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ABSTRACT

The out-of-distribution (OOD) generalization challenge is a longstanding prob-
lem in graph learning. Through studying the fundamental cause of data dis-
tribution shift, i.e., the changes of environments, significant progress has been
achieved in addressing this issue. However, we observe that existing works
still fail to effectively address complex environment shifts. Previous practices
place excessive attention on extracting causal subgraphs, inevitably treating spu-
rious subgraphs as environment variables. While spurious subgraphs are con-
trolled by environments, the space of environment changes encompass more
than the scale of spurious subgraphs. Therefore, existing efforts have a lim-
ited inference space for environments, leading to failure under severe environ-
ment changes. To tackle this issue, we propose a negative inference graph OOD
framework (NeGo) to broaden the inference space for environment factors. In-
spired by the successful practice of prompt learning in capturing underlying se-
mantics and causal associations in large language models, we design a nega-
tive prompt environment inference to extract underlying environment informa-
tion. We further introduce the environment-enhanced invariant subgraph learn-
ing method to effectively exploit inferred environment embedding, ensuring the
robust extraction of causal subgraph in the environment shifts. Lastly, we con-
duct a comprehensive evaluation of NeGo on real-world datasets and synthetic
datasets across domains. NeGo outperforms baselines on nearly all datasets,
which verify the effectiveness of our framework. Our source code is available
at https://anonymous.4open.science/r/NeGo-E4C1.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as the predominant approach for encoding graph data
Kipf & Welling (2016); Xu et al. (2018), delivering notable achievements in various research fields
including molecular property prediction Jumper et al. (2021); Yang et al. (2022), recommendation
systems Wu et al. (2022b); Gao et al. (2022), and traffic flow forecasting Liang et al. (2018); Zhou
et al. (2020). However, as real-world data is evolving with complex patterns, the challenge of data
distribution shift has become a major obstacle for GNNs Gui et al. (2022); Ji et al. (2022); Wang et al.
(2023); Zhou et al. (2022b); Zou et al. (2023). Therefore, various studies concentrate on improving
the Out-Of-Distribution (OOD) generalization ability of graph learning models Chen et al. (2024;
2022); Gui et al. (2024); Miao et al. (2022); Sui et al. (2022); Li et al. (2022); Wu et al. (2022c).

Recently, environment-centered invariant learning methods achieved impressive OOD generaliza-
tion performance with the aim of inferring underlying environment factors in data Chen et al. (2024);
Gui et al. (2024); Xia et al. (2023); Yuan et al. (2023). Those efforts demonstrate that the changes
of environment are the fundamental reason for the shift of data distribution Grice & White (1961);
Liu et al. (2021); Peters et al. (2016). However, existing approaches still lack the ability to decou-
ple causal subgraphs from complex environments. As shown in Fig. 1(a), we double the scale of
spurious substructures in the SPURIOUS-MOTIF(0.5), and observe a significant decrease in the per-
formance of current methods when they are re-conducted on this modified dataset. The reason lies
in that current methods, even those claiming to model environments, focus much of their attention
on extracting causal subgraphs Chen et al. (2022); Wu et al. (2022a;c). This results in the model
being able to extract causal subgraphs only in known environments, leading to failures in unseen
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Figure 1: The motivation of our work. (a) We double the scale of spurious substructures in the
SPURIOUS-MOTIF(0.5) Ying et al. (2019), and observe a significant decrease in the performance of
current methods when they are re-conducted on this modified dataset. (b) The OOD methods, which
treat spurious subgraphs as the environments, fail to address the shift of complex environments.

complex environments. Therefore, this poses a challenging research question: how to broaden the
inference space of environments, enabling model to handle complex environment shifts.

We argue this limitation arises from the positive learning paradigm that focuses solely on extract-
ing causal subgraphs as its primary objective. In contrast, negative inference paradigm, modeling
the sample space except the invariant subgraph as environments, has the potential to broaden the
perception scope of environment. As shown in Fig. 1(b), the positive inference can only infer the
specific ladder, wheel, and tree as environment variables, while the negative inference approach can
infer all variable space except the cycle and house as environments. However, the inaccessibility of
environment information pose challenges to implementing such negative inference. Specifically, (1)
how to formulate the negative inference learning to achieve environment awareness, and (2) how to
utilize environment information for facilitating causal invariant learning.

In this work, we propose a novel Negative inference Graph OOD framework (NeGo). NeGo aims
to achieve causal invariant learning against complex environment shifts by a negative inference.
Firstly, we design a negative prompt learning framework for inferring underlying environment fac-
tors. We model all other class samples, i.e., extra-class samples, as the environment space for the
current graph. This design enables the model to capture a broader scale of environments, no more
limiting to in-sample spurious subgraphs. Secondly, we introduce an environment-enhanced invari-
ant learning strategy to effectively utilize inferred environment variables. Specifically, we design an
interactive decoding scheme that utilizes an attention-based residual connection architecture to en-
capsulate environment embedding into node representations. Different from traditional approaches
that neglect the information of environment variables during subgraph extraction Chen et al. (2024);
Gui et al. (2024), our design incorporates the underlying environment patterns into the process of
invariant subgraph learning. Lastly, we conduct a comprehensive evaluation of NeGo on real-world
datasets across domains, and synthetic datasets. NeGo outperforms baselines on nearly all datasets.
Our contributions can be summarized as follows:

• We observe that existing environment-centered OOD practices encounter difficulties in han-
dling complex environment shifts. Through a comprehensive investigation, we identify that
limited environment awareness space of positive inference is the main reason to restrict the
generalization capacity of existing OOD approaches.

• We propose a novel invariant learning framework with negative inference NeGo. To be spe-
cific, we design an innovative environment inference strategy via negative inference, which
effectively broadens the inference space of environment factors. Moreover, we introduce
an attention-based residual connection to offer our model with the ability to resist complex
environment shifts.

• We conduct extensive experiments on both synthetic and real-world datasets with distribu-
tion shifts to evaluate the performance of NeGo. The results from both visualization and
quantitative analysis indicate that our framework successfully achieves accurate prediction
in complex environmental scenarios, a performance not accomplished by existing methods.
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Figure 2: Illustrations of three structural causal
models (SCMs).

Preliminaries. A graph is denoted as G =
(X ,A) ∈ G, where G is the observed graph
dataset. A ∈ RN×N represents the adjacency
matrix and X ∈ RN×d denotes node features,
where N indicates the number of nodes and d
is the feature dimension. Each graph is associ-
ated with a corresponding label Y . From the
perspective of causal theory, the graph data can
be partitioned into a spurious subgraph GS and
a causal subgraph GC , where GC directly deter-
mines its label Y . The spurious subgraph GS is
controlled by the spurious variable C, while the
causal subgraphs GC is controlled by the causal invariant factor C, as shown in Fig. 2. Based on the
different interdependencies among C, S and Y , structural causal models (SCMs) can be further clas-
sified into Full Informative Invariant Features (FIIF) and Partially Informative Invariant Features
(PIIF) Ahuja et al. (2021); Chen et al. (2022).

Problem definition. Our work aims to address the limitations of existing approaches in handling
complex data distribution shifts. We specifically focus on broadening the inference scope of environ-
ments, enabling the network to handle intricate scenarios of environment shifts. Additionally, our
framework is required to effectively tackle both FIIF and PIIF assumptions.

