(r1) = 0.01.

• r2, r3: ρ(r2) = ρ(ma)
ψ(r2)
ψ(ma)

= 0.01 0.1
0.1 = 0.01 (and same for r3).

• mc,md,me: Note that ρ(mc) = ρ(r2) = 0.01 and ρ(me) = ρ(r3) = 0.01. Node md has
multiple parents, but all with the same ρ value, so ρ(md) = min [0.01, 0.01] = 0.01.

C.3 JUSTIFICATION OF NODE SELECTION

Selecting nodes for expansion based on ρ values for samples f, b where s(m⋆;G′f, b) = 0 will
always have the interpretation of improving SSP. Taking the expected value in this scenario is a
natural choice. However, it is not the only choice. The formulas

αMode(m;G′, ξf , ξb, h) = Modef∼ξf ,b∼ξb
[
1s(m⋆;G′,f,b)=0 [ρ(m;G′, f, b, h)]

]
(33)

αq(m;G′, ξf , ξb, h) = Quantileqf∼ξf ,b∼ξb
[
1s(m⋆;G′,f,b)=0 [ρ(m;G′, f, b, h)]

]
(34)

are also sensible choices. We choose the expected value mainly out of simplicity.

C.4 REJECTED ALTERNATIVE ALGORITHMS

The first iteration of retro-fallback (proto retro-fallback) used a search tree instead of a search graph,
and assumed that the feasibility/buyability of all reactions/molecules was independent. In this spe-
cial case, the values of s, ψ and ρ can all be computed analytically using dynamic programming.
However, a major weakness of this algorithm is that forcing G′ to be a tree required duplicating
some molecules and reactions in the graph (e.g. if both the reactions A+B ⇒ C and A+D ⇒ C
are possible then the molecule A and any reactions under it would be duplicated). The assumption
of independence meant that the feasibility of the same reactions would be sampled multiple times
independently, leading to “backup plans” that actually used the same reaction. In practice this was
often not an issue, but it did mean that the internal estimates of s used by proto retro-fallback did not
have a clear relationship to true SSP. Hence we decided to proceed using samples, which provided
a natural avenue to remove the independence assumption. More details about proto retro-fallback
can be given upon request to the authors. An implementation of this version of retro-fallback is also
available in our public code.

When designing the version of retro-fallback presented in this paper, we first considered sampling
outcomes for frontier nodes using the heuristic function, and updating using the standard equations
for s. This would effectively be a random heuristic, and although other algorithms use random
heuristics (e.g. rollouts in MCTS) we decided that it would be an extra source of variance, and upon
realizing that the expected value of such a heuristic can be computed analytically if the outcomes are
assumed to be independent we proceeded to develop the equation for ψ. However, if in the future
other researchers wish to remove the independence assumption in the heuristic then probably its
outcomes would also need to be sampled.

C.5 PRACTICAL IMPLEMENTATION DETAILS

Here we give further details of how retro-fallback can be implemented. This section is not a de-
scription of our specific software implementation used in this paper: that is in Appendix G.1.1.
Instead, we try to give general guidance that would be applicable for alternative implementations
and alleviate potential sources of confusing or ambiguities.

Graph initialization In Algorithm 1 we start by initializing G′ to contain just the target molecule.
Strictly speaking this is not required: any starting graph can be used (as long as it satisfies the

28

Published as a conference paper at ICLR 2024

assumptions about AND/OR graphs in Appendix B.1, e.g. not having reactions as frontier nodes
or edges between molecules and reactions that should not be connected). All that is needed is to
properly initialize the variables (s, ψ, ρ) before entering the main loop.

Samples from stochastic processes A full sampled function from ξf or ξb contains outcomes for
every possible molecule or reaction. In reality this could not be calculated or stored. Therefore,
in practice one would only sample these functions for nodes in G′, and sample from the posterior
stochastic processes when new nodes are added. For processes where this is inexpensive (e.g. pro-
cesses with independent outcomes) this is fast and the implementation is not important. However,
when it is slow it is likely very important to use caching. For example, drawing samples from a GP
posterior scales with O(N3): if ξf or ξb use a GP, this O(N3) operation at every step will result in
an overall algorithm speed of O(N4)! To avoid this, we cached a Cholesky decomposition of the
GP covariance matrix at every step and used incremental updating of the Cholesky decomposition to
bring the overall complexity to at most O(N3). For other stochastic processes different techniques
may be applicable, but in general for non-independent stochastic processes we anticipate some form
of caching may be necessary.

Vectorized computation Vectorized computation could also be used instead of explicit for loops
over the sampled functions in 1, . . . , k, wherein values for s, ψ, and ρ would be simultaneously
updated for all samples.

Priority Queues In each iteration of algorithm 1 a frontier node maximizing α is found. In prac-
tice, this could be accelerated using a priority queue to avoid explicitly considering every frontier
node in every iteration (which has a cost linear in the number of frontier nodes).

Backward reaction model Algorithm 1 requires a backward reaction model B. This is also not
necessary: all that is needed is some way to decide what reactions to add to the graph. For example,
if it was possible to obtain a list of reactions from ξf whose marginal feasibility is non-zero, this
could be used as a replacement for B.

Tie-breaking Algorithm 1 suggests when choosing nodes, ties should be broken arbitrarily. How-
ever, some frontier nodes may be buyable, and will only have a high ρ value because they belong
to the synthesis plans with other expandable nodes. Therefore, in general it would be beneficial to
break ties in favour of non-buyable nodes, since expanding a buyable node will never produce a new
synthesis plan.

Termination conditions Algorithm 1 uses several termination conditions, some of which may not
be necessary or could be modified:

1. No nodes are left to expand. We believe this one is necessary.
2. L iterations of expansion are done. This is not necessary: the algorithm alternatively ter-

minate after a fixed wall-clock time, or simply never terminate until it is killed by the user.
3. All si(m⋆) are 1: this is a sensible point to terminate because it means that α(m) = 0 for

all frontier nodes m. However, the algorithm could easily keep running past this point; it
would just expand nodes arbitrarily because all nodes would have an equivalent value of
α(m). This condition could also be loosened: for example the algorithm could terminate
when ŝ(m⋆) > 1−ϵ for some small ϵ > 0. This is sensible if one believes that improvement
beyond a certain point is redundant.

29

Published as a conference paper at ICLR 2024

D PROOFS AND THEORETICAL RESULTS

This appendix contains proofs of theoretical results from the paper.

D.1 PROOF OF THEOREM 3.1

Theorem 3.1 is a corollary of the following theorem, which we prove below.

Theorem D.1. Unless P = NP , there does not exist an algorithm to determine whether
SSP(Pm⋆(G′); ξf , ξb) > 0 for arbitrary ξf , ξb whose time complexity grows polynomially with the
number of nodes in G′.

Note that Theorem D.1 is similar to but distinct from Theorem 3.1. The difference (highlighted)
is that Theorem 3.1 is about the difficulty of computing SSP, while Theorem D.1 is only about the
difficulty of determining whether or not SSP is 0. We now state a proof of Theorem D.1:

Proof. We will show a reduction from the Boolean 3-Satisfiability Problem (3-SAT) to the problem
of determining whether SSP is non-zero. As 3-SAT is known to be NP-hard (Karp, 1972), this will
imply the latter is also NP-hard, completing the proof.

To construct the reduction, assume an instance I of 3-SAT with n variables x1, . . . , xn, and m
clauses c1, . . . , cm, each cj consisting of three literals (where a literal is either a variable or its
negation). We will construct an AND-OR graph G(I) with size O(n+m), alongside with distribu-
tions ξf (I) and ξb(I), such that the SSP in the constructed instance is non-zero if and only if I is
satisfiable.

In our construction we first set ξf ≡ 1, i.e. assume all reactions described below are always feasible.

We then construct a set P of 2n potentially buyable molecules, corresponding to variables xi as well
as their negations ¬xi; to simplify notation, we will refer to these molecules as xi or ¬xi. We then
set ξb(I) to a uniform distribution over all subsets S ⊆ P such that |S ∩ {xi,¬xi}| = 1 for all i;
in other words, either xi or ¬xi can be bought, but never both at the same time. Note that with this
construction it is easy to support all necessary operations on ξb, such as (conditional) sampling or
computing marginals.

