
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

CONTINUOUS-TIME NEURAL NETWORKS FOR MODEL-
ING LINEAR DYNAMICAL SYSTEMS

Chinmay Datar
Institute of Advanced Study
Technical University of Munich, Germany
chinmay.datar@tum.de

Adwait Datar
Institute for Data-Science Foundations
Technische Universität Hamburg, Germany
adwait.datar@tuhh.de

Felix Dietrich
School of Computation, Information, and Technology
Technical University of Munich, Germany
felix.dietrich@tum.de

Wil Schilders
Dept. of Mathematics and Computer Science
Eindhoven University of Technology, Netherlands
w.h.a.schilders@TUE.nl

ABSTRACT

We propose to model Linear Time-Invariant (LTI) systems as a first step towards
constructing sparse neural networks for modeling more complex dynamical sys-
tems. We use a variant of continuous-time neural networks in which the output of
each neuron evolves continuously as a solution of a first or second-order Ordinary
Differential Equation (ODE). Instead of computing the network parameters from
data, we rely on system identification techniques to obtain a state-space model.
Our algorithm is gradient-free, numerically stable, and computes a sparse archi-
tecture together with all network parameters from the given state-space matrices
of the LTI system. We provide an upper bound on the numerical errors for our
constructed neural networks and demonstrate their accuracy by simulating the
transient convection-diffusion equation.

1 INTRODUCTION

From the evolution of quantum systems to the evolution of celestial bodies, most models in science
and engineering are represented as dynamical systems in the form of differential equations. The
exploration of neural networks in the modeling of dynamical systems remains an active research
field, especially from the perspective of optimization, control, and forecasting Böttcher et al. (2022);
Kumpati & Kannan (1990); Linot et al. (2023). There have been considerable strides in modeling
sequential and temporal data typically encountered in dynamical systems using discrete-time recurrent
neural networks which operate iteratively and discretely on hidden states Kim & Cho (2019);
Chimmula & Zhang (2020), and using continuous-time neural networks that model a continuous
evolution of hidden states between observations Rubanova et al. (2019); Lechner & Hasani (2020);
Gholami et al. (2019). However, many challenges are becoming apparent as well.

There are well-known difficulties in training discrete-time Recurrent Neural Networks (RNNs) using
gradient-based approaches such as exploding and vanishing gradients, especially if the data contains
temporal dependencies over long intervals Bengio et al. (1994); Mikhaeil et al. (2022); Hochreiter
et al. (2001). The difficulties with gradient-based optimization persist for linear Li et al. (2021) and
non-linear continuous-time neural networks Meijer (1996). For a special class of dynamical systems,
namely Linear Time-Invariant (LTI) systems, Schilders (2009) proposes using a state-space modeling
algorithm Verhaegen & Dewilde (1992); Verhaegen (1993) to first identify an LTI system from data,
and use it to construct a suitable architecture and compute network parameters gradient-free. Though
the system identification algorithm does the heavy lifting in this case, this approach provides insights

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 1: Illustrative example of our dynamic neural network with two horizontal hidden layers (top hidden
layer with 4 neurons, bottom hidden layer with 3 neurons). The dashed self-connections indicate that the state of
each neuron at a future time depends on its state at the previous time. All neurons in the hidden layer have a
connection to the input layer. All neurons in the hidden and input layers are connected to the output layer.

into designing sparse and accurate neural networks with appropriate model capacity to model the LTI
system. The work by Schilders (2009) is restricted to a class of LTI systems, namely - those with the
state matrix having distinct and well-separated eigenvalues. We relax this constraint and propose an
algorithm to construct neural networks for arbitrary LTI systems.

Constructing sparse models is a big challenge for complex systems appearing in science and engi-
neering. Several ways of introducing inductive biases in the model design, such as equivariance,
invariance, symmetries, and recurrence, have been proposed Karniadakis et al. (2021). However, most
of the traditional approaches still involve extensive trial and error and the exploration of numerous
architectures, which often entail significant computational costs Elsken et al. (2019). Moreover, the
exact model size and capacity required for a task remain unknown, and a common strategy is to train
over-parameterized models Li et al. (2020). In this contribution, we answer the following question:
Given a mathematical model—here, an LTI system—can we convert it into a neural network,
including its full architecture and parameters?

We show that the properties of a given LTI system can be used to construct model-based, sparse neural
network architectures with a particular topology. Interestingly, the pre-processing transformations
we propose and the resulting structure of the state matrix suggest that one should think in terms of
horizontal layers for our neural networks (see Section 2). Our key contributions are as follows.

1. We propose Algorithm A.1 to pre-process a given LTI system and Algorithm A.2 to construct
a sparse neural network using the properties of the given LTI system.

2. We derive a mapping from the parameters of the LTI system (state-space matrices) to the
parameters of the neural network by preserving the input-output map (see Theorem A.1).

3. We give an upper bound on the numerical error of our neural networks (see Theorem A.2).
4. We empirically demonstrate that the neural networks constructed with our proposed algo-

rithm can simulate the LTI system accurately (see Section 3).

A natural question arises at this point: why model LTI systems using neural networks? We emphasize
that the goal of this work is not to compete with or replace the existing numerical solvers for
simulating LTI systems. The motivation behind choosing LTI systems is to start the mathematical
exploration of constructing sparse and accurate neural network models in an easier setting. We view
this work as a stepping stone toward constructing appropriate neural network models of more complex
dynamical systems using mathematical models or data, or both.

2 CONSTRUCTING DYNAMIC NEURAL NETWORKS FROM LTI SYSTEMS

Dynamic Neural Networks In this section, we describe a variant of continuous-time neural
networks we use, termed “Dynamic Neural Networks” (DyNNs) Meijer (1996). The key difference
between classical and dynamic neural networks is that the output of each neuron in the hidden layer
of a DyNN is a solution of a first- or second-order ODE. In contrast to the typical neural network
architectures, we define a dynamic neural network consisting of “horizontal” layers, in which the

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

neurons within the same hidden layer have connections as shown in Figure 1. Note that the neurons
of a DyNN in different horizontal layers are not connected. The input and output layers of a DyNN
are not horizontal.

The neural network architecture describing how neurons are interconnected with each other is shown
in Figure 1. Let nl, di, and do be the number of neurons in the horizontal layer l, the input layer, and
the output layer of a DyNN, respectively. We now define the input-output map of each neuron.

