
Published as a conference paper at ICLR 2021

GRAPH EDIT NETWORKS

Benjamin Paassen
The University of Sydney
benjamin.paassen@sydney.edu.au

Daniele Grattarola
Università della Svizzera italiana
daniele.grattarola@usi.ch

Daniele Zambon
Università della Svizzera italiana
daniele.zambon@usi.ch

Cesare Alippi
Università della Svizzera italiana
Politecnico di Milano
cesare.alippi@usi.ch

Barbara Hammer
Bielefeld University
bhammer@techfak.uni-bielefeld.de

ABSTRACT

While graph neural networks have made impressive progress in classification and
regression, few approaches to date perform time series prediction on graphs, and
those that do are mostly limited to edge changes. We suggest that graph edits are a
more natural interface for graph-to-graph learning. In particular, graph edits are
general enough to describe any graph-to-graph change, not only edge changes;
they are sparse, making them easier to understand for humans and more efficient
computationally; and they are local, avoiding the need for pooling layers in graph
neural networks. In this paper, we propose a novel output layer - the graph edit
network - which takes node embeddings as input and generates a sequence of
graph edits that transform the input graph to the output graph. We prove that a
mapping between the node sets of two graphs is sufficient to construct training data
for a graph edit network and that an optimal mapping yields edit scripts that are
almost as short as the graph edit distance between the graphs. We further provide a
proof-of-concept empirical evaluation on several graph dynamical systems, which
are difficult to learn for baselines from the literature.

1 INTRODUCTION

Recent advances in graph representation learning have mostly focused on tasks of classification or
regression, i.e. tasks with graph-structured input but numeric output (Battaglia et al., 2018; Kipf
& Welling, 2016a; Veličković et al., 2018). By contrast, few approaches to date can transform a
graph-structured input to a graph-structured output (Hajiramezanali et al., 2019; Paaßen et al., 2018;
Zambon et al., 2019). This lacuna is crucial because time series prediction on graphs requires graph-
structured output, namely the next graph in a time series. Applications of time series prediction on
graphs include epidemiological models (Keeling & Eames, 2005), social (Liben-Nowell & Kleinberg,
2007; Masuda & Holme, 2019), telecommunications (Nanavati et al., 2006), traffic (Cui et al., 2019),
citation (Shibata et al., 2012), and financial transaction networks (Chan & Olmsted, 2017), as well
as student solutions in intelligent tutoring systems (Paaßen et al., 2018). In each of these settings,
predicting the changes in graphs can deepen the understanding of the domain and provide useful
knowledge for designing interventions.

Currently, methods for time series prediction on graphs are limited to the dynamics of the node
attributes (Yu et al., 2018), or changes in connectivity (Goyal et al., 2020; Hajiramezanali et al., 2019),
but do not cover changes in the node set. Fortunately, there exists a rich research tradition of edit
distances (e.g. Levenshtein, 1965; Zhang & Shasha, 1989; Sanfeliu & Fu, 1983) which can describe
any change between two graphs. Further, edits are sparse and have a simple semantic (delete, insert,
relabel), which makes them easier to interpret for human observers and makes them computationally
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more efficient (linear instead of quadratic) compared to a dense representation. Finally, edits are
local, enabling us to make edit decisions at each node instead of coordinating information across the
entire graph.

In this work, we connect graph neural networks to edit distances by developing a simple, linear output
layer that maps node embeddings to graph edits. We call our output layer the graph edit network
(GEN). We also develop a general training and inference scheme to transform any graph Gt to its
successor Gt+1 using only local binary edit decisions and a regression for node attributes.

Theoretically, we prove that a) a mapping between the nodes of Gt and Gt+1 is sufficient to construct
training data for the GEN, b) this construction yields almost no overhead compared to directly
transforming the mapping to graph edits, and c) provided that the mapping between Gt and Gt+1 is
optimal and the GEN can perfectly reproduce the training data, the edit script is almost as short as the
graph edit distance (Sanfeliu & Fu, 1983).

In addition to this core theoretical contribution, we provide a proof-of-concept of our model by
demonstrating that GENs can learn a variety of dynamical systems on graphs which are more difficult
to handle for baseline systems from the literature. We also show that the sparsity of edits enables
GENs to scale up to realistic graphs with thousands of nodes.

2 BACKGROUND

Graph Neural Networks: Graph neural networks (GNNs) compute representations of nodes in
a graph by aggregating information of neighboring nodes (Bacciu et al., 2020; Defferrard et al.,
2016; Kipf & Welling, 2016a; Micheli, 2009; Scarselli et al., 2009). In particular, the representation
φl(v) ∈ Rnl of node v in layer l is computed as follows:

φl(v) = f lmerge

(
φl−1(v), f laggr

(
{φl−1(u)|u ∈ N (v)}

))
(1)

where N (v) is some neighborhood of v in the graph and f lmerge as well as f laggr are functions
that aggregate the information of their arguments, returning a single vector (Xu et al., 2019). The
representation in the 0th layer is usually defined as the initial node attributes or a constant vector for all
nodes (Kipf & Welling, 2016a). Recently, many implementations of f lmerge, f laggr, and neighborhood
N have been suggested, such as a weighted sum via the graph Laplacian (Kipf & Welling, 2016a),
recurrent neural networks (Hamilton et al., 2017), or attention mechanisms (Veličković et al., 2018).
Our approach is agnostic to the choice of graph neural network. We merely require some vectorial
embedding for each node in the input graph.

Graph Generators: Multiple works in recent years have proposed recurrent models to generate
graphs (Bacciu et al., 2019; Li et al., 2018; You et al., 2018a;b; Zhang et al., 2019). Roughly speaking,
these recurrent models first output a node, and then all connections of this node to previous nodes
until a special end-of-sentence token is produced. While such a scheme does enable time series
prediction, it only works for insertions, i.e. starting at an empty graph and inserting nodes and edges
over time. If one wishes to account for general graph changes, one first has to encode a graph into a
vector and then decode from this vector the graph in the next time step, similar to molecular design
(Jin et al., 2019; Fu et al., 2020). However, such models have to generate the next graph from scratch
and can not exploit the sparsity and interpretability of edits, as we suggest.

Link Prediction: Link prediction is complementary to graph generation. It assumes a constant
number of nodes, but changing connectivity between them (Liben-Nowell & Kleinberg, 2007; Richard
et al., 2014; Shibata et al., 2012). Typical link prediction approaches compute node features first,
followed by an affinity index between nodes based on their features. Finally, edges with low index
are predicted to vanish, while edges with high index are predicted to appear. For example, Goyal
et al. (2020) combine dense and recurrent blocks to build an autoencoder for link prediction, while
Hajiramezanali et al. (2019) combine a GNN and a RNN to obtain a spatio-temporal variational graph
autoencoder. In GENs, we predict edge changes with a similar scheme, using a graph neural network
to obtain the node features and then mapping these node features to the graph changes. However, in
contrast to prior work, we do not predict the next adjacency matrix but only the change in adjacencies,
which is a much sparser signal, reducing the time complexity from quadratic to linear. Additionally,
GENs can not only handle edge changes, but also node changes.
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We note that our current paper is limited to a Markovian setting, i.e. we do not consider the past for
computing node representations. This limitation could be addressed by combining our output layer
with EvolveGCN (Pareja et al., 2020) which uses a recurrent net to predict the weights of a graph
neural net, thus being able to handle changes in the node set.

Dynamic Attributes: Recently, graph neural networks have been extended to predict changes to
node attributes, while the nodes and edges remain fixed (Cui et al., 2019; Seo et al., 2018), which is
particularly useful for traffic networks. GENs are complementary to these works, in that we consider
the more general case of graph topology changes.

Time Series Prediction on Graphs: To our knowledge, only very few works to date have addressed
the most general case of time series of graphs, where both nodes and edges are permitted to change.
In particular, Paaßen et al. (2018) suggest several kernel-based time series prediction methods for
graphs. However, their scheme is limited to predictions in the kernel space and mapping a prediction
back to a graph requires solving an inverse kernel problem, relying on approximations that impact
accuracy (Paaßen et al., 2018). Zambon et al. (2019) embed the time series into a vector space using
a GNN and use a recurrent neural network to predict the next time step. To obtain the corresponding
graph, a multi-layer perceptron is used to compute the adjacency matrix and node features from the
predicted embedding. Besides being computationally expensive, this dense decoder also assumes a
fixed order of the nodes.

Graph Edits: The basis for our approach are graph edits, which are functions that describe changes
in graphs (Sanfeliu & Fu, 1983). Formally, we first define an attributed, directed graph as a triple
G = (V,E,X), where V = {1, . . . , N} is a finite set of node indices, E ⊆ V × V is a set of
edges, and X ∈ RN×n is a matrix of node attributes for some n ∈ N. We define the nodes as
indices for notational simplicity, but we do not assume any specific order, i.e. we treat isomorphic
graphs as the same. Now, let G be the set of all possible attributed directed graphs. We define a
graph edit as some function δ : G → G. In particular, we consider the graph edits of Sanfeliu & Fu
(1983), namely node deletions deli, which delete the ith node from a graph, node replacements repi,x,
which set the attribute of node i to x, node insertions insx, which add a new node with attribute x
to a graph, edge deletions edeli,j , which delete the edge (i, j) from a graph, and edge insertions
einsi,j , which insert the edge (i, j) into a graph. We then define an edit script δ̄ as a finite sequence
δ̄ = δ1, . . . , δT of graph edits and we define the application of δ̄ as the composition of all edits, i.e.
δ̄(G) := δT ◦ . . . ◦ δ1(G).

Finally, we define the graph edit distance dGED(G,G′) between two graphs G and G′ as the length of
the shortest script δ̄ such that δ̄(G) ∼= G′, where∼= means isomorphic. The GED is well-defined and a
proper metric, i.e. a script connecting any two graphs always exists, the GED between two isomorphic
graphs is zero, the GED is symmetric, and it conforms to the triangular inequality (Abu-Aisheh et al.,
2015; Sanfeliu & Fu, 1983). While prior work has already attempted to approximate the graph edit
distance with graph neural nets (Bai et al., 2019; Li et al., 2019) our work is, to our knowledge, the
first to produce actual graph edits as network output, and to avoid graph pooling layers.

3 GRAPH EDIT NETWORKS

Let G1, G2, . . . , GT be a time series of graphs. Our goal is to develop a neural network that takes
a graph Gt as input and outputs graph edits that transform Gt to Gt+1. For simplicity we make a
Markov assumption, i.e. Gt is assumed to be sufficient to predict Gt+1 (future research could address
this limitation, e.g. by applying EvolveGCN of Pareja et al., 2020).

Now, let Gt = (V,E,X) be an attributed graph with N nodes. Our proposed processing pipeline
has three steps. First, we use some graph neural network (refer to Equation 1) to compute a matrix of
node embeddings Φ ∈ RN×n. Second, we use a linear layer to compute numerical edit scores that
express which nodes and edges should be deleted, inserted, and relabeled, respectively. Third, we
translate these scores via Algorithm 1 to an edit script δ̄ and apply this script to the input graph to
obtain the output graph δ̄(Gt). This pipeline is also illustrated in Figure 1.

In the remainder of this section, we describe the graph edit network layer (Section 3.1), our train-
ing scheme (Section 3.2), our inference scheme (Section 3.3), and finally our theoretical results
(Section 3.4).
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Figure 1: An illustration of the processing pipeline. An input graph G is processed by a message
passing network (Equation 1). The output layer is a GEN, and produces node scores ~ν and edge
scores E . Algorithm 1 translates the node and edge scores into an edit script δ̄ which, when applied
to the input graph G, constructs the predicted graph δ̄(G).

3.1 GRAPH EDIT NETWORK LAYER

Our proposed graph edit network (GEN) is a linear layer to compute edit scores that express which
nodes and edges should be deleted, inserted, or relabeled. The input of our GEN is a matrix
Φ ∈ RN×n of node embeddings as returned by a graph neural network (refer to Equation 1). We then
compute node edit scores ~ν ∈ RN , edge filter scores ~e+ ∈ RN as well as ~e− ∈ RN , and new node
attributes Y via linear maps from Φ. After this is done, we consider only those pairs (i, j) where
e+
i > 0 and e−j > 0 and compute an edge edit score εi,j via another linear layer that receives ~φi, ~φj ,

and the inner product ~φTi · ~φj as inputs. The interpretation of these scores is that νi should be positive
if a new node connected to i is inserted, νi should be negative if node i is deleted, e+

i , e−j , as well as
εi,j should be positive if edge (i, j) is inserted and e+

i , e−j , as well as −εi,j should be positive if edge
(i, j) is deleted. Note that we only compute the edge edit score εi,j for edges (i, j) where e+

i > 0 and
e−j > 0. Thus, if edge changes concern only a number of nodes in O(

√
n), the GEN layer operates

in linear instead of quadratic time. We can also enforce the linear time by setting all e+
i and e−j to

zero that are not in the top R for some R that is either constant or in O(
√
n).

From scores to edits: Next, we translate these scores into edits. The formal translation scheme is
given in Algorithm 1. Roughly speaking, we delete any node i where the node edit score νi is smaller
than − 1

2 , we insert a new node with attribute ~yi, connected to i, whenever νi is larger than + 1
2 , and

we replace the attribute ~yi with ~yi otherwise. For edges, we delete any edge (i, j) where εi,j < − 1
2 ,

where νi < − 1
2 , or where νj < − 1

2 , and we insert any edge where εi,j > + 1
2 . The complexity of

Algorithm 1 is as follows. In line 2, we first construct |E ∩ {(i, j)|νi < − 1
2 or νj < − 1

2}| edits,
which is bounded by |E|, which in turn is in O(N) for a sparse graph and O(N2) for a dense graph.
Lines 3-8 perform |{(i, j)|e+

i > 0, e−j > 0}| iterations, which can be bounded to some constant R2

by the edge filtering trick above. Lines 9-15 iterate over all nodes several times, which is in O(N).
The space complexity is the same since we add one edit each iteration, which needs to be stored. The
overall time and space complexity is thus O(N) for sparse graphs and O(N2) for dense graphs.

Note the special case of node insertions in this scheme. As with other edits, we make the decision
to insert a new node locally at each node instead of globally for the graph. This relieves the need
to aggregate information across the entire graph. Further, by connecting a new node directly with
an existing one, we ensure that any two new nodes can be distinguished purely based on their graph
connectivity, without relying on auxiliary information.

