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ABSTRACT

Video action anticipation is a specific field within computer vision that diverges
from action recognition, requiring the prediction of future actions through the
analysis of historical video sequences. This paper unveils an innovative model
designed to overcome the limitations of existing solutions by amalgamating recur-
rent and attention mechanisms, taking cues from the principles of object tracking.
Notably, our model leverages prior anticipation results, enabling a nuanced inter-
pretation of semantic transitions between actions and recognizing the uncertainty
inherent in predicting future events. This strategy strikes a balance between com-
putational efficiency and judicious data utilization, challenging the assumptions
prevalent in current transformer models and thereby underlining its practicality
for real-world applications. Distinctively, our model discerns temporal connec-
tion from abstract concepts in a way that mirrors human reasoning and adopts a
recurrent structure to thoroughly capture video context. Extensive experiments
conducted on EPIC-Kitchens-100, EPIC-Kitchens-55, and EGTEA Gaze+ con-
firm the superior performance of our proposed model and efficiency compared to
established transformer architectures. Remarkably, our proposed model surpasses
most multi-modal models by only using RGB visual inputs, showcasing its excep-
tional generalization capabilities across a variety of unseen test sets.

1 INTRODUCTION

Accurately anticipating upcoming events is integral to human decision-making and routine plan-
ning. Yet, endowing machines with this innate ability remains a tough challenge, marking a crucial
advancement in the field of video understanding. The challenge is intensified by the imperative to
unravel uncertainties about future events through meticulous examination of historical data, particu-
larly in the nuanced domain of video action anticipation. This endeavor significantly deviates from
action recognition, necessitating the forecasting of impending actions by scrutinizing historical se-
quences within video data. Furthermore, video action anticipation frequently employs egocentric
videos, which harmonize perspectives from diverse subjects and implicitly unveil their intentions.
This is achieved by integrating elements such as coarse-grained visual attention, indicated by the
camera’s heading direction, within the observed frames. These prerequisites are prevalent across var-
ious practical applications of video-based prediction, including assistive navigation systems OhnBar
et al. (2018), collaborative robotics Park et al. (2016), interactive entertainment Liang et al. (2015);
Taylor et al. (2020), and autonomous vehicles Hirakawa et al. (2018).

While action recognition focuses on classifying current actions through pattern recognition, video
action anticipation uses these patterns to predict the complex nature of potential future actions, each
with multiple possibilities. This complexity is further exacerbated by the essential many-to-many
mapping between past and future actions, a departure from the conventional many-to-one mapping
in action recognition. This distinction underscores the intricate nature of video action anticipation,
paving the way for groundbreaking research in this rapidly evolving field.

Many models initially developed for action recognition have been repurposed, but using identical
architectures for both domains has yielded suboptimal results. Recent research largely focuses on
utilizing transformer models to tackle the inherent challenges of video action anticipation Girdhar
& Grauman (2021); Wu et al. (2022). However, this approach faces two main limitations: a fixed
receptive field for past data hinders continuous inference in real-world scenarios, and the inherent as-
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Figure 1: Similar to how object tracking leverages the properties of previous track results as a prior
for subsequent predictions, we propose a method in action anticipation that also utilizes previous
anticipation results, aiming to better capture the semantic movement conveyed by past history.

sumption within the attention mechanism does not consistently align with video action anticipation,
where inputs are merely tentative indicators of future events.

Inspired by the strategies employed in object tracking Carion et al. (2020); Zhu et al. (2020), where
subsequent predictions are informed by prior ones, we integrate previous anticipation results as pri-
ors to refine future action forecasting (see Figure 1). This integration enables our model to recognize
semantic transitions between actions and addresses the limitation of using only the latest visual in-
put as the query. Our model detects video patterns to predict future actions, using past conditions to
enhance understanding of complex interactions, focusing more on overall patterns than on specific
details like pixels. Nevertheless, given the temporal dependencies inherent to actions, video action
anticipation necessitates more than a single frame to capture the inherent changes present in tracking
applications. Therefore, we incorporate a recurrent structure to assimilate video context, enabling
the model to adaptively use a dynamic receptive field and perform continuous online inferencing.

