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Abstract

Are world models a necessary ingredient for flex-
ible, goal-directed behaviour, or is model-free
learning sufficient? We provide a formal answer
to this question, showing that any agent capable
of generalizing to multi-step goal-directed tasks
must have learned a predictive model of its en-
vironment. We show that this model can be ex-
tracted from the agent’s policy, and that increasing
the agents performance or the complexity of the
goals it can achieve requires learning increasingly
accurate world models. This has a number of
consequences: from developing safe and general
agents, to bounding agent capabilities in complex
environments, and providing new algorithms for
eliciting world models from agents.

1. Introduction

A hallmark of human intelligence is the ability to perform
novel tasks with minimal supervision, formalised by few-
shot and zero-shot learning (Lake et al.,|2017). With the
emergence of these capabilities in language models (Brown
et al.,[2020), focus has shifted to developing general agents—
systems capable of performing long horizon goal-oriented
tasks in complex, real-world environments (Yao et al.,|2022;
Hao et al.l |2023). In humans this kind of flexible goal-
directed behaviour relies heavily on rich mental representa-
tions of the world, i.e. world models (Johnson-Laird, 1983}
Ha & Schmidhuber, 2018)), which are used to set abstract
goals beyond immediate sensory inputs (Locke & Latham,
2013), and to deliberatively and proactively plan actions
(Bratman, |1987). Whether world models are necessary for
achieving human-level Al has long been debated, pitting the
challenges of learning models against the potential benefits
they confer (Huang, |[2020).

Explicitly model-based agents have achieved impressive
performance across many tasks and domains (Hafner et al.}
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Figure 1: Our result complements previous insights from
planning and inverse RL. While planning uses a world
model and a goal to determine a policy, and IRL and in-
verse planning use an agent’s policy and a world model to
identify its goal, our result uses an agent’s policy and its
goal to identify a world model

2023; Wang et al., [2023}; [LeCunl, |2022; Raad et al.,[2024),
and having direct access to the agent’s world model has
benefits like being able to apply formal planning methods
(Sutton| 2018), predicting the agent’s behaviour in safety-
critical domains (Amodei et al., 2016} Dalrymple et al.,
2024), reducing sample complexity (Hafner et al., [2019)
and supporting transfer learning (Chua et al., 2018}; [Zhu
et al.| [2023)). However, learning accurate models of real-
world systems can be extremely challenging (Dulac-Arnold
et al.|[2019), and the performance of model-based agents is
fundamentally limited by their model’s fidelity.

In “Intelligence without representation”, Brooks famously
proposed that the world is its own best model, and that all
intelligent behaviours can emerge in model-free agents in-
teracting through action-perception loops, without needing
to learn explicit representations of the world (Brooks, |1991).
This view has largely been borne out by the development
of model-free agents capable of generalizing across a wide
range of tasks and environments (Reed et al., 2022} Brohan
et al., |2023; Driess et al., [2023; Black et al., 2024 |Schrit-
twieser et al., [2020). This model-free paradigm aims to
achieve truly general agents while side-stepping the chal-
lenges inherent in learning a world model. However, there
is mounting evidence that model-free agents may in fact
learn implicit world models (L1 et al.} 2022), and may even
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learn implicit planning algorithms (Hou et al., [2023; |Bush
et al., 2025)).

This raises a fundamental question: is there a model-free
shortcut to human-level AI? Or is learning a world model
necessary, with all the complexity this entails? And if so,
just how accurate and comprehensive do world models need
to be to support a given level of capability? We provide a
formal answer to these questions, showing that,

any agent that satisfies a regret bound for a suf-
ficiently diverse set of simple goal-directed tasks
must have learned an accurate predictive model
of its environment.

Specifically, we consider environments described by a fully
observed Markov processes, and propose a minimalist def-
inition of general agents as goal-conditioned policies (Liu
et al.l 2022) that satisfy a regret bound for a large set of
simple goal-directed tasks (such as steering the environment
into a desired state). We derive an algorithm that returns
an approximation of the environment transition function (a
world model) given the policy of any such agent, and show
that the error in this approximation decreases as we increase
the agent’s performance or the complexity of the goals it can
achieve. In other words, general agents are world models,
with all the information required to simulate the environ-
ment encoded in their policy. Importantly, we prove this
for any agent that satisfies a regret bound, regardless of the
details of its training and architecture and without imposing
rationality assumptions.