3.2 TRAINING

The key challenge in training GENs is to identify which scores the network should produce such
that the GEN transforms the input graph Gt into its desired successor Gt+1. In other words, we
require a teaching signal consisting of ground truth scores (ν̂, Ŷ , ê+, ê−, Ê), such that the edit script
δ̄ returned by Algorithm 1 yields δ̄(Gt) ∼= Gt+1.

Unfortunately, such a one-step teaching signal is sometimes insufficient. Consider the two ex-
ample graphs Gt = ({1}, ∅, (0)) and Gt+1 = ({1, 2, 3}, {(1, 2), (1, 3)}, (0, 0, 0)T ). In this case,
there exists no one-step teaching signal that transforms Gt to Gt+1 because we can only insert
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Algorithm 1 The scheme to translate the outputs of the GEN layer νi, ~yi, e+
i , e−i , and εi,j to graph

edits.
1: function TRANSLATE(graph G = (V,E,X), node edit scores ~ν ∈ RN , attributes Y ∈ RN×n,

edge filter scores ~e+, ~e− ∈ RN , and edge edit scores E ∈ RN×N )
2: Initialize script δ̄ with edeli,j for all (i, j) with νi < − 1

2 or νj < − 1
2 in lexicographic order.

3: for i with e+
i > 0 and νi ≥ − 1

2 do
4: for j with e−j > 0 and νj ≥ − 1

2 do
5: Append edeli,j to δ̄ if (i, j) ∈ E and εi,j < − 1

2 .
6: Append einsi,j to δ̄ if (i, j) /∈ E and εi,j > + 1

2 .
7: end for
8: end for
9: Append repi,~yi to δ̄ for all i with |νi| ≤ 1

2 and ~xi 6= ~yi.
10: k ← 1.
11: for i with νi > + 1

2 do
12: Append ins~yi and einsi,N+k to δ̄.
13: k ← k + 1.
14: end for
15: Append deli to δ̄ for all i with νi < − 1

2 in descending order.
16: return δ̄.
17: end function

as many new nodes as already exist. However, it is possible to set up a two-step teaching signal
(ν̂1, Ŷ1, ê

+
1 , ê
−
1 , Ê1), (ν̂2, Ŷ2, ê

+
2 , ê
−
2 , Ê2) with ν̂1 = (1), ν̂2 = (1, 0)T , and all other scores set to

zero. When plugging these values into Algorithm 1 we obtain the edits δ̄1 = ins, eins1,2 and
δ̄2 = ins, eins1,3, such that the concatenation δ̄ = δ̄1, δ̄2 does indeed yield δ̄(Gt) ∼= Gt+1. In general,
Theorem 2 (below) shows that a teaching signal with K + 1 steps suffices to transform any input
graph Gt into any output graph Gt+1, where K is the number of insertions necessary to transform
Gt into Gt+1 and the first K steps only perform these insertions.

Provided that a teaching signal exists, our training procedure should ensure that the actual edit scores
(~ν1,Y1, ~e

+
1 , ~e
−
1 ,E1), . . . (~νK+1,YK+1, ~e

+
K+1, ~e

−
K+1,EK+1) result in the same edits as the teaching

signal when being plugged into Algorithm 1. To do so we treat every edit decision in Algorithm 1 as
a binary classification and punish different decisions with a classification loss, such as the hinge loss
(Zhao et al., 2017) or crossentropy (refer to Appendices B and C for a more details on loss functions).

In particular, in the first K steps of a teaching signal, we have a classification loss for the decision
of inserting a node (νk,i > + 1

2 ) or not (νk,i ≤ + 1
2 ), plus a loss for punishing deviations between

predicted attributes ~yk,i and desired attributes ŷk,i for all i with ν̂k,i > + 1
2 . For step K + 1, the

same idea applies. For each node we have a binary classification loss for the decision of deleting a
node i (νK+1,i < − 1

2 ) or not; plus the regression loss between ~yK+1,i and ŷK+1,i for non-deleted
nodes i; plus the classification loss regarding whether to change the outgoing edges of node i
(e+
K+1,i > 0) or not; plus the classification loss regarding whether to change the incoming edges of

node i (e−K+1,i > 0) or not; plus the classification loss regarding whether to delete an existing edge
(i, j) (εi,j < −1) or not; plus the classification loss regarding whether to insert a non-existing edge
(i, j) (εi,j > 1) or not. The sum of all these losses forms our training loss for a single graph pair
(Gt, Gt+1). Because this loss is differentiable, we can train our neural net end-to-end by performing
a gradient descent scheme on this loss, e.g. using Adam (Kingma & Ba, 2015).

Importantly, edge filtering needs to be adjusted to the training data. In particular, if we impose a
limit on the maximum number of nodes with e+

i > 0 or e−i > 0, this limit should be higher than the
maximum number of those nodes in the teaching signals for the training data - otherwise, the training
can never achieve zero loss. If the limit is high enough, however, the training procedure is the same
with or without the limit. The limit only impacts inference.
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3.3 INFERENCE

Once training is complete, we wish to use our GEN for inference. In particular, given a previously
unseen graph Gt, we want to know its successor Gt+1. Because Gt+1 is unknown, we can not
construct a teaching signal. Instead, we plug the current graph Gt into our graph neural net to
compute node features Φ, then use the GEN to compute scores (~ν,Y , ~e+, ~e−,E), and plug these into
Algorithm 1 to retrieve an edit script δ̄, which then yields our predicted graph Gt+1 = δ̄(Gt) (also
refer to Figure 1). This is the simple one-step scheme that we will also use in our graph dynamical
system experiments.

In case our training data requires multi-step teaching signals, our inference also needs multiple steps.
In particular, we use the following scheme: 1) Color all nodes red. 2) If no red nodes are left, go to 4.
Otherwise, re-compute the node features ~φi, the node edit score νi, and the attributes ~yi for all red
nodes i. 3) For all i with νi > + 1

2 , insert a new node with attributes ~yi, draw an edge from i to the
new node, and color the new node red. Color all nodes i with νi ≤ + 1

2 blue. Then go to 2.
4) Compute the node features Φ and the edit scores (~ν,Y , ~e+, ~e−,E) for all nodes. Set all νi > 1

2 to
zero. Then, call Algorithm 1 and apply the resulting script to the graph.

In general, it may be necessary to provide state information (e.g. via a recurrent neural net) to ensure
that the network can distinguish whether it still needs to insert nodes or not. In our experiments,
however, it is sufficient to either summarize all edits in a single step or to supply the network with a
binary node attribute that flags whether we are still in ’insertion mode’ or not.

3.4 THEORY

In this section, we wish to answer two questions. First, how to construct a teaching signal for a
graph edit network? Second, how short can the output edit script of a GEN get, provided that it still
transforms graph Gt to graph Gt+1?

The answer to both questions lies in making the theoretical connection to graph edit distances more
explicit. To do so, we first introduce a key concept that will help us, namely that of a graph mapping.

Definition 1 (Graph Mapping). Let G = (V = {1, . . . ,M}, E,X) and G′ = (V ′ =
{1, . . . , N}, E′,X ′) be two non-empty graphs, i.e. M,N > 0. Then, we define a graph map-
ping ψ between G and G′ as a bijective mapping ψ : {1, . . . ,M + N} → {1, . . . ,M + N}
with the additional restriction that for the set Insψ := {j ≤ N |ψ−1(j) > M} we obtain
ψ−1(Insψ) = {M + 1, . . . ,M + |Insψ|}.

Graph mappings are useful because they are intimately connected to edit scripts. In particular, we
re-state a result from the literature that any edit script converts to a graph mapping and back and that
this conversion never increases the length of the script.

Theorem 1 (Script to mapping). Let G and G′ be any two graphs. There exist two polynomial
algorithms to translate any edit script δ̄ with δ̄(G) ∼= G′ to a graph mapping ψδ̄ between G and G′,
and to translate any graph mapping ψ between G and G′ into an edit script δ̄ψ with δ̄ψ(G) ∼= G′,
such that for any δ̄ with δ̄(G) ∼= G′ we obtain |δ̄ψδ̄ | ≤ |δ̄|.

One proof is contained in Bougleux et al. (2017). We provide a more extensive version in Ap-
pendix A.1, which also gives more details on the structure of ψδ̄ and δ̄ψδ̄ .

Next, we show that a graph mapping can also be used to construct a teaching signal for a GEN. Even
better, the conversion from mapping to teaching signal to edit script yields almost as short scripts as
the direct conversion from mappings to edit scripts. Indeed, we can provide a sharp bound for the
overhead in terms of the connected components in the target graph.

Theorem 2 (Mapping to teaching signal). Let G and G′ be any two graphs with M and N nodes, re-
spectively. There exists an O(M2 + N2) algorithm (namely Algorithm 2 in the appendix) that
translates any graph mapping ψ with |Insψ| < N between G and G′ into a teaching signal
(ν̂1, Ŷ1, ê

+
1 , ê
−
1 , Ê1), . . . , (ν̂K+1, ŶK+1, ê

+
K+1, ê

−
K+1, ÊK+1) such that the output of Algorithm 1

is a script δ̄, where the following holds: 1) δ̄(G) ∼= G′; 2) |δ̄| ≤ |δ̄ψ| + 2 · (C − 1), where C is
the number of connected components in G′ (this bound is sharp); 3) the first K steps contain only
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insertions, with νk,i = 0⇒ νk+1,i = . . . = νK+1,i = 0; 4) the last step contains no insertions; 5)
K ≤ |Insψ| (this bound is sharp).

Refer to Appendix A.2 for the proof. So this result tells us that we obtain a (sparse) teaching signal
if we have a good graph mapping ψ. But how to obtain ψ? In many cases, we can exploit domain
knowledge. For example, if we know that the input graphs are trees, we can use the polynomial
tree edit distance algorithm to infer mappings that correspond to short edit scripts (Zhang & Shasha,
1989); or, if node IDs are given (like user IDs in social networks), we can set ψ such that it maintains
IDs. In our experiments, we follow such domain-specific schemes to construct the mappings ψ.

But there is also a general strategy connected to the graph edit distance. While computing the graph
edit distance itself is NP-hard (Bougleux et al., 2017), one can achieve a good approximation by
constructing a graph mapping via the Hungarian algorithm and then converting this mapping to an
edit script via Theorem 1 (Riesen & Bunke, 2009; Abu-Aisheh et al., 2017; Blumenthal et al., 2020).
For our purposes, we can simply apply such an approximator and then use the graph mapping to
construct our teaching signal. Importantly, if the approximator happens to find the optimal mapping
and if our graph edit network is powerful enough to achieve a zero loss on one graph tuple (Gt, Gt+1),
then the output of our graph edit network is close to the graph edit distance.

Corollary 1 (Near-Optimality of Graph Edit Network Architecture). Let G and G′ be any two
non-empty graphs and let C be the number of connected components in G′. Further, let ψ be a
graph mapping between G and G′ such that |δ̄ψ| = dGED(Gt, Gt+1). Finally, let f be a graph edit
network that reproduces the teaching signal, i.e. f(G) = δ̄ with δ̄ being the same script as the result
of Theorem 2 for ψ. Then, it holds: |δ̄| ≤ dGED(G,G′) + 2 · (C − 1).

As mentioned before, this corollary only holds if the mapping is optimal and if the GEN can reproduce
the teaching signal. The latter only holds if the node features Φ are rich enough to make each edit
classification problem linearly separable (because any edit decision is a linear binary classification).
Typically, this fails if a graph neural net can not distinguish two nodes that would need to be
treated differently. For example, in an unlabeled ring graph G = ({1, . . . , N}, {(1, 2), . . . , (N, 1)}),
Equation 1 assigns the same node embedding to all nodes and, hence, the GEN returns the same
edits. In such cases, distinguishing information must be integrated via an alternative architecture
or via node attributes (which is the strategy we take in the experiments). For further work on the
expressiveness of graph neural nets we point the reader to Xu et al. (2019).

To summarize: The proposed way to use a GEN is 1) to gather a training time series of graphs
G1, . . . , GT+1; 2) to set up reference graph mappings ψt betweenGt andGt+1 for all t ∈ {1, . . . , T},
e.g. via graph edit distance approximators; 3) to compute teaching signals via Theorem 2; 4) to
initialize an appropriately powerful graph neural net with a final GEN layer and train it to reproduce
the teaching signals on the training data; 5) to use the trained GEN in inference.

4 EXPERIMENTS

Our experimental evaluation displays the capability of GENs on a set of graph dynamical systems
in comparison to baselines from the literature. Experiments are reported in three groups and cover
graph dynamical systems, tree dynamical systems, and a social network dataset. All experiments
require the possibility of changing nodes, and almost all require additional edge changes. The data is
discussed in more detail in Appendix D. We perform all experiments on a consumer grade laptop
with core i7 CPU. All experimental code is available at https://gitlab.com/bpaassen/
graph-edit-networks.

First, we consider the following three graph dynamical systems.

Edit Cycles: A manually defined dataset of cycles in the set of undirected graphs with up to four
nodes. The teaching protocol is hand-crafted to perform optimal edits between each graph and its
successor. To sample a time series we let the cycle run for 4-12 time steps at random. The node
features φ0(x) were set to zero.

Degree Rules: A dynamical system on undirected graphs of arbitrary size with the following rules.
First, delete every node with a degree larger than 3. Second, connect nodes that share at least one
common neighbor. Third, insert a new node at any node with a degree lower than 3. We used the
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Figure 2: Two graph time series from the degree rules dataset. Blue arrows indicate graph dynamics,
labelled with the teaching signal.

Table 1: The average precision and recall values (± std.) across five repeats for all edit types on the
graph dynamical systems.

node insertion node deletion edge insertion edge deletion
model recall precision recall precision recall precision recall precision

edit cycles

VGAE 0.62 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.69 ± 0.1 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0
VGRNN 0.64 ± 0.0 1.00 ± 0.0 0.63 ± 0.0 1.00 ± 0.0 0.95 ± 0.0 0.06 ± 0.0 1.00 ± 0.0 0.71 ± 0.1
XE-GEN 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

GEN 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

degree rules

VGAE 0.15 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.96 ± 0.0 0.88 ± 0.0 0.97 ± 0.1 1.00 ± 0.0 0.97 ± 0.1
VGRNN 0.14 ± 0.0 1.00 ± 0.0 0.72 ± 0.0 1.00 ± 0.0 0.56 ± 0.0 0.21 ± 0.0 1.00 ± 0.0 0.02 ± 0.0
XE-GEN 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.97 ± 0.0 0.99 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

GEN 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.97 ± 0.1 0.99 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

game of life

VGAE 0.27 ± 0.1 1.00 ± 0.0 1.00 ± 0.0 0.03 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0
VGRNN 0.31 ± 0.1 1.00 ± 0.0 0.32 ± 0.1 1.00 ± 0.0 1.00 ± 0.0 0.00 ± 0.0 1.00 ± 0.0 0.01 ± 0.0
XE-GEN 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.98 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

GEN 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

node index in one-hot coding as node features φ0(x). For every connected component in the input
graph, this dynamical system provably converges to a 4-clique. We started with a random undirected
adjacency matrix of size 8× 8 and let the system run until convergence. Refer to Figure 2 for two
example time series.