In summary, our contributions are threefold:

• We introduce a novel model for video action anticipation that melds recurrent and attention
mechanisms, demonstrating superior accuracy across various benchmarks.

• Informed by insights from object tracking, our model explicitly employs prior anticipa-
tion results to refine subsequent action predictions, thereby significantly enhancing model
generalizability.

• Experimental results and in-depth analyses indicate that our model achieves competitive
performance gains and suggests a promising direction for future models in the field. Addi-
tionally, it maintains an effective balance in model size and computational efficiency.

2 RELATED WORK

Our model draws inspiration from recurrent neural networks (RNNs) and self-attention mechanisms
to forecast future actions. In this section, we briefly review the literature on modeling with RNN
and Transformers in the context of the action anticipation problem.

RNNs in Action Anticipation. Recurrent Neural Networks (RNNs) have been extensively applied
in modeling sequential inputs, with numerous studies affirming their effectiveness in action predic-
tion tasks Wang et al. (2018); Su et al. (2020). Early work in video action anticipation incorporated
Long Short-Term Memory (LSTM) networks within an encoder-decoder framework, establishing
foundational benchmarks Furnari & Farinella (2020a). Subsequent developments include augment-
ing the original LSTM encoder to account for spatial-temporal structures Osman et al. (2021), in-
troducing self-regulated modules for leveraging long-range context features Qi et al. (2021), and
exploring label smoothing to address future uncertainties Camporese et al. (2021). Variants of the
recurrent mechanism have also been investigated, with works predicting forthcoming frames and
integrating future information Wu et al. (2020); Fernando & Herath (2021), employing higher-order
recurrence with spatial-temporal decomposed attention Tai et al. (2022a), and offering a generalized
perspective of the recurrent mechanism as message-passing learning Tai et al. (2022b).

Transformers in Action Anticipation. Transformers, with self-attention at their core, have
achieved significant advancements in video action recognition Bertasius et al. (2021); Arnab et al.
(2021); Vaswani et al. (2017). Originally designed for language processing, Vision Transformers
(ViTs) have become prominent across various visual tasks Dosovitskiy et al. (2020); Zhou et al.

2



Under review as a conference paper at ICLR 2024

(2021); Han et al. (2022). In the realm of action anticipation, transformer-based models have
demonstrated their capability to outperform recurrent baselines. Notable examples include mod-
els integrating ViT backbones and causal decoders to encapsulate temporal dependencies Girdhar &
Grauman (2021), and models incorporating memory compression modules for efficient long-range
dependency modeling Wu et al. (2022). Transformers exhibit versatility in modeling sequential in-
puts Jaegle et al. (2021b;a). In line with this, our model integrates attention as a dynamic mechanism
for extracting temporal context.

3 PROBLEM STATEMENT

Video action anticipation is defined as a task where an arbitrary length of video inputs X = {xi ∈
RC×H×W |i = T − ts, . . . , T}, starting from timestep T − ts to T , is used to predict the target
action that happens in the τa seconds. To support the continuous inference, at every timestep t,
the model uses the observed input up to time t, denoted as X∗:t, to predict the subsequent action,
yt+τa ∈ RNc , where Nc is the number of classes, denotes the future action occurring after τa
seconds. For the benchmark dataset, we measure the performance at the latest timestep T and
compared with ground-truth future action yT+τa .

Existing methods, whether recurrent or transformer-based, model to maximize the predict proba-
bility P (yT+τa |X∗:T , {ψ, θ}), parameterized by learnable weights ψ and θ, through the estimated
action probability of the last timestep ŷT and compare with annotated ground-truth action probabil-
ity yT+τa , as shown below:

P (yT+τa |X, {ψ, θ}) = P (yT+τa |ŷT )︸ ︷︷ ︸
anticipation loss

P (ŷT |hT , ψ)︸ ︷︷ ︸
classifier

P (hT |X∗:T , θ)︸ ︷︷ ︸
spatio-temporal model

. (1)

For recurrent-based modeling, P (hT |X∗:T , θ) is presented by a recurrent update ht = fθ(xt +
g(ht−1)) where t = T − ts, . . . , T and g(.) is an arbitrary gate function which fits. On the other
hand, for the transformer-based modeling, P (hT |X∗:T , θ) is built by multi-layer self-attentions.