Definition 1. The input-output map of a neuron i in hidden layer l with d
(l)
i inputs is a map

f
(l)
i : C(Ω)d

(l)
i ∋ u

(l)
i 7→ y

(l)
i ∈ C1(Ω)2 defined via the solution to the differential equation

m
(l)
i ξ̈

(l)
i (t) + c

(l)
i ξ̇

(l)
i + k

(l)
i ξ

(l)
i (t) = w

(l)
i u

(l)
i (t), ξ

(l)
i (0) = 0, ξ̇

(l)
i (0) = 0, (1)

y
(l)
i (t) =

[
ξ
(l)
i (t) ξ̇

(l)
i (t)

]T
(2)

where w
(l)
i ∈ R1×d

(l)
i , m(l)

i , c
(l)
i , k

(l)
i ∈ R are the weights, and ξ

(l)
i is the state of the neuron i. The

map f
(l)
i is defined corresponding to (m

(l)
i , c

(l)
i , k

(l)
i , w

(l)
i). If m(l)

i = 0, we refer to the neuron as a
“first-order neuron”, otherwise, it is called a “second-order neuron”.

The architecture shown in Figure 1 can be summarized by the functions fi, where

y
(l)
i = f

(l)
i (u

(l)
i), where, u

(l)
i =

[
uT u̇T [y

(l)
i+1]

T [y
(l)
i+2]

T · · · [y
(l)
nl−1]

T
]T

, (3)

for input coordinate i ∈ {0, · · · , nl − 1} and layer l ∈ {1, · · · , L}. The hidden layers of a DyNN
represent a coupled system of ODEs whose parameters are (m(l)

i , c
(l)
i , k

(l)
i , w

(l)
i). The output layer of

a dynamic neural network is a linear layer with connections from all neurons in the hidden and input
layers with parameters ϕ(l)

i ∈ Rdo×2 and Ψ ∈ Rdo×di , respectively. The definitions of input-state-
output maps and parameter sets (required for theoretical results) are in Appendix A.1. Note that the
input-output map of each neuron is essentially an operator described via the solution to an ordinary
differential equation. One can interpret each neuron and, thus, the entire network as a response to
a continuous function of time. We use the terminology introduced in Meijer (1996) and call our
network a ’dynamic’ neural network.

LTI Systems and Pre-processing All LTI systems are determined by four matrices: state matrix
A ∈ Rdh×dh , input matrix B ∈ Rdh×di , output matrix C ∈ Rdo×dh and feed-forward matrix
D ∈ Rdo×di for dh, do, di ∈ N. The state-space representation of a general LTI system is

ẋ(t) = A x(t) + B u(t), x(0) = 0, (4a)
y(t) = C x(t) + D u(t), (4b)

where x(t) ∈ Rdh is the state of the system, u(t) ∈ Rdi is the input to the system, and y(t) ∈ Rdo is
the output of the system. We transform a given LTI system to block-diagonalize the state matrix A
in a numerically stable way with the number of blocks L equal to the number of clusters of closely
spaced eigenvalues of the state matrix (see Algorithm A.1). The block-diagonalization facilitates the
construction of sparser dynamic neural networks. After pre-processing, the new LTI system in the
new state coordinates ξ(t) is

ξ̇(t) = Ã ξ(t) + B̃ u(t), ξ(0) = 0 (5a)

y(t) = C̃ ξ(t) + D u(t), (5b)

where Ã = T −1AT = blkdiag[Ã11, . . . , ÃLL], B̃ = T −1B, C̃ = T C. (5c)

Mapping from Parameters of the LTI System to Parameters of the DyNN We construct a
mapping from the parameters of an arbitrary LTI system (state-space matrices) to the parameters of
the DyNN (see Theorem A.1). Using this mapping, we compute the parameters and the architecture
of the DyNN using the properties of the LTI system in a gradient-free manner. A detailed discussion
on this is out of the scope of this paper (see Section A.3). Importantly, the sparsity patterns of the
diagonal blocks of the transformed state matrix Ã in equation 5a (see Section A.2) result in the DyNN
architecture consisting of horizontal layers as shown in Table 1 for Ãll ∈ R4×4 and B̃(l) representing
the corresponding four rows of B̃. (see Table A.1 for more illustrations).

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Block-row l of the state equation 5a Horizontal layer of DyNN


ξ̇1(t)

ξ̇2(t)

ξ̇3(t)

ξ̇4(t)


︸ ︷︷ ︸
ξ̇(l)(t)

=

∗ ∗ ∗ ∗∗ ∗ ∗
∗ ∗
∗


︸ ︷︷ ︸

Ãll

ξ1(t)ξ2(t)
ξ3(t)
ξ4(t)


︸ ︷︷ ︸
ξ(l)(t)

+B(l)u(t). Connections within the horizontal layer
with 4 first-order neurons (colored

dotted lines are self-connections). Only
a part of the architecture corresponding
to the term Ãllξ

(l)(t) is shown here (see
Figure 1 for the full architecture).

Table 1: Connections between neurons dictated by a block of state-matrix with 4 close eigenvalues

Algorithm and Numerical Analysis for Dynamic Neural Networks Our implementation of
dynamic neural networks is summarized in Algorithms A.2 and A.3. The code will be made available
upon acceptance. We also provide an upper bound on the numerical error of our dynamic neural
networks building on the guarantees provided by the ODE solvers (see Theorem A.2). To be precise,
we show that if the solvers used in each neuron are known to have an error estimate of O(hp), the
error estimates of the DyNN are also O(hp).

3 NUMERICAL EXAMPLES AND DISCUSSION

Convection-Diffusion Equation: As a test case, we consider a two-dimensional transient
convection-diffusion equation,

∂T

∂t
= D

(∂2T

∂x2
+

∂2T

∂y2

)
− vx

∂T

∂x
− vy

∂T

∂y
+ S, (6)

where T is the variable of interest (concentration of species or temperature), D is diffusivity, vx and
vy are drift velocities in x and y directions, and S is the source term. We interpret this as a system
with S as the input and the solution T as the output. The detailed problem setup is discussed in
Appendix C.1. We simulate the LTI system obtained by discretizing equation 6 in space using finite
differences, with a DyNN and compare the results with ones obtained from the classical numerical
solver (Python routine scipy.signal.lsim).

Figure 2: DyNN architecture
(colors in the Horizontal Layers
are same as in Figure C.1)

Dy
NN

t = 0.2 t = 1 t = 2 t = 4 t = 10

So
lv

er
Ab

s E
rro

r

0.02

0.01

0.02

0.01

5e-09

1e-08

Figure 3: Convection-diffusion equation: dynamic neural network
solution (top panel), numerical solution using a python routine
scipy.signal.lsim (middle panel), the absolute error between the two
solutions (bottom panel) at five-time instances shown at the top.