It remains to translate I to G(I) in a way that encodes the clauses cj . We start by creating a root OR-
node r, with a single AND-node child r′. Under r′ we build m OR-node children, corresponding to
clauses cj ; again, we refer to these nodes as cj for simplicity. Finally, for each cj , we attach 3 chil-
dren, corresponding to the literals in cj . Intuitively these 3 children would map to three molecules
from the potentially buyable set P , but formally the children of cj should be AND-nodes (while P
contains molecules, i.e. OR-nodes); however, this can be resolved by adding dummy single-reactant
reaction nodes.

To see that the reduction is valid, first note that r is synthesizable only if all cj are, which reflects
the fact that I is a binary AND of clauses cj . Moreover, each cj is synthesizable if at least one of
its 3 children is, which translates to at least one of the literals being satisfied. Our construction of
ξb allows any setting of variables xi as long as it’s consistent with negations ¬xi. Taken together,
this means the SSP for G(I) is non-zero if and only if there exists an assignment of variables xi that
satisfies I , and thus the reduction is sound.

Corollary D.2. If a polynomial time algorithm did exist to compute the exact value
of SSP(Pm⋆

(G′);G′, ξf , ξb), this algorithm would clearly also determine whether
SSP(Pm⋆

(G′);G′, ξf , ξb) > 0 in polynomial time, violating Theorem D.1. This proves Theo-
rem 3.1.

D.2 COMPUTING s(·), ψ(·) AND ρ(·) POLYNOMIAL TIME

Here, we state provide proofs that these quantities can be computed in polynomial time. These
proofs require the following assumption:

Assumption D.3 (Bound on children size). Assume |ChG(m)| ≤ K, |ChG(m)| ≤ L, |PaG(m)| ≤
J for all molecules m and reactions r, where J,K,L ∈ N are fixed constants.

30

Published as a conference paper at ICLR 2024

This assumption essentially ensures that even as the retrosynthesis graph grows, the number of
neighbours for each node does not grow.

Now we state our main results.
Lemma D.4 (s and ψ in polynomial time). There exists an algorithm to calculate s(n;G′, f, b) and
ψ(n;G′, f, b, h) for every node n ∈ G′ whose time complexity is polynomial in the number of nodes
in G′.

Proof. Section C.1.4 showed how − log s(·) and − logψ(·) correspond exactly cost equations for
minimum-cost synthesis plans, as studied for the AO* algorithm. (Chakrabarti, 1994) provides two
algorithms, Iterative revise and REV* whose runtime is both worst-case polynomial in the
number of nodes (assuming a number of edges which does not grow more than linearly with the
number of nodes, which assumption D.3 guarantees).

The following lemma shows that, with a bit of algebraic manipulation, the same strategy can be
applied to ρ.
Lemma D.5. There exists an algorithm to calculate ρ(n;G′, f, b) for every node n ∈ G′ whose time
complexity is polynomial in the number of nodes in G′.

Proof. To do this, first compute ψ(·) for every node (which lemma D.4 states can be done in poly-
nomial time). Next, define the function η(·) = log ψ(m⋆;G′,f,b,h)

ρ(·;G′,f,b,h) . This is essentially a constant
transformation of ρ(·) at each point (since ψ(m⋆;G′, f, b, h) is just a constant). Therefore η has the
analytical solution:

η(m;G′, f, b, h) =
{
0 m = m⋆

minr∈PaG′ (m) η(r;G′, f, b, h) all other m
(35)

η(r;G′, f, b, h) =

{
∞ ψ(r;G′, f, b, h) = 0

η(m′;G′, f, b, h) + log ψ(m′;G′,f,b,h)
ψ(r;G′,f,b,h) ψ(r;G′, f, b, h) <∞,m′ ∈ PaG′(r) .

(36)

Now, define the graph G̃′ by flipping the direction of all edges in G′ (so all parents become children,
and vice versa). η can be re-written as:

η(m; G̃′, f, b, h) =

{
0 m = m⋆

minr∈ChG̃′ (m) η(r; G̃′, f, b, h) all other m
(37)

η(r; G̃′, f, b, h) =

{
∞ ψ(r; G̃′, f, b, h) = 0∑
m′∈ChG̃′ (r)

η(m′; G̃′, f, b, h) + log ψ(m′;G′,f,b,h)
ψ(r;G′,f,b,h) ψ(r;G′, f, b, h) <∞ ,

(38)

where the sum in equation 38 was introduced because reactions in G′ have only one parent. These
equations correspond precisely to minimum cost equations from AO*, allowing algorithms from
Chakrabarti (1994) to be applied. ρ can then be straightforwardly recovered from η.

However, since the sum in equation 38 has only one element, this is in fact equivalent to path-finding
in an ordinary graph, so Dijkstra’s algorithm could be used to solve for η in log-linear time (once ψ
is solved).

31

Published as a conference paper at ICLR 2024

E DISCUSSION OF PREVIOUS SEARCH ALGORITHMS AND WHY THEY MIGHT
STRUGGLE TO OPTIMIZE SSP

This section aims to provide a more detailed discussion of previously-proposed algorithms. It is
structured into 3 parts. In E.1, we qualify the content of this section by explaining how the per-
formance of algorithms will depend on a lot of factors, and therefore we cannot really say that any
algorithm will be incapable of maximizing SSP. In E.2 we review previous algorithms and state
how they might be configured to maximize SSP. For most algorithms, the closest configuration to
maximizing SSP is to reward individual synthesis plans with high success probability. Section E.3
provides an argument of why this may not always maximize SSP.

E.1 CAN WE SAY ANYTHING DEFINITIVE ABOUT THE ABILITY OF DIFFERENT ALGORITHMS
TO MAXIMIZE SSP?

The behaviour of a search algorithm can depend on many configurable parameters (including
function-valued parameters):

1. Reward functions (or similar): algorithms will behave differently based on the kinds of
synthesis plans which are rewarded.

2. Heuristics: most heuristic-guided search algorithms will, to some degree, follow the guid-
ance of the search heuristic.

3. Other hyperparameters (e.g. the exploration constant in MCTS).

How can these parameters be adjusted? One option is to set these parameters independently of ξf or
ξb (i.e. completely ignoring them). Even under these conditions, an algorithm could possibly return
a set of synthesis plans with high SSP. This could happen due to random chance (e.g. lucky choice of
nodes to expand), or due to some kind of “alignment” between the algorithm’s internals, ξf , and ξb
(for example, reactions with high feasibility having low cost). However, such outcomes are clearly
not attainable systematically without accessing ξf and ξb, since random chance is not repeatable,
and “alignment” for one feasibility/buyability model necessarily means misalignment for another
one. Therefore, we argue it only makes sense to compare algorithms’ ability to maximize SSP when
they are configured to use information from ξf and ξb to maximize SSP.

Even under these conditions however, given a particular m⋆, it is likely possible to design a custom
heuristic and setting of the algorithm’s parameters which will lead an algorithm to maximize SSP
very effectively for that particular m⋆. This makes it difficult [perhaps impossible] to prove state-
ments like “algorithm A is fundamentally incapable of effectively maximizing SSP.” At the same
time, given any configured version of an algorithm (including a search heuristic, reward, etc.), it is
likely possible to find a particular m⋆ and feasibility model ξf , ξb where the algorithm fails catas-
trophically (a little bit like the no free lunch theorem in machine learning). This makes it difficult
[perhaps impossible] to prove statements like “algorithm A is generally better than algorithm B at
maximizing SSP.”

Therefore, when discussing previous algorithms in this section, we merely adopt the goal of showing
how the algorithm cannot be configured to directly and straightforwardly maximize SSP in the same
manner as retro-fallback.

E.2 EXISTING ALGORITHMS AND THEIR CONFIGURABILITY

E.2.1 BREADTH-FIRST SEARCH

Description of algorithm A very basic search algorithm: expand frontier nodes in the order they
were added.

Configurable inputs/parameters None.

How to configure to maximize SSP? N/A

Potential modifications to the algorithm that could help? We see no obvious changes.