The necessity of learning a world model has profound con-
sequences for how we develop general Al systems, how
capable these systems can ultimately be, and how we can
ensure agents are safe and interpretable. We explore these
consequences and others in Sectiond] A more immediate
consequence is that in proving our result we derive new
algorithms for extracting world models from general agents.
We demonstrate this in Section[3.1] and show that our algo-
rithms can recover accurate world models even when the
agent strongly violates our competence assumptions. In
Section [5| we then discuss related work, including inverse
reinforcement learning and mechanistic interpretability.

2. Setup
2.1. Notation

Capital letters denote random variables X and lower case
letters x denoting a value or state X = z. Bold letters
denote sets of variables X = {X;,Xo,...,X,,} and =
denotes the joint state {1, s, ..., 2, }. Square brackets
denote a proposition, e.g. [X = z] is True if X = z and
False otherwise.

2.2. Environment

We assume the environment is a controlled Markov pro-
cess (cMP) (Puterman, 2014 Sutton, [2018]), which is a
Markov decision process without a specified reward func-
tion or discount factor. Formally, a cMP consists of a set
of states S, a set of actions A, and a transition function
Piy(a) = P(S=8|A=a,5=3s). Werefer to a
sequence of state—action pairs over time as a trajectory,
7 = (80, ao, $1, a1, - - .) and a finite prefix of T as a history,
he = (80,00, -, St)-

Definition 1 (Controlled Markov process). A controlled
Markov process (cMP) is a Markov decision process (MDP)
without a specified reward function or discount factor. It
is defined by the tuple (S, A, Pss (a)) where S is the state
space, A is the action space, and Pys(a) = P(S = &' |
A = a, S = 8) is the transition function.

To derive our results we make the standard assumptions that
the environment is finite, irreducible, and stationary, mean-
ing every state is reachable from every other state under
some finite sequence of actions, and transition probabilities
do not change over time. Furthermore we assume |A| > 2
so that the environment can support non-trivial policies.

Assumption 1. We assume the environment is described by
an irreducible, stationary, finite, controlled Markov process
(Def.[I) with at least two actions.

For further discussion of these standard assumptions see
Puterman, [2014; |Sutton, 2018

2.3. Goals

Our aim is not to provide a complete definition of goal-
directed behaviour, but to define a simple and intuitive class
of goals we might reasonably expect an agent to be capa-
ble of. In many settings including planning (Ghallab et al.,
2004), goal-conditioned reinforcement learning (Liu et al.|
2022)), and control theory (Astrom & Murray, 2021))), the
simplest goals are desirable states of the world (goal states),
and a goal is achieved by the agent steering the environ-
ment into one of these goal states. More generally, goal-
directed behaviour can involve a sequence of sub-goals to
be achieved in a particular order, and may include desirable
actions as well as environment states. This class includes
instruction following, which is the type of goal-directed
behaviour we typically desire of Al agents.

To describe these sequences of sub-goals (sequential goals)
we use Linear Temporal Logic (LTL) (Pnueli, |[1977; Baier &
Katoen, [2008), which is commonly used to specify tasks and
temporal objectives for agents (Littman et al.,|2017;|Li et al.,
2017; Hasanbeig et al. 2019; |Dzifcak et al.l 2009; Ding
et al., |2014)) including more recently for goal-conditioned
reinforcement learning agents (Vaezipoor et al.| 2021} [Qiu
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et al., [2023; Jackermeier & Abate,|2024). An LTL expres-
sion ¢ assigns a truth value to each trajectory (denoted
T & ), which is true iff 7 satisfies the LTL expression.
Concretely, we define a goal as pair (O, g) where g is a
set of goal states and O is a temporal operator specifying a
time horizon within which the goal states should be reached.
For our results it will be sufficient to restrict our attention
to two temporal operators; Eventually (), where the goal
state must be reached at any future time, and Next (),
where the next state must be a goal state, e.g. to capture
the immediate consequences of an agent’s actions. In the
absence of a temporal operator, the goal condition must in
the current time step, which we refer to as Now and rep-
resent with the trivial (True) operator T. We denote goals
as ¢ := O([(s,a) € g]). For example, ¢ = O([S = s])
specifies that state s must eventually be reached. See Ap-
pendix [A3] for further discussion.

Definition 2 (Goals). A goal ¢ is an LTL expression of the
form o = O([(s,a) € g]) where,

e g is a set of goal-states, a sub-set of the joint states of
the environment-agent system (s,a) € S x A,

e O is a temporal operator specifying the time horizon
for reaching g. We restrict to O € {0, 0, T} where
(O = Next, { = Eventually, T = Now.