To align the prediction with the ground-truth annotation of a future action, a cross-entropy loss is
applied between the prediction ŷt and the corresponding future action probability yt+τa as given by:

LCE(yt+τa , ŷt) = −ΣTt=T−tswt(yt+τa log ŷt). (2)

The loss function aims to minimize empirical risk across the entire sequence. Here, wt represents
the loss weight per timestep, set to 2 at t = T and 1 otherwise, except for unannotated timesteps
yi+τa where wt is 0, often due to non-action movements or sparsely annotated datasets.

4 OUR APPROACH

The core of our design focuses on enhancing the hidden state representation by integrating prior
predictions. In the context of equation 1, the hidden state hT is utilized for modeling the video
dependency based on low-level video frames, a method which may be sub-optimal. To address this,
we introduce a modification whereby the hidden state is also explicitly conditioned on prior action
predictions ŷ∗:T−1 as inputs. This modification is depicted in the following equation:

P (yT+τa |X, {ψ, θ}) = P (yT+τa |ŷT )P (ŷT |hT , ψ)P (hT |X∗:T , ŷ∗:T−1, θ) (3)

Our model innovatively merges attention with recurrent structures, enhancing effectiveness through
higher-order recurrent updates and targeted attention on pivotal hidden states, based on their action
domain relevance. This fusion, we termed inductive attention, concisely encapsulates historical
action trends to forecast future actions.

4.1 HIGHER-ORDER RECURRENT STRUCTURE

To effectively utilize the historical information in the video sequence and address the issue of forget-
fulness in recurrent networks, we augment the recurrent network from a first-order to a higher-order
structure.

3



Under review as a conference paper at ICLR 2024

Algorithm 1 Inductive Attention Model
Given: input X; compression functions Ex, Eq, Ek;
classifier fψ .
Initialize: M0 ← ∅ with maximum capacity S.
for every time t receiving input xt ∈ X do

et ← Ex(xt)
if t = 0 then

ot ← 0
else

Read ̂yt−S:t−1 and ht−S:t−1 from Mt−S:t−1

Qt ← Eq(ŷt−1)
Kt ← Ek( ̂yt−S:t−1)
Vt ← ht−S:t−1

ot ← Ind-Attn(Qt,Kt, Vt)
end if
gt ← σ

(
wT2 (max(0, [ot; et]w1))

)
ht ← gt · ot + (1− gt) · et
ŷt ← fψ(ht)
Mt← push EK(sg(ŷt)) and ht into Mt−1

if Mt exceeds the maximum capacity S then
Pop the oldest element in Mt

end if
yield ŷt

end for

Figure 2: The Inductive Attention Model adopts
the prior prediction, ŷt−1, as the query and cal-
culates its correlation with the attention keys
(ŷt−1, . . . , ŷt−S), aiming to aggregate the higher-
order recurrent states (ht−1, . . . , ht−S). Subse-
quently, the output merges with the encoded frame
input through a gating function, resulting in the
formation of the recurrent state ht, which is uti-
lized to compute the current prediction ŷt.

Analogous to traditional n-gram language models Shannon (1948), higher-order recurrent networks
generate new outputs and internal states by consolidating multiple preceding states, thereby extend-
ing beyond the first-order Markov chain assumption inherent in conventional recurrent networks.

To elaborate, in a first-order recurrent model, the hidden state ht is calculated as:

ht = f(xt + g(ht−1)). (4)

Conversely, in a higher-order recurrent model, several past states are referenced and amalgamated
to determine the new state:

ht = f(xt +Φ(ht−1, . . . , ht−S)). (5)
Here, S denotes a hyperparameter determining the number of past states (the order of the model).

Various alternatives are available for the aggregation function Φ, including linear function Soltani
& Jiang (2016), polynomial function Yu et al. (2017), convolutional tensor-train decomposition Su
et al. (2020), and spatial-temporal decomposed attention Tai et al. (2022a).

In this study, we have adapted the attention mechanism to function as Φ. Unlike the conventional
attention definition Vaswani et al. (2017), our approach integrates previous action predictions ŷ∗:T−1

as the query (Q) and also for the keys (K) of attention for guiding the focus with explicit exposing
of action semantics.