Game of Life: We simulated one of five oscillatory shapes in Conway’s game of life (Gardner,
1970), namely blinker, glider, beacon, toad, and clock, for 10 time steps, placed on a random location
on a 10× 10 grid and additionally activated 10% of the grid cells at random. We represented the grid
as a graph with 100 nodes and represented the 8-neighborhood via the adjacency matrix. The desired
edits were node deletions for all nodes that should switch from alive to dead and node insertions for
all nodes that should switch from dead to alive. As node features we used the alive-state of the node.

Note that a single-step teaching signal is sufficient in all cases. We compare our graph edit network
against variational graph autoencoders (VGAE) and variational graph recurrent nets (VGRNN) which
predict the adjacency matrix of the next graph via an outer product of the node features, similar to
our edge prediction scheme (Kipf & Welling, 2016b; Hajiramezanali et al., 2019). Note that neither
net can predict node changes directly, but we predict a node deletion whenever all edges of a node
are deleted. To train our GEN model, we apply both the hinge loss (GEN; Appendix B) as well as the
crossentropy loss (XE-GEN; Appendix C). For all models, we use two graph neural network layers
with 64 neurons each, sum as aggregation function and concatenation as merge function (refer to
Equation 1). We train all networks with an Adam optimizer in pyTorch using a learning rate of 10−3

and stopping training after 30,000 time series or if the loss dropped below 10−3. After training, we
evaluated the predictive performance on 10 additional time series. We repeated each experiment five
times.

The recall and precision for all edit types, all models, and all datasets is shown in Table 1. Node
insertion precision, node deletion recall, and edge deletion recall where consistently at 100% for all
models, and edge insertion precision as well as edge deletion precision very close to 100%. This is
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the case for both hinge and crossentropy loss. Unsurprisingly, VGAE and VGRNN perform poorly
on node edits, for which they are not designed, but also underperform on some edge edit scores;
especially VGRNN on edge edit precision. We note that our datasets are strictly Markovian, such
that the added recurrent capability of VGRNNs may not provide much value and that, indeed, the
difficulty of maintaining the state across node set changes may hurt VGRNN in these cases.

Next, we consider the following two tree dynamical systems, where node labels are represented via
one-hot coding.

Boolean Formulae: Random Boolean formula with up to three binary operators (e.g. (x ∨ ¬y) ∧
x ∧ y), which get simplified with rules like x ∧ ¬x→ ⊥ until the formula could not be simplified
anymore.

Peano addition: Random additions of single-digit integers with at most 3 + operators, which get
re-written using Peano’s definition of addition, i.e. m+ succ(n) = succ(m) + n and m+ 0 = m.

The purpose of these datasets is to test whether our GEN is able to correctly predict node attributes.
We compare against a Gaussian process prediction approach for tree time series prediction suggested
by Paaßen et al. (2018) which uses Gaussian process regression with an RBF kernel on the tree edit
distance to predict the next tree in kernel space and then solves a kernel pre-image problem to find
the actual next tree (Paaßen et al., 2018). We use the same GEN hyper parameters as for the graph
dynamical systems.

As results we observe that the GEN is able to achieve perfect predictive accuracy for both datasets
on all five repeats of the experiment. By contrast, the Gaussian process prediction scheme yields an
RMSE (as measured by the tree edit distance) of 2.39 (std.: 0.24) on Boolean and 4.54 (std.: 0.77)
on Peano, indicating that the datasets are not trivial to predict.

We evaluated the runtime of GENs on a variation of the HEP-Th paper dataset of Leskovec et al.
(2007). In particular, we considered all authors as nodes and included an edge if two authors submitted
a joint HEP-Th paper within the last τ month from some month t. We removed authors without any
papers from the graph and resolved duplicates. We varied t over the entire range between January
1992 and April 2003 in the HEP-Th dataset and τ ∈ {1, . . . , 12}, thus obtaining 1554 different graphs
of sizes in the range [100, 2786]. For all these graphs, we measured the time needed to compute a
forward and backward pass with a GEN without edge filtering (i.e. ~e+ = ~e− = ~1 in all cases) and
with edge filtering, respectively. For forward computations, both variants scaled sub-quadratically
with empiric exponents of 1.65 and 1.37, respectively. For the backward pass, GENs without node
filtering scaled with an exponent of 4.11, whereas GENs with edge filtering scaled roughly linearly
(exponent 0.93), yielding faster times by several orders of magnitude.

We emphasize that edge filtering can not be made arbitrarily strict. As discussed in Section 3.2, the
limit on the number of edited nodes must be adjusted to the training data; otherwise accuracy will
suffer. Still, the precise value of the limit only influences a constant factor in the linear efficiency.

5 CONCLUSION

We introduced the graph edit network, a novel output layer for graph neural networks to predict
graph edits. In contrast to prior work, graph edits cover all possible graph-to-graph transformations,
including changes in the node set. Importantly, graph edits are sparse, reducing the time complexity
from quadratic to linear and facilitating interpretation. Further, graph edits can be locally decided at
each node, avoiding the need for pooling layers. In addition to the novel output layer, we also provided
a training scheme which only requires a mapping between nodes as input and then returns target
values for all outputs of the linear layer, turning the training into combination of binary classification
and regression tasks that can be solved with established methods. We further showed that, if the input
node mapping is optimal and the graph neural network layers are expressive enough, a graph edit
network can achieve edit scripts almost as short as the graph edit distance.

Empirically, we evaluated graph edit networks against variational graph autoencoders, variational
graph recurrent nets, and kernel time series prediction on three graph and two tree dynamical systems,
proving the concept of graph edit networks. We hope that our work is the starting point for exciting
further research in the field of graph-to-graph learning and time series prediction on graphs, especially
in combination with recurrent graph neural networks to go beyond the Markovian setting.
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A PROOFS

A.1 PROOF OF THEOREM 1

We structure our proof into three lemmas. Lemma 1 translates a graph mapping into a script, Lemma 2
translates a script to a graph mapping, and Lemma 3 shows that the length never gets longer by doing
so. This argument is analogous to Proposition 1 by Bougleux et al. (2017), who show a one-to-one
correspondence between bijective mappings and a reduced set of edit scripts, called restricted paths.
In this work, we aim to connect the notion of graph mappings to teaching signals for graph edit
networks. To make this connection, we require stronger statements about the structure of such graph
mappings and a different order of operations compared to Bougleux et al. (2017), such that we
provide a full argument here, without relying on Bougleux et al. (2017) directly.

First, we define the corresponding script to a graph mapping.

Definition 2. Let G = (V = {1, . . . ,M}, E,X) and H = (V ′ = {1, . . . , N}, E′,X ′) be two non-
empty graphs, i.e. M,N > 0, and let ψ be a graph mapping between G and H . We then define the
script δ̄ψ corresponding to ψ betweenG andH as follows. First, we construct a replacement repi,~x′

ψ(i)

for all i (in ascending order) where i ≤ M , ψ(i) ≤ N and ~xi 6= ~x′ψ(i). Let δ̄rep
ψ be the script of all

these replacements. Next, we construct an insertion insx′
ψ(i)

for all i (in ascending order) where i > M

and ψ(i) ≤ N . Let δ̄ins
ψ be the script of all these insertions. Next, we construct an edge insertion

einsi,j for all (i, j) (in lexicographically ascending order) where (i, j) /∈ E but (ψ(i), ψ(j)) ∈ E′.
Let δ̄eins

ψ be the script of all these edge insertions. Next, we construct an edge deletion edeli,j for
all (i, j) (in lexicographically ascending order) where (i, j) ∈ E but (ψ(i), ψ(j)) /∈ E′. Let δ̄edel

ψ

be the script of all these edge deletions. Finally, we construct a node deletion deli for all i ≤M (in
descending order) where ψ(i) > N . Let δ̄del

ψ be the script of all these node deletions. We then define
the overall script δ̄ψ as the concatenation δ̄ψ = δ̄rep

ψ , δ̄ins
ψ , δ̄eins

ψ , δ̄edel
ψ , δ̄del

ψ .

We next show that the scripts resulting from graph mappings do what they should, i.e. they to indeed
convert G to a graph that is isomorphic to H .

Lemma 1. Let G = (V = {1, . . . ,M}, E,X) and H = (V ′ = {1, . . . , N}, E′,X ′) be two non-
empty graphs, i.e. M,N > 0, let ψ be a graph mapping between G and H , and let δ̄ψ be the
corresponding script. Then, H̃ := δ̄ψ(G) is isomorphic to H .

Proof. In particular, by applying δ̄rep
ψ and δ̄ins

ψ , to G, we obtain a node set Ṽ and attributes X̃ with
the following properties. First, consider U := {i ∈ Ṽ |ψ(i) ≤ N}. Due to our construction and
Definition 1 of a graph mapping, it holds U = {i ≤ M |ψ(i) ≤ N} ∪ {M < i ≤ M + |Insψ|}
and ψ(U) = {j ≤ N |ψ−1(j) ≤ M} ∪ Insψ = V ′. Further, for all i ∈ U we have by construction
x̃i = ~x′ψ(i), because either i ≤M and ~xi = ~x′ψ(i), in which case this holds trivially, or i ≤M and
~xi 6= ~x′ψ(i), in which case a replacement was applied which ensured the condition, or M < i ≤
M + |Insψ|, in which case an insertion was applied that ensured the condition.

Next, we consider the graph G̃ = (Ṽ , Ẽ, X̃) = δ̄rep
ψ , δ̄ins

ψ , δ̄eins
ψ , δ̄edel

ψ (G), i.e. the graph that results
from additionally applying all edge insertions and edge deletions. For this graph we can show that
the subgraph restricted to the node set U is isomorphic to H with the isomorphism ψ restricted to
U . In particular, we have already shown that ψ(U) = V ′ and that x̃i = ~x′ψ(i). It remains to show

that for all i, j ∈ U it holds: (i, j) ∈ Ẽ if and only if (ψ(i), ψ(j)) ∈ E′. This, however, is exactly
the condition enforced by the edge deletion/insertion construction above. Accordingly, the subgraph
restricted to the nodes U is indeed isomorphic to H .

Additionally, we also obtain that for any node i /∈ U , there exists no edge (i, j) or (j, i) in Ẽ, because
these would have been deleted by δ̄edel

ψ . Finally, δ̄del
ψ deletes all nodes i /∈ U (in descending order

to prevent interference in node ordering) and the remaining graph H̃ = δ̄(G) is isomorphic to H ,
because it is exactly the subgraph we have analyzed before. This concludes the proof.

In a next step, we define the conversion back from a script to a graph mapping.
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Definition 3. Let G = (V = {1, . . . ,M}, E,X) and H = (V ′ = {1, . . . , N}, E′,X ′) be two
non-empty graphs, i.e. M,N > 0. Further, let H̃ = (Ṽ ′ = {1, . . . , N}, Ẽ′, X̃ ′) be a graph that is
isomorphic to H via isomorphism ψ̃ : {1, . . . , N} → {1, . . . , N} from Ṽ ′ to V ′, i.e. for all i ∈ Ṽ ′ :

x̃′i = ~x′ψ(i), and (i, j) ∈ Ẽ′ if and only if (ψ̃(i), ψ̃(j)) ∈ E′. Finally, let δ̄ = δ1, . . . , δT be an edit

script, such that δ̄(G) = H̃ . Then, we define the mapping ψδ̄ : {1, . . . ,M +N} → {1, . . . ,M +N}
recursively as follows.

First, if T = 0 (i.e. δ̄ is empty), we set ψδ̄ = ψ̃, extended by the identity on the inputsN+1, . . . ,M+
N . Next, if T > 0, let ψ′ := ψδ2,...,δT and consider the first edit δ1. If δ1(G) = G, i.e. the edit has
no effect, we set ψδ̄ = ψ′.

If δ1 = delj for some j, we set ψδ̄(i) = ψ′(i) for all i < j, ψδ̄(i) = ψ′(i − 1) for all i > j, and
ψδ̄(i) = M +N .

If δ1 = ins~x for some ~x, let i∗ := ψ′
−1

(M + N + 1) and distinguish four cases. First, if i∗ ≤ M
and ψ′(M + 1) ≤ N , we set ψδ̄(i) = ψ′(i) for all i 6= i∗ and ψδ̄(i

∗) = ψ′(M +N + 1). Second, if
i∗ ≤M and ψ′(M + 1) > N , we set ψδ̄(i) = ψ′(i) for all i 6= i∗ with i ≤M , ψδ̄(i

∗) = ψ′(M + 1),
and ψδ̄(i) = ψ′(i + 1) for all i > M . Third, if i∗ = M + 1, we set ψδ̄(i) = ψ′(i) for all i ≤ M
and ψδ̄(i) = ψ′(i + 1) for all i > M . Fourth, if i∗ > M + 1, we set ψδ̄(i) = ψ′, restricted to
{1, . . . ,M +N}.
Finally, if δ1 is any other edit, we set ψδ̄ = ψ′.

We will later prove in Corollary 2 that the resulting mapping ψδ̄ is indeed a graph mapping.

Refer to Figure 3 for an example of the construction. In particular, we consider the script δ̄ =
del2, ins~x1

, ins~x2
,del3, transforming the graph G = (V = {1, 2, 3}, E = ∅,X) to the graph H̃ =

(Ṽ ′ = {1, 2, 3}, Ẽ′ = ∅, X̃ ′), which in turn is isomorphic to the graph H = (V ′ = {1, 2, 3}, E′ =

∅,X ′) for some attributes X, X̃ ′,X ′, and for the isomorphism ψ̃ between H̃ and H with ψ̃(1) = 3,
ψ̃(2) = 1, and ψ̃(3) = 2.