Using Def. [2]we can construct composite goals of increasing
complexity by either combining goals in sequence (where
goal ¢ 4 must be achieved before goal ¢p) or in parallel
(where satisfying either goal ¢ 4 or goal ¢ is sufficient).
Weuse ) = (p1, ..., pn) todenote a sequence of sub-goals,
where the agent must satisfy ¢; before moving on to ¢4, and
so on. Here 1 is also an LTL expression, which we provide
a formula for in Appendix [A.3] We refer to n as the depth
of v, i.e. the number of sub-goals the agent must satisfy
to satisfy ¢ (also known as the temporal height, |Demri &
Schnoebelen| (2002)). Parallel composition is achieved by
taking the disjunction (OR) of two or more (sequential)
goals, i.e. for )’ = 1)1 V 1), T = 9 is true iff by or 1y are
satisfied by 7. Finally, ¥ denotes the set of all composite
goals for a given environment, and ¥,, to denote the set of
all compositions of goals (Def. [3) of depth at most n.

Definition 3 (Composite goals). A sequential goal v is an
ordered sequence of sub-goals (Def.|2) 1) = {(©1,...0n),
where the agent must achieve sub-goal @; before p; .
The depth of a sequential goal is the number of sub-goals
depth(y)) = n. A composite goal is a disjunction of one
or more sequential goals 1) = \/111 Yy, ie. the agent
must achieve any sub-goal 1); to achieve 1. The depth
of a composite goal is the max depth of its sub-goals
depth(1)) = maxy, depth(y;). ¥, is the set of all com-
posite goals 1) with depth(v)) < n.
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Figure 2: The agent-environment system. Agents are maps
from states s; (or histories) and goals v to actions a;. The
dashed line represents Algorithm [T} which recovers the
environment transition probabilities from this agent map.

Example: A maintenance robot is given the task of fix-
ing a faulty machine, or finding an engineer and alerting
them that the machine is broken. Fixing the machine re-
quires performing a sequence of predetermined actions
ai,asz,...,ayn and each time attaining the desired out-
come S1, S9,...,Sn, which can be represented as the se-
quential goal ¥1 = (p1,p2,...,0N) = [A = a1,5 =
siiAO([A = a1,S = s1] A O(...)) (using simplified
notation for [(s,a) € g]). Finding and alerting the engi-
neer requires the robot to navigate to an engineer S' = sepg
and alerting them A = ', 12 = O([S = Seng, A = d']).
The robot’s goal can be represented as the composite goal

Y =11V s

2.4. Agents

Our aim is to formulate a minimalist definition of an agent
capable of achieving a range of goals in its environment.
To this end we focus on goal-conditioned agents (Liu et al.}
2022} |Schaul et al., 2015)), which are policies 7 that map
histories and goals to actions, 7 : h¢, 9 — a; (Figure [2).
Note this does not restrict us to agents that can condition
their actions on the full history of the environment, as any
policy (e.g. a Markov policy) can be represented in this
way. For simplicity, we assume that the environment is
fully observed by the agent, and that the agent follows a
deterministic policy. This leads to a natural definition of
an optimal goal-conditioned agent for a given environment
and set of goals ¥, which is a policy that maximizes the
probability that v is achieved, for all ) € ¥.

Definition 4 (optimal goal-conditioned agent). For a given
set of goals W (Def. [B) an optimal agent is a goal-
conditioned policy 7*(ay | he; ) where 7 is deterministic
and satisfies,

n* = argmax P(t = ¢ | 7, s0) (1)

Vsg s.t. P(sg) > 0, where sq is the initial state of the
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environment att = 0, andV ¢ € W,

Real agents are rarely optimal, especially when operating
in complex environments and for tasks that require coor-
dinating many sub-goals over long time horizons. Hence,
we relax Def. 4| to define a bounded agent that is capable
of achieving goals of some maximum goal depth ¥,, with
a failure rate that is bounded relative to the optimal agent.
Bounded agents are defined by two parameters; i) a failure
rate § € [0, 1], which places a lower bound on the proba-
bility that the agent achieves a goal compared an optimal
agent (analogous to regret), and ii) a maximum goal depth
n, such that this regret bound holds only for goals with a
depth less than or equal to n. This naturally captures the
type of agents we are interested in—those which have some
capability (parameterised by J) for achieving goals of some
maximum complexity ¥,,.