32

Published as a conference paper at ICLR 2024

E.2.2 MONTE-CARLO TREE SEARCH (MCTS)

Description of algorithm Used in (Segler et al., 2018; Coley et al., 2019b; Genheden et al., 2020).
MCTS creates an MDP where “states” are set of molecules and “actions” are reactions which react
one molecule in a state and replace it with other molecules. This corresponds to the “OR” tree
introduced in section B.3. At each step, it descends the tree choosing nodes which maximize

W (st, a)

N(st, a)
+ cP (st, a)

√
N(st−1, at−1)

1 +N(st, a)
, (39)

where W (st, a) is the total reward accumulated while taking action a to reach state st, N(st, a) is
the number of times when the algorithm has performed action a to reach state st and P (st, a) is
some sort of prior probability of performing action a to reach st, and c is a constant. The algorithm
is designed to eventually converge to the action sequence which maximizes reward.

Configurable inputs/parameters The reward function (mapping states to scalar rewards) R, the
search heuristic V (an estimate of the value function, e.g. based on rollouts), the policy / prior P ,
and the UCB exploration constant c.

How to configure to maximize SSP? Rewards and value functions in MCTS depend on individual
synthesis plans, so a reward of σ(T ; ξb; ξf) would reward individually successful synthesis plans. In
practice, this reward could be estimated with samples.

Potential modifications to the algorithm that could help? One option is to make the reward and
policy change over time. For example, one could have the reward be the additional SSP gained from
discovering a new plan. However, it is possible that MCTS will not behave well in this scenario:
the principle of MCTS is to narrow down on the best sequence of actions by slowly tightening
a confidence interval around their expected return. However, if the rewards change over time then
these interval estimates will likely become inaccurate. Although the intervals could be widened (e.g.
by increasing c) this will result in MCTS behaving more randomly and not searching as efficiently.
Also, we note that there are many possible design choices here, and further probing of alternative
options might yield improved results.

E.2.3 DEPTH-FIRST PROOF NUMBER SEARCH (WITH HEURISTIC EDGE INITIALIZATION)

Description of algorithm Proposed in Heifets & Jurisica (2012) and augmented by Kishimoto
et al. (2019). Basic proof number search assigns “proof numbers” and “disproof numbers” which
represent the number of nodes needed to prove or disprove whether there exist a synthesis plan to
synthesize a given molecule and selects nodes using this information. The heuristic edge initializa-
tion Kishimoto et al. (2019) uses a heuristic to initialize the proof and disproof numbers for each
reaction.

Configurable inputs/parameters The edge initialization heuristic h and threshold functions to
control depth-first vs breadth-first search behaviour.

How to configure to maximize SSP? This algorithm inherently takes a very binary view of ret-
rosynthesis (seeing nodes as either proven or disproven), and therefore is not very amenable to
maximizing SSP. At best one could change the heuristic values to reflect feasibilities.

Potential modifications to the algorithm that could help? Aside from changing the definitions
of proof/disproof numbers, we do not see any options here.

E.2.4 RETRO*

Description of algorithm An algorithm for minimum cost search in AND/OR trees (Chen et al.,
2020), essentially identical to the established AO* algorithm (Chang & Slagle, 1971; Martelli &
Montanari, 1978; Nilsson, 1982; Mahanti & Bagchi, 1985). At each step, the algorithm selects a
potential synthesis plan T with minimal estimated cost, where the cost of a synthesis plan is defined

33

Published as a conference paper at ICLR 2024

as
ctotal(T) =

∑
r∈T

cR(r) +
∑
m∈T

cM (m)

(i.e. a sum of individual costs for each reaction and molecule), then expands one frontier node from
T . A heuristic is used to set the costs cM for frontier molecules.

Configurable inputs/parameters The parameters of retro* are the costs of each molecule and
reaction, and the heuristic functions.

How to configure to maximize SSP? SSP does not [in general] decompose into a straightforward
sum or product of values for every node. Most likely, the closest proxy to SSP would be to set a cost
for each molecule and reaction with ξf and ξb. One option is to set the cost of each reaction/molecule
to the negative log of its marginal feasibility/buyability:

cM (m) = − logEb∼ξb [b(m)]

cR(r) = − logEf∼ξf [f(r)] .

This option does have a somewhat principled interpretation: if all feasibility/buyability outcomes
are independent then the cost of a plan is just the negative log of its joint SSP. Of course, this
relationship does not hold in the general non-independent case. However, we do not see a way to
adjust this formula to account for non-independence in general, so we suggest using this setting in
all cases.

Potential modifications to the algorithm that could help? One could potentially change the
reaction and molecule costs with time to account for changes elsewhere in the search graph. For
example, reactions/molecules which are already part of a feasible plan could be re-assigned higher
costs to make the algorithm search for non-overlapping plans. However, this strategy seems unlikely
to work in general: for some search graphs it is possible that the best backup plans will share some
reactions with established synthesis plans. We were unable to come up with a strategy that did not
have obvious and foreseeable failure modes, so we decided not to pursue this direction.

E.2.5 RETROGRAPH

Description of algorithm Proposed in Xie et al. (2022), this algorithm functions like a modified
version of retro* but on a minimal AND/OR graph instead of a tree. A graph neural network is used
to prioritize nodes.

Configurable inputs/parameters Like retro*, this method uses additive costs across reactions
and a heuristic functions, but also uses a graph neural network to select promising nodes.

How to configure to maximize SSP? Similar to retro*, we believe the closest proxy is to set costs
equal to the negative log marginal feasibility/buyability and minimize this.

Potential modifications to the algorithm that could help? We could not think of anything.

E.3 FINDING INDIVIDUALLY SUCCESSFUL SYNTHESIS PLANS MAY NOT BE ENOUGH TO
MAXIMIZE SSP

Since the best configuration for most existing algorithms to maximize SSP appears to be to reward
finding individual synthesis plans with high success probability, here we examine to what degree
this objective overlaps with optimizing SSP. Clearly the objectives are somewhat related: SSP will
always be at least as high as the success probability of any individual synthesis plan considered.
However, it is not difficult to imagine cases where these objectives diverge.

Figure E.1 illustrates such a case, wherein a synthesis plan with reactions r1, r2 has been found and
the algorithm must choose between expanding m3 or m4. When considering whether to expand
m3 however, it must be noted that any new synthesis route proceeding via r3 will also use r1, and
therefore will only increase SSP for samples f, b where f(r1) = 1 and f(r3) = 1 and f(r2) = 0 (or
b(m2) = 0). For example, if Pf [f(r2) = 0] is very small, or the feasibility of r2 and r3 are highly

34

Published as a conference paper at ICLR 2024

m⋆

r1 m1 r2 m2

r3 m3r4 m4

Figure E.1: AND/OR graph illustrating how maximizing SSP can be different from finding indi-
vidually successful synthesis plans (cf. E.3). Green nodes are part of an existing synthesis plan with
non-zero success probability, red nodes are not.

correlated, then it is very unlikely that expanding r3 will increase SSP, even if the {r1, r3} synthesis
plan may have an individually high success probability. In these cases expanding m4 would be a
better choice. In other cases, expanding m3 would be the better choice.

This exactly illustrates that to maximize SSP beyond finding an individually successful synthesis
plan, an algorithm would clearly need to account for the statistical dependencies between existing
and prospective synthesis plans in its decision-making, which simply is not possible by reasoning
about individual synthesis plans in isolation. This provides compelling motivation to develop algo-
rithms which can reason directly about sets of synthesis plans.

35

Published as a conference paper at ICLR 2024

F EXTENDED RELATED WORK (EXCLUDING PREVIOUS SEARCH
ALGORITHMS)

Here we cite and discuss papers which are relevant to retrosynthesis, but do not propose multi-step
search algorithms (which are discussed in Appendix E).

F.1 SEARCH HEURISTICS FOR RETROSYNTHESIS

Many papers propose search heuristics for retrosynthesis algorithms, including rollouts (Segler et al.,
2018), parametric models (Chen et al., 2020), and a variety of heuristics informed by chemical
knowledge (Schwaller et al., 2020; Ertl & Schuffenhauer, 2009; Thakkar et al., 2021; Li & Chen,
2022). Many papers also propose to learn heuristics using techniques from machine or reinforcement
learning, where a heuristic is learned based on previous searches or data (Coley et al., 2018; Liu
et al., 2022; Kim et al., 2021; Yu et al., 2022; Liu et al., 2023a). A potential point of confusion is that
some of these works describe their contribution as a “retrosynthesis algorithm” or “retrosynthetic
planning algorithm.” Given that the end product of these papers is a value function (or cost estimate)
which is plugged into a previously proposed algorithm (typically MCTS or retro*), we think these
papers should be more accurately viewed as proposing heuristics. The heuristic is orthogonal to the
underlying search algorithm, so we view these works as complementary rather than competitive. We
hope in the future to investigate learning heuristics for retro-fallback using similar principles.