4.2 INDUCTIVE ATTENTION

The standard form of attention Vaswani et al. (2017) computes the dot-product correlation of keys
K conditioned on the query Q to retrieve the correlated context in the values V :

Attn(Q,K, V ) = softmax

(
QTK√

d

)
V, (6)

where d denotes the dimension of vectors K and Q.

In equation 6, Q represents the current interests used to retrieve the correlated topics in the values
V , while the keyK provides the locations where information can be retrieved from V by interacting
withQ. A core modification in our inductive attention is to encodeK with the corresponding results
of the predicted actions ŷ∗:T−1. Additionally, we assign ŷT−1 toQ instead of using xT−1, explicitly
injecting action semantics into equation 6.
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For implementation, at every timestep t, given the trajectory of previous higher-order recurrent
states, ht−1, ht−2, . . . , ht−S , we first compress the prediction ŷt−1 as query Q using a learnable
compression function Eq . Correspondingly, we compress ̂yt−S:t−1 into key K via Ek, and assign
the recurrent states as the value V . Notably, the inductive attention is used to summarize the higher-
order information (e.g., Φ(.) in equation 5), so the lengths of K and V are limited to a finite length
S and maintained by a queue with a first-in-first-out (FIFO) update policy.

In summary, the inductive attention can be expressed as follows:
Ind-Attn(ŷt−1,Mt) := Attn(Qt,Kt, Vt), (7)

where Qt = Eq(ŷt−1), (8)

Kt = Ek( ̂yt−S:t−1), (9)
Vt = ht−1:t−S . (10)

For simplicity, we omit the embeddings for Qt, Kt, and Vt.

4.3 INDUCTIVE ATTENTION MODEL

At each timestep t, the frame feature et is initially encoded by Ex. Typically, a backbone is utilized
within the encoder to extract these frame features. The recurrent state is then formulated in accor-
dance with higher-order equation 5, incorporating et as the input and utilizing inductive attention as
the aggregation function:

et = Ex(xt), (11)
ot = Ind-Attn( Qt,Kt, Vt︸ ︷︷ ︸

as per eqs (8)(9)(10)

), (12)

ht = gtet + (1− gt)ot, (13)
ŷt = fψ(ht). (14)

Here, gt = σ
(
wT2 max(0, w1[ot; et])

)
is a gate function governs the balance between past experi-

ences (derived from the output of inductive attention) and the input from the current frame. The
sigmoid function σ(·) maps values to the interval [0, 1]. Notably, we assign ot = 0 for the initial
step t = 0. The forwarding process is succinctly summarized in Algorithm 1 and Figure 2.

Significantly, our inductive attention model executes a many-past-to-many-future estimation while
calculating the dot product QTK in equation 7, employing Q ≡ ŷt−1 and K ≡ ̂yt−1:t−S .

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

For all experiments, we employed TSN Furnari & Farinella (2020b), ConvNeXt Liu et al. (2022),
and Swin Liu et al. (2021) as the backbone variants in our model. We trained our model using the
AdamW optimizer Loshchilov & Hutter (2017), with a learning rate of 2e-4 and a cosine decay
scheduler. The weight decay was set to 1e-2, excluding biases and normalization layers. The model
was trained with a batch size of 128 for 50 epochs on a single NVIDIA RTX 3090 GPU, with
automatic mixed precision enabled. Our model incorporates a single IAM layer with a hidden size
d = 2048 for equation 13, and a dropout rate of 0.6. The remaining hyperparameters are detailed
individually for each dataset.

5.2 DATASETS

EPIC-Kitchens-100 (EK100) Damen et al. (2022) is a substantial dataset featuring 100 hours of
egocentric videos, 3806 action labels, 67217 training segments, and 9668 validation segments. We
adopted a class weighting approach, akin to Wu et al. (2022). The Mean Top-5 Recall (MT5R) for
action, verb, and noun is assessed at an anticipation interval τa = 1s, with each sequence sampled
at 1 fps to compile 30 frames.

EPIC-Kitchens-55 (EK55) Damen et al. (2018) includes 55 hours of recordings, 2513 action classes,
23492 training segments, and 4979 validation segments. We applied label smoothing Müller et al.
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Figure 3: Illustrating two examples from the EK100 dataset, each with eight consecutive frames.
Top-5 action anticipations and corresponding inductive priors are displayed below each frame.