Comparisons to recent environment-centered OOD practices. Environment-centered studies
Chen et al. (2024); Gui et al. (2024); Li et al. (2022); Wu et al. (2022a); Yang et al. (2022) consider
that the data distribution shifts stem from the changes of environments. To tackle the limitation of
existing works failing to handle the shifts of complex environments, we propose a negative infer-
ence to broaden the inference space for environments. Our approach, which represents a pioneering
practice in utilizing negative inference, is distinct from all existing practices in this field. GALA
Chen et al. (2024) utilized proxy prediction mechanism to infer environment label. The negative
samples mentioned in Chen et al. (2024) serve as proxies for spurious subgraphs, while our nega-
tive inference aim to capture broader environment variables beyond spurious subgraphs. Therefore,
GALA essentially follows the positive inference process with the main goal of extracting the causal
subgraph, failing to infer the entire environment space. LECI Gui et al. (2024) focuses on studying
the variations of spurious substructures to model the environment variables. Such environment in-
ference strategy still relies on a positive inference with narrow cognitive space of the environments.

Environment inference with negative prompt. Our negative prompter is proposed to achieve a
broader inference scale of environments, which is inspired by the success of prompt learning in
language models Brown et al. (2020); Gao et al. (2020). Prompt learning is designed to capture
underlying semantic knowledge in language data, which improves the generalization ability of mod-
els by introducing appropriate prompt tokens to guide the network learn desired answers Rao et al.
(2022); Sordoni et al. (2024); White et al. (2023); Sun et al. (2023). For example, in the seman-
tic emotion classification task, the language model constructs a template such as "the emotion
expressed by this sentence is [class]", where [class] is trained to learn real
label. In a similar way, our framework can be viewed as constructing a set of text prompts such
as "the underlying environments of current sample are [answer]", where
[answer] can be guided to capture the real environment states. Different from random data aug-
mentation techniques Han et al. (2022); Li et al. (2021); Lu et al. (2024); Rong et al. (2019); Wang
et al. (2021); You et al. (2020); Zhao et al. (2021) and distributionally robust optimization (DRO)
methods Staib & Jegelka (2019); Wu et al. (2024); Zhu et al. (2021), our prompt-based approach not
only broadens the scale of environment inference but also deepens the understanding of underlying
data generation process. Existing methods always expand the inference boundary of the model by
incorporating stochastic perturbations. However, the introduction of randomness prevents the model
from capturing the underlying semantics and hinders its ability to deepen the understanding of gen-
eration process. In contrast, our prompt-based approach allows us to deeply study the underlying
casual correlation of variables, which is the reason we adopt the technique of prompt learning. More
discussion about related works can be found in Appendix B.
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Figure 3: The architecture of NeGo. We implements an environment-enhanced graph learning frame-
work in which the environment is extracted through a negative prompt mechanism. The training
process is guided by both a positive loss and a negative loss, aiming to broaden the modeling space
for the environment.

3 GRAPH OOD GENERALIZATION VIA ENVIRONMENT INFERENCE

Existing environment-centered practices aim to enable the networks with the ability to resist data dis-
tribution shifts. However, our empirical observations indicate that these approaches are insufficient
in handling complex environment shifts. To address this issue, we conduct a theoretical analysis of
these methods, and identify that their failures stem from the limited environment inference space of
positive inference by treating spurious subgraphs as environment variables. Further, we propose a
promising method based on negative inference.

3.1 LIMITED ENVIRONMENT COGNITIVE SPACE FOR POSITIVE INFERENCE

From the perspective of causal theory Pearl (2009; 2010), the variables of generating the graph data
include causal subgraph GC and spurious subgraph GS , where GS is controlled by environment
variable E. As shown in Fig. 2, GC → Y demonstrates a stable casual relationship from GC to
Y in the data generation process. Consequently, the distribution shift between the training data and
the test data can be attributed to the shifts of environment E, which can be formally expressed as
Ptrain(G, E) ̸= Ptest(G, E). Modeling environment variables becomes crucial for tackling OOD
generalization issue Chen et al. (2024); Gui et al. (2024); Xia et al. (2023); Yuan et al. (2023). With
the observed training dataset G, environment-centered approaches strive to learn the distribution of
the environment factor E,

P(E|G) = P(G, E)

P(G)
=

P(G|E)P(E)∫
E

P(G|E)P(E)dE
. (1)

The prior distribution P(E) and the likelihood P(G|E) =
N∏
i=1

P(Gi|E) make the numerator theoreti-

cally computable. However, due to the uncertainty in the scale of environments E, the denominator
of Eq. 1 involving integration becomes intractable. To tackle this issue, existing works presuppose
an distribution shift boundary based on environment mixing assumption Li et al. (2022).
Assumption 3.1. If K different environment labels can be extracted from the observed dataset
G, they are formulated by K independent D-dimensional Gaussian distributions N (µi, I), where
µi ∈ R1×D. Therefore, environment variables can be modeled from a vector space perspective,
allowing us to approximate the environment space by exploring the mixture space of vectors.

Given the Assumption 3.1, we can model the environments codebook µ = (µ1, µ2, ..., µK) ∈
RK×D. This environment codebook serves as a proxy for the environment space, representing the
entire environment space through the mixture of vectors. This principle can be expressed formally
as Proposition 3.2.
Proposition 3.2. The scale of environments is modeled as a mixing space of extracted environment
variables. As a result, the new data Gi is associated with the environment state Ei ∼ N (ei · µ, I),
where ei ∈ R1×K representing the mixing weight.
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Proposition 3.2 indicates that the latent variables e = (e1, e2, ..., eN ) ∈ RN×K be regarded as the
proxy factor for the environment variable E, directly determining the observed data G generation
process. The posterior probability of the environments P(E|G) is then transformed into,

P(e|G) = P(G, e)
P(G)

=

N∏
i=1

P(ei)P(Gi|ei)

∑
e
P(e)

N∏
i=1

P(Gi|ei)
=

N∏
i=1

P(ei)∑
e
P(e)

. (2)

The finite space of e allows for the approximation strategy to be feasible. However, the limited scale
of e may limit the capacity of model to effectively counter complex environment shifts, which is
verified by our empirical results. We next delve into the reason contributing to this limitation. We
first present a definition of the basis and base environments of the environment space, similar to the
concepts of basis and base vectors in the vector space.
Definition 3.3. Let Eb = {E1, ..., EK} be the basis of environment space, and each element Ei
within it is referred to as the base environment. The linear combination of base environments can
completely describe the entire environment space.

Actually, the environment mixing assumption fundamentally relies on the expectation that extracted
environment codebook can cover the basis Eb. However, we observe that such goal cannot be
achieved by existing methods. Given a graph G, current environment-centered methods aim to
decompose it into causal subgraph GC and spurious subgraph GS . The spurious subgraph GS

is inferred as the environment variable. Although GS is controlled by environment factor (E →
GS), the space of environment changes encompass more than the scale of spurious subgraphs. For
example, consider the substructure GC that is causally associated with one graph-level property l,
but the variants of such GC act as environment factors for other properties. Existing methods that
treat spurious subgraphs as environments cannot capture such scenario.
Theorem 3.4. Given an observed graph dataset G, the inference process, considering GS as the
environment factor, fails to capture the basis Eb that can represent the entire environment space.

Theorem 3.4 indicates that the mixing of µ is unable to encompass the entire environment space.
Therefore, the existing environment-centered methods have a narrow understanding space of the
environments, which leads to the network incapable to extract the causal graph from the complex
environments. Detailed proof can be found in Appendix C.1. Therefore, the limitations of existing
works are attributed to the narrow inference space of the model for environment variables.