Now, we construct the mapping ψδ̄ recursively from the last edit to the first. The initial mapping
for the empty script is ψε : {1, . . . , 3 + 3} → {1, . . . , 3 + 3} with ψε(i) = ψ̃(i) for i ≤ 3 and
ψε(i) = i for i > 3. Next, we incorporate the last edit of the script del3. Because this is a deletion,
the graph before the deletion must have had one node more. Accordingly, ψdel3 is now defined on
the domain and image {1, . . . , 4 + 3}. In more detail, following Definition 3 we obtain the mapping
ψdel3(1) = ψε(1) = 3, ψdel3(2) = ψε(2) = 1, ψdel3(3) = 4 + 3 = 7, ψdel3(4) = ψε(4 − 1) = 2,
ψdel3(5) = ψε(5− 1) = 4, ψdel3(6) = ψε(6− 1) = 5, and ψdel3(7) = ψε(7− 1) = 6. In the figure,
this mapping is obtained by following all arrows from the graph right of H̃ to their end point.

Next, we incorporate the edit ins~x2
. Because we consider an insertion, the graph before the insertion

had one node less. Accordingly, the mapping ψins~x2
,del3 is now defined on the domain and image

{1, . . . , 3 + 3}; it is crucial that we remove the entry 3 + 3 + 1 = 7 from the codomain of our
mapping. The pre-image of 7 is i∗ = ψ−1

del3
(7) = 3. Further, we need to consider whether the

inserted node 3 + 1 = 4 gets deleted later in the script. Because ψdel3(3 + 1) = 2 ≤ 3, we know
that this is not the case. Accordingly, the first of the four cases in Definition 3 applies and we obtain
ψins~x2

,del3(i) = ψdel3(i) for all i 6= i∗ = 3 and ψins~x2
,del3(3) = ψdel3(7) = 6. Note that this is still

a proper graph mapping, i.e. the bijectivity is never violated and the only node j ∈ Insψins~x2
,del3

is 2

with the pre-image ψins~x2
,del3(2) = 4 = 3 + 1, as required.

Now, we incorporate another insertion ins~x1
. We observe that the newly inserted node 2 + 1 = 3 will

get deleted later, since we have ψins~x2
,del3(2 + 1) = 6 > 3. Furthermore, the newly inserted node 3

is at the same time the pre-image of entry 2 + 3 + 1 = 6, which we need to delete later. Accordingly,
the third case in Definition 3 applies and we obtain ψins~x1

,ins~x2
,del3(i) = ψins~x2

,del3(i) for i ≤ 2 and
ψins~x1

,ins~x2
,del3(i) = ψins~x2

,del3(i+ 1) for i > 2. Because we do not refer to ψins~x2
,del3(2 + 1) = 6,

we do not leave the desired range {1, . . . , 2 + 3}. Also note that Insψins~x1
,ins~x2

,del3
still contains only

the node 2, which has the pre-image ψ−1
ins~x1

,ins~x2
,del3

(2) = 3 = 2 + 1 as required.
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ψδ̄

Figure 3: An illustration of the conversion of a script δ̄ = del2, ins~x1
, ins~x2

,del3 to a graph mapping
ψδ̄. We start with an initial isomorphism ψ̃ between the graph H and the graph H̃ = δ̄(G) (left)
and then adjust the mapping from left to right until we arrive at a final graph map between G and H
(right). The mapping is obtained by following the arrows from G to H . For simplicity we assume
that the graphs have no edges. Also note that we include the ’virtual nodes’ M + 1, . . . ,M +N in
the illustration.

Finally, we incorporate the deletion del2. As stated in Definition 3, we thus obtain ψδ̄(i) =
ψins~x1

,ins~x2
,del3(i) for i < 2, ψδ̄(2) = 3 + 3 = 6, and ψδ̄(i) = ψins~x1

,ins~x2
,del3(i− 1) for i > 2. The

final mapping is thus ψδ̄(1) = 3, ψδ̄(2) = 6, ψδ̄(3) = 1, ψδ̄(4) = 2, ψδ̄(5) = 4, and ψδ̄(6) = 5. In
Figure 3, we obtain this mapping by starting at G and following the arrows to their end points.

Our next step is to show that the mapping constructed from a script is indeed a graph mapping and
that additional structure applies, which we can exploit later on.

Lemma 2. Let G, H̃ , H be graphs as in the previous definition with isomorphism ψ̃ between
H̃ and H , let δ̄ = δ1, . . . , δT be a script, such that δ̄(G) = H̃ , let ψδ̄ be the corresponding
mapping, and let ψ : {1, . . . ,M + N} → {1, . . . ,M + N} be defined as ψ(i) = ψ̃−1(ψδ̄(i))

if ψδ̄(i) ≤ N and ψ(i) = ψδ̄(i) otherwise, i.e. the mapping composed with ψ̃−1. Further, let
Delψ := {i ≤ M |ψ(i) > N}. Then, ψ is bijective. Further, for all i /∈ Delψ, ψ is monotonously
increasing (constraint 1), and the image of ψ on Delψ is {M + N + 1 − |Delψ|, . . . ,M + N}
(constraint 2).

Proof. We perform this proof via induction over the length T of the script δ̄ = δ1, . . . , δT . If T = 0,
ψ is the identity, which is obviously bijective, yields Delψ = ∅ (such that constraint 2 is fulfilled),
and is monotonously increasing (such that constraint 1 is fulfilled).

Now, if T > 1, let ψ′ be defined as ψ above, but between the graphs δ1(G) and H . Accordingly,
ψ′ is a bjective mapping from and to {1, . . . ,M ′ + N} by induction, where M ′ is the size of the
node set of δ1(G). Further, by induction we also know that ψ′ is monotonously increasing on all
inputs except on Delψ′ := {i ≤M ′|ψ′(i) > N} (constraint 1) and that the image of ψ′ on Delψ′ is
precisely {M ′ +N + 1− |Delψ′ |, . . . ,M ′ +N} (constraint 2). Now, consider the first edit δ1. If δ1
leaves the node set as-is, we obtain M = M ′, ψ = ψ′, and both constraints hold by induction.

If δ1 = delj for some j ≤ M , we obtain M ′ = M − 1. Further, by the definition of ψδ̄, we
obtain ψ(i) = ψ′(i) for i < j, ψ(i) = ψ′(i − 1) for i > j, and ψ(j) = M + N . Accordingly,
ψ maps the set {1, . . . , j − 1} ∪ {j + 1, . . . ,M +N} bijectively to {1, . . . ,M +N − 1} and the
setting ψ(j) = M +N completes the bijective map. Further, j ∈ Delψ and is mapped to M +N ,
conforming to constraint 2. Finally, for all other inputs both constraints hold by induction.

If δ1 = ins~x for some ~x, we obtain M ′ = M + 1 and thus ψ′ is a bijective map from and to
{1, . . . ,M +N + 1}. Now, let i∗ = ψ′

−1
(M +N + 1) and distinguish four cases.
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First, if i∗ ≤ M and ψ′(M + 1) ≤ N we obtain ψ(i) = ψ′(i) for all i 6= i∗ and ψ(i∗) = ψ′(M +
N + 1). First, observe that ψ′(M +N + 1) < M +N + 1, otherwise ψ′(M +N + 1) = M +N + 1
and i∗ = M +N + 1 > M , which is a contradiction. Accordingly, ψ is a bijective map from and to
{1, . . . ,M +N} because by definition ψ maps the set {1, . . . , i∗ − 1} ∪ {i∗ + 1, . . . ,M +N} to
{1, . . . ,M+N}\{ψ′(M+N+1)} and the setting ψ(i∗) = ψ′(M+N+1) completes the bijective
map. Furthermore, we obtain ψ′(M + N + 1) > N . Otherwise, the monotonicity of ψ′ would
require all values M + 2, . . . ,M + N to be mapped to values ≤ N as well. However, there exist
only N such values and one is already blocked by ψ′(M + 1), which is a contradiction. Accordingly,
ψ′(M +N + 1) > N and thus i∗ ∈ Delψ . Both constraints hold by induction.

Second, if i∗ ≤ M and ψ′(M + 1) > N we obtain ψδ̄(i) = ψ′(i) for all i 6= i∗ with i ≤ M ,
ψδ̄(i

∗) = ψ′(M + 1), and ψδ̄(i) = ψ′(i+ 1) for all i > M . Accordingly, ψ is a bijective map from
and to {1, . . . ,M + N} because by definition ψ maps the set {1, . . . , i∗ − 1, i∗ + 1 . . . ,M + N}
to the image of ψ′ for the inputs {1, . . . , i∗ − 1, i∗ + 1 . . . ,M,M + 2, . . . ,M +N + 1}, which is
exactly {1, . . . ,M +N} \ {ψ′(M + 1)}. Setting ψδ̄(i

∗) = ψ′(M + 1) then completes the bijective
map. Further, on all inputs except i∗ both constraints still hold due to induction. For i∗, we obtain
i∗ ∈ Delψ because ψ(i∗) = ψ′(M + 1) > N and because M + 1 ∈ Delψ′ constraint 2 also holds
for i∗ due to induction.

Third, if i∗ = M + 1, we obtain ψδ̄(i) = ψ′(i) for all i ≤M , ψδ̄(i) = ψ′(i+ 1) for all i > M . This
is a bijective map from and to {1, . . . ,M +N} because by definition ψ maps {i, . . . ,M +N} to the
image of ψ′ for {1, . . . ,M,M + 2, . . . ,M +N + 1}, which is exactly {1, . . . ,M +N}. Further,
the constraints hold due to induction.

Fourth, if i∗ > M + 1, we obtain ψδ̄(i) = ψ′ restricted to {1, . . . ,M +N}. In this case, we observe
that i∗ must be M +N + 1. Otherwise, we would obtain ψ′(i∗ + 1) < M +N + 1 = ψ′(i∗), which
contradicts monotonicity of ψ′. Accordingly, restricting ψ′ to {1, . . . ,M +N} does indeed yield a
bijective map to {1, . . . ,M +N} which conforms to both constraints due to induction.

Because this covers all possible edits, this concludes our proof.

Corollary 2. Let G, H , H̃ , ψ̃, δ̄, ψδ̄ , and ψ be defined as in the previous Lemma. then, ψδ̄ is a graph
mapping between G and H .

Proof. First, observe that ψδ̄(i) = ψ̃(ψ(i)) for all i with ψδ̄(i) ≤ N , and ψδ̄(i) = ψ(i) otherwise.
Further, observe that ψδ̄ must thus be bijective. Otherwise, ψ or ψ̃ could not be bijective. Next,
assume that there exists some j ∈ Insψδ̄ such that ψ−1

δ̄
(j) > M + |Insψδ̄ |. Then, because ψδ̄ is

bijective, there also exists some i with M < i ≤ M + |Insψδ̄ | with ψδ̄(i) /∈ Insψδ̄ . This implies
that ψδ̄(i) > N ≥ j, even though ψ−1

δ̄
(j) > i, which contradicts the monotonicity constraint on ψ.

Accordingly, ψδ̄ is indeed a graph mapping between G and H .

Lemma 3. Let G = (V = {1, . . . ,M}, E,X) and H = (V ′ = {1, . . . , N}, E′,X ′) be two non-
empty graphs, i.e. M,N > 0. Further, let H̃ = (Ṽ ′ = {1, . . . , N}, Ẽ′, X̃ ′) be a graph that is
isomorphic to H via isomorphism ψ̃ : {1, . . . , N} → {1, . . . , N}, and let δ̄ be an edit script with
δ̄(G) = H̃ . Finally, let ψδ̄ be the corresponding graph mapping between G and H and let δ̄ψδ̄ be the
edit script corresponding to that graph mapping. Then, it holds: |δ̄ψδ̄ | ≤ |δ̄|.

Proof. We again prove this claim via induction over the length T of the script δ̄ = δ1, . . . , δT .

First, if T = 0,G = δ̄(G) = H̃ . Accordingly, ψδ̄ is ψ̃ (extended with the identity onM+1, . . . ,M+
N ). It then follows that δ̄ψδ̄ is empty. In particular, there can not exist any i ≤M with ~xi 6= ~x′ψδ̄(i)

=

~x′
ψ̃(i)

, otherwise ψ̃ would not be an isomorphism between H̃ and H . Accordingly, δ̄rep
ψδ̄

is empty.
Further, there can not exist any i > M with ψδ̄(i) ≤ N , because ψδ̄(i) = i > M = N . Accordingly,
δ̄ins
ψδ̄

is empty. Next, for all i, j ≤M it holds (i, j) ∈ E ⇐⇒ (ψδ̄(i), ψδ̄(j)) = (ψ̃(i), ψ̃(j)) ∈ E′,
otherwise ψ̃ would not be an isomorphism between H̃ and H; and for all i, j > M = N it holds
(i, j) /∈ E and (ψδ̄(i), ψδ̄(j)) = (i, j) /∈ E′ per definition. Accordingly, both δ̄eins

ψδ̄
and δ̄edel

ψδ̄
are

empty. Finally, there can not exist an i ≤ M with ψδ̄(i) = ψ̃(i) > N because the image of ψ̃ is
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{1, . . . , N}. Accordingly, δ̄del
ψδ̄

is empty and thus δ̄ψδ̄ = δ̄rep
ψδ̄
δ̄ins
ψδ̄
δ̄eins
ψδ̄

δ̄edel
ψδ̄

δ̄del
ψδ̄

is overall empty as
well, i.e. |δ̄ψδ̄ | = 0 ≤ 0 = |δ̄|, as claimed.

Now, consider the case T > 0, let ψ′ := ψδ2,...,δT , and let G̃ = (Ṽ , Ẽ, X̃) := δ1(G). Further, let
δ̄ψ′ be the script that ψ′ is transformed into based on G̃ and H . By induction, |δ̄ψ′ | ≤ T − 1. We
now consider the first edit δ1.

If δ1 has no effect on G, we obtain ψδ̄ = ψ′ and by definition δ̄ψδ̄ = δ̄ψ′ , which in turn yields
|δ̄ψδ̄ | = |δ̄ψ′ | ≤ T − 1 < T as claimed.