(2019) with a ratio of 0.6 and reported Top-1/5 action accuracy and MT5R at τa = 1s. The dataset
was sampled at 1 fps, resulting in 10 frames per sequence.

EGTEA Gaze+ Li et al. (2018) consists of over 28 hours of recordings, annotated with 106 unique
action classes across 10321 segments. Following the protocol in Girdhar & Grauman (2021), we
evaluated on split 1, comprising 8299 training clips and 2022 validation clips. The anticipation
accuracy is gauged at τa = 0.5s for top-1 action accuracy and mean top-1 action recall, with the
dataset sampled at 2 fps to generate 10 frames per sequence.

5.3 RESULTS

5.3.1 EK100 ACTION ANTICIPATION

We assessed our proposed model, IAM, on the EK100 dataset against previous works, with the re-
sults consolidated in Table 1. Utilizing the TSN backbone, IAM demonstrated notable enhancement
over several well-established baselines, including the former top-ranking competition winner, AVT,
and displayed competitiveness with MeMViT. When the TSN was replaced with the more recent
ConvNeXt (convolutional-based) and Swin (transformer-based) backbones, IAM excelled, surpass-
ing the optimal configuration of MeMViT by +0.4 in overall classes, +1.4 in unseen classes, and
+2.1 in tail classes.

Table 2 reveals that our approach outperforms state-of-the-art methods in both single-modal and
some multi-modal frameworks in terms of test scores, highlighting the significant generalizability
of our proposed method. The test evaluation is conducted on a held-out set, and the results are
submitted to the official challenge server for assessment.

Figure 3 presents qualitative examples for analysis. The first row illustrates a scenario characterized
by an extended duration and consistent action, where the content of the frames remains constant
across the sequence. There is a discernible shift in predicted actions between the 5th and 6th frames,
transitioning from the verb ”pour” to ”put.” This transition underscores the importance of consid-
ering prior prediction in our model. In contrast, the second row highlights a scenario where the
model incorrectly predicts the noun ”plate” as ”container” in the ground-truth anticipation ”take
plate.” This example underscores the utility of egocentric videos in revealing intentions like ”take”
through changes in viewpoint. Beneath each action prediction, we display the top positive and nega-
tive actions identified by inductive attention as relevant to the highest prediction. Further analysis of
inductive attention and additional qualitative examples are available in the supplementary material.
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Table 1: EK100 validation results, measured in MT5R at τa = 1s, detailing individual accuracy for
actions (A), verbs (V), and nouns (N).

Methods Param Overall Classes Unseen Classes Tail Classes
Counts A V N A V N A V N

M
ul

ti-
M

od
al

s TempAgg (Sener et al. (2020)) - 14.7 23.2 31.4 14.5 28.0 26.2 11.8 14.5 22.5
RULSTM Furnari & Farinella (2020b) - 14.0 27.8 30.8 14.2 28.8 27.2 11.1 19.8 22.0
TSN-AVT+ Girdhar & Grauman (2021) - 14.8 25.5 31.8 11.5 25.5 23.6 12.6 18.5 25.8
AVT+ Girdhar & Grauman (2021) - 15.9 28.2 32.0 11.9 29.5 23.9 14.1 21.1 25.8
TSN-AFFT+ Zhong et al. (2023) - 17.0 22.3 31.5 14.0 23.8 25.3 15.0 14.6 23.6
Swin-AFFT+ Zhong et al. (2023) - 18.5 22.8 34.6 15.5 24.8 26.4 16.2 15.0 27.7