Definition 5 (bounded goal-conditioned agent). A bounded
goal-conditioned agent is a goal-conditioned policy 7(a; |
he; ) satisfying,

P(rE= |7, s0) > mT?XP(T Ey|ms)(1=6) (2

Vi € W, where n is the maximum goal depth and s is the
initial state of the environment at t = (.

Importantly, Def. [5] only assumes a level of competence
for the agent. We do not, for example, impose any ratio-
nality assumptions on the agent as in (Von Neumann &
Morgenstern, 2007; Savage, |1972), which are not satisfied
by current agents (Raman et al.,|2024b).

Example: Following the previous example, the perfor-
mance of the maintenance robot is measured by the proba-
bility that it either fixes the machine or alerts an engineer, i.e.
P(1 = p1 Vs | T, s0). This intuitively involves weighing
up the two possible courses of action; if the repair is difficult
then directly attempting it could lead to failure, and finding
an engineer is the better course of action. Or if the proba-
bility of finding an engineer is very low, attempting to fix
the machine may be the best strategy. Whatever the agent
chooses to do, we can measure its performance relative to
the probability that the optimal agent will solve the task,

P(T ):gol V @2 | 71'*,80).

2.5. World models

We are interested in the role of world models in goal-
directed behaviour. Hence we focus on predictive world
models, which can be used by agents to plan. This fol-
lows the definition of world models used in reinforcement
learning (RL), as opposed to the use of the term to de-
scribe representations of the environment state alone (e.g.
in [Li et al| (2022); |Gurnee & Tegmarkl (2023b))). For
model-based RL agents, explicit world models are usu-
ally one-step predictors of the environment state (Sutton,

2018)), which in Markovian environments are sufficient to
predict the evolution of the environment under arbitrary
policies. We define a world model as any approximation
Py (a) of the transition function of the environment (Def.
Pyo(a) = P(Six1 =¢" | Ay = a, St = s), with bounded
error | Py (a) — Pog(a)| < e.

3. Results

Our main result is a proof by reduction—we assume the
agent is a bounded goal-conditioned agent (Def. [3)), i.e.
it has some (lower bounded) competency at goal-directed
tasks of some finite depth n (Def. [3).We then prove that
an approximation of the environment’s transition function
(a world model) is determined by the agent’s policy alone,
with bounded error. Hence, learning such a goal-conditioned
policy is informationally equivalent to learning an accurate
world model.

Theorem 1. Let Py (a) = P(Si11 =8| A1 =a,S;=5s)
be the transition probabilities of an environment satisfying
Assumption[l] Let  be a goal-conditioned agent (Def. [5))
with a maximum failure rate 0 for all goals 1) € W,, where
W, is the set of all composite goals with maximum goal
depthn > 1. 7 fully determines a model for the environment
transition probabilities Py (a) with errors satisfying

2Pss’(a)(1 — PSS/ (a)>
(n—=1)(1-9)

Py (a) = Pa(a)| < \/

for any n, 6, and for 6 < 1, n > 1 the error scales as,

Py (a) = Pas(a)| ~ O (8/v/n) +O(1/n)

Proof in Appendix[A.6]

In Appendix [A.5] we give a simplified overview of the proof
of Theorem [I, We derive an algorithm that queries the
goal-conditioned policy with different goals v» € ¥,, which
correspond to either-or decisions between two incompatible
sub-goals 1 = 1, V 1. As the agent satisfies a regret
bound, its choice of action encodes information about which
of the sub-goals has a higher maximum probability of being
satisfied, and this information can be used to estimate the
transition probabilities P, (a). We then prove that this
estimate satisfies the error bounds stated in Theorem[Il Note
that while the statement of Theorem [I] assumes the agent
has a maximum failure rate (regret bound) § for all ¢» € ¥,,,
in fact our proof only requires the agent satisfies this regret
bound for a small subset of ¥,, consisting of n composite
goals (see discussion of emergent capabilities in Section [4)).

Our algorithm for recovering a bounded-error world model
from a bounded goal-conditioned agent (Algorithm [T)) is
detailed in Appendix [C| It is universal, meaning the same
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algorithm works for all agents satisfying Def. [5|and all envi-
ronments satisfying Assumption [I] It is also unsupervised;
the only input to the algorithm is the agent’s policy 7. The
existence of this algorithm, which converts 7 into a bounded
error world model, implies the world model is encoded in
the agent’s policy, and learning such policy is information-
ally equivalent to learning a world model. Formally, the
approximate world model P (a) is identifiable given the
agent’s policy and our assumptions (see for example [Barein/
boim et al| (2022)). In Section[5]we compare Algorithm|T]
and its assumptions to methods for recovering world models
in mechanistic interpretability, which similarly use the exis-
tence of a recovery map establish that an agent has learned
a world model.