F.2 GENERATIVE MODELS

Several works propose parametric generative models of synthesis plans (Bradshaw et al., 2019;
2020; Gottipati et al., 2020; Gao et al., 2021). Although this resembles the goal of explicit search
algorithms, such generative models are fundamentally limited by their parametrization: they have
no guarantee to find a synthesis plan if it exists, and are often observed to fail to produce a valid
synthesis plan in practice (Gao et al., 2021). We think such models are best viewed as trying to
amortize the output of an explicit planning algorithms, making them more similar in spirit to search
heuristics (F.1).

F.3 SINGLE-STEP RETROSYNTHESIS

Many models have been proposed to predict possible chemical reactions, including template clas-
sifiers (Segler & Waller, 2017; Seidl et al., 2021), graph editing methods (Dai et al., 2019; Sacha
et al., 2021; Chen & Jung, 2021), and transformers (Irwin et al., 2022; Zhong et al., 2022; Liu et al.,
2023b). Such models are a useful component of a retrosynthesis algorithm, but do not themselves
perform multi-step retrosynthesis.

F.4 FUSIONRETRO

One work which does not fit nicely into any of the previous subsections is FusionRetro (Liu et al.,
2023b). On one level, the paper describes a reaction prediction model based on a transformer, which
is essentially a single-step reaction prediction model (F.3). However, unlike other models which
just condition on a single input molecule, in FusionRetro the predictions are conditioned on all
predecessor molecules in a multi-step search graph. The paper describes an inference procedure
to make predictions from the model autoregressively, which resembles both a generative model for
synthesis plans (F.2) or a pruning heuristic for breadth-first search (F.1). A significant portion of the
paper also describes benchmarking and evaluation of plan quality.

We think that FusionRetro and retro-fallback can both be viewed as responses to unrealistically
lenient evaluation metrics used in prior works on retrosynthesis (chiefly reporting success if a “so-
lution” is found without any regard to whether the solution is realistic). Liu et al. (2023b)’s general
response is to evaluate the quality of entire plans rather than individual steps, and perform this eval-
uation using entire synthesis plans from the literature. The advantage of this approach is that it
is close to ground-truth data, but has the disadvantage that high-quality ground truth data is fairly
scarce, especially for long plans involving rare reactions. In contrast, our response is to model un-
certainty about reactions and use this uncertainty in evaluation (to define SSP). The advantage of our

36

Published as a conference paper at ICLR 2024

approach is that it does not [necessarily] require any data, while the disadvantage is that it requires
a good model of reaction uncertainty, which we currently do not have (and creating such a model is
likely to be difficult).

Critically, the approaches described in these papers are not mutually exclusive: a backward reac-
tion model which depends on the entire search graph G′ (such as FusionRetro) could be used in
retro-fallback, while the quality of synthesis plans proposed by a method like FusionRetro could be
evaluated using SSP. We leave combining and building upon these works in more realistic retrosyn-
thesis programs to future work.

F.5 PLANNING IN STOCHASTIC GRAPHS

Prior works have also considered planning in stochastic graphs, albeit in other contexts. For exam-
ple, the “Canadian Traveller Problem” and its variants (Papadimitriou & Yannakakis, 1991) study
search on a graph where edges can be randomly deleted.12 However, this is an online problem,
meaning that the planning algorithm learns about edge deletions during the planning process. In
contrast, our algorithm assumes offline planning because chemists desire complete synthesis plans
before performing any lab experiments. Moreover, works in this area seem to assume explicit OR
graphs with independent probabilities, while our problem uses implicit AND/OR graphs with non-
independent probabilities.

12The original problem statement was to find a path between two cities in Canada, where roads may be
randomly blocked by snow and force the driver to turn back and find an alternative path (in reality however,
Canadians simply drive through the snow).

37

Published as a conference paper at ICLR 2024

G EXTENDED EXPERIMENT SECTION

G.1 DETAILS OF EXPERIMENTAL SETUP

G.1.1 SOFTWARE IMPLEMENTATION

Our code is available at https://github.com/AustinT/retro-fallback-iclr24.
We built our code around the open-source library SYNTHESEUS13 (Maziarz et al., 2023) and used its
implementations of retro* and MCTS in our experiments. The exact template classifier from Chen
et al. (2020) was used by copying their code and using their model weights. Our code benefitted
from the following libraries:

• pytorch (Paszke et al., 2019), rdkit14 and rdchiral (Coley et al., 2019a). Used in
the template classifier.

• networkx (Hagberg et al., 2008). Used to store search graphs and for analysis.

• numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), and scikit-learn (Pe-
dregosa et al., 2011). Used for array programming and linear algebra (e.g. in the feasibility
models).

G.1.2 FEASIBILITY MODELS

As stated in section 6, we examined four feasibility models for this work, which assign different
marginal feasibility values and different correlations between feasibility outcomes. The starting
point for our feasibility models was the opinion of a trained organic chemist that around 25% of the
reactions outputted by the pre-trained template classification model from Chen et al. (2020) were
“obviously wrong”. From this, we proposed the following two marginal values for feasibility:

1. (C) A constant value of 1/2 for all reactions. This is an attempt to account for the 25% of
reactions which were “obviously wrong”, plus an additional unknown fraction of reactions
which seemed plausible but may not work in practice. Ultimately anything in the interval
[0.2, 0.6] seemed sensible to use, and we chose 1/2 as a nice number.

2. (R) Based on previous work with template classifiers suggesting that the quality of the
proposed reaction decreases with the softmax value (Segler & Waller, 2017; Segler et al.,
2018), we decided to assign higher feasibility values to reactions with high softmax values.
To avoid overly high or low feasibility values, we decided to assign values based on the rank
of the outputted reaction, designed the following function which outputs a high feasibility
(≈75%) for the top reaction and decreases to (≈10%) for lower-ranked reactions:

p(rank) =
0.75

rank/10
. (40)

Note that “rank” in the above equation starts from 1.

We then added correlations on top of these marginal feasibility values. The independent model is
simple: reaction outcomes are sampled independently using the marginal feasibility values described
above. To introduce some correlations without changing the marginal probabilities, we created the
following probabilistic model which assigns feasibility outcomes by applying a threshold to the
value of a latent Gaussian process (Williams & Rasmussen, 2006):

outcome(z) = 1z>0 (41)
z(r) ∼ GP (µ(·),K(·, ·)) (42)

µ(r) = Φ−1 (P[f(r) = 1]) (43)
K(r, r) = 1 ∀r (44)

Here, Φ represents the CDF of the standard normal distribution. Because of equation 44, the
marginal distribution of each reaction’s z value is N (Φ−1(p(r)), 1) which will be positive with

13https://github.com/microsoft/syntheseus/
14Specifically version 2022.09.4 (Landrum et al., 2023).

38

https://github.com/AustinT/retro-fallback-iclr24

Published as a conference paper at ICLR 2024

Figure G.1: Sample pairs of reactions where Ktotal > 0.8. Top: both reactions join a COCl group
to an NH group in a ring to form molecules which differ only by the location of the Cl atom on the
right side ring (far away from the reaction site). Middle: two reactions transforming a tert-butyl
ester into a ketone with a fluorine-containing ring (difference between reactions is the location of
the Cl atom on the ring far away from the reaction site). Bottom: two reactions removing a fluorine
atom from an aromatic ring on similar molecules (difference is between the Cl and OH groups).
Summary: these pairs of reactions are all very similar.

probability P[f(r) = 1] (i.e. it preserves arbitrary marginal distributions). If K is the identity kernel
(i.e. K(r1, r2) = 1r1=r2) then this model implies all outcomes are independent. However, non-zero
off-diagonal values of K will induce correlations (positive or negative).

We aimed to design a model which assigns correlations very conservatively: only reactions involving
similar molecules and which induce similar changes in the reactant molecules will be given a high
positive correlation; all other correlations will be near zero. We therefore chose a kernel as a product
of two simpler kernels:

Ktotal(r1, r2) = Kmol(r1, r2)Kmech(r1, r2) .