Si
ng

le
-M

od
al

chance - 0.2 6.4 2.0 0.5 14.4 2.9 0.1 1.6 0.2
TempAgg Sener et al. (2020) - 13.0 24.2 29.8 12.2 27.0 23.0 10.4 16.2 22.9
RULSTM Damen et al. (2022) - 13.3 27.5 29.0 - - - - - -
HORST Tai et al. (2022a) - 13.2 24.5 30.0 - - - - - -
MPNNEL-TB Tai et al. (2022b) - 14.8 28.7 31.4 - - - - - -
TSN-AVT Girdhar & Grauman (2021) - 13.6 27.2 30.7 - - - - - -
irCSN152-AVT Girdhar & Grauman (2021) - 12.8 25.5 28.1 - - - - - -
AVT Girdhar & Grauman (2021) 378M 14.9 30.2 31.7 - - - - - -
TSN-DCR-LSTM Xu et al. (2022) 14M 14.5 27.9 28.0 - - - - - -
TSM-DCR-LSTM Xu et al. (2022) 20M 15.2 28.4 28.5 - - - - - -
TSN-DCR Xu et al. (2022) 78M 14.6 31.0 31.1 - - - - - -
TSM-DCR Xu et al. (2022) 84M 16.1 32.6 32.7 - - - - - -
TSN-AFFT Zhong et al. (2023) - 16.4 21.3 32.7 13.6 24.1 25.5 14.3 13.2 25.8
Swin-AFFT Zhong et al. (2023) - 17.6 23.4 33.7 15.2 24.5 25.4 15.3 15.6 26.5
MeMViT 16x4 Wu et al. (2022) 59M 15.1 32.8 33.2 9.8 27.5 21.7 13.2 26.3 27.4
MeMViT 32x3 Wu et al. (2022) 212M 17.7 32.2 37.0 15.2 28.6 27.4 15.5 25.3 31.0
TSN-IAM (Ours) 42M 17.5 32.2 35.7 11.9 31.4 24.9 16.8 26.9 31.8
ConvNeXt-IAM (Ours) 142M 17.6 31.4 36.2 12.0 33.0 25.0 17.1 26.0 32.0
Swin-IAM (Ours) 141M 18.1 32.1 37.2 16.6 34.6 27.9 17.6 26.7 33.0

Table 2: EK100 test results, measured in MT5R at τa = 1s. The test evaluation is conducted on a
held-out set, and the results are submitted to the official challenge server for assessment.

Methods Overall Classes Unseen Classes Tail Classes
A V N A V N A V N

Si
ng

le
-M

od
al

RULSTM Furnari & Farinella (2020b) 11.2 25.3 26.7 9.7 19.4 26.9 7.9 17.6 16.0
TBN Zatsarynna et al. (2021) 11.0 21.5 26.8 12.2 20.8 28.3 7.2 13.2 15.4
TempAgg Sener et al. (2020) 12.6 21.8 30.6 10.5 17.9 27.0 8.9 13.6 20.6
AVT+ Girdhar & Grauman (2021) 12.6 25.6 28.8 8.8 20.9 22.3 10.1 19.0 22.0
TCN-TSN Zatsarynna et al. (2021) 10.9 20.4 26.6 11.1 17.9 26.9 7.0 11.7 15.2
TCN-TBN Zatsarynna et al. (2021) 11.0 21.5 26.8 12.2 20.8 28.3 7.2 13.2 15.4
AFFT-TSN+ Zhong et al. (2023) 13.4 19.4 28.3 9.9 14.0 24.2 10.9 12.0 19.5
AFFT-Swin+ Zhong et al. (2023) 14.9 20.7 31.8 12.1 16.2 27.7 11.8 13.4 23.8
RAFTformer-2B Girase et al. (2023) 15.4 30.1 34.1 - - - - - -
Swin-IAM (Ours) 16.4 30.7 35.1 13.5 23.0 29.2 14.3 25.6 29.9

E
ns

em
bl

e TransAction Gu et al. (2021) 13.4 - - 10.1 - - 11.9 - -
Panasonic (Yamamuro et al.) 14.8 30.4 33.5 10.2 21.1 27.1 12.7 24.6 27.5
AVT++ Girdhar & Grauman (2021) 16.7 26.7 32.3 12.9 21.0 27.6 13.8 19.3 24.0
DCR Xu et al. (2022) 17.3 - - 14.1 - - 14.3 - -

5.3.2 EK55 ACTION ANTICIPATION

Table 3 provides a summarized comparison of the performance between our model and previous
works on the EK55 benchmark. The results demonstrate that our model is competitive in terms of
top-5 action accuracy and mean top-5 recall. Similar to the EK100 evaluation, our model, when inte-
grated with the Swin backbone, achieves the best overall performance. It is worth noting that AVT-h,
when based on the ViT-based AVT-b backbone, does not demonstrate better accuracy on EK55 as it
does on EK100 compared to the convolutional backbone irCSN152. This suggests that AVT does
not yield consistent scores with a specific backbone across different datasets. DCR achieves higher
top-1 accuracy, a potential benefit arising from their implementation of curriculum learning from fu-
ture frames. It is important to mention that EK55 has sparser annotations in the sampling sequence,
resulting in less information available to be leveraged in the prior predictions ̂yt−1:t−S utilized in
our model.