Properties of the world model. The accuracy of the world
model recovered from the agent in Theorem [1| increases
as the agent approaches optimality (6 — 0), and/or as the
depth n of sequential goals it can achieve increases. A key
consequence of the derived error bounds is that for any § < 1
we can recover an arbitrarily accurate world model if we
can make n sufficiently large. Therefore, in order to achieve
long horizon goals even with a high failure rate 6 ~ 1, the
agent must have learned a highly accurate world model.
The error bounds also depend on the transition probabilities,
and dividing both sides of the bound by Ps (@) shows that
the relative error Py (a)/Psy (a) can become very large
for Pse(a) < 1. This means that for any § > 0 and/or
finite n, there can exist low probability transitions that the
agent is not required to learn. This matches the intuition
that sub-optimal or finite-horizon agents need only learn
relatively sparse world models covering the more common
transitions, but achieving goals with higher success rate or
longer horizons requires higher resolution world models.

Theorem [I]imparts only a trivial error bound on the world
model we can extract from agents whose maximum goal
depth is n = 1. It is not immediately clear if this means that
agents that only optimize for immediate outcomes (myopic
agents) do not need to learn a world model, or if Theoremﬂ]
simply fails to capture this class of agents. To resolve this
we derive a result for myopic agents, which satisfy a regret
bound for n = 1 and only a trivial regret bound (6 = 1) for
any n > 1.

Theorem 2. Let the set of myopic goals W ,y0pic be the
subset of depth-1 composite goals ¥, such that the goal
state(s) must be attained immediately after the agents first
action, ¢ = Q|(s,a) € g]. We define an optimal myopic
agent as a policy 7*(as | hy, 1) that is optimal for all ¢ €
W, vopic- For an environment satisfying Assumption E] any
bounds on the transition probabilities | Pyy (a) — Pyy (a)| <
€ than can be determined from m* are trivial (¢ = 1) and
tight. Proof in Appendix|B|

Theorem 2] implies that there exists no procedure that can
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Figure 3: a) shows the mean error in the world model re-
covered by Algorithm (€), decrease as the agent learns
to generalize to higher depth goals. Ny, ({d) = 0.04) is
the maximum goal depth such that the agent achieves a
mean regret < 0.04. The scaling is O(n~'/?), as with the
scaling between the worst-case error € and worst-case re-
gret 0 in Theorem[I] b) shows the mean error scaling with
(0(n = 50)), the mean regret the agent achieves for depth
n = 50 goals. For both figures, error bars show 95% confi-
dence intervals for the mean over 10 experiments where we
re-trained the agents with different experience trajectories
of the same length.

even partially determine the transition probabilities from
the policy of a myopic agent. In the proof of Theorem 2]
we show this by explicitly construct a myopic agent that
is optimal for any choice of P,y (a) € [0,1], and so the
policy of such an agent can only impart trivial bounds on the
transition probabilities. Therefore, learning a world model
with is not necessary for myopic agents—world models only
become necessary for agents pursuing goals with multiple
sub-goals and over multi-step horizons.

3.1. Experiments

We demonstrate our procedure for recovering a world model
from an agent, and how the accuracy of the model increases
as the agent learns to generalize to more tasks (longer hori-
zon goals). We also investigate if our algorithm can re-
cover the transition function when the agent strongly vi-
olates our assumptions (Def. [5). Specifically, a realistic
agent could be highly competent (§ ~ 0) for some depth-n
goals but completely fail for others (§ = 1). This agent
would violate any non-trivial regret bound as in Def. [5]
resulting in trivial model-error bounds in Theorem (1| To
explore this case we relax Def. [5]and consider agents where
the regret bound holds only on average over some set of
goals P, i.e. (§) < k where (d) is the average value of
1—P(r = | ms)/ max, P(T = 9 | m,s0) over all
1) € W. We then determine empirically how the average er-
ror {¢) in the world model recovered by Algorithm scales
with the agent’s average regret (0) (Figure [3| b)), where
€ := |Pyy (@) — Pss ()| and (€) is mean value of € over all
transitions (s, a, s').
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The environment used to test our algorithms is a randomly
generated cMP satisfying Assumption [T} comprising of 20
states and 5 actions with a sparse transition function. We
train our agent using trajectories sampled from the environ-
ment under a random policy, and we increase the compe-
tency of our agent by increasing the length of the trajectory
it is trained on, Ngmples. See Appendix @] for further de-
tails on the agent and experimental setup. We recover the
world model using Algorithm [2] a simplified version of
Algorithm