In this example, the state matrix has a repeated eigenvalue zero, with an algebraic multiplicity of 40
(see Figure C.1 for eigenvalue clustering). For this case, the proposed Algorithms for pre-processing
(see Algorithm A.1) and constructing the DyNN (see Algorithm A.2) result in an architecture in
which the first horizontal hidden layer has 40 neurons and the rest have one neuron each, as shown in
Figure 2. Finally, Figure 3 demonstrates that our constructed DyNN simulates the semi-discretized
convection-diffusion system accurately (see Algorithm A.3).

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Gradient-free computation of network parameters implies that any black-box and even non-
differentiable ODE solver could be used to compute the state of each neuron in the forward pass.
Moreover, since the block-diagonalization decouples the slow and fast dynamics across different
horizontal layers, the ODE solvers for different neurons can efficiently use an appropriate number of
time steps using adaptive time-stepping schemes, and different neurons can even use different ODE
solvers (see Figure C.2).

Future work: In the future, we intend to extend the idea of a DyNN towards constructing neural
networks (including architecture and their parameters) for non-linear dynamical systems. It does not
suffice to only apply nonlinear activation functions instead of our current linear maps, because it is
unclear in the nonlinear setting how to combine these nonlinear functions to form the target vector
field. We will start with simpler, only slightly nonlinear systems in low dimensions to understand
the interactions of their vector field and corresponding neural networks. Enforcing known types of
dynamics in individual neurons other than the first- and second-order ODEs in DyNN may also help
construct larger and non-linear networks.

ACKNOWLEDGMENTS

We would like to acknowledge many helpful discussions from Zahra Monfared, Rahul Manavalan,
Iryna Burak, Erik Bolager, Ana Cukarska, Karan Shah, and Qing Sun. While preparing this work, the
authors used Grammarly to polish written text for spelling, grammar, and general style.

REFERENCES

Zhaojun Bai and James W Demmel. On swapping diagonal blocks in real schur form. Linear Algebra
and its Applications, 186:75–95, 1993.

Richard H. Bartels and George W. Stewart. Solution of the matrix equation AX+ XB= C [F4].
Communications of the ACM, 15(9):820–826, 1972.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Lucas Böttcher, Nino Antulov-Fantulin, and Thomas Asikis. AI Pontryagin or how artificial neural
networks learn to control dynamical systems. Nature communications, 13(1):333, 2022.

V.K.R. Chimmula and L. Zhang. Time series forecasting of COVID-19 transmission in Canada using
LSTM networks. Chaos, Solitons and Fractals, 135, 2020. ISSN 0960-0779. doi: 10.1016/j.chaos.
2020.109864.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

E Hairer, G Wanner, and O Solving. II: Stiff and Differential-Algebraic Problems. Berlin [etc.]:
Springer, 1991.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in recurrent
nets: The difficulty of learning long-term dependencies, 2001.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nat Rev Phys, 3(6):422–440, June 2021. ISSN 2522-5820.
doi: 10.1038/s42254-021-00314-5.

T.-Y. Kim and S.-B. Cho. Predicting residential energy consumption using CNN-LSTM neural
networks. Energy, 182:72–81, 2019. ISSN 0360-5442. doi: 10.1016/j.energy.2019.05.230.

5

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

S. Narendra Kumpati and Parthasarathy Kannan. Identification and control of dynamical systems
using neural networks. IEEE Transactions on neural networks, 1(1):4–27, 1990.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. On the Curse of Memory in Recurrent Neural
Networks: Approximation and Optimization Analysis, May 2021.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez.
Train big, then compress: Rethinking model size for efficient training and inference of transformers.
In International Conference on Machine Learning, pp. 5958–5968. PMLR, 2020.

Alec J Linot, Joshua W Burby, Qi Tang, Prasanna Balaprakash, Michael D Graham, and Romit
Maulik. Stabilized neural ordinary differential equations for long-time forecasting of dynamical
systems. Journal of Computational Physics, 474:111838, 2023.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Peter Bartus Leonard Meijer. Neural Network Applications in Device and Subcircuit Modelling for
Circuit Simulation. Philips Electronics, 1996.

Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic
dynamics with RNNs. Advances in Neural Information Processing Systems, 35:11297–11312,
2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Linda Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM journal on scientific and statistical computing, 4(1):136–148, 1983.

Yulia Rubanova, Ricky TQ Chen, and David K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Wil HA Schilders. Predicting the topology of dynamic neural networks for the simulation of electronic
circuits. Neurocomputing, 73(1-3):127–132, 2009.

Lawrence F Shampine. Some practical runge-kutta formulas. Mathematics of computation, 46(173):
135–150, 1986.

Lawrence F Shampine and Mark W Reichelt. The matlab ode suite. SIAM journal on scientific
computing, 18(1):1–22, 1997.

Michel Verhaegen. Subspace model identification part 3. Analysis of the ordinary output-error
state-space model identification algorithm. International Journal of control, 58(3):555–586, 1993.

Michel Verhaegen and Patrick Dewilde. Subspace model identification part 2. Analysis of the
elementary output-error state-space model identification algorithm. International journal of
control, 56(5):1211–1241, 1992.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375. Springer
Berlin Heidelberg New York, 1996.

6

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A APPENDIX

A.1 DYNAMIC NEURAL NETWORK: DEFINITIONS

Definition 2 (Parameter sets of the dynamic neural network). For positive integers di, do, L and
nl, l ∈ {1, · · ·L}, let the tuple of weights m(l)

i in layer l be

M(l) =
(
m

(l)
0 , · · · ,m(l)

nl−1

)
and let M =

(
M(1), · · · ,M(L)

)
.

Similarly define C(l), C from all c(l)i ; K(l),K from all k(l)i ;W(l),W from all w(l)
i and Φ(l),Φ from

all ϕ(l)
i . Finally, define the sets

P(l)
dynn :=

{(
M(l), C(l),K(l),W(l)

)
: m

(l)
i , c

(l)
i , k

(l)
i ∈ R, w(l)

i ∈ R1×d
(l)
i

}
,

Phidden
dynn :=

{
(M, C,K,W) : m

(l)
i , c

(l)
i , k

(l)
i , w

(l)
i ∈ R1×d

(l)
i

}
,

Poutput
dynn :=

{
(Φ,Ψ) : ϕ

(l)
i ∈ Rdo×2,Ψ ∈ Rdo×di

}
which collect all parameters of the hidden layer l, all parameters of all hidden layers together and
all parameters of the output layer, respectively.