If δ1 = repi,~x for some i ≤ M and some ~x, we obtain ψδ̄ = ψ′, V = Ṽ , E = Ẽ, ~xj = x̃j for
j 6= i, and x̃i = ~x 6= ~xi. Now, distinguish two cases. If ~x = ~x′ψ′(i), i.e. x̃i = ~x′ψ′(i) 6= ~xi, δ̄ψδ̄
contains by construction an edit repi,~x and otherwise the same edits as δ̄ψ′ , such that we obtain
|δ̄ψδ̄ | = |δ̄ψ′ | + 1 ≤ T − 1 + 1 = T as claimed. If ~x 6= ~x′ψ′(i), i.e. δ1 sets x̃i to a value which is
temporary and not equal to the final value of ~x′ψ(i), we obtain δ̄ψδ̄ = δ̄ψ′ , because δ̄ψ′ by construction
already contains an edit repi,~x′

ψ′(i)
. Accordingly, we obtain |δ̄ψδ̄ | = |δ̄ψ′ | ≤ T − 1 < T as claimed.

If δ1 = ins~x for some ~x, we obtain Ṽ = V ∪ {M + 1}, Ẽ = E, x̃i = ~xi for i ≤M , and x̃M+1 = ~x.
Now, let let i∗ := ψ′

−1
(M +N + 1) and distinguish four cases.

First, if i∗ ≤ M and ψ′(M + 1) ≤ N , we obtain ψδ̄(i) = ψ′(i) for i 6= i∗ and ψδ̄(i
∗) = ψ′(M +

N + 1). As argued in the proof of the previous lemma, ψ′(M +N + 1) > N due to monotonicity of
ψ′. Accordingly, i∗ is deleted both in δ̄ψ′ and in δ̄ψδ̄ . Further, M + 1 is inserted in δ̄ψδ̄ but not in
δ̄ψ′ , while all other edits remain the same such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ |+ 1 ≤ T − 1 + 1 = T as
claimed.

Second, if i∗ ≤M and ψ′(M + 1) > N , we obtain ψδ̄(i) = ψ′(i) for all i with i ≤M and i 6= i∗,
ψδ̄(i

∗) = ψ′(M + 1), and ψδ̄(i) = ψ′(i+ 1) for all i > M . Because ψ′(M + 1) > N , i∗ is deleted
both in δ̄ψ′ and in δ̄ψδ̄ . Further, M + 1 is deleted in δ̄ψ′ but not in δ̄ψδ̄ , while all other edits remain
the same, such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ | − 1 ≤ T − 2 < T as claimed.

Third, if i∗ = M + 1, we obtain ψδ̄(i) = ψ′(i) for all i ≤ M and ψδ̄(i) = ψ′(i + 1) otherwise.
Again, M + 1 is deleted in δ̄ψ′ but not in δ̄ψδ̄ , while all other edits remain the same, such that we
obtain |δ̄ψδ̄ | = |δ̄ψ′ | − 1 ≤ T − 2 < T as claimed.

Fourth, if i∗ > M + 1, we obtain ψδ̄ = ψ′ restricted to {1, . . . ,M +N}. Further, i∗ = M +N + 1
as argued in the proof of the previous lemma. Accordingly, M + 1 is inserted in δ̄ψδ̄ but not in δ̄ψ′ ,
while all other edits remain the same, such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ | + 1 ≤ T − 1 + 1 = T as
claimed.

Next, if δ1 = einsi,j , we obtain ψδ̄ = ψ′ as well as Ṽ = V , X̃ = X ′, and Ẽ = E ∪ {(i, j)}. Now,
distinguish two cases. If (ψ′(i), ψ′(j)) ∈ E′, δ̄ψδ̄ inserts (i, j) whereas δ̄ψ′ does not, while all other
edits remain the same, such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ |+1 ≤ T −1+1 = T as claimed. Conversely,
if (ψ′(i), ψ′(j)) /∈ E′, δ̄ψ′ deletes (i, j) whereas δ̄ψδ̄ does not, while all other edits remain the same,
such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ | − 1 ≤ T − 2 < T as claimed.

Next, if δ1 = edeli,j , we obtain ψδ̄ = ψ′ as well as Ṽ = V , X̃ = X ′, and Ẽ = E \ {(i, j)}. Now,
distinguish two cases. If (ψ′(i), ψ′(j)) /∈ E′, δ̄ψδ̄ deletes (i, j) whereas δ̄ψ′ does not, while all other
edits remain the same, such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ |+1 ≤ T −1+1 = T as claimed. Conversely,
if (ψ′(i), ψ′(j)) ∈ E′, δ̄ψ′ inserts (i, j) whereas δ̄ψδ̄ does not, while all other edits remain the same,
such that we obtain |δ̄ψδ̄ | = |δ̄ψ′ | − 1 ≤ T − 2 < T as claimed.

Finally, if δ1 = deli, we obtain ψδ̄(j) = ψ′(j) for all j < i, ψδ̄(j) = ψ′(j − 1) for all j > i,
and ψδ̄(j) = M + N , as well as Ṽ = {1, . . . ,M − 1}, x̃j = ~xj for all j ∈ Ṽ , and Ẽ = E.
Accordingly, δ̄ψδ̄ deletes i whereas δ̄ψ′ does not, while all other edits remain the same, such that we
obtain |δ̄ψδ̄ | = |δ̄ψ′ |+ 1 ≤ T − 1 + 1 = T as claimed.

Because this covers all possible edits, this concludes our proof.
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We note again that the entire argument up to this point is analogous to Proposition 1 of Bougleux
et al. (2017). However, in contrast to Bougleux et al. (2017), we do not rely on a notion of restricted
edit scripts, instead comparing to all possible edit scripts, and we provide stronger results regarding
the structure of our graph mappings via Lemma 2. We also slightly change the order of operations for
consistency with Algorithm 1.

A.2 PROOF OF THEOREM 2

The heart of our proof is Algorithm 2, which translates a graph mapping to a corresponding teaching
signal for a graph edit network. We prove the correctness of this algorithm with the following Lemma.
Refer to Figure 4 for a graphical intuition.

In particular we consider in this example the graphs G = ({1, 2, 3}, {(1, 2), (1, 3), (3, 1)},X) and
H = ({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 3), (3, 1), (4, 5), (5, 4)},X ′) as well as the graph mapping ψ with
ψ(1) = 3, ψ(2) = 2, and ψ(3) = 1. Note that H is not fully connected. In particular, we have the
connected components {1, 2, 3}, {4, 5}, and {6}. In itself, this would not be a problem, but note that
Algorithm 1 can only insert a new node that is connected to an existing node. Accordingly, we can
not insert node without any connection to the pre-existing graph. However, this would be required for
the insertion of nodes 4, 5, and 6. To manage this, Algorithm 2 first constructs auxiliary edges (in
lines 2-5) connecting the new nodes to the already existing part of the graph. In our example, these
auxiliary edges are (3, 4) and (3, 6). Then, the algorithm computes (in lines 6-9) the shortest path
to any inserted node from any already existing node, yielding the paths π4 = (3, 4), π5 = (3, 4, 5),
and π6 = (3, 6). Line 13 then re-defines the shortest paths as a shortest-path tree with children
ch(3) = (4, 6) and ch(4) = (5).

Lines 14-22 then take care of performing the actual node insertions, where insertions are put into
different steps of the teaching signal if they can not be performed at the same time. In particular,
we need to use multiple steps whenever a single node has multiple children in the shortest-path tree
and whenever a node that does not yet exist needs to make an insertion. Both is covered by the
depth-first-search in lines 14-22. In particular, we first insert parents, then children, and we insert
children in succession. In our example, this results in node 4 being inserted in the first step (by node
1) and nodes 5 and 6 being inserted in the second step (by nodes 1 and 4, respectively).

Then, line 24 initializes the third and final step of our teaching signal which performs all remaining
edits. In particular, line 25 sets up all replacements (irrelevant in this case), line 26 all edge insertions
((2, 1), (3, 2), and (5, 4) in this case), line 27 all edge deletions ((1, 2), (3, 1), (1, 4), and (1, 6) in
this case), and line 28 all node deletions (none in this case). Lines 29-30 ensure that the edge filter
scores ~e+

K+1 and ~e−K+1 are consistent with the edge edit scores EK+1. Finally, we return the result.

The resulting script is shown in the bottom of the figure. Note that this script is not as short as
possible because it contains four additional auxiliary edits, namely the edge insertions (1, 4) and
(1, 6), which are then deleted in the end. These additional edges occur because we need to insert new
nodes connected to existing nodes. Accordingly, the disconnected components C1 and C2 from H are
first connected and then disconnected at the end of the script, yielding the desired graph.

We first consider the time complexity of the algorithm. First, note that computing connected
components in line 2 is possible in O(N). Similarly, the minimum computations in lines 3-4 are
possible in O(N). Constructing the auxiliary graph in line 5 may need O(N2) for a dense graph.
Because we have unit edge weights for the shortest path computation, a simple breadth-first-search
suffices, making the computation in line 7 O(N). Because we need to repeat this computation for
each insertion, lines 6-9 are overall in O(N2).

Lines 10-12 are slightly implementation dependent. In principle, constructing Ek for each step would
require O((M +N)2). But because this matrix is always zero, we can construct it once and re-use it
for every step. All other operations are linear, yielding O((M +N)2) overall.

The computation of the children in the shortest-path tree in lines 13 is linear in the number of
insertions, which is in O(N).

Lines 14-22 perform a depth first search through the shortest-path trees, which is in O(N) again.
This also includes recording the inserted edges for line 23.
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H
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3r 4 5

6

C1

C2
ψ

shortest paths (lines 6-9):
π4 = (3, 4), π5 = (3, 4, 5), π6 = (3, 6)

Shortest path tree (line 13):
ch(3) = (4, 6), ch(4) = (5)

insertions (lines 14-22):
ν1,1 = +1, ν2,1 = +1, ν2,4 = +1

edge insertions (line 26):
ε3,2,1 = ε3,3,2 = ε3,5,4 = +1

edge deletions (line 27):
ε3,1,2 = ε3,3,1 = ε3,1,4 = ε3,1,6 = −1

script: δ̄ = ins, eins1,4, ins, eins4,5, ins, eins1,6, eins2,1, eins3,2, eins5,4,
edel1,2, edel1,4, edel1,6, edel3,1

Figure 4: A graphical illustration of the construction of a teaching signal via
Algorithm 2 for the inputs G = ({1, 2, 3}, {(1, 2), (1, 3), (3, 1)},X), H =
({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 3), (3, 1), (4, 5), (5, 4)},X ′), and ψ with ψ(1) = 3, ψ(2) = 2,
and ψ(3) = 1. The mapping ψ is shown in blue, the auxiliary construction of H̃ (lines 2-5 in the
algorithm) in red and dashed. After constructing H̃ , we first compute shortest paths from 3 to
each node in C1 and C2 (top right). This defines the shortest path tree with children ch(3) = (4, 6)
and ch(4) = 5. Accordingly, node ψ−1(3) = 1 needs to insert two nodes (4 and 6), and node
ψ−1(4) = 4 needs to insert one node (5). Since this is not possible in one step, the first step inserts
only node 4 (ν1,1 = +1) and the second step nodes 5 and 6 (ν2,1 = +1, ν2,4 = +1). The remaining
edit scores ensure that the correct edges are inserted and deleted, yielding the final script at the
bottom. This is exactly the script generated by ψ, except for four superfluous auxiliary edits, namely
eins1,4, eins1,6, edel1,4, and edel1,6.
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Algorithm 2 An algorithm to turn a graph mapping ψ between two graphs G and H into a teaching
signal for a graph edit network, such that the teaching signal yields the same edit script as ψ, up to
2 · (C − 1) auxiliary edits, where C is the number of connected components in H .

1: function MAP-TO-SIGNAL(Two non-empty graphs G = (V = {1, . . . ,M}, E,X) and H =
(V ′ = {1, . . . , N}, E′,X ′), a graph mapping ψ between them)

2: Compute the connected components of H C1, . . . , CL where Cl ⊆ Insψ .
3: Set cl ← minj∈Cl j for all l ∈ {1, . . . , L}.
4: Set r ← mini≤M :ψ(i)≤N i.
5: Construct H̃ = (V ′, E′ ∪ {(ψ(r), c1), . . . , (ψ(r), cL)}),X ′).
6: for j ∈ Insψ do
7: Compute a shortest path πj1, . . . , π

j
Rj

from the closest node

8: πj1 ∈ {1, . . . , N} \ Insψ to πjRj = j in H̃ .
9: end for

10: for k ∈ {1, . . . , |Insψ|} do
11: Initialize ~νk ← ~0, Yk ←X , ~e−k ← −~1, ~e+

k ← −~1, Ek ← 0.
12: end for
13: Let ch(j) be the children of node j in the shortest path trees from roots πj1 to inserted nodes.
14: Initialize a stack S with entries (πj1, 0) for all j ∈ Insψ . Set K ← 0.
15: while S is not empty do
16: Pop (j, k) from S. Set c← 1. Set i← ψ−1(j).
17: for j′ ∈ ch(j) do
18: Set νk+c,i ← +1. ~yk+c,i ← ~x′j′ .
19: Add (j′, k + c) to S .
20: c← c+ 1. K ← max{K, k + c}.
21: end for
22: end while
23: Let E′′ be the set of inserted edges (i, j) due to line 18.
24: Initialize ~νK+1 ← ~0, YK+1 ← 0, ~e−K+1 ← −~1, ~e+

K+1 ← −~1, EK+1 ← 0,
25: Set ~yK+1,i ← ~x′ψ(i) if ψ(i) ≤ N . . performs replacements
26: Set εK+1,i,j ← +1 if (i, j) /∈ E ∪ E′′ and (ψ(i), ψ(j)) ∈ E′. . performs edge insertions
27: Set εK+1,i,j ← −1 if (i, j) ∈ E ∪ E′′ and (ψ(i), ψ(j)) /∈ E′. . performs edge deletions
28: Set νK+1,i ← −1 if ψ(i) > N . . performs node deletions
29: Set e+

K+1,i ← +1 if εK+1,i,j 6= 0 for any j.
30: Set e−K+1,j ← +1 if εK+1,i,j 6= 0 for any i.
31: return (~ν1,X1, ~e

+
1 , ~e
−
1 ,E1), . . . , (~νK+1,XK+1, ~e

+
K+1, ~e

−
K+1,EK+1).

32: end function
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Lines 24-30 require only matrix and set lookups, making them overall O((M +N)2). In summary,
we obtain the claimed efficiency class of O(M2 +N2).

Now, let G and H be any two non-empty graphs, let C be the number of connected components
in H , and let ψ be a graph mapping between them with |Insψ| < N , i.e. at least one node is
not inserted. Further, let s̄ = (ν̂1, X̂1, ê

+
1 , ê
−
1 , Ê1), . . . , (ν̂K+1, X̂K+1, ê

+
K+1, ê

−
K+1, ÊK+1) be the

teaching signal returned by Algorithm 2 for mapping ψ, and let δ̄ be the output of Algorithm 1 for
input s̄. Then, we wish to prove the following properties for δ̄.