As we increase Ngmples We Observe the agent can generalize
to longer horizon goals, captured by N({0) = k) which
is the maximum goal depth n such that the agent achieves
an average regret (§) = k for goals of depth n. We find
that for all Ngamples tested, and for all goal deptsh 7, our
agent agent achieved a worst-case regret § = 1 for some
goals, i.e. the agent violates any non-trivial regret bound
of the form Def. 5] Nevertheless, we find that Algorithm [2]
recovers the transition function with a low average error
(Figure b)), which scales as ~ O(n~1/2), like the error
bound in Theorem [I] Hence, in spite of the agent violating
our assumptions and achieving maximal regret for some
goals, the average error has a similar decay with the goal
depth as when the worst-case regret bound (Def. [3)) is satis-
fied. Therefore, we can still accurately recover the transition
function from the agent as long as it achieves a relatively
low average regret for long horizon goals.

4. Discussion

We now discuss the consequences of Theorem [I] and its
limitations.

No model-free path to general agents. Theorem [T]implies
that any agent that satisfies a regret bound as in Def. [5|must
have learned an implicit world model, and the accuracy of
the model increases as the regret 4 decreases or the maxi-
mum goal depth n increases. In other words, there is no way
to train an agent capable of generalizing to long horizon
tasks without learning a world model, and the fidelity of
the model bounds the agent’s capabilities. This removes
a key motivation for model-free approaches, as learning a
world model cannot be avoided. On the other hand, it mo-
tivates explicitly model-based architectures (LeCunl 2022}
Hafner et al., 2023; Schrittwieser et al., [2020), which can
directly attack the model learning problem, and can exploit
their benefits in terms of sample efficiency (Hafner et al.|
2019), planning (Sutton, [2018]), interpretability (Glanois
et al.| 2024) and safety (Amodei et al.,2016).

Emergent capabilities. An accurate world model is a pow-
erful tool—it can be used to determine low-regret policies
for any well-defined objective, without requiring further in-
teraction with the environment or task-specific data. Hence,

implicit world models have been proposed as an explana-
tion for emergent capabilities in foundation models (Brown
et al., 20205 |[Li et al., [2022; |/Abdou et al., [2021)). Our results
support this hypothesis by revealing a mechanism by which
implicit world models could emerge during training. To
minimize regret across a variety of training tasks, agents
are required to learn an implicit world model, which in turn
could support generalization to a wide range of tasks the
agent was never explicitly trained on. Note that for simplic-
ity we have stated Theorem [1| with the assumption that the
agent can generalize to any depth-n composite goal ¥,,, but
this is not the strongest statement of the result. In the proof
(Appendix [A.6) the agent is required to generalize only to
a small subset of ¥,,, comprising of n simple composite
goals (see also Algorithm|[T). There are likely many such
choices of subsets of ¥,, (e.g. a different sufficient set is
used in Algorithm[2] Appendix[C)), and there are likely other
tasks beyond achieving composite goals (Def. [3) that are
sufficient to derive the result. Our findings therefore point
to the existence of sets of simple tasks, where learning to
perform these tasks implies sufficient world knowledge to
(in principle) generalize to any task.

Beyond planning, world models support domain adaptation
(Chua et al.| |2018)), reasoning about uncertainty (Lockwood
& S1,2022) and social cognition (Rabinowitz et al., |[2018)).
With additional structural assumptions, they can also sup-
port causal reasoning (Pearl, [2018), simulating counterfac-
tual trajectories and imagination (Racaniere et al.l [2017)),
and reasoning about intent (Ward et al.| 2024) and attribu-
tion (Chockler & Halpern), 2004)). Theorem E] provides a
simple explanation for how this wide range of cognitive
abilities, associated primarily with human-level intelligence
(Tomasellol 2022), can emerge from simple goal-directed
behaviour. This could explain away several prominent theo-
ries for how these capabilities arose in nature, which propose
specific environmental factors such as resource uncertainty
(Hills et al.,|2015) and social complexity (Dunbar, [1998)) as
the driving force for their emergence. The composite goals
used in the proof of Theorem [I] describe simple either-or
navigation tasks in a single-agent environment. If an agent
was required to solve these tasks without repeated attempts
(zero-shot), perhaps due to risk of death, this would require
the agent to satisfy a regret bound as in Def. [5] and hence
learn a world model capable of supporting these capabilities,
without needing to invoke novel environmental or social
factors.