We chose Kmol(r1, r2) to be the Jaccard kernel

k(x, x′) =

∑
imin(xi, x

′
i)∑

imin(xi, x′i)

between the Morgan fingerprints (Rogers & Hahn, 2010) with radius 1 of the entire set of product and
reactant molecules.15 We chose Kmech(r1, r2) to be the Jaccard kernel of the absolute value of the
difference between the product and reactant fingerprints individually. The difference vector between
two molecular fingerprints will essentially yield the set of subgraphs which are added/removed as
part of the reaction. For this reason, it has been used to create representations of chemical reactions
in previous work (Schneider et al., 2015).

We illustrate some outputs of this kernel in Figures G.1–G.3. Figure G.1 shows that reactions with
a high kernel value (> 0.8) are generally quite similar, both in product and in mechanism. Fig-
ure G.2 shows that reactions with modest similarity values in [0.4, 0.6] have some similarities but
are clearly less related. Figure G.3 shows that reactions with low similarity values in [0.05, 0.1] are
generally quite different. After a modest amount of exploratory analysis we were satisfied that this
kernel behaved as we intended, and therefore used it in our experiments without considering further
alternatives. However, we imagine there is room for improvement of the kernel in future work to
better align with the beliefs of chemists.

For feasibility models based on Gaussian processes, drawing k independent samples for a set of N
reactions will generally scale as O(kN3). This makes the feasibility model expensive for longer

15This is the same as adding the fingerprint vectors for all component molecules.

39

Published as a conference paper at ICLR 2024

Figure G.2: Examples of reactions where 0.4 ≤ Ktotal ≤ 0.6. Top: similar conjugation reactions,
but the reactant on the right side is now a COO− anion instead of a COCl group. Middle: similar
reaction, although on the right reaction has a Zn+ on the ring instead of F. Bottom: two reactions
which remove a fluorine atom from an aromatic ring but on molecules which are much less similar
than Figure G.1. Summary: these pairs of reactions have similarities but are less similar than the
reactions in Figure G.1.

Figure G.3: Examples of reactions where 0.05 ≤ Ktotal ≤ 0.1. The pairs of reactions are generally
quite different.

searches. Other feasibility models which induce correlations are likely to have similar scaling.
However, for this particular kernel, approximate samples could be drawn in O(kN) time by using a
random features approximation for the Jaccard kernel (Tripp et al., 2023).

40

Published as a conference paper at ICLR 2024

G.1.3 BUYABILITY MODELS

Following Chen et al. (2020) we based our buyability models on the inventory of eMolecules: a
chemical supplier which acts as a middleman between more specialized suppliers and consumers.
According to eMolecule’s promotional material16, they offer 6 “tiers” of molecules:

0. (Accelerated Tier). “Delivered in 2 days or less, guaranteed. Most reliable delivery service.
Compound price is inclusive of a small service fee, credited back if not delivered on time.
Available in the US only.”

1. “Shipped within 1- 5 business days. Compounds from suppliers proven to ship from their
location in < 5 days.”

2. “Shipped within 10 business days. Compounds from suppliers proven to ship from across
the globe in < 10 days”

3. “Shipped within 4 weeks. Shipped from suppliers further from your site and often with
more complex logistics. Synthesis may be required using proven reactions.”

4. “Shipped within 12 weeks. Usually requires custom synthesis on demand.”
5. “Varied ship times. Requires custom synthesis for which a quote can be provided on re-

quest.”

Much like machine learning researchers, chemists usually want to complete experiments as quickly
as possible and probably would prefer not to wait 12 weeks for a rare molecule to be shipped to
them. Such molecules could arguably be considered less “buyable” on this subjective basis alone,
so we decided to create buyability models based on the tier of molecule. Unfortunately, the public
repository for retro* does not contain any information on the tier of each molecule, and because their
inventory was downloaded in 2019 this information is no longer available on eMolecules’ website.
Therefore we decided to re-make the inventory using the latest data.

We downloaded data from eMolecules downloads page17, specifically their “orderable” molecules
and “building blocks” with quotes. After filtering out a small number of molecules (31407) whose
SMILES were not correctly parsed by rdkit we were left with 14903392 molecules with their asso-
ciated purchase tiers. Based on this we created 2 buyability models:

• Binary: all molecules in tiers 0-2 are purchasable with 100% probability. Corresponds to
realistic scenario where chemists want to do a synthesis and promptly.

• Stochastic: molecules are independently purchasable with probability that depends on the
tier (100% for tiers 0-2, 50% for tier 3, 20% for tier 4, 5% for tier 5). These numbers
were chosen as subjective probabilities that the compounds would be delivered within just
2 weeks (shorter than the longer times advertised). This still corresponds to a chemist
wanting to do the synthesis within 2 weeks, but being willing to risk ordering a molecule
whose stated delivery time is longer.

All of the experiments in this text (except for G.2.4) were run using the binary buyability model.
In the future, we believe that better buyability models could be formed by introducing correlations
between molecules coming from the same supplier, but we do not investigate that here (chiefly
because the eMolecules data we downloaded does not contain information about suppliers).

G.1.4 TEST MOLECULES

The 190 test molecules were accessed using the syntheseus wrapper package for this bench-
mark.18

To include molecules with a wider range of synthetic difficulties, we also performed experiments on
a set of 1000 randomly selected molecules from the GuacaMol test set (Brown et al., 2019). These
test molecules were generated with the following procedure:

16At the time of publication, this was available at: https://21266482.fs1.
hubspotusercontent-na1.net/hubfs/21266482/GUCHBBXX-E-02.01-0322_
eMolecules%20Tier%20Guide.pdf

17Downloaded 2023-09-08.
18Available at: https://pypi.org/project/syntheseus-retro-star-benchmark/

41

https://downloads.emolecules.com/free-extended/2023-09-01/
https://21266482.fs1.hubspotusercontent-na1.net/hubfs/21266482/GUCHBBXX-E-02.01-0322_eMolecules%20Tier%20Guide.pdf
https://21266482.fs1.hubspotusercontent-na1.net/hubfs/21266482/GUCHBBXX-E-02.01-0322_eMolecules%20Tier%20Guide.pdf
https://21266482.fs1.hubspotusercontent-na1.net/hubfs/21266482/GUCHBBXX-E-02.01-0322_eMolecules%20Tier%20Guide.pdf
https://pypi.org/project/syntheseus-retro-star-benchmark/

Published as a conference paper at ICLR 2024

1. Download the publicly available test set from Brown et al. (2019)

2. Filter our all molecules available in the eMolecules inventory (G.1.3)

3. Shuffle all molecules and take the first 1000

Code to reproduce this process, and the entire test set in shuffled order is included in our code.

Finally, we also ran an experiment with the test data from FusionRetro (Liu et al., 2023b), using the
test dataset found on their GitHub repository.

G.1.5 ALGORITHM CONFIGURATION

Retro-fallback was run with k = 256 samples from ξf , ξb. A graph-structured AND/OR search
graph was used (which may contain cycles). s(·), ψ(·), and ρ(·) were solved by iterating the recur-
sive equations (including around cycles) until convergence (if this did not occur we reset all values
to 0 and resumed iteration).

All other algorithms were configured to maximize SSP, as described in Appendix E.2. In particular,
this means:

• Breadth-first search was run with no modifications, using the implementation from
syntheseus.

• retro* was run using − logEf [f(r)] as the reaction cost and − logEb[b(m)]

• MCTS was run using σ(T ; ξf , ξb) as the reward for finding synthesis plan T (empirically
estimated from a finite number of samples). To allow the algorithm to best make use of
its budget of reaction model calls, we only expanded nodes after they were visited 10
times. The marginal feasibility value of reach reaction was used as the policy in the upper-
confidence bound. We used an exploration constant of c = 0.01 to avoid “wasting” reaction
model calls on exploration, and only gave non-zero rewards for up to 100 visits to the same
synthesis plan to avoid endlessly re-visiting the same solutions.

All of these algorithms are run with a tree-structured search graph (which for MCTS is an “OR”
graph; AND/OR for all others).

We chose not to compare with proof-number search (Kishimoto et al., 2019) because we did not see a
way to configure it to optimize SSP (see Appendix E.2.3). We chose not to compare with algorithms
requiring some degree of learning from self-play (including RetroGraph and the methods discussed
in Appendix F.1) due to computational constraints, and because it seemed inappropriate to compare
with self-play methods without also learning a heuristic for retro-fallback with self-play.