3.2 THE ENHANCEMENT OF NEGATIVE INFERENCE

Negative inference has a major advantage in effectively expanding the cognitive boundary of models.
For example, the positive inference can only infer the specific ladder, wheel, and tree as environment
variables, as shown in Fig. 1(b), while the negative inference approach can infer all variable space
except the cycle and house as environments. While the ultimate objective is still to extract invariant
subgraphs, the negative inference mechanism prioritizes inferring the environment space, empower-
ing the model with the capability to adapt to complex environment shifts. From the perspective of
information theory, the training objective of negative inference can be formalized as,

max I(E;GC |Y ) = max I(E;G −GC |Y ) = max I(E;G|Y )− I(E;GC |Y ). (3)

Theorem 3.5. The learning objective of negative inference paradigm (Eq. 3) encompasses a
broader cognitive space for environments, with its upper limit being the ground-truth environment
distribution.

Theorem 3.5 emphasizes that the negative inference paradigm enables a broader-scale environment
inference space by cooperatively modeling both intra-class spurious subgraphs and extra-class sam-
ples. Detailed proofs can be found in Appendix C.2.

4 GRAPH INVARIANT LEARNING WITH NEGATIVE INFERENCE

In this section, we introduce a novel negative inference graph OOD framework NeGo to address
the limitation of existing efforts in handling complex environments shifts. Specifically, NeGo is

5
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developed to design a negative inference learning task to capture underlying environments, and
leverage inferred environment embeddings to enhance graph invariant learning.

4.1 NEGATIVE PROMPT LEARNING FOR ENVIRONMENT INFERENCE

Negative inference focuses on indirectly extracting invariant subgraph by investigating the informa-
tion beyond the causal factors. This leads to the problem that the space of variables beyond causal
information is infinite-dimensional. Given the insight from Theorem 3.5, we decouple the process
of modeling the environment through negative inference into two components: the extraction of
intra-class spurious subgraphs and the inference of extra-class samples. Modeling spurious sub-
graphs is relatively straightforward and extensively studied. The crucial challenge lies in achieving
a comprehensive understanding of extra-class sample space.

Formally, let the prior distribution of extra-class samples for G be denoted as P(Y ), where G is with
the label Y . We introduce a variational estimate of the environment variables denoted as Qϕ(E|G)
(a.k.a., fϕ), where ϕ is the parameterized network. Denoting KL-divergence as KL(·||·), the training
of Qϕ is to implement the first term of Eq. 3, which can be formalized as following optimization,

min
ϕ

E[KL(Qϕ(E|G))||P(Y )]. (4)

Inspired by the success of prompt learning in capturing underlying semantic and causal associations
in large language models Floridi & Chiriatti (2020); Sordoni et al. (2024), we introduce a negative
prompter to achieve this goal. Specifically, given a sample G belonging to class l, the negative
prompter treats all extra-class samples as environments. Designing appropriate prompt tokens to
guild effective learning is the primary question that needs to be addressed when employing the
concept of prompt learning.

Given the proven efficacy of learnable prompts in various practices, we design class-specific learn-
able prompt tokens P = [v(1),v(2), ..., v(L)], where v(i) ∈ R1×d and L is the number of classes.
The class-specific design manner aims to capture the extra-class sample space for each graph, in
order to achieve the objective defined by Eq. 4. The negative prompter fϕ(·) is guided to learn the
prompt answers AN ∈ RL×d by interacting the encoded graph embedding ZG ∈ R1×d and the
learnable prompts P ,

AN = fϕ(ZG,P ). (5)

The negative prompter fϕ is parameterized the cross-attention network in Transformer decoder
Vaswani et al. (2017), where ZG is obtained by a GNN backbone encoder hψ(·). For a sample
G belonging to class l, such negative prompts answers AN should satisfy the following two proper-
ties:

• The prompts answers AN should produce a low match with graphs whose labels are l.

• The prompts answers AN should produce a high match with graphs whose labels are not l.

With the explanation in the language models, our negative prompt mechanism involves designing
prompt tokens to learn the desired [answer] of "the underlying environments of
current sample are [answer]". These two properties guide fϕ(·) to learn a positive an-
swer when interacting with each extra-class sample and a negative answer when interacting with
each intra-class sample. Therefore, the training objective of our negative prompt mechanism can be
formulated as,

Lnaga = E[KL(P(Y )||Qϕ(E|G))] = −E[logPϕ(Ȳ |G,P )− logPϕ(Y |G,P )]. (6)

The environment variables we infer are class-specific, in contrast to the global environment factors
constructed by previous methods. Our design is intuitively reasonable, as a specific subgraph may
be perceived by one class as causal information, while its minor variations are perceived by other
classes as environments. Moreover, it is worth noting that we do not overlook the inference of the en-
vironments (spurious subgraphs) within intra-class samples. Given that the intra-class environments
are always intertwined with causal factors, we incorporate the inference of intra-class environment
variables into the discovery of the causal subgraph, which is provided in the next subsection.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 ENVIRONMENT-ENHANCED GRAPH INVARIANT LEARNING

While inferring environment variables is a crucial step in understanding the data generation process,
the ultimate goal of graph learning is to achieve casual invariant prediction. Thus, the next challenge
to address is the disentanglement of the causal subgraph from environments. Existing methods often
neglect the design of a graph-tailored environment exploitation algorithm, which can lead to the
failure in extracting causal subgraphs when environment becomes complex Gui et al. (2024).

We propose an environment-enhanced invariant learning mechanism that leverages perceived latent
environment embeddings to achieve the extraction of causal subgraphs with resistance to complex
environment disturbances. Different from the negative prompter that investigates the extra-class
sample space, we concentrate on the disentanglement of causal invariant substructures within the
intra-class samples in this subsection.

Let the marginal distribution of the causal subgraph GC be P(GC). We introduce a variational esti-
mation of the subgraph extraction Qξ(GC |G,E) (a.k.a., gξ), where ξ is the parameterized networks.
The model can make casual invariant predictions of the label distribution Pθ(Y |GC) (a.k.a., gθ),
only when the causal graph is accurately extracted from complex environments. The learning objec-
tive for environment-enhanced graph invariant learning Pθ ◦Qξ(·) is to implement the second term
of Eq. 3, which can be formalized as following optimization,

min
ξ,θ

E[KL(Qξ(GC |G,E)||P(GC))− logPθ(Y |GC)]. (7)

The environment embedding AN ∈ RL×d is inferred at the graph level, but the extraction of
substructures often requires node-level operations. Therefore, the primary focus of environment-
enhanced invariant learning is to propagate the perceived environment embedding AN to individual
nodes. We design an interaction-decoding module gξ1(·) to address this issue.