Safety. Several proposals for Al safety and alignment re-
quire an accurate predictive model of the agent-environment
system to verify the safety of plans (Bengio et al.| [2024;
Dalrymple et al.,[2024), safely explore (Brunke et al.| 2022)),
predict human responses (Leike et al., |2018)), avoid prob-
lematic incentives (Farquhar et al.,[2022), and incorporate
model-based concepts into decision making such as intent
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(Ward et al.| 2024), deception (Ward et al.,|2023) and harm
(Richens et al., |2022; |Bengio et al.| 2024)). Other proposals
focus on passive oracles (essentially world models), avoid-
ing agents altogether due to their inherent safety issues
(Bengio et al., [2025; |Armstrong & O’Rorke, [2017)).

One major impediment to these approaches is the reasonable
expectation that the capabilities of model-free agents will
outpace our ability to learn accurate predictive models of
complex real-world environments. There are already sev-
eral examples of Al systems that can solve prediction tasks
in domains we cannot yet model (Abramson et al., [2024;
Merchant et al., [2023), and it is intuitively hard to inter-
pret, audit and correct the behaviour of black-box agents
operating in environments we do not understand, or where
the agent has superior world knowledge than the supervi-
sor (Christiano et al., |2021). Our results point to solution,
providing a theoretical guarantee that we can extract an
accurate world model from any sufficiently capable model-
free agent. Importantly, the fidelity of this model increases
with the agent’s capabilities, especially as agent gets better
at achieving goals over long time horizons—precisely the
regime where safety concerns such as reward hacking be-
come important (Farquhar et al.|[2025)). Future work should
explore developing scalable algorithms for eliciting these
world models and using them to improve agent safety.

Limits on strong AL Our ability to learn accurate models
of the world is fundamentally limited by the openness of
real-world systems, their complexity and unpredictability,
confounding, limited data, and the curse of dimensionality
(Box & Draper, (1987). Theorem E]implies that training an
agent capable of generalizing to a wide range of tasks in the
real world is extremely hard—at least as hard (and possibly
much harder) than learning an accurate model of the world.
While ‘thinking slow’ (Kahneman), 2011} deliberative plan-
ning and reasoning is not necessary (or even desirable) in
every situation—for example, humans also generalize to
novel tasks through ‘thinking fast’ heuristics (Tversky &
Kahneman||1974)) and similarity-based generalization (Shep{
ard,, [1987)—our results establish that for any agent, natural
or artificial, their ability to generalize is ultimately bounded
by their ability to learn how the world works.

One consequence is that regret-bounded agents (Def. [5) are
effectively limited to domains that are ‘solvable’, i.e. where
we can feasibly learn a model of the underlying dynamics
and use it to plan over long horizons. In domains where
this is infeasible, there can be no guarantee the agent will
generalize (satisfy a non-trivial regret bound § < 1) for
long horizon tasks (n > 1). Therefore, some amount of
online learning will be necessary, which is limited by the
speed of interaction with the environment. Note that our
results are derived for the simplest non-trivial environments
(Assumption[I)), and it is likely these constraints will be even

stronger in more realistic environments which incorporate
partially observed states or non-Markovian dynamics.

Limitations. The proof of Theorem I]considers only fully
observed environments. It is not clear what an agent op-
erating in a partially observed environment would have to
learn about latent variables in order to achieve the same
level of behavioural flexibility. It is important to clarify that
Theorem [I] proves the existence of a world model encoded
in the agent’s policy, not its specific use (e.g. for planning),
nor can we make deeper epistemological claims about what
the agent knows about its environment (Fagin et al., 2004).