G.1.6 HEURISTIC FUNCTIONS

The heuristic obviously plays a critical role in heuristic-guided search algorithms! Ideally one would
control for the effect of the heuristic by using the same heuristic for different methods. However,
this is not possible when comparing algorithms from different families because the heuristics are
interpreted differently! For example, in retro-fallback the heuristic is interpreted as a potential future
SSP value in [0, 1] (higher is better), while in retro* it is interpreted as a cost between [0,∞] (lower
is better). If we used literally the same heuristic it would give opposite signals to both of these
algorithms, which is clearly not desirable or meaningful. Therefore, we tried our best to design
heuristics which were “as similar as possible.”

Optimistic heuristic Heuristics which predict the best possible value are a common choice of
naive heuristic. Besides being an important baseline, optimistic heuristics are always admissible
(i.e. they never overestimate search difficulty), which is a requirement for some algorithms like A*
to converge to the optimal solution (Pearl, 1984). For retro-fallback, the most optimistic heuristic is
hrfb(m) = 1, while for retro* it is hr*(m) = 0, as these represent the best possible values for SSP
and cost respectively. For MCTS, the heuristic is a function of a partial plan T ′ rather than a single
molecule. We choose the heuristic to be Ef∼ξf [minr∈T ′ f(r)], which is the expected SSP of the

42

Published as a conference paper at ICLR 2024

plan T ′ if it were completed by making every frontier molecule buyable.19 In practice this quantity
was estimated from k samples (same as retro-fallback).

SA score heuristic SA score gives a molecule a score between 1 and 10 based on a dictionary
assigning synthetic difficulties to different subgraphs of a molecule (Ertl & Schuffenhauer, 2009).
A score of 1 means easy to synthesize, while a score of 10 means difficult to synthesize. For retro-
fallback, we let the heuristic decrease linearly with the SA score:

hrfb(m) = 1− SA(m)− 1

10
.

Because the reaction costs in retro* were set to negative log feasibility values, we thought a natural
extension to retro* would be to use

hr*(m) = − log hrfb(m) .

This choice has the advantage of preserving the interpretation of total cost as the negative log joint
probability, which also perfectly matches retro-fallback’s interpretation of the heuristic (recall that
in section 4.1 the heuristic values were assumed to be independent). We designed MCTS’s heuristic
to also match the interpretation of “joint probability”:

hMCTS(T
′) = Ef∼ξf

 min

r∈T ′
f(r)︸ ︷︷ ︸

reactions feasible

 ∏
m∈F(T ′),b(m)=0

hrfb(m)

which is the expected SSP of the plan if all non-purchasable molecules are made purchasable inde-
pendently with probability hrfb(m).

G.1.7 COMPUTING ANALYSIS METRICS

Our primary analysis metric is the SSP. For algorithms which use AND/OR graphs (retro-fallback,
retro*, breadth-first search), we computed the SSP using equations 4–5 with k = 10 000 samples
from ξf , ξb. For algorithms using a tree-structured search graph, this was pre-processed into a cyclic
search graph before analysis (for consistency).

For algorithms which use OR trees (in this paper, just MCTS) the best method for analysis is some-
what ambiguous. One option is to extract all plans T ⊆ G′ and calculate whether each plan succeeds
on a series of samples fi, bi. A second option is to convert G′ into an AND/OR graph and analyze
it like other AND/OR graphs. Although they seem similar, these options are subtly different: an
OR graph may contain reactions in different locations which are not connected to form a synthesis
plan, but could form a synthesis plan if connected. The process of converting into an AND/OR
graph would effectively form all possible synthesis plans which could be made using reactions in
the original graph, even if they are not actually present in the original graph. We did implement
both methods and found that converting to an AND/OR graph tends to increase performance, so this
choice does make a meaningful difference. We think the most “realistic” option is unclear, so for
consistency with other algorithms we chose to just convert to an AND/OR graph.

All analysis metrics involving individual synthesis routes were calculated by enumerating the routes
in best-first order using a priority queue, implemented in SYNTHESEUS.

19Note that the min function will be 1 if all reactions are feasible, otherwise 0. Using
∏
r instead of minr

would yield the same output.

43

Published as a conference paper at ICLR 2024

G.2 ADDITIONAL RESULTS FOR SECTION 6.2 (HOW EFFECTIVE IS RETRO-FALLBACK AT
MAXIMIZING SSP)

Figure G.4 shows that if the optimistic heuristic is used instead of the SA score heuristic, retro-
fallback still maximizes SSP more effectively than other algorithms.

100 101 102

num. calls to B

0.0

0.2

0.4

0.6

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

Figure G.4: Mean SSP across all 190 test molecules from Chen et al. (2020) vs time using the
optimistic heuristic. Interpretation is identical to Figure 2 (except for the different heuristic).

Figure G.5 shows a similar result for the easier GuacaMol test molecules. However, the difference
between retro-fallback and other algorithms is smaller than on the 190 “hard” molecule test set from
Chen et al. (2020). This is likely because this test set contains many molecules which are easier to
synthesize. For example, after a single iteration algorithms achieve a mean SSP of ≈ 0.15 on the
GuacaMol test set, compared to 0 for the molecules from Chen et al. (2020).

We also note the following:

• For the “constant, independent” feasibility model, breadth-first search and retro* are essen-
tially the same algorithm. Therefore their performance is almost identical.

• Comparing results with the SA score and optimistic heuristic, it appears that the use of a
non-trivial heuristic does not actually make a terribly large difference. This is consistent
with the results of Chen et al. (2020) in their experiments with retro*, where adding a
heuristic provided only a modest increase in performance.

44

Published as a conference paper at ICLR 2024

SA score heuristic

100 101 102

num. calls to B

0.2

0.4

0.6

0.8

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

optimistic heuristic

100 101 102

num. calls to B

0.2

0.4

0.6

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

Figure G.5: Mean SSP vs time for 1000 molecules from GuacaMol (described in G.1.4). Interpre-
tation is identical to Figure 2.

45

Published as a conference paper at ICLR 2024

G.2.1 RESULTS FOR INDIVIDUAL MOLECULES

The SSP results in Figures 2, G.4, and G.5 are aggregated across all test molecules. To understand
where performance differences come from, Figures G.6 and G.7 plot SSP over time for individual
molecules. It appears that there is a high amount of variation due to randomness, and variation in
outcomes between molecules.

46

Published as a conference paper at ICLR 2024

0 100 200

0.0

0.2

0.4

0.6

0.8
m

in
/m

ed
ia

n/
m

ax
 S

SP
f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: COc1cc2ncc3c(N)nc(-c4cncc(OCCNCc5ccc(F)cc5)c4)cc3c2cc1OC
retro-fallback breadth-first retro* MCTS

0 100 200

0.0

0.2

0.4

0.6

0.8

1.0

m
in

/m
ed

ia
n/

m
ax

 S
SP

f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: C[Si](C)(C)CCOCn1c(O[C@@H]2CO[C@H]3[C@@H]2OC[C@H]3O)nc2cc(Cl)c(-c3ccc(-c4ccc(N=S(C)(=O)N5CCCC5)cc4)cc3)nc21
retro-fallback breadth-first retro* MCTS

0 100 200

0.0

0.2

0.4

0.6

0.8

m
in

/m
ed

ia
n/

m
ax

 S
SP

f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: COc1cc2ncc3c(N)nc(-c4cncc(OCCN(Cc5ccc(F)cc5)C(=O)OC(C)(C)C)c4)cc3c2cc1OC
retro-fallback breadth-first retro* MCTS

0 100 200

0.0

0.2

0.4

0.6

0.8

1.0

m
in

/m
ed

ia
n/

m
ax

 S
SP

f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: Cc1nnc(SCC2=C(C(=O)O)N3C(=O)C(NC(=O)C(O)c4csc(N)n4)[C@H]3SC2)s1
retro-fallback breadth-first retro* MCTS

Figure G.6: Min/median/max SSP vs time for individual molecules from the 190 “hard” molecule
test set (across 3 trials). Algorithms are run using the SA score heuristic.