1. δ̄(G) ∼= H .

2. |δ̄| ≤ |δ̄ψ|+ 2 · (C − 1).

3. The first K steps of s̄ contain only insertions with νk,i = 0⇒ νk+1,i = . . . νK+1,i = 0.

4. The K + 1th step contains no insertions.

5. K ≤ |Insψ|.

First, observe that lines 1-3 of Algorithm 2 are guaranteed to work because H is non-empty and
thus at least one connected component exists, and that each connected component is per definition
non-empty. Further, line 4 works because we restricted ψ such that at least one i exists with ψ(i) ≤ N ,
which means that the minimum is well-defined. Accordingly, the graph H̃ in line 5 is well-defined as
well. This preparation was necessary to ensure that the shortest-path computations in lines 6-9 are
valid. In particular, assume that there exists some j ∈ Insψ such that j is disconnected in H̃ from any
node i /∈ Insψ. Now, distinguish two cases. First, if j lies in a connected component of H which
contains some node i with i /∈ Insψ, then j is connected to i, which directly yields a contradiction.
Otherwise, j lies in one of the connected components Cl. Accordingly, j is connected to cl. However,
then j is also connected to ψ(r) in H̃ by construction, where r /∈ Insψ , which is also a contradiction.
Thus, the shortest path required in lines 6-9 is well-defined.

Next, observe that any shortest path computation gives rise to shortest path trees as required by line
13. If multiple shortest paths overlap, we obtain proper trees, otherwise trivial trees which are just
copies of the shortest paths.

Lines 14 to 22 now insert all nodes in the shortest paths trees according to a particular ordering,
namely that any parent is inserted at least one step before its child and each child is inserted one step
before its right sibling. By using this ordering we ensure that no node makes more than one insertion
per step, that whenever a node stops to do insertions, it never needs to start again, and that all nodes
are reached (because the depth-first-search enumerates all nodes in the shortest path trees).

Accordingly, note that the K first steps of the generates script, when plugged into Algorithm 1, yield
exactly the insertions in δ̄ins

ψ as given in Definition 2 (up to reordering), in addition to edge insertions
between an inserted node and its predecessor in the shortest paths tree. These inserted edges are
stored in E′′ in line 23.

The remainder of the algorithm takes care of all remaining edits. In particular, line 24 initializes a
trivial teaching signal with zero node edit scores, zero attribute matrix, negative edge filter scores,
and zero edit score matrix.

Then, line 25 sets all attributes to the target attributes, which yields all desired replacements of already
existing nodes and leaves the attributes of inserted nodes as they were. In other words, line 25 yields,
via Algorithm 1, exactly the script δ̄rep

ψ as given in Definition 2.

Line 26 sets edge insertion scores εK+1,i,j = 1 for all edges (i, j) such that (ψ(i), ψ(j)) is in E′

but not already in E ∪E′′. In effect, after line 26 we have accumulated all edge insertions in δ̄eins
ψ

as given in Definition 2, plus exactly L edge insertions einsr,ψ−1(cl). This is the case because the
shortest path to any node cl is necessarily πcl1 = r and πcl2 = cl. If any other, equally short path would
exist, cl would be in a connected component with some node i /∈ Insψ, which is a contradiction.
Accordingly, lines 14-22 have ensured that node r inserts node ψ−1(cl) at some point.

Next, line 27 sets edge deletion scores εK+1,i,j = −1 for all edges (i, j) that are in E ∪ E′′ but
where (ψ(i), ψ(j)) is not in E′ anymore. Note that there is no overlap between these edges and the
edges considered in line 26, such that we can handle both cases within the same step. Also note

22



Published as a conference paper at ICLR 2021

that this step yields all edge deletions from from δ̄edel
ψ as given in Definition 2, plus exactly L edge

deletions edelr,ψ−1(cl) due to our previous argument.

Finally, line 28 sets node edit scores νK+1,i = −1 for all nodes i with ψ(i) > N . This yields exactly
the node deletions from δ̄del

ψ as given in Definition 2.

Lines 29-30 merely ensure that the edge filter scores are consistent with Ek.

In summary, when we plug the teaching signal returned by Algorithm 2 into Algorithm 1, the resulting
script δ̄ contains exactly the same edits as δ̄ψ from Definition 2, up to reordering inserted nodes,
plus L edge insertions einsr,ψ−1(cl) and L edge deletions edelr,ψ−1(cl). Because the edge deletions
remove precisely the edges which have been additionally inserted before, we obtain δ̄(G) ∼= δ̄ψ(G).
Further, Lemma 1 shows that δ̄ψ(G) ∼= H , which implies property 1 above.

Next, observe that L is exactly the number of connected components of H which are subsets of Insψ .
Because we required that ψ does not insert all nodes of H , there must exist at least one connected
component of H which is not a subset of Insψ. Accordingly, L is upper-bounded by C − 1 and we
obtain the bound required in the second property.

For the third property, observe that the first K steps do indeed only insert nodes. Further, a node i
only stops insertions when all its children in the shortest path tree are inserted. Once that is done, it
does not start inserting anymore, implying the desired property.

The fourth property holds trivially because lines 24-30 never set a node score to a value > 1
2 .

Finally, the fifth property holds because each insertion step in lines 14-22 contains at least one
insertion. This is because K is set via line 20 exactly to a step in which the last insertion occurs and
in insertion occuring in step K implies that either a left sibling insertion or the parent insertion had
to occur in step K − 1. However, if at least one insertion occurs in each step, there can be at most
K ≤ |Insψ| steps, as claimed.

It only remains to show that the bounds in properties 2 and 5 are sharp. To do so, consider the example
graphs G = ({1}, ∅,0) and H = ({1, . . . , C}, ∅,0). Note that all nodes in H are isolated, such that
they form trivial connected components. We note in passing that it is also possible to construct an
example for non-trivial connected components, e.g. by constructing H as C copies of G, where G
can be arbitrarily shaped. Here, we consider the simplest case.

Now, let ψ be any mapping between G and H such that |Insψ| < C. In other words, ψ(1) ≤ C.
Then, line 2 of Algorithm 2 yields Cl = {l} for l < ψ(1), and Cl = {l + 1} for l ≥ ψ(1) with
l ∈ {1, . . . , C−1} and cl becomes the only element of Cl in line 3. Line 4 yields r = 1. Accordingly,
H̃ = ({1, . . . , C}, {(ψ(1), c1), . . . , (ψ(1), cC−1)},X ′). Following the arguments above, the script
resulting via Algorithm 1 from the output of Algorithm 2 then includes one edge insertion and
one edge deletion for each edge in H̃ , in addition to the C − 1 insertions that are contained in δ̄ψ.
Accordingly, we obtain |δ̄| = |δ̄ψ|+ 2 · (C − 1), which is precisely the bound. Further, because node
1 can only perform a single insertion per step we obtain K = C − 1 = |Insψ|.
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B AN EXAMPLE LOSS FUNCTION

For training, we propose a simple loss inspired by the margin hinge loss of the support vector machine
(Suykens et al., 2002). Recall that the SVM hinge loss is given as

`SVM(~w, {(~x, ŷ)}) =
∑
(~x,ŷ)

[
− ~wT · ~x · ŷ + 1

]2
+

where ŷ ∈ {−1, 1} is the desired label and y = ~wT · ~x is the predicted label.

In more detail, let A be the adjacency matrix of the input graph, let ~ν,X, ~e+, ~e−,E be the GEN layer
output, and let ν̂, X̂, ê+, ê−, Ê be the scores of our teaching signal. Then, we define the loss `GEN

as:
M∑
i=1

`node(νi, ν̂i) + `filter(e+
i , ê

+
i ) + `filter(e−i , ê

−
i ) +

∑
i:ν̂i≥− 1

2

`attr(~xi, x̂i) +
∑

(i,j):ê+i >0,ê−j >0

`edge(εij , ε̂ij , aij),

(2)

where `node(ν, ν̂) is defined as [ν + 1]2+ for ν̂ < − 1
2 , as [−ν + 1]2+ for ν̂ > + 1

2 , and as [|ν| − 1
4 ]2+

otherwise, with [x]+ = max{0, x} being the rectified linear unit; where `filter(e, ê) is defined as
M · [e+ 1

2 ]2+ if ê ≤ 0 and as M · [−e+ 1
2 ]2+ otherwise; where `attr is the squared Euclidean distance

for continuous attributes and crossentropy for discrete attributes; and where `edge(ε, ε̂, a) is defined
as [ε + 1]2+ if a = 1 and ε̂ < − 1

2 , as [−ε]2+ if a = 1 and ε̂ ≥ − 1
2 , as [ε]2+ if a = 0 and ε̂ ≤ 1

2 , and
as [−ε+ 1]2 if a = 0 and ε̂ > 1

2 . We can show that this loss is zero if and only if the scripts of the
teaching signal and the GEN output are equal (plus a loss for margin violations).
Theorem 3. Let A ∈ {0, 1}N×N be an adjacency matrix and ~ν,X, ~e+, ~e−,E as well as
ν̂, X̂, ê+, ê−, Ê be two sets of edit scores.

Then, loss 2 is zero if and only if the following conditions hold.

1. For all i : If ν̂i > + 1
2 , νi is at least 1,

2. for all i : if |ν̂i| ≤ 1
2 , |νi| is at most 1

4 ,

3. for all i : if ν̂i < − 1
2 , νi is at most −1,

4. for all i : If ν̂i ≥ − 1
2 , `attr(~xi, x̂i) = 0,

5. for all i : If ê+
i > 0, e+

i is at least 1
2 ,

6. for all i : If ê+
i ≤ 0, e+

i is at most − 1
2 ,

7. for all i : If ê−i > 0, e−i is at least 1
2 ,

8. for all i : If ê−i ≤ 0, e−i is at most − 1
2 ,

9. for all i, j : If ê+
i > 0, ê−j > 0, ε̂i,j > + 1

2 , and ai,j = 0, εi,j is at least 1,

10. for all i, j : If ê+
i > 0, ê−j > 0, ε̂i,j ≤ 1

2 , and ai,j = 0, εi,j is at most 0,

11. for all i, j : If ê+
i > 0, ê−j > 0, ε̂i,j ≥ − 1

2 , and ai,j = 1, εi,j is at least 0, and

12. for all i, j : If ê+
i > 0, ê−j > 0, ε̂i,j < − 1

2 , and ai,j = 1, εi,j is at most −1.

Further, if the loss is zero, the edit scripts resulting from Algorithm 1 for both sets of edits are equal.

Proof. We first re-frame all conditions in terms of the component losses `node, `attr, `filter, and `edge.

1. In this case, the node loss is `node(νi, ν̂i) =
[
− νi + 1

]2
+

. Accordingly, the loss is zero iff
−νi + 1 ≤ 0 ⇐⇒ νi ≥ 1, as claimed.
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Figure 5: An illustration of the loss `node (left) and the loss `edge (right) for different teacher and
adjacency matrix inputs.

2. In this case, the node loss is `node(νi, ν̂i) =
[
|νi| − 1

4

]2
+

. Accordingly, the loss is zero iff
|νi| − 1

4 ≤ 0 ⇐⇒ |νi| ≤ 1
4 , as claimed.

3. In this case, the node loss is `node(νi, ν̂i) =
[
νi + 1

]2
+

. Accordingly, the loss is zero iff
νi + 1 ≤ 0 ⇐⇒ νi ≤ −1, as claimed.

4. This condition directly refers to the attribute loss and is obvious.

5. In this case, the filter loss is `filter(e+
i , ê

+
i ) =

[
− e+

i + 1
2

]2
+

. Accordingly, the loss is zero
iff −e+

i + 1
2 ≤ 0 ⇐⇒ e+

i ≥ 1
2 , as claimed.

6. In this case, the filter loss is `filter(e+
i , ê

+
i ) =

[
e+
i + 1

2

]2
+

. Accordingly, the loss is zero iff
e+
i + 1

2 ≤ 0 ⇐⇒ e+
i ≤ − 1

2 , as claimed.

7. In this case, the filter loss is `filter(e−i , ê
−
i ) =

[
− e−i + 1

2

]2
+

. Accordingly, the loss is zero
iff −e−i + 1

2 ≤ 0 ⇐⇒ e−i ≥ 1
2 , as claimed.

8. In this case, the filter loss is `filter(e−i , ê
−
i ) =

[
e−i + 1

2

]2
+

. Accordingly, the loss is zero iff
e−i + 1

2 ≤ 0 ⇐⇒ e−i ≤ − 1
2 , as claimed.

9. In this case, the edge loss is `edge(εi,j , ε̂i,j , ai,j) =
[
− εi,j + 1

]2
+

. Accordingly, the loss is
zero iff −εi,j + 1 ≤ 0 ⇐⇒ εi,j ≥ 1, as claimed.

10. In this case, the edge loss is `edge(εi,j , ε̂i,j , ai,j) =
[
εi,j
]2
+

. Accordingly, the loss is zero iff
εi,j ≤ 0, as claimed.

11. In this case, the edge loss is `edge(εi,j , ε̂i,j , ai,j) =
[
− εi,j

]2
+

. Accordingly, the loss is zero
iff −εi,j ≤ 0 ⇐⇒ εi,j ≥ 0, as claimed.

12. In this case, the edge loss is `edge(εi,j , ε̂i,j , ai,j) =
[
εi,j + 1

]2
+

. Accordingly, the loss is
zero iff εi,j + 1 ≤ 0 ⇐⇒ εi,j ≤ −1, as claimed.

Accordingly, we found that all component losses are zero if and only if the aforementioned margin
conditions holds. Since the entire loss 2 is a sum of these component losses and no contribution can
be negative in this case, the entire sum is zero if and only if all contributions are zero, which proves
the claim. Also refer to Figure 5 for a graphical illustration of the component losses `node and `edge.