5.3.3 EGTEA GAZE+ ACTION ANTICIPATION:

We further assessed our model on the EGTEA Gaze+ egocentric video dataset, and the findings
are presented in Table 4. Our best configuration, employing the Swin backbone, elevates the top-
1 action accuracy and top-1 action recall, surpassing the state-of-the-art models, AVT and AFFT.
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Table 3: EK55 validation results at the τa = 1s. The top-1/top-5 action accuracy and top-5 action
recall are summarized.

Methods Backbone External Top-1 Top-5 RecallData
RULSTM Furnari & Farinella (2020a) TSN IN1K 13.1 30.8 12.5
TempAgg Sener et al. (2020) TSN IN1K 12.3 28.5 13.1
ImagineRNN Wu et al. (2020) TSN IN1K 13.7 31.6 -
SRL Qi et al. (2021) TSN IN1K - 31.7 13.2
HORST Tai et al. (2022a) TSN IN1K 12.8 31.6 12.2
MPNNEL-TB Tai et al. (2022b) TSN IN1K 13.8 32.0 13.6
AVT-h Girdhar & Grauman (2021) TSN IN1K 13.1 28.1 13.5
AVT-h Girdhar & Grauman (2021) AVT-b IN21+1K 12.5 30.1 13.6
AVT-h Girdhar & Grauman (2021) irCSN152 IG65M 14.4 31.7 13.2
DCR Xu et al. (2022) TSN IN1K 13.6 30.8 -
DCR Xu et al. (2022) irCSN152 IG65M 15.1 34.0 -
DCR Xu et al. (2022) TSM IN1K 16.1 33.1 -
IAM (Ours) TSN IN1K 13.5 32.1 14.3
IAM (Ours) ConvNeXt IN22K 13.3 32.6 15.1
IAM (Ours) Swin IN22K 14.2 34.0 16.1

Table 4: EGTEA Gaze+ validation results on the split 1 at the τa = 0.5s. We reported the top-1
accuracy and mean top-1 recall of each individual action (A), verb (V) and noun (N).

Methods Top-1 Acc Mean Top-1 Recall
A V N A V N

I3D-Res50 Carreira & Zisserman (2017) 34.8 48.0 42.1 23.2 31.3 30.0
FHOI Liu et al. (2020) 36.6 49.0 45.5 32.5 32.7 25.3
TSN-AVT-h Girdhar & Grauman (2021) 39.8 51.7 50.3 28.3 41.2 41.4
TSN-AFFT Zhong et al. (2023) 42.5 53.4 50.4 35.2 42.4 44.5
AVT Girdhar & Grauman (2021) 43.0 54.9 52.2 35.2 49.9 48.3
TSN-IAM (Ours) 43.5 54.3 52.2 35.5 43.8 46.6
ConvNeXt-IAM (Ours) 44.6 54.5 53.1 36.3 42.6 45.3
Swin-IAM (Ours) 45.4 55.9 54.3 37.4 46.5 49.3

It is crucial to note that EGTEA Gaze+ only annotations for the latest timestep T . Consequently,
̂yt−1:t−S in our model solely relies on self-prediction without of any supervision.

Moreover, the results indicate that models utilizing sequential or recurrent networks tend to have an
edge over those based on clip approaches. These observations align with similar findings reported
in Wang et al. (2018); Su et al. (2020).

5.4 DISCUSSION

This section delves into the analysis of the optimal context length for IAM and discusses the design
choices made. All experiments related to this analysis were conducted using the EK100 dataset.