Definition 3 (Input-state-output maps of DyNN). Consider a dynamic neural network with L
horizontal layers, nl neurons in the horizontal layer l, di neurons in the input layer and do neurons
in the output layer. Let (M, C,K,W) ∈ Phidden

dynn and (Φ,Ψ) ∈ Poutput
dynn be the parameters of the

DyNN. The forward pass of the DyNN for an arbitrary input u ∈ C1(Ω)di can be described via the
equations

y(t) =

(L∑
l=1

nl−1∑
i=0

ϕ
(l)
i y

(l)
i (t)

)
+Ψu(t), for t ∈ Ω, (7)

y
(l)
i (t) =

[
ξ
(l)
i (t)

ξ̇
(l)
i (t)

]
= f

(l)
i (u

(l)
i)(t), (8)

u
(l)
i (t) =

[
uT (t) u̇T (t) [y

(l)
i+1(t)]

T [y
(l)
i+2(t)]

T · · · [y
(l)
nl−1(t)]

T
]T

, (9)

where f
(l)
i is the input-output map corresponding to (m

(l)
i , c

(l)
i , k

(l)
i , w

(l)
i) described in Definition

1. Based on these equations, the input-output map of DyNN fdynn : C1(Ω)di → C1(Ω)do , the
input-state map of DyNN fs

dynn : C1(Ω)di → C1(Ω)2(n1+···+nL) and the input-state map of the lth

hidden layer of DyNN f
(l)
dynn : C1(Ω)di → C1(Ω)2nl are defined as

fdynn : u 7→ y,

fs
dynn : u 7→ ξ, where ξ(t) =

ξ
(1)(t)

...
ξ(L)(t)

 ,

f
(l)
dynn : u 7→ ξ(l), where ξ(l)(t) =

 ξ
(l)
0 (t)

...
ξ
(l)
nl−1(t)

 , l ∈ {1, · · · , L},

ḟ
(l)
dynn : u 7→ ξ̇(l), where ξ̇(l)(t) =

 ξ̇
(l)
0 (t)

...
ξ̇
(l)
nl−1(t)

 , l ∈ {1, · · · , L}.

We call ξ(l) the state of the horizontal layer l, and ξ is called the state of the DyNN.

7

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Algorithm A.1 Pre-processing the LTI system
Input: State Space Matrices(A,B,C,D)
Output: Transformed State Space Matrices (Ã, B̃, C̃, D̃)
Parameters: Clustering algorithm

1: R ← T T
1 AT1 // Real Schur decomposition

2: ifR is diagonal then // If A is unitarily diagonalizable
3: T = T1 // Transformation matrix
4: Ã← R
5: else ifR is not diagonal then // If A is not unitarily diagonalizable
6: R̃ ← T T

2 AT2 // Ordered real Schur form (Bai & Demmel (1993))
7: Ã← T −1

3 R̃T3 // Block-diagonalization (Bartels & Stewart (1972))
8: T = T2T3 // Total transformation matrix
9: end if

10: (B̃, C̃, D̃)← (T −1B,CT , D) // New State Space Matrices

A.2 PRE-PROCESSING ALGORITHM

In the first step of Algorithm A.1, we perform the real Schur decompositionR = T T
1 AT1, where T1

is orthogonal and the diagonal blocks are R1×1 for real eigenvalues or R2×2 for complex pairs of
eigenvalues. If the matrix A is unitarily diagonalizable, R becomes a diagonal matrix. This is the
ideal case when one can unitarily diagonalize the state matrix in a numerically stable way.

However, if this is not the case, we proceed with a modified version of the ordered real Schur
decomposition proposed in Bai & Demmel (1993). Specifically, we implement an algorithm that
specifies the order in which the eigenvalues appear on the diagonal such that the eigenvalues that
are close to each other can be re-grouped as bigger diagonal blocks. Thus, the transformation
R̃ ← T T

2 AT2 reduces the state matrix to a block-upper triangular matrix such that the eigenvalues
in different diagonal blocks are well-separated. The clustering of close eigenvalues in respective
diagonal blocks and ensuring that eigenvalues in different diagonal blocks are well-separated is
necessary to apply the Bartels-Stewart algorithm in a numerically stable way. The Bartels-Stewart
algorithm is a similarity transformation T −1

3 R̃T3 that can reduce all the off-diagonal entries of R̃ to
zero, and block-diagonalize the state matrix.

The parameter Clustering algorithm in Algorithm A.1 can be chosen as any of the vast
variety of clustering algorithms to cluster eigenvalues of the state matrix A. These include the
well-known k-means algorithm Lloyd (1982), the spectral clustering algorithm Von Luxburg (2007),
and others. These algorithms and many more are implemented in the Python package scikit learn
Pedregosa et al. (2011). For each cluster of eigenvalues, we identify the eigenvalue with the largest
real part and sort the clusters in descending order based on these. This step is not necessary, but
it ensures that the algorithm is deterministic. Within each cluster of eigenvalues, we order the
eigenvalues according to the absolute value of the real part in ascending order. This is required to
ensure that for a cluster having real and complex eigenvalues, the real eigenvalues are placed first,
which is exploited in Theorem A.1.

After block-diagonalization of the state-matrix, each diagonal block has either all real, all complex,
or mixed eigenvalues that are close to each other. We define the set of state matrices with this sparsity
pattern in the following definition.

Definition 4 (Sets of sparse state matrices). Let G be the set of all block-upper triangular matrices
M such that

1. M has kr real eigenvalues for some kr ∈ N,

2. M has kc pairs of complex eigenvalues with non-zero imaginary parts for some kc ∈ N,

3. all blocks in the first kr rows of M are of dimension 1 × 1 and all blocks in the last 2kc
rows of M are of dimension 2× 2,

8

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

4. All 2 × 2 blocks on the diagonal in the last 2kc rows of M have non-zero entries in the

upper-right corner, i.e., if
[
a b
c d

]
is a diagonal block in the last 2kc rows, then b ̸= 0.

Let Gr ⊂ G be the subset containing matrices having all real eigenvalues, i.e., kc = 0 and let Gc

⊂ G be the subset containing matrices with all eigenvalues having non-zero imaginary parts, i.e.,
kr = 0.

Definition 5 (Parameters of an LTI system). Corresponding to positive integers dh, di, do, define

Pstate
lti :=

{
(A,B) : A ∈ S ⊂ Rdh×dh , B ∈ Rdh×di

}
,

Poutput
lti :=

{
(C,D) : C ∈ Rdo×dh , D ∈ Rdo×di

}
,

where S is the set of all square matrices that are block-diagonal, with each diagonal block belonging
to G.