This directly yields the second part of Theorem 3. In particular, if condition 3 holds, the same edge
deletions are appended in line 2 of Algorithm 1. Due to conditions 5-8, the loops in lines 3-8 iterate
over the same elements (i, j). Further, due to conditions 11-12, Algorithm 1 appends the same edge
deletions in line 5, and due to conditions 9-10, Algorithm 1 appends the same edge insertions in
line 6. The replacements in line 9 are the same due to conditions 2 and 4, as well as the fact that
`attr being zero implies equal inputs by definition. The loop in lines 11-14 now iterates over the
same elements due to condition 1, and the same node/edge insertions are appended in line 12 due to
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Figure 6: Left: The node edit probabilities p(ins|ν) (blue), p(del|ν) (orange), and p(rep|ν) (red) for
β = 10 for varying ν (left). Right: The crossentropy loss (solid) and the GEN loss times β (dashed)
for varying ν and for ν̂ = +1 (blue), ν̂ = −1 (orange), and ν̂ = 0 (red).

condition 4 and the fact that `attr being zero implies equal inputs by definition. Finally, the same
node deletions are generated in line 15 due to condition 3. Thus, the output of Algorithm 1 is the
same for both inputs.

C PROBABILISTIC INTERPRETATION OF THE GEN

Given the node edit scores νi, the edge filter scores e+
i and e−i as well as the edge edit scores εi,j

as returned by a GEN layer, we can define the following probabilities over edits. The probability of
a node insertion at node i is the logistic distribution p(ins|νi) = Zβ/(1 + exp[−β · (νi − 1

2 )]); the
probability of a deletion of node i is the logistic distribution p(del|νi) = Zβ/(1+exp[−β·(−νi− 1

2 )]);
and the probability of a replacement is p(rep|νi) = 1− p(ins|νi)− p(del|νi). In all cases, β > 0 is a
hyper-parameter regulating the slope of the distribution with respect to νi and Zβ = (1+eβ)/(2+eβ)
is chosen to ensure that p(ins| 12 ) = p(rep| 12 ) = p(del| − 1

2 ) = p(rep| − 1
2 ), i.e. 1

2 is the decision
boundary between insertion and replacement and − 1

2 is the decision boundary between deletion and
replacement, just as in Algorithm 1. For sufficiently high β, e.g. β ≥ 10, we obtain p(ins|νi) ≈ 0
for νi < 0 and p(del|νi) ≈ 0 for νi > 0, such that the distribution becomes equivalent to two binary
logistic distributions ’glued together’. Also refer to Figure 6 (left).

A straightforward loss based on this probability distribution is the crossentropy between p and
the strict teaching distribution q(ins|ν̂i) = 1 if ν̂i > 1

2 , q(del|ν̂i) if ν̂i < − 1
2 , and q(rep|ν̂i) = 1

otherwise. The loss for varying ν and ν̂ and β = 10 is shown in Figure 6 (right). As we can see,
the behavior is qualitatively very similar to the GEN loss from Equation 2, shown in dashed lines.
The most noteable differences are that the crossentropy behaves linearly for sufficiently extreme ν,
whereas the GEN loss behaves quadratic, and that the GEN loss is strictly zero when the margin is
not violated, whereas the crossentropy still remains strictly larger than zero. This can lead to empiric
problems during learning, as we see in the experiments. The quadratic behavior emphasizes large
margin violations whereas small margin violations are less emphasized compared to the crossentropy
loss, which yields slightly favorable properties in our experiments.

To sample edge edits we perform a three-step process. First, for each node we sample whether
outgoing edges or incoming edges are edited with the logistic distribution p(>|e+

i ) = 1/(1+exp[−β ·
e+
i ]) and p(>|e−i ) = 1/(1 + exp[−β · e−i ]). Then, we only consider edges (i, j) where > has been

sampled for both i and j, and we sample an edge insertion with probability p(eins|εi,j , ai,j) =
1/(1 + exp[−β · (εi,j − 1

2 )]) if ai,j = 0 and p(eins|εi,j , ai,j) = 0 if ai,j = 1, and we sample an
egde deletion with probability p(edel|εi,j , ai,j) = 1/(1 + exp[−β · (−εi,j − 1

2 )]) if ai,j = 1 and
p(eins|εi,j , ai,j) = 0 if ai,j = 0. Also refer to Figure 7 (left).

The crossentropy loss compared to the strict distribution q(eins|ε̂i,j) = 1 if ε̂i,j > 1
2 , q(edel|ε̂i,j) = 1

if ε̂i,j < − 1
2 , and q(eins|ε̂i,j) = q(edel|ε̂i,j) = 0 is shown in Figure 7 (right). Again, we observe

that the loss behaves qualitatively very similar to the GEN edge loss, with the striking difference
being the square.
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Figure 7: Left top: The edge insertion probability p(eins|ε, a) if the edge is not present. Right top:
The crossentropy loss (solid) and the GEN edge loss times β (dashed) for ν̂ = +1 (blue) and ν̂ = 0
(red) if the edge is not present. Left bottom: The edge deletion probability p(edel|ε, a) if the edge is
present. Right bottom: The crossentropy loss (solid) and the GEN edge loss times β (dashed) for
ν̂ = −1 (orange) and ν̂ = 0 (red) if the edge is present.
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Table 2: Summary statistics for all synthetic datasets, in particular the number of unique graphs,
the average time series length T̄ (± standard deviation) and the average graph size N̄ (± standard
deviation). The number of unique undirected graphs with 8 nodes for degree rules was computed
using the nauty-geng function, all averages were obtained via 1000 samples from the dataset.

edit cycles degree rules game of life Boolean Peano

unique graphs 9 12346 2100 10788 34353
T̄ 3± 0.82 10.46± 1.91 10± 0.00 1.51± 0.99 11.08± 11.63
N̄ 3.22± 1.03 7.33± 1.98 100± 0.00 4.84± 2.52 7.82± 3.89
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Figure 8: An illustration of the edit cycles dataset, where each graph is shown in black, whereas
colored arrows illustrate the system dynamics. Each colored arrow is labelled with the edit scores
necessary to move from one graph to the next.

D DATA IN DETAIL

In this section, we discuss the graph dynamical systems of Section 4 in more detail and also discuss
how graph edit networks can realize a solution. The summary statistics are shown in Table 2.

Edit Cycles: The edit cycles dataset is illustrated in Figure 8. Colored, thick arrows indicate the
simulated system dynamics. Each arrow is labelled with the corresponding teaching protocol.

The reference solution to this task is to uniquely identify at each node to which graph it belongs and
then decide on the edit. This requires a number of layers equal to the graph diameter, in this case two
graph neural network layers.

Degree Rules: The degree rules dataset is illustrated for two example graphs in Figure 2. The
teaching protocol implements the rules of the dataset as follows. First, for any node i with degree
larger than 3 we expect ν̂i < − 1

2 , i.e. the node should get deleted. Second, for any pair of nodes i
and j which share at least one neighbor, we expect ε̂i,j = ε̂j,i = 1, i.e. an edge should be inserted
between the nodes. Third, for any node i with degree smaller than 3 we expect ν̂i > 1

2 , i.e. a node
should get inserted.

To generate the actual dynamics, we limit the process to apply only one rule per connected component.
This is because simultaneous application of all rules leads to degeneracies. For example, a 5-clique
would be deleted entirely. Instead, we use the following ordering: We first apply rule 1 to the node
with highest degree. If rule 1 applies to no node, we apply rule 2 to the node pair with lowest sum of
degrees. If rule 2 does not apply, we apply rule 3 to the node with lowest degree. If multiple nodes
have the same degree, nodes with lower index take precedence. If no rule applies, we perform no edit
and the process has converged.

Next, we show that each connected component converges to a 4-clique in this scheme. Note that
rule 2 ensures that every connected component becomes fully connected, provided that rule 1 does
not interfere. Rule 1 interferes if a node degree rises above 3, which will be the case whenever a
connected component contains more than 4 nodes. Accordingly, every connected component with
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more than 4 nodes must converge to a 4-clique. For smaller connected components, rule 2 first
ensures that the component becomes a k-clique for k < 4. Then, rule 2 does not apply anymore but
rule 3 applies because all nodes in the component have degree less than 3. Once a new node has been
added, rule 2 applies again, and so on, until the component is a 4-clique. Finally, note that a 4-clique
is stable because no rule applies anymore.

The reference solution for this task is a one-layer net with n+ 2 neurons. Further, we assign a one-hot
coding of the node index as attribute. Note that the ordering does not matter, merely that every node
has a unique one-hot code. Now, notice that we can compute the degree of node i via the expression∑
j∈N (i)

~1T · ~xj . This is the case because ~xj is a one-hot coding of the index j and, hence, the
expression ~1T · ~xj is always 1, such that the sum just counts the size of the neighborhood of i, which
is exactly the degree. Accordingly, we need to apply rule 1 if this expression is higher than 3, and we
need to apply rule 3 if this expression is less than 3. Rule 2 is slightly more complicated. We wish to
apply rule 2 whenever nodes i and j share at least one neighbor, i.e. if N (i) ∩N (j) 6= ∅. Because
the node attributes are one-hot codings of the node index, we can represent the neighborhoods by the
sum of the one-hot codings in the neighborhood and the set intersection by their inner product. More
precisely, we obtain for any two nodes i and j:( ∑

k∈N (i)

~xk
)T · ( ∑

l∈N (j)

~xl
)

= |N (i) ∩N (j)|.

Based on this result, we can identify the need to apply any of the three rules by setting f1
aggr and

f1
merge from Equation 1 as follows.

f1
aggr(N ) =

∑
j∈N

~xj , and f1
merge(~x, ~y) = ReLU

 ~y
1
β · (~1

T · ~y − 3)

− 1
β · (~1

T · ~y − 2)

 ,

which yields the following representation for all nodes i:

φ1(i) = ReLU


∑
j∈N (i) ~xj

1
β · (|N (i)| − 3)

− 1
β · (|N (i)| − 3)


Here, β is defined as β := 2 ·max{3, m̂}, where m̂ is the maximum degree in the dataset. Then, we
can compute the node edit score as νi = β · (φ1(i)n+2 − φ1(i)n+1), which is ≥ 1 if and only if the
degree of i is smaller than 3 (rule 3), which is ≤ −1 if and only if the degree of i is larger than 3
(rule 1), and which is zero otherwise. Further, we can set the edge edit score as εi,j = φ1(i)T · φ1(j),
which is ≥ 1 if |N (i) ∩N (j)| ≥ 1 and which is between 0 and 1

2 otherwise because in that case

φ1(i)T · φ1(j) =
1

β2
·
[
ReLU(|N (i)| − 3) · ReLU(|N (j)| − 3)

+ ReLU(3− |N (i)|) · ReLU(3− |N (j)|)
]

≤ 1

β2
· (2 ·max{3, m̂}2) ≤ 1

2

Still, note that this is relatively difficult to learn for a neural net because parameters need to be set to
relatively large values (exceeding the maximum degree). Hence the long experimental learning times.

Game of life: Conway’s game of life is a 2D cellular automaton with the following rules. Cells can
be either alive (xti = 1) or dead (xti = 0) at time t. The state in time t+ 1 is given by the equation

xt+1
i =

{
1 if 5 ≤ xti + 2 ·

∑
j∈N (i) x

t
j ≤ 7

0 otherwise

where N (i) is the 8-neighborhood of i in the grid. Figure 9 shows the development of an example
grid.

Our teaching protocol imposes ν̂ti = xt+1
i − xti for all nodes i and all times t ≥ 1, i.e. the node edit

score νti should correspond to the change in ’aliveness’. Note that our graph connects all neighboring
nodes in the grid and that the aliveness xti is the only node attribute.
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Figure 9: An example 6× 6 grid evolving over time according to the rules of Conway’s game of life
with alive cells marked blue and dead cells white. Note that even a single alive cell close to a ’glider’
shape breaks the shape and leads to the entire board becoming empty over time.

Our reference solution is a one-layer graph neural network with the following setting of f1
aggr and

f1
merge from Equation 1.

f1
aggr(N ) =

∑
j∈N

~xj and f1
merge(x, y) = ReLU


x+ 2y − 4
x+ 2y − 5
x+ 2y − 7
x+ 2y − 8

x

 .

Now, let yi := xi + 2
∑
j∈N (i) xj . Then, we obtain the node representation φ1(i) = ReLU(yi −

4, yi − 5, yi − 7, yi − 8, xi)
T .

With this representation, we obtain the following result for φ1
1(i)− φ1

2(i)− φ1
3(i) + φ1

4(i).

φ1
1(i)− φ1

2(i)− φ1
3(i) + φ1

4(i) =


0− 0− 0 + 0 = 0 if yi ≤ 4

yi − 4− (yi − 5)− 0 + 0 = 1 if 5 ≤ yi ≤ 7

yi − 4− (yi − 5)− (yi − 7) + yi − 8 = 0 if yi ≥ 8

In other words, we obtain φ1
1(i)− φ1

2(i)− φ1
3(i) + φ1

4(i) = xt+1
i . Accordingly, we can simply set

νi = φ1
1(i)− φ1

2(i)− φ1
3(i) + φ1

4(i)− φ1
5(i) and obtain νi = xt+1

i − xti as desired.

Boolean Formulae: We first generate a random Boolean formula using the following stochastic
process: Let Σ = {∧,∨, x, y,¬x,¬y,>,⊥, root} be our alphabet of symbols. Then, we initialize
a counter ops← 0, a graph G = ({1}, ∅,X) with ~x1 = root, and a stack with 1 as single element.
Next, as long as the stack is not empty, we pop the top node i from the stack and sample a new
symbol from Σ with probabilities P (∧) = P (∨) = 0.3, P (x) = P (y) = P (¬x) = P (¬y) = 0.1,
and P (root) = P (>) = P (⊥) = 0. Then, we add a new node M + 1 to the graph with ~xM+1 being
the one-hot-code of the samples symbol, and add the edge (i,M + 1). Further, if we have sampled ∧
or ∨, we push i onto the stack two times and increment the ops counter. If it reaches 3, we adjust the
sampling probabilities to P (x) = P (y) = P (¬x) = P (¬y) = 1

4 and P (∧) = P (∨) = P (root) =
P (>) = P (⊥) = 0.

Once the initial graph is sampled, the teaching protocol implements eight simplification rules for
Boolean formulae. In particular, we implement the following rules.

1. F ∧ ⊥ ⇐⇒ ⊥ for any formula F . Accordingly, if for two nodes i, j we have ~xi = ∧,
~xj = ⊥ and (i, j) ∈ E, we impose ν̂k = −1 for any node k 6= j with (i, k) ∈ E. As
a minor side note, we mention that we consider tree edits according to Zhang & Shasha
(1989) for this dataset instead of graph edits, i.e. when we delete node i, the children of i
automatically get connected to the parent of i. If F is a leaf, we also impose ν̂i = −1.