47

Published as a conference paper at ICLR 2024

0 100 200

0.0

0.2

0.4

0.6

0.8
m

in
/m

ed
ia

n/
m

ax
 S

SP
f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: COc1cc2ncc3c(N)nc(-c4cncc(OCCNCc5ccc(F)cc5)c4)cc3c2cc1OC
retro-fallback breadth-first retro* MCTS

0 100 200

0.0

0.2

0.4

0.6

0.8

1.0

m
in

/m
ed

ia
n/

m
ax

 S
SP

f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: C[Si](C)(C)CCOCn1c(O[C@@H]2CO[C@H]3[C@@H]2OC[C@H]3O)nc2cc(Cl)c(-c3ccc(-c4ccc(N=S(C)(=O)N5CCCC5)cc4)cc3)nc21
retro-fallback breadth-first retro* MCTS

0 100 200

0.0

0.2

0.4

0.6

0.8

m
in

/m
ed

ia
n/

m
ax

 S
SP

f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: COc1cc2ncc3c(N)nc(-c4cncc(OCCN(Cc5ccc(F)cc5)C(=O)OC(C)(C)C)c4)cc3c2cc1OC
retro-fallback breadth-first retro* MCTS

0 100 200

0.0

0.2

0.4

0.6

0.8

1.0

m
in

/m
ed

ia
n/

m
ax

 S
SP

f const., GP

0 100 200

f const., ind.

0 100 200

f rank, GP

0 100 200

f rank, ind.

SMILES: Cc1nnc(SCC2=C(C(=O)O)N3C(=O)C(NC(=O)C(O)c4csc(N)n4)[C@H]3SC2)s1
retro-fallback breadth-first retro* MCTS

Figure G.7: Min/median/max SSP vs time for individual molecules run with the optimistic heuristic
(same molecules as Figure G.6).

48

Published as a conference paper at ICLR 2024

G.2.2 RESULTS USING OTHER METRICS

Figure G.8 shows box plots of the most successful synthesis plan by the end of the search. With the
exception of constant independent feasibility model on GuacaMol, retro-fallback always performs
at least as well as other algorithms.

Figure G.9 shows box plots of the shortest synthesis plan (with non-zero success probability) found
by all algorithms by the end of the search. Retro-fallback consistently performs at least as well as
other algorithms.

Figure G.10 shows the fraction of molecules for which any synthesis plan with non-zero success
probability is found over time. Retro-fallback consistently performs better than other algorithms.

49

Published as a conference paper at ICLR 2024

190 “hard” molecules; SA score heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0.0

0.2

0.4

M
os

t s
uc

ce
ss

fu
l p

la
n f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

190 “hard” molecules; optimistic heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0.0

0.2

0.4

M
os

t s
uc

ce
ss

fu
l p

la
n f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

GuacaMol; SA score heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0.00

0.25

0.50

0.75

M
os

t s
uc

ce
ss

fu
l p

la
n f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

GuacaMol; optimistic heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0.00

0.25

0.50

0.75

M
os

t s
uc

ce
ss

fu
l p

la
n f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

Figure G.8: Success probability of most feasible synthesis plan at end of search (i.e.
maxT∈Pm⋆ (G′) σ(T ; ξf , ξb)) for different algorithms.

50

Published as a conference paper at ICLR 2024

190 “hard” molecules; SA score heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0

5

10

15

Sh
or

te
st

 p
la

n
f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

190 “hard” molecules; optimistic heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0

5

10

15

Sh
or

te
st

 p
la

n

f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

GuacaMol; SA score heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0

5

10

15

Sh
or

te
st

 p
la

n

f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

GuacaMol; optimistic heuristic

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

0

5

10

15

Sh
or

te
st

 p
la

n

f const., GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f const., ind.

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, GP

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

ret
ro-

fal
lba

ck

bre
ad

th-
fir

st
ret

ro*
MCTS

f rank, ind.

Figure G.9: Distribution of lengths of the shortest synthesis plan with non-zero success probability
at end of search for different algorithms.

51

Published as a conference paper at ICLR 2024

190 “hard” molecules; SA score heuristic

100 101 102

num. calls to B

0.0

0.2

0.4

0.6
Fr

ac
tio

n
so

lv
ed

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

190 “hard” molecules; optimistic heuristic

100 101 102

num. calls to B

0.0

0.2

0.4

0.6

Fr
ac

tio
n

so
lv

ed

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

GuacaMol; SA score heuristic

100 101 102

num. calls to B

0.4

0.6

0.8

Fr
ac

tio
n

so
lv

ed

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

GuacaMol; optimistic heuristic

100 101 102

num. calls to B

0.4

0.6

0.8

Fr
ac

tio
n

so
lv

ed

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

Figure G.10: Fraction of molecules for which a synthesis plan with non-zero success probability
was found vs time for different algorithms.

52

Published as a conference paper at ICLR 2024

G.2.3 RESULTS ON FUSIONRETRO BENCHMARK

Here we present results on the benchmark dataset from FusionRetro, which is derived from USPTO
routes and contains 5838 test molecules (Liu et al., 2023b). In addition to SSP and the fraction
solved, we also evaluate performance by checking whether the outputted synthesis plans use the
same starting molecules as a known ground-truth synthesis route. Liu et al. (2023b) call this met-
ric “exact set-wise matching,” but we will call it precursor matching because we think this name
is less ambiguous. Because this metric depends on the purchasable molecules, we use a buya-
bility model derived from the inventory of Liu et al. (2023b) instead of the model derived from
eMolecules used for all other experiments. This is a deterministic model: molecules in the inventory
are independently buyable with probability 1, and all other molecules are not buyable. We use the
rank-independent feasibility model from section 6.2. All other details are kept the same.

The results after 50 reaction model calls are tabulated in Table G.1. As expected, retro-fallback
attains higher SSP scores than the baseline retro* and breadth-first search methods, regardless of the
heuristic. Just like on the GuacaMol test set from section 6.2, retro-fallback also finds at least one
potential synthesis route for a higher fraction of molecules than the baselines. Finally, the precursor
matching for the single most feasible synthesis plan is extremely similar for all methods (around
11%, with differences between the methods not being statistically significant).20 This is what one
would expect: the best synthesis plans found by all methods will likely be similar; the difference
between retro-fallback and the other algorithms is in the secondary synthesis plans that it finds.
Overall, these results show that retro-fallback outperforms baseline algorithms on the SSP metric
while being no worse than the baselines on metrics which involve only single synthesis plans.

Algorithm Heuristic Mean SSP (%) Solved (%) Precursor Match (%)

retro-fallback optimistic 67.58±0.57 72.03±0.59 10.84±0.41
retro-fallback SAScore 68.66±0.57 73.19±0.58 10.84±0.41

breadth-first N/A 61.66±0.61 65.26±0.62 10.96±0.41
retro* optimistic 65.40±0.60 68.62±0.61 11.58±0.42
retro* SAScore 65.93±0.60 69.10±0.60 11.58±0.42
MCTS optimistic 65.02±0.60 68.43±0.61 11.20±0.41
MCTS SAScore 65.37±0.60 68.64±0.61 11.13±0.41

Table G.1: Results on 5838 test molecules FusionRetro benchmark (Liu et al., 2023b). Experimen-
tal details and metrics are explained in section G.2.3. Larger values are better for all metrics. ±
values indicate standard error of the mean estimate.

20Readers familiar with Liu et al. (2023b) may wonder why the precursor matching scores are much lower
than what is reported in Table 1 of Liu et al. (2023b). This is because we used the same pre-trained reaction
model from Chen et al. (2020) as our single-step model, whereas Liu et al. (2023b) retrains the models using
their training dataset. We did not re-train the model because it also forms the basis for our feasibility model,
which was loosely calibrated with the inspections of an expert chemist.

53

Published as a conference paper at ICLR 2024

G.2.4 RESULTS USING A NON-BINARY BUYABILITY MODEL

Figure G.11 shows the result of repeating the experiment from section 6.2 but using the “stochastic”
buyability model from Appendix G.1.3. The results are essentially indistinguishable from Figure 2
and Figure G.4.

SA score heuristic

100 101 102

num. calls to B

0.0

0.2

0.4

0.6

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

optimistic heuristic

100 101 102

num. calls to B

0.0

0.2

0.4

0.6

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

retro-fallback breadth-first retro* MCTS

Figure G.11: SSP vs time for 190 “hard” molecules using the stochastic buyability model from
G.1.3.

54

Published as a conference paper at ICLR 2024

G.3 PLOTS FOR TIME COMPLEXITY AND VARIABILITY OF RETRO-FALLBACK FOR
SECTION 6.3

G.3.1 TIME COMPLEXITY

Figure G.12 plots the observed empirical scaling of retro-fallback with respect to the search graph
size for experiments on the 190 “hard” molecule test set.