Definition 6 (Input-state-output maps of an LTI system). Let A ∈ Rdh×dh , B ∈ Rdh×di , C ∈
Rdo×dh , D ∈ Rdo×di . Let the state x ∈ C1(Ω)dh , input u ∈ C(Ω)di and output y ∈ C(Ω)do be
related by the governing equations of an LTI system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, (10)
y(t) = Cx(t) +Du(t), (11)

for t ∈ Ω. For this LTI system, define the input-state map of the LTI system corresponding to (A,B)
as fs

lti : C(Ω)di ∋ u 7→ x ∈ C1(Ω)dh defined via equation 10 and the input-output map of the LTI
system corresponding to (A,B,C,D) as flti : C(Ω)di ∋ u 7→ y ∈ C(Ω)do defined via equation 10
and equation 11.

The sparsity patterns of the diagonal blocks, depending on whether they have real only, complex only,
or mixed eigenvalues, are


∗ ∗ ∗ ∗
∗ ∗ ∗

. . .
∗


︸ ︷︷ ︸

Gr

,



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .
. . .

∗ ∗
∗ ∗


︸ ︷︷ ︸

Gc

,



∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .
. . .

∗ ∗
∗ ∗


︸ ︷︷ ︸

G

.

A.3 COMPUTING DYNN ARCHITECTURE AND PARAMETERS FROM PARAMETERS OF THE LTI
SYSTEM

Summary of this section: This section builds on the definitions in sections A.1 and A.2. We first
note that the input-output map of our DyNN can be described as the solution of a coupled system of
second-order differential equations. This can be seen by assembling the second-order differential
equations corresponding to all neurons and substituting the interconnection structure (see Lemma
A.1). As an intermediate technical result, we show that the input-output map of an LTI system can
also be represented as the solution of a system of second-order differential equations (see Lemma
A.2). Finally, we derive a mapping from the parameters of the LTI system to the parameters of the
DyNN by preserving the input-output map (see Theorem A.1).

We start by defining the set of tuples of matrices that describe a second-order coupled system of
ODEs, which is represented by each horizontal layer of the DyNN.

Definition 7 (Tuples of matrices defining second order system). Corresponding to nl, di ∈ N, let
Snl,di be the set of tuples (M,C,K,E, V) where M,C,K ∈ Rnl×nl , E, V,∈ Rnl×di , M is a
diagonal matrix and C and K are upper-triangular matrices.

9

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Lemma A.1 (First and/or Second order dynamics of DyNN). Consider a dynamic neural network
with L horizontal layers, nl neurons in the horizontal layer l, di neurons in the input layer, and
do neurons in the output layer. For l ∈ {1, · · · , L}, let

(
M(l), C(l),K(l),W(l)

)
∈ P(l)

dynn be the
parameters of the hidden layers of the DyNN. Let u ∈ C1(Ω)di be an arbitrary input and ξ(l) be the
state of the lth hidden layer, i.e., ξ(l) = f

(l)
dynn(u). Then for l ∈ {1, · · · , L}, a bijective mapping

n
(l)
dynn : P(l)

dynn ∋
(
M(l), C(l),K(l),W(l)

)
7→

(
M (l), C(l),K(l), E(l), V (l)

)
∈ Snl,di

,

described in Appendix B.2 can be constructed such that ξ(l) satisfies ξ(l)(0) = 0, ξ̇(l) = 0 and

M (l)ξ̈(l)(t) + C(l)ξ̇(l)(t) +K(l)ξ(l)(t) = E(l)u(t) + V (1)u̇(t) ∀t ∈ Ω. (12)

Conversely, for l ∈ {1, · · · , L} and arbitrary
(
M (l), C(l),K(l), E(l), V (l)

)
∈ Snl,di

, if ξ(l) solves
the differential equation equation 12 with zero initial conditions, then one can construct a DyNN with
parameters

(
M(l), C(l),K(l),W(l)

)
computed by the inverse of n(l)dynn such that ξ(l) = f

(l)
dynn(u) and

ξ̇(l) = ḟ
(l)
dynn(u).

Lemma A.2 (Second order dynamics from an LTI system). Let A ∈ G ⊂ R(kr+2kc)×(kr+2kc) and
B ∈ R(kr+2kc)×di for some non-negative integers kr, kc and di ∈ N. Let the input u ∈ C1(Ω)di and
state x ∈ C2(Ω)(kr+2kc) satisfy the linear differential equation

ẋ = Ax+ Bu, x(0) = 0.

The mappings

mlti : (A,B) 7→ (M,C,K,E, V) ∈ Skr+kc
(see Definition 7),

mη : (A,B) 7→ (W,Q,Z)

as described in Appendix B.1 can be constructed such that the new variables ξ(t) ∈ Rkr+kc ,
η(t) ∈ Rkc , ξr(t) ∈ Rkr and ξc(t) ∈ Rkc defined as

[
ξ(t)
η(t)

]
:=

 ξr(t)
ξc(t)
η(t)

 =

 Ikr
0

0 Ikc
⊗ [1 0]

0 Ikc
⊗ [0 1]

x(t)

satisfy

Mξ̈(t) + Cξ̇(t) +Kξ(t) = Eu(t) + V u̇(t), (13)

η(t) = W ξc(t) +Qξ̇c(t) + Zu(t), (14)

for all t ∈ Ω with ξ(0) = 0, η(0) = 0. Furthermore, the matrices W,Q ∈ Rkc×kc are upper-
triangular, i.e., Wij = 0, Qij = 0 for i > j and Z ∈ Rkc×di .

Remark 1. Depending on whether all, few, or none of the entries ofM(l) are zero, the states of the
horizontal layer l of the DyNN form a linear, coupled system of either only first-order ODEs or a
combination of first-order and second-order ODEs or only second-order ODEs, respectively.

Theorem A.1 (Mapping an LTI system to a DyNN). For positive constants dh, di, do, consider an
LTI system defined by (A,B) ∈ Pstate

lti and (C,D) ∈ Poutput
lti . For positive integers L and nl for

l ∈ {1, · · ·L}, mappings

mh : (A,B) 7→ (M, C,K,W,Θ) ∈ Phidden
dynn ,

mo : (A,B,C,D) 7→ (Φ,Ψ) ∈ Poutput
dynn ,

as described in Appendix B.3 and B.4 can be constructed such that the DyNN with parameters
(M, C,K,W,Θ) and (Φ,Ψ) satisfies the property that fdynn(u) = flti(u) for all u ∈ C1(Ω)di .