Specifically, gξ1(·) consists of three families of learnable parameters, i.e., WQ,WK ,WV ∈ Rd×d.
gξ1(·) takes the node-level representation Z ∈ RN×d encoded by the GNN encoder hψ(·) and the
environment embedding AN ∈ RL×d obtained by negative prompt as inputs. Three hidden state
matrices are calculated by,

ZQ = ZWQ, AK = ANWK , AV = ANWV . (8)
The node embedding with environment information obtained through residual connections is,

ZE = softmax(
ZQ(AK)T√

d
)AV +Z. (9)

We exploit a subgraph extractor GC = gξ2(ZE) to realize invariant subgraph discovery. Then,
GC is encoded by hψ(·) to obtain the causal representation for prediction. This representation is
passed through an MLP layer gθ to model the distribution of Y . Therefore, the training objective of
environment-enhanced invariant learning is,

Lposi = −E[logPξ,θ(Y |GC)] = −E[logPθ(Y |GC) + log Pξ1,ξ2(GC |G,AN )]. (10)

4.3 OPTIMIZATION AND THEORETICAL ANALYSIS

Our NeGo achieves a graph learning framework with a wider space of environment inference. This
is accomplished through two sequential approaches, first focusing on constructing the learning task
for negative inference, and then leveraging the environment embeddings obtained from negative
inference to enhance graph causal invariant learning. Thus, the training objective of our NeGo is,

L = Lnega + Lposi. (11)
The training process of NeGo is provided in Alg. 1. It is worth noting that the two sub-challenges
addressed by NeGo are not independent but closely interconnected. The environment negative infer-
ence mechanism assists the network in comprehending the distribution shift of data, while the causal
invariant learning with environment enhancement empowers the network to accurately extract causal
invariant subgraphs even in complex environments. Therefore, the former serves as a foundation for
the latter. This design reflects the principle that understanding data generation process is crucial to
enhance the generalization of models. We also provide theoretical evidence supporting the ability
of NeGo to effectively address both FIIF and PIIF under both cases of H(GC |Y ) < H(GS |Y ) and
H(GC |Y ) > H(GS |Y ), where detailed proof is provided in Appendix C.3.

7
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Table 1: The ROC-AUC performance of NeGo on four real-world datasets in chemical research
field. ID val and OOD val represent the results of OOD test set using the in-distribution and out-of-
distribution validation sets, respectively Gui et al. (2024). The best results are shown in bold and
the second best results are underlined.

Model GOOD-HIV-scaffold GOOD-HIV-size DrugOOD-assay DrugOOD-size
ID val OOD val ID val OOD val ID val OOD val ID val OOD val

ERM 69.61±1.32 70.37±1.19 61.66±2.45 57.31±1.06 70.03±0.16 72.18±0.18 62.97±0.26 63.29±0.33
IRM 73.35±2.30 70.89±0.29 58.52±0.86 60.86±2.78 71.56±0.32 72.69±0.29 63.24±0.26 63.46±0.23
V-Rex 71.73±3.51 71.18±0.69 58.39±1.54 60.10±2.09 70.22±0.86 72.32±0.58 63.87±0.42 64.11±0.39
IB-IRM 67.56±2.31 66.25±0.93 57.45±0.74 56.65±1.22 69.34±0.48 71.32±0.76 64.03±0.61 64.59±0.70
DIR 65.84±1.71 68.59±3.70 59.69±1.59 60.85±0.52 67.29±0.73 69.70±0.65 63.85±0.65 64.73±0.54
GSAT 71.55±3.58 71.39±1.41 60.92±1.00 60.61±1.19 71.01±0.54 72.26±0.45 65.12±0.38 65.67±0.45
CAL 73.48±2.64 72.38±1.03 62.83±1.26 62.58±1.04 71.89±0.92 71.23±1.13 63.85±0.49 64.22±0.74
CIGA 66.25±2.89 71.47±1.29 58.24±3.78 62.56±1.76 67.68±1.14 70.54±0.59 64.14±0.66 64.83±0.79
GIL 70.89±1.60 70.23±1.23 61.74±1.76 61.29±1.34 70.45±0.89 70.73±1.36 64.91±0.51 65.43±0.64
LECI 74.04±0.65 74.43±1.69 64.83±2.59 65.44±1.78 72.67±0.46 73.45±0.17 65.93±0.43 66.49±0.60
GALA 73.85±1.10 74.02±1.34 63.99±1.54 64.45±2.26 72.83±0.73 73.23±0.29 65.23±0.72 65.84±0.52
NeGo 75.21±0.73 75.87±1.02 65.23±1.74 65.92±1.82 73.20±0.18 73.94±0.25 65.49±0.73 66.91±0.84

Theorem 4.1. Given the FIIF or PIIF assumptions under both cases when H(GC |Y ) < H(GS |Y )
and H(GC |Y ) > H(GS |Y ), the causal subgraph GC can be extracted by optimizing Eq. 11.

5 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of NeGo in addressing the out-of-
distribution generalization issue. Specifically, we analyze the effectiveness of NeGo by answering
the following questions. Q1. Does our approach effectively address the issue unresolved in exist-
ing works? Q2. Is our framework sufficiently interpretable? Q3. Does each component in our
NeGo effectively enhance the generalization capacity? Q4. Does our framework operate with high
efficiency?

5.1 BASELINES AND DATASETS

Baselines. We choose four representative OOD methods and seven graph-specific OOD approaches
for comparison. Representative OOD frameworks consist of ERM, IRM Arjovsky et al. (2019),
V-Rex Krueger et al. (2021), and IB-IRM Ahuja et al. (2021). The Empirical Risk Minimization
(ERM) baseline is a vanilla GNN with ERM objective, which is trained by using the same settings
with Gui et al. (2024). Graph OOD approaches includes DIR Wu et al. (2022c), GSAT Miao et al.
(2022), CAL Sui et al. (2022), CIGA Chen et al. (2022), GIL Li et al. (2022), LECI Gui et al. (2024)
and GALA Chen et al. (2024). Detailed baselines is given in Appendix B.5.

Figure 4: The causal subgraphs extracted by NeGo on the modified dataset in Fig. 1(a).

Datasets. We adopt two synthetic datasets with distribution shift and six real-world scenario shift
datasets from various domains. Synthetic datasets include GOOD-Motif Wu et al. (2022c) and
GOOD-CMNIST Gui et al. (2022). In molecular property prediction fields, we select the scaffold
and size splits of GOOD-HIV dataset Gui et al. (2022); Wu et al. (2018) and the assay and size splits
of DrugOOD LBAP-core-ic50 dataset Ji et al. (2022). We also choose two social sentiment graph
datasets with distribution shift a, including GOOD-SST2 and GOOD-Twitter Yuan et al. (2022).
Detailed descriptions about datasets can be found in Appendix B.4.
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5.2 IMPLEMENTATION DETAILS

Table 2: The accuracy of NeGo on two sentiment graph datasets.

Model GOOD-SST2 GOOD-Twitter
ID val OOD val ID val OOD val

ERM 78.37±2.64 80.41±0.69 54.93±0.96 57.04±1.70
IRM 79.73±1.45 80.17±1.52 55.27±1.19 57.72±1.03
V-Rex 79.31±1.40 80.33±1.09 56.46±0.93 56.37±0.76
IB-IRM 78.93±1.23 80.22±0.55 54.23±1.21 56.73±1.02
DIR 77.65±0.71 81.50±0.55 55.32±1.85 56.81±0.91
GSAT 79.25±1.09 80.46±0.38 55.09±0.66 56.07±0.53
CAL 81.20±1.21 82.34±0.67 56.77±0.86 57.82±0.44
CIGA 80.37±1.46 82.93±0.75 57.51±1.36 57.19±1.15
GIL 81.43±1.02 83.31±0.50 58.21±1.24 57.82±1.18
LECI 82.93±0.22 83.44±0.27 59.35±1.44 59.64±0.15
GALA 82.60±0.66 82.98±0.42 59.03±0.65 60.45±1.36
NeGo 82.72±0.51 84.16±0.23 60.82±0.22 61.25±0.70

We implement our Nego and
parts of baselines with Py-
Torch 1.10.1 on a server with
NVIDIA A100-PCIE-40GB.
All experiments are repeated
with 10 different random seeds
of [1,2,3,4,5,6,7,8,9,10]. The
reported results include the
mean and standard deviation
obtained from these 10 runs.
During the training stage, we
employ the Adam optimizer.
We set the maximum number
of training epochs to 200. The
batch size of training is set as
32 except for GOOD-CMNIST,
which uses a batch size of 64.
For GOOD-Motif, GOOD-CMNIST and GOODSST2, the learning rate is set to 5 × 10−4. For
GOOD-HIV, GOOD-Twitter, and DrugOOD, we exploit a learning rate of 10−4. Additionally, we
utilize a weight decay of 10−4 to help with regularization and prevent overfitting. The experiment
setup of all baselines is same as Gui et al. (2024).