SA score heuristic

102 104

Nodes in

10 1

100

101

102

103

R
un

tim
e

(s
)

f const., GP

p=1.70

102 104

Nodes in

f const., ind.

p=1.44

102 104

Nodes in

f rank, GP

p=1.74

102 104

Nodes in

f rank, ind.

p=1.51

optimistic heuristic

102 104

Nodes in

10 1

100

101

102

R
un

tim
e

(s
)

f const., GP

p=1.51

102 104

Nodes in

f const., ind.

p=1.12

102 104

Nodes in

f rank, GP

p=1.52

102 104

Nodes in

f rank, ind.

p=1.13

Figure G.12: Number of nodes vs total runtime for retro-fallback experiments on 190 “hard”
molecule test set from section 6.2, along with log-log fit of runtime (log t = p log n+ C).

G.3.2 VARIABILITY

Figure G.13 plots the mean and standard deviation of SSP values for a 25 molecule subset of the
GuacaMol dataset. Analysis is in section 6.3.

55

Published as a conference paper at ICLR 2024

SA score heuristic

100 101 102

num. calls to B

0.2

0.4

0.6

0.8

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

k = 4 k = 16 k = 64 k = 256 k = 1024 k = 4096

optimistic heuristic

100 101 102

num. calls to B

0.2

0.4

0.6

0.8

m
ea

n
SS

P

f const., GP

100 101 102

num. calls to B

f const., ind.

100 101 102

num. calls to B

f rank, GP

100 101 102

num. calls to B

f rank, ind.

k = 4 k = 16 k = 64 k = 256 k = 1024 k = 4096

Figure G.13: Mean and standard deviation (over 10 trials) of average SSP for 25 molecules from the
GuacaMol dataset when retro-fallback is run with different number of samples k for the feasibility
and buyability models.

56

Published as a conference paper at ICLR 2024

H LIMITATIONS

Here we explicitly list and discuss some limitations of retro-fallback and SSP.

SSP is contingent on high-quality feasibility model With a low-quality feasibility model, the
probabilities implied by SSP will likely not be meaningful. We think the line of research advocated
for in this paper will primarily be impactful if we are able to produce better-quality feasibility models
in the future.

Speed Retro-fallback appears to be significantly slower than other algorithms. This likely comes
from the need to do perform updates for many samples from ξf and ξb (256 in most of our ex-
periments). In contrast, other algorithms perform simple scalar updates. However, we note that if
retro-fallback is used with a more complex reaction model (e.g. a transformer) then the computa-
tional cost of the search algorithm’s internal computations will be less significant compared to the
cost of performing an expansion. We therefore do not expect the speed of retro-fallback to limit its
long-term potential utility.

Success as a binary notion A lot of nuance was lost by modelling reactions and molecules as
binary outcomes. In practice, chemists may care about this nuance. For example, in some cir-
cumstances having a low yield may be acceptable, but producing the wrong product may not be
acceptable. Marking both outcomes as “infeasible” destroys this distinction.

Plan length Chemists generally prefer synthesis plans with a few steps as possible. Retro-fallback
does not directly optimize for this (and we do not see a straightforward way to extend retro-fallback
to this). However, one of the main justifications for preferring short plans is that there are fewer
steps that can go wrong, and therefore we expect retro-fallback to have a strong bias towards short
plans regardless (similar to existing algorithms which apply a more direct penalty to the length of
synthesis plans).

Number of synthesis plans Our definition of SSP considers an arbitrary number of plans, in
practice chemists are unlikely to try more than around 10 plans before moving on to something else.
For large search graphs with many synthesis plans, SSP may therefore lose its connection with what
a chemist might do in the lab. Unfortunately, we do not believe there is a straightforward way to
calculate the SSP of a limited number of synthesis plans (the limit on the number of plans will likely
preclude a dynamic programming solution).

57

Published as a conference paper at ICLR 2024

I FUTURE WORK

Relaxing assumptions If one wishes to re-insert the nuance lost by defining feasibility and buya-
bility as binary outcomes, one could potentially explicitly model factors such as yields and shipping
times and build a binary stochastic process on top of this. We do not have a clear idea of how retro-
fallback or SSP could be generalized into some sort of continuous “degree of success”, but imagine
future work in this area could be useful. Relaxing the independence assumption of the heuristic
function was discussed in Appendix C.4. The heuristic could potentially also be modified to depend
on the remaining compute budget. Finally, using a separate feasibility and buyability model implic-
itly assumes that these outcomes are independent. We think this is a reasonable assumption because
reaction feasibility is uncertain due to not fully understanding the physical system or not having a
reliable model B, while uncertainty in buyability would originate from issues of shipping, etc. That
being said, “virtual libraries” are one area where a molecule not being buyable meant that some-
body else was unable to synthesize it. This may impact which reactions a chemist would predict
to be feasible (although it seems unlikely in practice that a vendor would tell you the reactions that
they tried). Nonetheless, if one wanted to account for this ξf and ξb could be merged into a joint
feasibility-buyability model ξfb from which functions f and b are simultaneously sampled.

Theoretical guarantees of performance We suspect that it is possible to give a theoretical guar-
antee that retro-fallback’s worst-case performance is better than that of retro* by formalizing the
scenario in section E.3. However, we were unable to complete such a proof. We also expect it could
be possible (and useful) to theoretically characterize how the behaviour retro-fallback with a finite
number of samples k deviates from the behaviour of “exact” retro-fallback in the limit of k → ∞
where all estimates of SSP are exact. Such analysis might provide insight into how large k should
be set to for more general feasibility models.

Benchmark If a high-quality feasibility model could be created, it would be useful to use SSP
values based on this feasibility model to create a benchmark for retrosynthesis search algorithms.
This might help to accelerate progress in this field, just as benchmarks have accelerated progress in
other sub-fields of machine learning.

58

	
	Introduction
	Background: standard formulation of retrosynthesis
	Reformulating retrosynthesis with uncertainty
	Stochastic processes for ``feasibility'' and ``buyability''
	New evaluation metric: successful synthesis probability (SSP)
	 Efficiently estimating SSP for all synthesis plans in P(G)

	Retro-fallback: a greedy algorithm to maximize SSP
	Ingredients for an informed, greedy search algorithm
	Retro-fallback: a full greedy algorithm

	Related Work
	Experiments
	Experiment Setup
	How effective is retro-fallback at maximizing SSP?
	Speed and variability of retro-fallback

	Discussion, Limitations, and Future Work
	Appendix

	 Appendix
	Summary of Notation
	Details of search graphs in retrosynthesis
	AND/OR graphs
	Synthesis plans
	OR graphs

	Further details of retro-fallback
	Details of s, ψ and ρ
	Mnemonics
	Relationships between s, ψ and ρ
	Analytic solutions for ψ and ρ
	 Cost-minimization interpretation
	 Clarification of s, ψ and ρ for cyclic graphs
	 Computing s, ψ and ρ

	Example of calculating s, ψ and ρ
	Calculation of s
	Calculation of ψ
	Calculation of ρ

	Justification of node selection
	Rejected alternative algorithms
	Practical implementation details

	Proofs and Theoretical Results
	Proof of Theorem 3.1
	 Computing s, ψ and ρ polynomial time

	 Discussion of previous search algorithms and why they might struggle to optimize SSP
	Can we say anything definitive about the ability of different algorithms to maximize SSP?
	Existing algorithms and their configurability
	Breadth-first search
	Monte-Carlo Tree Search (MCTS)
	Depth-first proof number search (with heuristic edge initialization)
	Retro*
	RetroGraph

	Finding individually successful synthesis plans may not be enough to maximize SSP

	Extended related work (excluding previous search algorithms)
	Search heuristics for retrosynthesis
	Generative models
	Single-step retrosynthesis
	FusionRetro
	Planning in stochastic graphs

	Extended experiment section
	Details of experimental setup
	Software Implementation
	Feasibility models
	Buyability Models
	Test molecules
	Algorithm configuration
	Heuristic functions
	Computing analysis metrics

	 Additional results for section 6.2 (how effective is retro-fallback at maximizing SSP)
	Results for individual molecules
	Results using other metrics
	Results on FusionRetro benchmark
	Results using a non-binary buyability model

	 Plots for time complexity and variability of retro-fallback for section 6.3
	Time complexity
	Variability

	Limitations
	Future work