10

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table A.1: Types of horizontal hidden layers based on the number of real and complex eigenvalues k(l)
r , k

(l)
c of

a block of a state matrix Ãll. Note how the connections between neurons are dictated by the sparsity pattern of
the individual diagonal blocks of the transformed-state matrix. Colored dotted lines are self-connections. Only a
part of the architecture corresponding to the term Ãllξ

(l)(t) is shown here (see Figure 1 for the full architecture)

Eigen-
values State equation of the LTI system Horizontal layer of DyNN

k
(l)
r = 4,
k
(l)
c = 0


ξ̇1(t)

ξ̇2(t)

ξ̇3(t)

ξ̇4(t)

 =

∗ ∗ ∗ ∗∗ ∗ ∗
∗ ∗
∗


︸ ︷︷ ︸

Ãll∈Gr

ξ1(t)ξ2(t)
ξ3(t)
ξ4(t)

+ B̃(l)u(t).

DyNN horizontal layer with
four first-order neurons (solid

balls)

k
(l)
r = 0,
k
(l)
c = 4



ξ̇1(t)

ξ̇2(t)

ξ̇3(t)

ξ̇4(t)

ξ̇5(t)

ξ̇6(t)

ξ̇7(t)

ξ̇8(t)


=



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗


︸ ︷︷ ︸

Ãll∈Gc



ξ1(t)
ξ2(t)
ξ3(t)
ξ4(t)
ξ5(t)
ξ6(t)
ξ7(t)
ξ8(t)



+B̃(l)u.

DyNN horizontal layer with
four second-order neurons

(yin-yang balls)

k
(l)
r = 2,
k
(l)
c = 2



ξ̇1(t)

ξ̇2(t)

ξ̇3(t)

ξ̇4(t)

ξ̇5(t)

ξ̇6(t)

 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗


︸ ︷︷ ︸

Ãll∈G


ξ1(t)
ξ2(t)
ξ3(t)
ξ4(t)
ξ5(t)
ξ6(t)



+B̃(l)u(t).

DyNN horizontal layer with
two first-order neurons (green
and blue solid balls) and two
second-order neurons (red and
yellow yin-yang balls)

A.4 DYNAMIC NEURAL NETWORK ALGORITHM AND NUMERICAL ANALYSIS

Algorithm A.2 takes a state-space model (A,B,C,D) as input and for a selected clustering algorithm,
constructs a dynamic neural network architecture and parameters. The input is pre-processed as
described in Algorithm A.1. For each diagonal block, based on the number of real and complex
eigenvalues of the transformed state matrix Ã, we construct a corresponding horizontal layer with
appropriate first and second-order neurons as shown in an illustrative example in Table A.1. Finally,
all parameters of horizontal layers and the output layer of the DyNN are computed using the maps
mh and mo as described in Appendix B.

Algorithm A.3 takes as input a DyNN with fixed architecture and parameters (output of Algorithm
A.2) and inputs to the network u(t), u̇(t) to compute the output of the DyNN. The initial conditions
of the ODE to be solved for the state of each neuron are set to zero by default and could also be
set to any other value. The properties of the ODE of each neuron, such as the ODE solver denoted
by method, relative and absolute tolerances rtol, atol respectively that control the accuracy of
the solution and a parameter dense_output, are set as defined by the user and can be different
for different neurons. The parameter dense_output of the method solve_ivp is set to true,
which means that the output of the ODE is a function handle that can be evaluated by interpolation
at any time point t ∈ Ω. The order of interpolation depends on the method specified. For instance,
for RK23, a cubic Hermite polynomial is used. For DOPRI85, a seventh-order polynomial is used.
Most of the standard explicit and implicit solvers are implemented in the solve_ivp routine of the

11

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

SciPy package Virtanen et al. (2020). To name a few - explicit methods such as RK45 Dormand &
Prince (1980), RK23 Shampine (1986), and DOPRI85 Wanner & Hairer (1996), as well as implicit
methods such as Radau Hairer et al. (1991), BDF Shampine & Reichelt (1997), and LSODA Petzold
(1983), are implemented. The output of the DyNN is then computed again as a function handle. Note
that line 11 in the algorithm A.3 concerning the output ŷ is a functional assignment. The user can
easily specify the time points at which the output of the DyNN is to be evaluated.

Algorithm A.2 Computing dynamic neural network architecture and parameters
Input: State Space Model (A,B,C,D)
Output: DyNN architecture and parameters - (M, C,K,W,Θ) ∈ Phidden

dynn , (Φ,Ψ) ∈ Poutput
dynn

Parameters: Clustering algorithm
1: Pre-process the LTI system
2: Pre-process the LTI system: (Ã, B̃, C̃, D̃)← (A,B,C,D) // Algorithm A.1
3: Construct horizontal layers of DyNN
4: for l← 1 to L do
5: Construct horizontal layer with k

(l)
r first-order, k(l)c second-order neurons // Table A.1

6: Compute horizontal layer parameters
(
M(l), C(l),K(l),W(l)

)
∈ P(l)

dynn // Theorem A.1
7: end for
8: Construct output layer of DyNN
9: Compute output layer parameters (Φ,Ψ) ∈ Poutput

dynn // Theorem A.1

Algorithm A.3 Forward pass of a dynamic neural network

Input: DyNN architecture and parameters - (M, C,K,W,Θ) ∈ Phidden
dynn , (Φ,Ψ) ∈ Poutput

dynn ,
inputs u and u̇ as function handles
Output: Output of the dynamic neural network ŷ as a function handle
Parameters: rtol, atol, method

1: for l← 1 to L do
2: for i← nl − 1 to 0 do
3: Set initial conditions ŷ(l)i (0) to 0.
4: properties← method, rtol, atol, dense_output

5: weights←
(
m

(l)
i , c

(l)
i , k

(l)
i , w

(l)
i , ϕ

(l)
i

)
6: û

(l)
i ←

[
uT u̇T ŷ

(l)
i+1

T ŷ
(l)
i+2

T · · · ŷ
(l)
nl−1

T
]T

7: ŷ
(l)
i ← solve_ivp(ŷ(l)i (0), û

(l)
i ,weights, properties)

8: end for
9: end for

10: Set the remaining output layer weights - Ψ

11: Compute DyNN output ŷ ←
(∑L

l=1

∑nl−1
i=0 ϕ

(l)
i ŷ

(l)
i

)
+Ψu

Remark 2. If the input to the dynamic neural network u is available only at a finite number of time
points, then the user can specify how to interpolate u. Currently, we provide an option to approximate
u with either a piecewise constant function or a piecewise linear function.