5.3 RESULT COMPARISON AND ANALYSIS

We comprehensively evaluate the OOD performance of NeGo on both real-world and synthetic
datasets to answer Q1. Tab. 1 and 2 present the performance of NeGo on chemical and sentiment
graph datasets. Tab. 3 showcases the performance of our framework on two synthetic datasets.
Compared to existing methods, our method achieves optimal performance on almost all datasets.
Besides, the performance of environment-centered OOD methods, such as LECI and GALA, often
achieves suboptimal or even optimal results on various datasets. This demonstrate the effectiveness
of modeling environment factors in addressing data distribution shifts.

Table 3: The accuracy of NeGo on two synthetic datasets, where
GOOD-Motif has a structure shift and GOOD-CMNIST has a fea-
ture shift.

Model GOOD-Motif GOOD-CMNIST
basis size color covariate

ERM 60.93±11.11 56.63±7.12 26.64±2.37 57.56±9.59
IRM 64.94±4.85 54.52±3.27 29.63±2.06 58.11±5.14
V-Rex 61.59±6.58 55.85±9.42 27.13±2.90 48.78±7.81
IB-IRM 63.45±5.42 52.76±4.67 28.95±1.98 50.56±6.62
DIR 34.39±2.02 43.11±2.78 22.53±2.56 44.67±0.00
GSAT 62.27±8.79 50.03±5.71 35.02±2.78 68.22±7.23
CAL 59.45±3.34 51.27±2.50 28.87±1.80 52.59±2.76
CIGA 37.81±2.42 51.87±5.15 25.06±3.07 56.78±2.99
GIL 68.48±2.46 63.61±2.75 47.32±2.27 57.61±2.98
LECI 84.56±2.22 71.43±1.96 51.80±2.71 83.20±5.89
GALA 80.95±1.31 70.45±1.30 52.68±2.40 81.23±3.29
NeGo 83.96±1.90 72.65±1.47 53.28±1.79 82.43±1.73

To further investigate whether
our method can effectively
tackle environment shifts, we
evaluate the performance of
our framework in the the com-
plex environments scenario il-
lustrated in Fig. 1(a). NeGo
achieves 87.34% and 80.29%
on the original and adjusted
dataset, respectively. There
is only a minor decrease in
performance, suggesting that
our method effectively tackles
the limitations encountered by
existing methods in handling
complex environments. To an-
swer the Q2, we visually rep-
resent the causal subgraphs ex-
tracted by NeGo on the modi-
fied dataset in Fig. 1(a). As depicted in Fig. 4, our method consistently extracts the ground-truth
subgraph. The visualized results further validate the effectiveness of our proposed negative inference
method. By modeling extensive extra-class samples as environments, our approach offers undeni-
able advantages in handling complex environment shifts.
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Table 5: The training efficiency of NeGo with other baselines on DrugOOD-size (s/epoch).

Models GSAT DIR CIGA LECI GALA NeGo
Training Time 51.6 52.6 54.2 59.1 62.3 58.7

5.4 ABLATION STUDIES

To answer Q3, we investigate each component of NeGo. Specifically, we conduct ablation studies
to explore the effectiveness of negative prompter and interactive decoding component. Tab. 4 shows
that the performance drops significantly when there is either no negative prompter or interactive
decoding component. NeGo-NoPro refers to the framework that eliminates negative prompter and
negative loss, which causes the most performance drop. Therefore, the negative inference mecha-
nism plays a vital role in enhancing the capability of environment perception. This further validates
the rationale of our motivation for incorporating negative inference. NeGo-NoEnv indicates that the
casual subgraphs are extracted directly using node embedding without integrating inferred environ-
ment information. The performance decline emphasizes the significance of environment utilizing
strategies overlooked by existing works.

5.5 EFFICIENCY ANALYSIS

Table 4: Ablation studies of NeGo.

Model DrugOOD
(assay)

GOOD
(Twitter)

NeGo-NoPro 70.37 58.41
NeGo-NoEnv 71.71 59.17
NeGo 73.20 60.82

To address Q4, we explore the training efficiency of
NeGo from both theoretical and practical perspectives.
The time complexity of NeGo is O(V×d2+V×d×h+
E × d), where |V| represents the number of nodes, |E|
denotes the number of edges, d is the feature dimension,
and h represents the number of cross-attention heads.
Our method has linear time complexity with high train-
ing efficiency. We empirically compare the training ef-
ficiency of NeGo with other baselines on DrugOOD-size dataset as shown in Tab. 5. Compared
with some earlier invariant learning methods (DIR and GSAT), the minor increase in running time
of our menthod brings out the substantial performance boost. Additionally, our approach demon-
strates greater competitiveness in both training efficiency and performance compared to existing
environment-centered methods.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a negative inference graph OOD framework NeGo to handle complex envi-
ronment shift in OOD scenarios. Our NeGo aims to comprehensively infer the entire environmental
space by explicitly modeling the extra-class environment that has been significantly overlooked in
prior research. By inheriting the successful practices of prompt learning in language modeling,
we fist design a negative prompter to realize extra-class environment awareness. We then intro-
duce an environment-enhanced invariant learning strategy to eliminate spurious subgraphs from the
data. This strategy effectively leverages the inferred environment variables to enhance the ability
to remove irrelevant information. Extensive experiments on real-world datasets across domains and
synthetic datasets validate the effectiveness of NeGo.

Future work. Our design can effectively solve the existing challenges, but there still exist a lim-
itation. The negative prompter in our approach learns class-specific environment embeddings by
considering all extra-class samples as environment variables. This results in our method relying on
the class information of the dataset. With a larger number of classes, the model is better equipped
to capture and recognize complex underlying environment factors. When the dataset is limited to
a binary classification task, environment factors always present within the in-class samples. In this
case, our negative prompter may have reduced capability to expand the environment inference space.
The reason for this limitation is that the model is sensitive to the characteristics of dataset. Actu-
ally, we can realize that environment variables are often shareable across datasets. Therefore, it is a
promising research direction to study cross-task graph OOD work to capture broader environmental
information. In the future, we aim to investigate transferable multi-task graph out-of-distribution
generalization learning, which is not discussed in existing works.
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A BROADER IMPACTS

Graph learning models are widely used to support scientific research and social development, such
as molecular discovery, recommendation systems, and smart cities. However, with the increasing
complexity of data scale and application scenarios, the distribution shifts between training and test
data have become a significant obstacle in the development of graph learning. In light of this, our
work aims to address the issue of data distribution shifts in the model and promote the broader
application of graph learning in various fields. Therefore, our work aims to develop a model with the
out-of-distribution generalization ability and thereby promote the widespread application of graph
learning in various fields.