2. F ∧ > ⇐⇒ F for any F . Accordingly, if for two nodes i, j we have ~xi = ∧, ~xj = > and
(i, j) ∈ E, we impose ν̂i = ν̂j = −1.

3. F ∨ > ⇐⇒ > for any F . Accordingly, we apply the same scheme as in rule 1, just with
the condition ~xi = ∨ and ~xj = >.

4. F ∨ ⊥ ⇐⇒ F for any F . Accordingly, if for two nodes i, j we have ~xi = ∨, ~xj = ⊥ and
(i, j) ∈ E, we impose ν̂i = ν̂j = −1.

5. x ∧ x ⇐⇒ x and y ∧ y ⇐⇒ y. Accordingly, if we find three nodes i, j, k, such that
~xi = ∧, ~xj = ~xk ∈ {x, y}, and (i, j), (i, k) ∈ E, we impose ν̂i = ν̂j = −1.
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Figure 10: An example time series from the Boolean dataset. The initial formula on the left is
simplified until no simplification rule applies anymore. Each arrow indicates one simplification step.
Superscripts indicate the index of each node in the graph and blue arrow labels indicate the teaching
protocol.

6. x ∨ x ⇐⇒ x and y ∨ y ⇐⇒ y. Accordingly, if we find three nodes i, j, k, such that
~xi = ∨, ~xj = ~xk ∈ {x, y}, and (i, j), (i, k) ∈ E, we impose ν̂i = ν̂j = −1.

7. x ∧ ¬x ⇐⇒ ⊥ and y ∧ ¬y ⇐⇒ ⊥. Accordingly, if we find three nodes i, j, k, such that
~xi = ∧, (i, j), (i, k) ∈ E, and ~xj = x as well as ~xk = ¬x, or ~xj = y as well as ~xk = ¬y,
we impose ν̂j = ν̂k = −1 and ŷi = ⊥.

8. x ∨ ¬x ⇐⇒ > and y ∨ ¬y ⇐⇒ >. Accordingly, if we find three nodes i, j, k, such that
~xi = ∨, (i, j), (i, k) ∈ E, and ~xj = x as well as ~xk = ¬x, or ~xj = y as well as ~xk = ¬y,
we impose ν̂j = ν̂k = −1 and ŷi = >.

The next step in the dynamic is the graph that results from applying all edits imposed by the teaching
protocol. The dynamic process ends once no rules apply anymore. An example simplification process
is shown in Figure 10.

The reference solution is a graph neural network with two layers, where the first layer represents
whether certain conditions for the eight rules apply and the second layer implements conjunctions
between these conditions. For simplicity, we only consider rule 2 here but all other rules can be
implemented with a similar scheme. In particular, let φ(x) be the one-hot coding of the symbol
x ∈ Σ. Then, we use the following setting of f1

aggr, f
1
merge, f2

aggr, and f2
merge from Equation 1.

f1
aggr(N+,N−) =

(∑
j∈N+ ~xj∑
j∈N− ~xj

)
and f1

merge(~x,

(
~y
~z

)
) = ReLU


φ(∧)T · ~x
φ(>)T · ~y
φ(>)T · ~x
φ(∧)T · ~z


f2

aggr(N+,N−) = 0 and f2
merge(~φ1, 0) = ReLU

(
φ1

1 + φ1
2 − 1

φ1
3 + φ1

4 − 1

)
Note that we distinguish the neighborhood N+ of children and N− of parents. The resulting node
representation in layer 2 is as follows. φ2

1(i) = 1 if ~xi = ∧ and i has a child j with ~xj = >.
Otherwise, φ2

1(i) = 0. Further, φ2
2(i) = 1 if ~xi = > and i has a parent j with ~xj = >. Otherwise,

φ2
2(i) = 0. Accordingly, we can implement rule 2 by setting νi = −φ2

1(i) − φ2
2(i), which deletes

both the parent and the child if rule 2 applies.

Peano addition: With the same scheme as for the Boolean dataset we first generate a random
addition with at most 3 plus operators. However, for the peano dataset we have the alphabet Σ =
{+, 0, 1, . . . , 9, succ, root} and the sampling probabilities P (+) = 1

2 and P (1) = . . . = P (9) = 1
18 ,

which are changed to P (1) = . . . = P (9) = 1
9 once 3 plus operators are generated.

Once the initial graph is generated, we apply Peano’s addition axiom until the addition is resolved. In
more detail, we apply the following rules.

1. F + 0 = F for any formula F . Accordingly, if we find two nodes i, j with ~xi = + and
~xj = 0 such that j is the second child of i, we impose ν̂i = ν̂j = −1.
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Figure 11: An example time series from the Peano dataset. The initial formula on the left is evaluated
until only a single number - namely the result of the addition - is left. Exponents indicate the index of
each node in the graph and blue arrow labels indicate the teaching protocol.

2. F + succ(G) = succ(F ) +G for any formulae F and G. Accordingly, if we find two nodes
i, j with ~xi = + and ~xj = succ such that j is the second child of i, we impose ν̂i = +1,
ŷi = succ, and ν̂j = −1. Again, notice that we use tree edits (Zhang & Shasha, 1989)
instead of graph edits in this case, such that an insertion at node i automatically establishes
an edge between i and the newly inserted node as well as between the newly inserted node
and the first child of i, while cutting the direct connection between i and its first child, i.e.
the new child is inserted between i and its current first child.

3. F + n = F + succ(n − 1) for any number n ∈ {1, . . . , 9}. Accordingly, if we find two
nodes i, j with ~xi = + and ~xj ∈ {1, . . . , 9}, such that j is the second child of i, we impose
ν̂i = +1, ŷi = succ, and ŷj = n− 1 in one-hot coding.

4. succ(n) = n+ 1 for any number n ∈ {0, . . . , 9}. If n = 9, we define n+ 1 = 0 to remain
in the alphabet. Accordingly, if we find two nodes i, j with ~xi = succ, ~xj ∈ {0, . . . , 9},
and (i, j) ∈ E, we impose νi = −1 and ŷj = n+ 1.

The next step in the dynamic is the graph that results from applying all edits imposed by the teaching
protocol. The dynamic process ends once no rules apply anymore. An example time series is shown
in Figure 11.

Note that, for the Peano dataset, the order of children is important. Accordingly, we assume that there
is an auxiliary attribute that codes whether the node is a second child (where the attribute has value 1)
or not (value 0). Further, let φ(x) denote the one-hot coding of symbol x ∈ Σ and let φII denote the
vector that is zero except for a one at the auxiliary attribute. Then, we use the following setting of
f1

aggr, f
1
merge, f2

aggr, and f2
merge from Equation 1.

f1
aggr(N+,N−) = 0, and f1

merge(~x, 0) = ReLU

(
φ(+)T · ~x

φ(succ)T · ~x+ φTII · ~x− 1

)
f2

aggr(N+,N−) =

(∑
j∈N+ φ1(j)∑
j∈N− φ

1(j)

)
and f2

merge(~x,

(
~y
~z

)
) = ReLU

(
x1 + y2 − 1
x2 + z1 − 1

)
Again, we distinguish between the neighborhood N+ of children and N− of parents. The resulting
node representation in layer 2 is as follows. φ2

1(i) = 1 if ~xi = + and i has a second child j with
~xj = succ, otherwise φ2

1(i) = 0. Further, φ2
2(i) = 1 if ~xi = succ and i has a parent j with ~xj = +.

Accordingly, we can implement rule 2 by setting νi = φ2
1(i)− φ2

2(i) and ~yi = φ(succ) if φ2
1(i) = 1.
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Table 3: The average precision and recall values (± std.) across five repeats fro all edit types on the
max degree dataset.

node insertion node deletion edge insertion edge deletion
model recall precision recall precision recall precision recall precision

VGAE 1.00 ± 0.0 1.00 ± 0.0 0.35 ± 0.2 0.51 ± 0.2 1.00 ± 0.0 0.83 ± 0.1 1.00 ± 0.0 0.60 ± 0.3
XE-GEN 1.00 ± 0.0 1.00 ± 0.0 0.49 ± 0.3 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

GEN 1.00 ± 0.0 1.00 ± 0.0 0.99 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0

E MAX DEGREE EXPERIMENT

In addition to the graph dynamical systems presented in the main part of the paper, we also investigated
whether our network is able to identify the node with maximum degree in a graph and delete it. In
particular, we generated random graphs from the Barabási–Albert model with a random number
of nodes sampled uniformly from {4, 5, 6, 7, 8} and 3 new edges per iteration. We then added a
special node to the graph that is connected to all other nodes to facilitate communication across
the graph. In this setup, identifying the node with maximum degree should be possible in three
graph neural network layers: The first layer computes the degree for each node, the second layer
communicates the degree information to the special node, and the third layer compares the degree of
every node to the information stored at the special node, thus identifying the node with maximum
degree. Accordingly, we used graph neural networks with 3 layers and 64 neurons in each layer. All
other training hyperparameters were chosen as in the other experiments.

The results are shown in Table 3. We observe that VGAE does not manage to identify the node with
maximum degree, whereas the GEN with hinge loss is. Interestingly, the crossentropy loss GEN is
not able to identify the node either (as is visible in the 0.49 value for node deletion recall). This may
be because the crossentropy loss converges to zero slower and thus nodes that are correctly classified
can still influence the gradient, whereas the hinge loss sets the gradient for nodes that are a margin of
safety away from the decision boundary to zero (refer to Section B).

F ADDITIONAL EXPERIMENTS ON SYNTAX TREES

We additionally evaluated graph edit networks on six datasets of Python syntax trees, where students
iteratively solve a Python programming task, in particular implementing the mathematical function
f(x) = x4 − x2 + x

4 in Python (fun), plotting the function (plt), implementing its gradient (grad),
implementing gradient descent on it (desc), and finding optimal starting values (fin), as well as writing
a sorting program (pysort). While the latter dataset is synthetic, the former five are recordings of
fifteen students. In all cases, our task is to predict the next state of the student’s program, represented
by its abstract syntax tree. For all datasets we used a graph edit network with four layers, 128 neurons
per layer, residual connections, and tanh nonlinearity, which we optimized using Adam with a
learning rate of 10−3 and weight decay of 10−3 for 10k epochs. In each epoch we computed the loss
for one randomly sampled time series. To obtain statistics we performed a 5-fold crossvalidation on
all datasets.

Table 4 shows the average root mean square tree edit distance between the predicted tree and the
actual next syntax tree on all datasets, for graph edit networks (GENs, last row), as well as two
baselines, namely the constant prediction (const.), i.e. predicting no change, and the Gaussian process
scheme (GP) of Paaßen et al. (2018). We observe that both the synthetic syntax trees as well as the
actual student data are hard to predict, as neither GP nor GEN outperforms the constant baseline.
Further, we observe that GEN performs slightly better than GP on plt, grad, and desc, clearly better
on pysort (by more than four standard deviations) and slightly worse on fun and fin. Overall, we
can not observe a clear advantage of GEN on these data in terms of RMSE, which is likely due to
the small set of training data (only 15 different time series). Still, in terms of inference time GENs
(below 100 ms on all datasets) clearly outperform the expensive kernel-to-tree translation approach
of Paaßen et al. (2018) (ranging from below 100 ms to over 2 minutes per prediction on pysort).
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Table 4: The mean RMSEs (± std.) for the constant baseline, Gaussian process regression (GP) of
Paaßen et al. (2018), and graph edit networks on all syntax tree datasets.

model fun plt grad desc fin pysort

const. 7.95± 1.1 3.78± 1.2 6.85± 2.3 3.97± 0.6 1.45± 0.4 13.45± 1.3
GP 9.69± 1.4 6.61± 2.6 8.70± 1.7 13.97± 3.8 1.32± 0.5 26.53± 1.8

GEN 11.68± 1.4 5.66± 2.1 8.23± 2.1 9.10± 3.4 1.70± 1.0 18.89± 1.2

G PROMOTING SHORTER EDIT PATHS IN GEN’S TRAINING

Denote with C(del), C(ins), C(edel) and C(eins) the edit costs associated with node deletion, node
insertion, edge deletion and edge insertion. Define

`sp(G) =
(
‖(1− E)�A‖2 +

∥∥∥A(~1− ~ν)
∥∥∥

2

)
C(edel)

+ (‖E � (1−A)‖2 + ‖~ν‖2) C(eins) +
∥∥∥~1− ~ν∥∥∥

2
C(del) + ‖~ν‖2 C(ins)

where ~1,1 are a n-dimensional vector and n× n matrix of all ones.

Assuming the edge and node scores have been passed through a squashing function in (0, 1), then
adding term `sp to the GEN’s training loss will penalize costly edit paths, hence promoting shorter
ones.

The total cost derived by constructing edits in E is, in fact, given by

|{edelij ∈ E}| C(edel) + |{einsij ∈ E}| C(eins)

= |{(i, j) ∈ [n]2 : εij < − 1
2 , νi, νj > −

1
2 , a(G)ij = 1}| C(edel)

+ |{(i, j) ∈ [n]2 : εij >
1
2 , νi, νj > −

1
2 , a(G)ij = 0}| C(eins).

We can rewrite it in matrix form. Define for convenience

E− = E < −1

2
, E+ = E >

1

2
, ~ν− = ~ν < −1

2
, ~ν+ = ~ν >

1

2
.

where the operators > and < are applied component wise and return 1 if "true" and 0 if "false". The
matrix form becomes∥∥∥E− � (~1− ~ν−)(~1− ~ν−)> �A

∥∥∥
0
C(edel) +

∥∥∥E+ � (~1− ~ν−)(~1− ~ν−)> � (1−A)
∥∥∥

0
C(eins)

where � is the element-wise product.

Conversely, the cost associated with vector ~ν is
n∑

v:νv<− 1
2

(|{u ∈ [n] : a(G)uv = 1}| C(edel) + C(del)) +

n∑
v:νv>

1
2

(C(eins) + C(ins))

= ~1>A(G)~ν− C(edel) +~1>~ν− C(del) +~1>~ν+(C(eins) + C(ins)).

Assuming that both edge and node scores are bounded by 1, adding the following term to the loss
will promote shorter edit path

`sp(G) = ‖(1− E)�A‖2 C(edel) + ‖E � (1−A)‖2 C(eins)

+
∥∥∥A(G)(~1− ~ν)

∥∥∥
2
C(edel) +

∥∥∥(~1− ~ν)
∥∥∥

2
C(del) + ‖~ν‖2 (C(eins) + C(ins)).
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