Context Length. We evaluated the performance across varying context lengths, ranging from 10 to
60 seconds, where longer lengths correspond to the observation of an increased number of prior ac-
tion trajectories. Table 5 unveils that our model reaches its peak performance with 30-second inputs.
This suggests that performance does not invariably enhance with extended contexts, a conclusion
that is in harmony with preliminary studies Furnari & Farinella (2020a). However, the optimal in-
put length for our model markedly exceeds that reported for earlier recurrent models, underscoring
our model’s proficiency in harnessing historical data in extended video observations through higher-
order inductive attention.

Furthermore, in the EK100 dataset, a 30-second context encompasses approximately 0 to 22 ac-
tions, averaging 7.1 ± 3.5 actions across the training set. Figure 5 illustrates that to address the
uncertainties of the future, a greater number of actions should be observed in the past trajectory.
Consequently, averaging 7.1 actions can substantially mitigate the complexity of the many-past-to-
many-future problem to almost a many-past-to-one-future scenario.

Model Efficiency and Robustness. By employing a recurrent structure to consolidate past obser-
vations and incorporating higher-order structures coupled with inductive attention to hone pertinent
states, our proposed model attains paramount accuracy in action anticipation while preserving ef-
ficiency in model size. Figure 4 draws a comparison between action scores and parameter counts.
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Figure 4: Comparison of IAM to previous meth-
ods on the EK100 dataset, illustrating higher ac-
tion anticipation accuracy with fewer parame-
ters. Multiple points denote variants with differ-
ent backbones.

Figure 5: Quantity of potential futures in rela-
tion to the number of actions in past trajectory.

Figure 6: Evaluation of robustness through
randomizing the number of prior predictions.

Table 5: Comparison of different context
lengths under various backbone options.

Context MT5R (%)
Length TSN ConvNeXt Swin

10s 16.9 16.9 17.2
20s 17.5 17.4 18.0
30s 17.5 17.6 18.1
40s 17.3 16.9 18.0
50s 16.7 17.5 17.9
60s 16.7 17.4 18.0

Table 6: Illustrating the performance differences by se-
quentially removing individual components.

Proposed Change MT5R (%) ∆ MT5R (%)
Swin-IAM 18.1/16.6/17.6 -/-/-
- Inductive Attention 16.8/15.8/17.0 -1.3/-0.8/-0.6
- Class Weighting 15.9/15.0/14.2 -0.9/-0.8/-2.8

ConvNeXt-IAM 17.6/12.0/17.1 -/-/-
- Inductive Attention 16.7/11.2/16.2 -0.9/-0.8/-0.9
- Class Weighting 15.5/12.1/13.6 -1.2/+0.9/-2.6

TSN-IAM 17.5/11.9/16.8 -/-/-
- Inductive Attention 16.4/10.9/16.0 -1.1/-1.0/-0.8
- Class Weighting 15.3/11.2/13.8 -1.1/+0.3/-2.2

Moreover, Figure 6 showcases the elegant degradation in performance of the proposed model when
subjected to injected random frame predictions. The values plotted for n = 1, . . . , 30 are ascer-
tained by randomizing t − n prior action predictions ̂yt−1:t−S , which are utilized as the keys in
inductive attention (as illustrated in equation 9), thereby exemplifying the robustness of the model
to variations in the accuracy of preceding predictions.

Model Performance. In Table 6 analyzes the effectiveness of our innovative inductive attention
mechanism across different backbone architectures. This mechanism integrates higher-order struc-
ture using predictions as priors, consistently shows improvements (refer to supplementary material
for more details). Specifically, it achieves increases of +1.3, +0.9, and +1.1 in overall MT5R for
Swin, ConvNeXt, and TSN backbones, respectively. Additionally, class weighting, which tackles
the sensitivity of MT5R to class imbalances, contributes to further improvements. It is worth to note
that although the performance gains from inductive attention may seem modest, their cumulative
impact in combination with calls weighting is substantial and addresses diverse challenges within
our model.

6 CONCLUSION

This paper introduces an Inductive Attention Model (IAM) designed for video action anticipation.
By utilizing a higher-order recurrent structure, IAM efficiently captures temporal information and
infers from historical data. Incorporating previous predictions as query and keys in inductive atten-
tion allows the model to handle longer contexts in videos, setting new benchmarks in accuracy on
extensive egocentric video datasets. Notably, our approach surpasses existing methods by offering
enhanced accuracy and efficiency, all while necessitating fewer model parameters.
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