We ensure the full ethical compliance of our work, and all the datasets we utilize are publicly avail-
able. Our work does not involve human subjects and does not introduce any potential negative social
impacts or issues related to privacy and fairness.

B RELATED WORKS

B.1 OOD GENERALIZATION.

Out-of-Distribution (OOD) generalization learning refers to the task of adapting a model that has
been trained on a specific distribution to effectively process data from a potentially different dis-
tribution. This study holds significant importance because the issue of data distribution shifts is a
common occurrence in the real world. External factors, such as changes in environmental conditions,
technological advancements, or evolving user preferences, can lead to shifts in the data distribution.
Various approaches can be employed for OOD generalization, including data augmentation Rong
et al. (2019); Wang et al. (2021); You et al. (2020), domain adaptation Wang & Deng (2018), and
causal invariant learning Sui et al. (2022); Wu et al. (2022c). Jia et al. Jia et al. (2024) innova-
tively proposes a mixup-based environment modeling framework, IGM, to enhance graph invariant
learning. IGM focuses on expanding the environment space through generation (mixing), while our
NeGo aims to mine environmental space as much as possible from the novel perspective of negative
learning. Piao et al. (2024) et al. creatively proposes a hierarchical environment inference paradigm
to enhance graph invariant learning methods. This work focuses on generating sample-level hier-
archical environments to expand the modeling of the environment space. Unlike this method, our
NeGo focuses on class-level environment augmentation, collaborating with extra-class environment
modeling and inter-class invariant learning to achieve global inference of environment space.

Among them, causal invariant learning demonstrates impressive performance in various fields, due to
its powerful interpretability Chen et al. (2022); Li et al. (2022); Miao et al. (2022); Wu et al. (2022c).
Our NeGo is aligned with this research line, as an environment-centered invariant learning method
based on causal theory. However, in the field of graph learning, most existing invariant learning
methods focus on extracting the causal graph to achieve invariant learning. This strategy limits
the inference space of the environments to the dimension of spurious subgraphs, which hinders the
ability of models to capture the complex environment states. In this work, we propose an invariant
learning mechanism based on negative inference to address this limitation.

B.2 PROMPT LEARNING

Prompt learning is proposed in NLP models to infer underlying semantic and potential causal associ-
ations in linguistic data. Many effective prompt methods has developed with the introduction of large
language models, including some hand-crafted prompts Brown et al. (2020), discrete prompts Gao
et al. (2020); Shin et al. (2020), and learnable prompts design Li & Liang (2021). There have been
various works on the interaction of computer vision and natural language processing fields, e.g., text-
to-image retrieval text-to-image retrieval Wang et al. (2019), visual question answeringAntol et al.
(2015); Rao et al. (2022); Zhou et al. (2022a) and so on.

In recent years, prompt learning has also been developed in the graph learning field, including multi-
task learning framework Sun et al. (2023). Our approach is the pioneering effort to apply prompt
learning to address the challenge of graph OOD generalization issue.
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B.3 COMPARISONS TO PREVIOUS GRAPH OOD WORKS

Environment-centered studies Chen et al. (2024); Gui et al. (2024); Li et al. (2022); Wu et al. (2022a);
Yang et al. (2022) consider that the data distribution shifts stem from the changes of environments.
Therefore, these practices enable the model to withstand data distribution shifts by inferring environ-
ment variables. Concretely, the networks are often trained with the objective of equipping models to
effectively handle mixed environments scenarios. However, this design allows the networks to make
narrow inference about the environments, and makes the networks unable to handle with distribution
shifts in complex environments. We attribute this limitation of inference scale to the shortcomings
of positive inference, which is proved both empirically and theoretically. Therefore, we propose a
negative inference mechanism to broaden the inference space for environments, without relying on
the mixed environments hypothesis.

Our approach, which represents a pioneering practice in utilizing negative inference, is distinct
from all existing practices in this field. DIR Wu et al. (2022c) aims to identify causal patterns
that are stable across different distributions and filter out spurious patterns that are unstable. This
work is a classic work in the early application of causal theory to address the challenge of graph
OOD generalization. It focuses on obtaining invariant subgraphs with a positive inference manner.
GIL Li et al. (2022) aims to capture the invariant relationships between predictive graph structural
information and labels in a mixture of latent environments through jointly optimizing three mutually
promoting modules. This method relies on the mixing environment hypothesis and has limited
inference space for environments. CIGA Chen et al. (2022) build three Structural Causal Models
(SCMs) to characterize the distribution shifts that could happen on graphs: one is to model the
graph generation process, and the other two are to model two possible interactions between invariant
and spurious features during the graph generation, i.e., FIIF and PIIF. This work provides a fresh
perspective on existing research on out-of-distribution generalization based on causality. However,
it still falls within the framework of positive inference, aiming to extract causal subgraphs. GALA
Chen et al. (2024) utilized proxy prediction mechanism to infer environment label. It is worth noting
that the negative samples mentioned in this work are different from our negative inference, and their
design is also to improve performance under the mixed environments hypothesis. Thus, it essentially
follows a positive inferring process for environment variables. LECI Gui et al. (2024) primarily
focused on spurious substructures space to model the environment variables. Such environment
inference strategy still relies on a positive inference with narrow cognitive space of the environments.

Algorithm 1: The training process of NeGo
Input: training data G, negative prompts P .
Initial: the GNN encoder hψ , the negative prompter fϕ, environment-enhanced invariant
learning mechanism gξ, final predictor gθ, learnable prompt tokens P , the number of epochs K.
for i = 1 to K do
ZG = hψ(G)
AN = fϕ(ZG,P )
ZQ = ZWQ, AK = ANWK , AV = ANWV

ZE = softmax(Z
Q(AK)T√

d
)AV

Y = gθ(GC), GC = g
2
(ZE +Z)

Optimizing:
Lnaga = E[KL(P(Y )||Qϕ(E|G))] = −E[logPϕ(Ȳ |G,P )− logPϕ(Y |G,P )]
Lposi = −E[logPξ,θ(Y |GC)] = −E[logPθ(Y |GC) + log Pξ1,ξ2(GC |G,AN )]
min

ψ,ϕ,θ,ξ,P
L = Lnega + Lposi

end for
Return hψ , fϕ, gξ, gθ and P

B.4 DATASETS

We adopt two synthetic datasets with distribution shift and six real-world scenario shift datasets from
various domains. Synthetic datasets include GOOD-Motif Wu et al. (2022c) and GOOD-CMNIST
Gui et al. (2022). In molecular property prediction fields, we select the scaffold and size splits of
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Table 6: Statistics on the number of graphs in the datasets.

Dataset Training ID validation ID test OOD validation OOD test
GOOD-HIV-Scaffold 24682 4112 4112 4113 4108
GOOD-HIV-Size 26169 4112 4112 2773 3961
GOOD-SST2-Length 24744 5301 5301 17206 17490
GOOD-Twitter-Length 2590 554 554 1785 1457
GOOD-CMNIST-Color 42000 7000 7000 7000 7000
GOOD-Motif-Basis 18000 3000 3000 3000 3000
GOOD-Motif-Size 18000 3000 3000 3000 3000
DrugOOD-assay 34179 11314 11683 19028 19032
DrugOOD-size 36597 12153 12411 17660 16415

GOOD-HIV dataset Gui et al. (2022); Wu et al. (2018) and the assay and size splits of DrugOOD
LBAP-core-ic50 dataset Ji et al. (2022). We also choose two social sentiment graph datasets with
distribution shifts, including GOOD-SST2 and GOOD-Twitter Yuan et al. (2022). Detailed statistics
on the number of graphs in those datasets are provided in Tab. 6.