In analogy with input-output maps defined on analytical solutions of the ODEs, we now define the
input-output maps for a neuron and a DyNN based on numerical solutions of the ODEs. These maps
are then used for the error analysis presented in the next subsection.
Definition 8 (Input-output map of a numerically implemented neuron). The input-output map of the
numerically implemented neuron i in hidden layer l with d

(l)
i inputs is a map f̂

(l)
i : C1(Ω)d

(l)
i →

C2(Ω)2 defined as û(l)
i 7→ ŷ

(l)
i , where ŷ(l)i is the output of the function solve_ivp used in Algorithm

A.3 corresponding to input û(l)
i and parameters (m(l)

i , c
(l)
i , k

(l)
i , w

(l)
i).

Definition 9 (Input-output map of a numerically implemented DyNN). Corresponding to a given
DyNN and the parameters of Algorithm A.3, the input-output map of a numerically implemented

12

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

dynamic neural network with L horizontal layers, nl neurons in the horizontal layer l, di neurons in
the input layer and do neurons in the output layer is defined as f̂dynn : u 7→ ŷ where ŷ is the output
of Algorithm A.3 corresponding to inputs (M, C,K,W,Θ) ∈ Phidden

dynn , (Φ,Ψ) ∈ Poutput
dynn and inputs

u and u̇.

Theorem A.2. Assume that function solve_ivp implemented on all neurons i ∈ {1, · · · , nl} in
all layers l ∈ {1, · · · , L} from Algorithm A.3 mapping the input û(l)

i to the solution ŷ
(l)
i satisfies the

error bound
||ŷ(l)i (t)− f

(l)
i (û)(t)|| = O(hp) ∀t ∈ Ω, ∀û ∈ [C1(Ω)]d

(l)
i , (15)

where f
(l)
i is the input-output map corresponding to neuron i in layer l (see Definition 1). Then we

have that
||fdynn(u)(t)− f̂dynn(u)(t)|| = O(hp) ∀t ∈ Ω, ∀u ∈ [C1(Ω)]di ,

where fdynn is the input-output map of the dynamic neural network (see Definition 3) and f̂dynn is
the input-output map of the numerical implementation of the dynamic neural network (see definition
9), both corresponding to the same parameters.

B MAPPINGS

B.1 MAPPINGS mη AND mlti:

Assume that kr, kc, di, A ∈ G ⊂ R(kr+2kc)×(kr+2kc) and B ∈ R(kr+2kc)×di are given. We will next
describe the mappings

mη : (A,B) 7→ (W,Q,Z),

mlti : (A,B) 7→ (M,C,K,E, V) ∈ Skr+kc
(see Definition 7).

We start by partitioning the matrix A as

A =

[
Ar Arc

0 Ac

]
(16a)

with Ar ∈ Gr ⊂ Rkr×kr , Ac ∈ Gc ⊂ R2kc×2kc (see Definition 4) and define blocks Aij and Bi for
i, j ∈ {1, 2, 3} and as A11 A12 A13

0 A22 A23

0 A32 A33

 =

[
Ar Arc[T]

T

0 TAc[T]
T

]
,

 B1B2
B3

 = PB, (16b)

where the blocks A22,A23,A32,A33 ∈ Rkc×kc and

T =

[
Ikc ⊗ [1 0]
Ikc
⊗ [0 1]

]
, P =

[
Ikr 0
0 T

]
. (16c)

Finally, the image (W,Q,Z) of (A,B) under the map mη is given by

W = −A−1
23 A22, Q = A−1

23 , Z = −A−1
23 B2. (16d)

We next define the following matrices.

Crc = −A13Q, Cc = − (A22 +A23A33Q) , (17a)
Kr = −A11, Krc = − (A12 +A13W) , Kc = − (A23A32 +A23A33W) , (17b)
Er = A13Z + B1, Ec = (A23A33Z +A23B3) , (17c)
Vc = B2. (17d)

Finally, the image (M,C,K,E, V) ∈ Skr+kc
of (A,B) under the map mlti is given by

M =

[
0 0
0 Ikc

]
, C =

[
Ikr

Crc

0 Cc

]
,K =

[
Kr Krc

0 Kc

]
, E =

[
Er

Ec

]
, V =

[
0
Vc

]
. (17e)

13

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

B.2 MAPPINGS n
(l)
dynn AND [n

(l)
dynn]

−1:

We next describe the bijective mapping

n
(l)
dynn :

(
M(l), C(l),K(l),W(l)

)
7→

(
M (l), C(l),K(l), E(l), V (l)

)
. (18a)

First note thatW(l) is composed of w(l)
i (and similarlyM(l), C(l),K(l)). Next, we partition w

(l)
i as

w
(l)
i =

[
e
(l)
i v

(l)
i −k(l)i,i+1 − c

(l)
i,i+1 · · · −k(l)i,nl−1 − c

(l)
i,nl−1

]
(18b)

to define e(l)i ∈ R1×di , v(l)i ∈ R1×di , k(l)i,j , c
(l)
i,j ∈ R for i ∈ {0, · · · , nl − 1} and j ∈ {i+ 1, nl − 1}.

Additionally, let k(l)i,i := k
(l)
i , c(l)i,i := c

(l)
i for all i ∈ {1, · · · , nl − 1}. Finally, define the image(

M (l), C(l),K(l), E(l), V (l)
)

of
(
M(l), C(l),K(l),W(l)

)
under the map n

(l)
dynn as

M (l) =


m

(l)
0

m
(l)
1

. . .
m

(l)
nl−1

 , C(l) =


c
(l)
0,0 c

(l)
0,1 · · · c

(l)
0,nl−1

c
(l)
1,1

. . .
...

c
(l)
nl−1,nl−1

 ,

K(l) =


k
(l)
0,0 k

(l)
0,1 · · · k

(l)
0,nl−1

k
(l)
1,1

. . .
...

k
(l)
nl−1,nl−1

 , E(l) =


e
(l)
0

e
(l)
1
...

e
(l)
nl−1

 , V (l) =


v
(l)
0

v
(l)
1
...

v
(l)
nl−1

 .