• GOOD-Motif is a synthetic dataset designed for studying structure shifts. Each graph in
the dataset is created by connecting a base graph and a motif, where the label is determined
by the motif. This accessible ground-truth substructure brings a lot of convenience to the
invariant subgraph learning with interpretability. This dataset include five label-irrelevant
base graphs (wheel, tree, ladder, star, and path) and three label-determining motifs (house,
cycle, and crane) are used to generate the graphs in the dataset. In environment-centered
invariant learning, such base graphs can be seen as environment factors and such motifs are
be consider as the casual factors.

• GOOD-CMNIST is a semi-synthetic dataset that has been purposefully created to evaluate
node feature shifts. It comprises graphs constructed from hand-written digits extracted from
the MNIST database, with the transformation applied using superpixel techniques Monti
et al. (2017).

• GOOD-HIV is a compact and real-world molecular dataset that has been derived from
Wu et al. (2018). It comprises molecular graphs, where atoms represent nodes and chem-
ical bonds represent edges. The primary task associated with this dataset is to predict a
molecule’s potential for inhibiting HIV replication. Its distribution shift scenario is devel-
oped into two, i.e., the scaffold, and the size of nodes in a molecular graph.

• DrugOOD(LBAP-core-ic50) is utilized in the Ligand-based Affinity Prediction (LBAP)
task, where the core noise level and IC50 measurement type serve as domain features. Its
distribution shift scenario is developed into three, i.e., the scaffold, the size, and the assay.

• GOOD-SST2 is a real-world social sentiment dataset derived from natural language. This
dataset represents each sentence as a graph, where individual words are treated as nodes,
and their corresponding word embeddings serve as node features. The primary task in
this dataset involves binary classification, aiming to predict the sentiment polarity of each
sentence.

• GOOD-Twitter is a real-world natural language sentiment dataset that shares the same
transformation process as the SST2 dataset. The classification task of this dataset involves
predicting one of three sentiment polarities for each sentence. Similar to the GOOD-SST2
dataset, the sentence lengths are chosen as the domains.

B.5 BASELINES

We choose four representative OOD methods and seven graph-specific OOD approaches for compar-
ison. The representative OOD frameworks we select consist of ERM, IRM Arjovsky et al. (2019),
V-Rex Krueger et al. (2021), and IB-IRM Ahuja et al. (2021). The Empirical Risk Minimization
(ERM) baseline is a vanilla GNN with ERM objective, which is trained using the same settings with
Gui et al. (2024). Graph OOD approaches includes DIR Wu et al. (2022c), GSAT Miao et al. (2022),
CAL Sui et al. (2022), CIGA Chen et al. (2022), GIL Li et al. (2022), LECI Gui et al. (2024) and
GALA Chen et al. (2024).
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• DIR Wu et al. (2022c) is an early work using causal theory to address the distribution
shifts issue in graph data. This work provides detailed theoretical proofs that demonstrate
the feasibility of extracting invariant subgraph from graph data.

• GSAT Miao et al. (2022) employ information bottleneck theory to select causal subgraphs
under onlythe FIIF assumption. The proposed stochastic attention mechanism in this paper
is highly robust in extracting casual subgraphs, and has emerged as a backbone model in
numerous methods. Actually, the subgraph extractor used in our work is also inspired by
GSAT.

• CAL Sui et al. (2022) is guided by the backdoor adjustment principle derived from causal
theory. It encourages the Graph Neural Networks (GNNs) to focus on exploiting causal
features while disregarding shortcut connections.

• CIGA Chen et al. (2022) is the first graph OOD method considering both Fully Informa-
tive Invariant Feature (FIIF) and Partially Informative Invariant Feature (PIIF) assumptions.
This work presents an OOD algorithm for graphs that is provably generalizable under dif-
ferent types of distribution shifts.

• GIL is designed to capture invariant graph patterns in a mixture of underlying environ-
ments and handle the distribution shift issue. This work introduces a GNN-based subgraph
generator to identify potentially invariant subgraphs from the complex interaction between
invariant and variant patterns.

• LECI comprehensively reviews existing OOD approaches and identifies the current causal-
subgraph discovery challenges. This work jointly optimize label and environment causal
independence to achieve powerful causal subgraphs learning.

• GALA designs an additional assistant model to enhance model with more powerful OOD
generalization ability without explicit environment labels. Theoretical proofs establish that
GALA possesses robust out-of-distribution generalization capabilities under the FIIF and
PIIF assumptions.

C THEORY AND DISCUSSIONS

C.1 PROOF OF THEOREM 3.4

Theorem C.1. Given an observed graph dataset G, the inference process, considering GS as the
environment factor, fails to capture the basis Eb that can represent the entire environment space.

Proof. The basis Eb represents a set of fundamental components or features that can accurately
represent the entire environment space. These components capture the essential variations, patterns,
and characteristics present in the environment. However, if the inference process fails to capture
this basis, it implies that the process is unable to fully understand and model the complexities of
the environment. Thus, we next investigate that whether the environment variable inferred from GS

covers such base environments. We consider two SCMs hypotheses FIIF and PIIF as shown in Fig.
2.

Under the FIIF assumption, Y⊥GS |GC , we have P (Y,GS |GC) = P (Y |GC) · P (GS |GC).
This conditional independence assumption leads to an equivalent expression: P (Y |G) =
P (Y |GS , GC) = P (Y |GC). Therefore, the process of extracting the causal subgraph GC is equiv-
alent to the process of modeling the spurious correlations GS . Traditional positive casual learning
methods are capable of handling the FIIF assumption.

Under the PIIF assumption, Y�⊥GS |GC , we have P (Y,GS |GC) ̸= P (Y |GC) · P (GS |GC). Fur-
thermore, we can obtain P (Y |G) = P (Y |GS , GC) ̸= P (Y |GC). Thus, the process of extracting
the causal subgraph GC cannot be used to infer the labels of samples. More formally, using mutual
information theory, we derive the following,

I(Y ;GS |GC) = H(Y |GC)−H(Y |GS , GC) > 0, (12)
H(Y |GC) > H(Y |GS , GC). (13)

This indicates that, given the causal subgraph GC , the uncertainty of Y is higher than when both
the spurious subgraph GS and the causal subgraph GC are given. This suggests that the spurious
subgraph GS contains additional information about Y .
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Therefore, the causal subgraph ĜC learned by the model with the positive learning manner contains
components of the spurious subgraph, i.e., GS ∩ ĜC ̸= ∅. At this point, if we can obtain the basis
for the environment space, the model should be able to infer the spurious subgraph GS and treat
it as part of the environment E. The extracted causal subgraph ĜC should be able to effectively
remove the spurious subgraph, i.e., GS ∩ ĜC = ∅. This clearly contradicts the PIIF assumption,
indicating that the model currently lacks the capability to obtain a basis for the environmental space.
Therefore, simply inferring the causal subgraph with a postive manner is not sufficient to address
the PIIF assumption. Since E → GS , modeling the spurious subgraph GS requires modeling and
understanding its root E. Existing methods that simply model G − GC also lack the capability to
address the PIIF assumption.