(18c)

For the inverse map [n
(l)
dynn]

−1, note that we can read off the elements e
(l)
i ∈ R1×di , v

(l)
i ∈

R1×di , m(l)
i , k

(l)
i,j , c

(l)
i,j ∈ R for i ∈ {0, · · · , nl − 1} and j ∈ {i, nl − 1} from given matrices(

M (l), C(l),K(l), E(l), V (l)
)

as in equation equation 18c. The image
(
M(l), C(l),K(l),W(l)

)
of(

M (l), C(l),K(l), E(l), V (l)
)

under the inverse map [n
(l)
dynn]

−1 is then given by setting w
(l)
i as in

equation equation 18b, k(l)i,i := k
(l)
i and c

(l)
i,i := c

(l)
i .

B.3 MAPPING mh:

We next describe the mapping

mh : Pstate
lti ∋ (A,B) 7→ (M, C,K,W) ∈ Phidden

dynn . (19a)

Since (A,B) ∈ Pstate
lti , A is a block-diagonal matrix which is partitioned together with the appropriate

partitioning of B as

A =


A(1)

A(2)

. . .
A(L)

 , B =


B(1)

B(2)

...
B(L)

 , (19b)

where A(l) ∈ Rdl×dl , B(l) ∈ Rdl×di . For l ∈ {1, 2, . . . , L}, we construct tuples (M(l), C(l), K(l),
W(l)) as

[n
(l)
dynn]

−1 ◦mlti :
(
A(l), B(l)

)
7→

(
M(l), C(l),K(l),W(l)

)
. (19c)

The tuples
(
M(l), C(l),K(l),W(l)

)
define the image (M, C,K,W) of (A,B) (see Definition 2)

under the mapping mh.

14

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

B.4 MAPPING mo:

We next describe the bijective mapping

mo : (A,B,C,D) 7→ (Φ,Ψ) ∈ Poutput
dynn , where (A,B) ∈ Pstate

lti , (C,D) ∈ Poutput
lti . (20a)

We partition the block-diagonal matrix A together with the appropriate partitioning of B as done in
equation equation 19b so that A(l) ∈ Rdl×dl , B(l) ∈ Rdl×di . For l ∈ {1, 2, . . . , L}, we construct
tuples

(
W (l), Q(l), Z(l)

)
via

mη : (A(l), B(l)) 7→ (W (l), Q(l), Z(l)). (20b)

For l ∈ {1, 2, . . . , L}, and any positive integer a, we define the matrices:

P
(l)
ξ =

 I
k
(l)
r

0

0 I
k
(l)
c
⊗

[
1
0

]  , P (l)
η =

 0

I
k
(l)
c
⊗

[
1
0

]  , (20c)

T (l)
a =

[
Ia ⊗ [1 0]
Ia ⊗ [0 1]

]
(20d)

We then construct the matrices F ,Z as

F (l) =
[(

P
(l)
ξ + P

(l)
η

[
0 W (l)

]) (
P

(l)
η

[
0 Q(l)

])]
T (l)
nl

, (20e)

F =

F
(1)

. . .
F (L)

 , Z =

Z
(1)(t)

...
Z(L)(t)

 . (20f)

Finally, for l ∈ {1, 2, . . . , L} and i ∈ {0, 1, . . . , nl − 1}, construct ϕ(l)
i ∈ Rdo×2 as[

ϕ
(1)
0 · · · ϕ

(1)
n1−1 ϕ

(2)
0 · · · ϕ

(2)
n2−1 · · · ϕ

(L)
0 · · · ϕ

(L)
nL−1

]
= CF , (20g)

Ψ = CZ +D, (20h)

which complete the description of the image (Φ,Ψ) of (A,B,C,D) under the mapping mo.

C NUMERICAL EXAMPLE

C.1 CONVECTION-DIFFUSION EQUATION

Problem setup: The spatial domain is [0, 10]× [0, 9.5] with 20 grid points in each dimension. The
right and left boundaries are periodic. The boundary conditions at the top and bottom boundaries are
Dirichlet with T (x, 0) = T (x, 9.5) = 0. The initial condition T (x, y, 0) = 0. The velocities in x and
y dimensions are given by vx = 0.6 and vy = 0, and the diffusivity D = 1.4. Let td be a uniform
grid in [0, 10] in steps of 0.1. Heat is injected into the system via the source term which is obtained
by interpolating the function: 100 exp

(
−0.8

(
(x− l/2)2 + (y − l/2)2)

))
δ(t− 0.2), where δ is the

discrete-time unit impulse. We choose a uniform grid in space, and the gradient and Laplacian
operators are discretized with second-order finite differences at each grid point (i, j) as ∂T

∂x

∣∣
i,j
≈

Ti+1,j−Ti−1,j

2h , ∂T
∂y

∣∣
i,j
≈ Ti,j+1−Ti,j−1

2h and (∂
2T

∂x2 + ∂2T
∂y2)

∣∣
i,j
≈ Ti+1,j+Ti−1,j+Ti,j+1+Ti,j−1−4Ti,j

h2 .
The spatially discretized form of equation equation 6 is an LTI system, where the state variable is
represented by T . The spatial discretization scheme dictates the sparsity pattern and the elements of
the state matrix A ∈ R400×400. The other state-space matrices are B = I400, C = I400 and D = 0.

Additional plots: Figure C.1 shows how the eigenvalues are clustered. Figure C.2 shows the
Number of Function Evaluations (NFE) in the ODE solver averaged over the neurons of each
horizontal layer. As the state dynamics are decoupled across the horizontal layers, the horizontal
layers that require a lower NFE to solve the ODE to a prescribed tolerance are not forced to use a
higher NFE as required by the other horizontal layers.

15

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

60 50 40 30 20 10 0
Real

1

0

1

Im
ag

in
ar

y

50

100

150

Figure C.1: Eigenvalue clusters of the state matrix (color bar
indicates eigenvalue clusters)

0 200
Horizontal layer

500

1000

1500

2000

2500

Av
g

NF
E
50

100

150

Figure C.2: Number of func-
tion (right-hand side of the ODE)
evaluations required by the ODE
solver in each neuron averaged
over horizontal layers (color bar
indicates horizontal layers)

16

	Introduction
	Constructing dynamic neural networks from LTI systems
	Numerical examples and discussion
	Appendix
	Dynamic neural network: definitions
	Pre-processing algorithm
	Computing DyNN architecture and parameters from parameters of the LTI System
	Dynamic neural network algorithm and numerical analysis

	Mappings
	Mappings m and mlti:
	Mappings ndynn(l) and [ndynn(l)]-1:
	Mapping mh:
	Mapping mo:

	Numerical example
	Convection-diffusion equation