C.2 PROOF OF THEOREM 3.5

Theorem C.2. The learning objective of negative inference paradigm (Eq. 3) encompasses a
broader cognitive space for environments, with its upper limit being the ground-truth environment
distribution.

Proof. The optimization of Eq. 3 enables a broader scale environment inference space
by cooperatively modeling intra-class spurious subgraphs and extra-class samples. Given that
max−I(E;GC |Y ) = max I(E;GS |Y ), maximizing I(E;GS |Y ) implements the inference pro-
cess for intra-class spurious subgraphs. Consider I(E;G|Ȳ ) =

∑
yi∈Ȳ

I(E;G(i)), maximizing

I(E;G|Y ) implements the modeling of extra-class sample space. The optimization procedure of
max I(E;G|Y ) indicates that all other extra-class samples {G(i)|yi ∈ Ȳ } are modeled as envi-
ronment variables when making environment inference on samples with label Y . Therefore, the
optimization process for Eq. 3 encompasses a broader cognitive space for environments, with its
upper limit being the ground-truth environment distribution.

C.3 PROOF OF THEOREM 4.1

Theorem C.3. Given the FIIF or PIIF assumptions under both cases when H(GC |Y ) < H(GS |Y )
and H(GC |Y ) > H(GS |Y ), the causal subgraph GC can be extracted by optimizing Eq. 11.

Proof. Given that PIIF shifts in the absence of environment labels are more challenging Chen
et al. (2024), our work focuses on the ability of NeGo on the PIIF assumption, namely PIIF implies
that the causal variable GC indirectly influences the spurious variable GS through the mediator
Y . In the following analysis, we analyze the two specific scenarios under PIIF assumption, i.e.,
H(GC |Y ) < H(GS |Y ) and H(GC |Y ) > H(GS |Y ). NeGo aims to comprehensively capture the
underlying environment space by inferring the extra-class sample space and the intra-class spurious
subgraphs. The learning objective of extracting casual subgraph GC can be rewritten as follows,

argmaxĜC

∀ei,ej∈E
(I(Ĝei

C , Ĝ
ej
C |C)−I(ĜC , Ḡ|Y )) = argmaxĜC

∀ei,ej∈E
(−I(ĜC , Ḡ|Y )+I(Ĝei

C , Ĝ
ej
C |Y )), (14)

where Ĝei
C denotes the extracted causal subgraph under any environmental scenario ei. The first term

represents the constraint of negative inference, meaning that NeGo models all extra-class samples
as environmental space. The second term represents the constraint of positive causal inference,
meaning that the causal subgraph extracted under any environmental condition remains consistent,
and is most useful for label prediction. Next, we will demonstrate that NeGo can address the two
scenarios of the PIIF assumption.

For the case of I(GC ;Y ) > H(GC)−H(GS), we can get following derivation,

H(GS |Y ) > H(GC |Y ), (15)
H(GS)− I(GS ;Y ) > H(GC)− I(GC ;Y ), (16)

H(GS)−H(GC) + I(GC ;Y ) > I(GS ;Y ) > 0, (17)
I(GC ;Y ) > H(GC)−H(GS). (18)
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Table 7: Comparison of existing methods on addressing OOD generalization issue.

Methods SCMs H(GC |Y ) < H(GS |Y )
&H(GC |Y ) > H(GS |Y )

Inferred Environment Space

DIR FIIF × Spurious subgraphs
GSAT FIIF × Spurious subgraphs
CIGA FIIF & PIIF × Spurious subgraphs
GALA FIIF & PIIF

√
Spurious subgraphs

LECI FIIF & PIIF
√

Spurious subgraphs

NeGo FIIF & PIIF
√ Intra-class spurious subgraphs and

extra-class sample space

We can get that inferring GC from Y is more effective and seamless compared to simply separat-
ing causal and spurious substructures based on entropy differences. Thus, our positive inference
approach, argmax

∀ei,ej∈E
I(Ĝei

C , Ĝ
ej
C |Y ), is sufficient to achieve the decoupling of GC from the label Y .

For the case of I(GC ;Y ) < H(GC)−H(GS), we get I(GC ;Y ) < H(GC)−H(GS). This means
that we need to consider entropy differences in the data composition to assess the differences be-
tween causal and spurious relationships. In other words, positive inference argmax

∀ei,ej∈E
I(Ĝei

C , Ĝ
ej
C |Y )

alone may result in ĜC containing spurious subgraph information, meaning GS ∈ ĜC . Fortu-
nately, our negative inference strategy can further refines ĜC by considering entropy differences
H(GC)−H(GS) to better distinguish between causal and spurious relationships. Specifically, our
GC is also subject to this constraint through a negative inference approach to learn ĜS ,

GC ∈ G− argmax(I(Y |ĜS)− I(ĜS |Ȳ )). (19)

D ADDITIONAL EXPERIMENT RESULTS

In this section, we will discuss more interpretable results and the training efficiency of our frame-
work.

D.1 MORE INTERPRETABILITY RESULTS

We provide more visual results to discuss the interpretability of NeGo. Fig. 5 presents th casual
subgraphs extracted by NeGo on the modified dataset in Fig. 1(a). Our NeGo can accurately extract
the causal subgraph from the complex spurious information. However, it is worth acknowledging
that in some complex environments, our method may not only extract the ground-truth causal sub-
graph but also include some spurious substructures. Actually, this does not affect the accuracy of
final forecasting.

D.2 CASE STUDIES

We also explore whether incorporating prompt learning can enhance the model’s performance, rather
than our overall negative prompt framework. To this end, we develop a variant of our NeGo frame-
work, referred to as PoGo, which incorporates the positive prompt practice. We evaluate the effec-
tiveness (ROC-AUC) of PoGo on four distribution shift datasets. We present the final performance
by averaging the results from two runs conducted on an NVIDIA H100 PCIe 80 GB with different
random seeds. As shown in Fig. 6, the performance of PoGo is competitive with recent successful
practices like LECI and GALA, demonstrating that the design of positive prompt can still obtain
excellent generalization. However, our framework of negative prompt shows superior performance.

We further investigate the reason of such performance of positive prompt practice PoGo. We modify
PoGo by masking the Lposi (the original Negative Loss Lnaga), obtaining PoGo (w/o. Lposi). With
all other configurations remaining the same, we observe a significant decrease in the performance
of PoGo (w/o. Lposi). Our analysis is as follows: although both Lposi and Lpred are positive losses
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Figure 5: The causal subgraphs extracted by NeGo on the modified dataset in Fig. 1(a).

GOOD-HIV-scaffold

GOOD-HIV-size

DrugOOD-assay

DrugOOD-size

1.0

LECI GALA NeGo PoGo PoGo (w/o. prompt)

Figure 6: To explore the role of prompt learning, we develop a variant of our NeGo framework,
referred to as PoGo, which incorporates the positive prompt practice.

in PoGo, we argue they serve different purposes and convey distinct information. Lprompt, as a
guidance strategy for the positive prompt, guides the prompt module to learn more potential envi-
ronment semantics, while Lpred enhances prediction accuracy. Without prompt guidance Lprompt,
the advantage of prompt learning is not released. Therefore, we argue that positive prompt may also
enhance the model to capture a broader scale of environments. A more in-depth investigation will
be left for our future work.
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