5. Related work

Inverse reinforcement learning (IRL) (Ng et al.| [2000)
and inverse planning (Baker et al.,[2007) involve determin-
ing an agents reward function (or goal) given the transition
function and the optimal policy. Similarly, planning is the
process of determining an optimal policy given the tran-
sition function and a goal (reward). Our result fills in the
remaining direction, recovering the transition function given
the agent’s goal and their regret-bounded policy. In IRL the
reward function can only be fully determined if we know
the optimal policy across multiple environments (Amin &
Singhl, 2016)), and likewise we find that to fully determine
the environment transition function we must know the opti-
mal policy for multiple goals. Figure[I|shows how our result
relates to planning and IRL, where for each process takes as
input two elements from {environment, goal, policy}, and
determines the missing third element.

Mechanistic Interpretability (MI) aims to uncover implicit
world models within model-free agents (Abdou et al.| [2021]
Li et al., 2022; |Gurnee & Tegmark, 2023a; [Karvonen, |2024;
Hou et al.| 2023} [Bush et al.}|2025). This typically involves
learning a map from a policy network’s activations to fea-
tures representing states .S (e.g. the board states of a game
(Li et all 2022)). The state-space (ontology) S is either
assumed (as in supervised probing|Alain & Bengio (2016)))
or identified through unsupervised learning (as with SAEs
Bricken et al.|(2023)). The causal role of these features in
the agent’s decision making is established by intervening
on their representations and observing the policy changes
consistently, as if the world state had changed.

Our work also establishes an agent has learned a world
model by the existence of a recovery map, but crucially this
map is from the agent’s policy rather than its activations.
This is strictly weaker (as the policy is a function of the
activations), and so Algorithm E] can be used even when
activations are inaccessible (e.g. private weights). This also
allows us to tie the existence of a world model to agent
capabilities (regret bounds as in Def. 5 rather than the
specifics of the agent architecture, and Algorithm [T]applies
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to all agents satisfying Def. [5|and environments satisfying
Assumption|[I] By comparison, probes or SAEs are fit to a
given agent-environment system, and may require retraining
if either changes (e.g. through distributional shifts or weight
updates). Also Algorithm [I|is unsupervised, whereas MI
methods are at least partially supervised, which can lead to
ambiguity as to where the world model is encoded (in the
agent, the probe, or jointly).

Another key difference is that we recover a predictive world
model P, (a) capturing environment dynamics, rather than
simply a state space representation S. However, our aim
is to prove the agent has learned the actual environment
dynamics up to an error bound, not to recover the subjective
world model used by the agent to generate its actions. As
discussed in the paragraph ‘representation theorems’ below,
if we introduce additional consistency assumptions similar
to those used M we can recover the agent’s subjective
world model. One drawback is that we may underestimate
what an agent knows about its environment—e.g. agents
could learn a world model but strongly violate Def. [5 (e.g.
due to errors in planning), so Algorithm([T]isn’t guaranteed to
recover this world knowledge whereas methods like probing
may succeed. However, Section@] shows that at least in
simple environments, our procedure can work well even
when the regret bound is trivialised (6 = 1).

Causal world models. (Richens & Everitt, [2024) provides
a similar result to Theorem [I] showing that an agent capable
of adapting to a sufficiently large set of distributional shifts
must have learned a causal world model. Our work has a
different focus: we study an agents ability to generalize
to new goals (task generalization) rather than adapting to
new environments (domain generalization). A surprising
consequence of our result combined with Richens & Everitt
(2024)) is that domain generalization requires strictly more
knowledge of the environment than task generalization. To
see this, consider a setting where the state comprises two
variables S = X x Y and X — Y. We can construct an
optimal goal-conditioned agent (Def. ) given the transi-
tion function Pss (a) = P(Xy41 = 2, Vi1 =9y | A =
a, Xy = x,Y; = y), as an optimal goal-conditioned policy
can be determined by planning on this model. However,
the causal relation between X — Y is non-identifiable
from Py (a), i.e. almost all distributions Py, (a) are com-
patible with both X — Y and X < Y. Therefore, task
generalization does not require knowledge of the causal re-
lation between concurrent environment variables X; and Y;

!Consistency in MI requires the agent adapts their behaviour
following interventions on their world model. This amounts to
assuming regret-bounded behavior under interventions, which is
tantamount to assuming the agent has a causal world model to
begin with (Richens & Everitt, |2024). Hence, using this kind of
interventional consistency to establish that an agent has a world
model risks circular reasoning.

whereas domain generalization does. That said, in the cMP
setting the transition function does encode a degree of causal
information, and we leave it to future work to determine
precisely what causal knowledge is required for an agent
satisfying Def.[5] This hints at an agential version of Pearl’s
causal hierarchy (Bareinboim et al., [2022), where differ-
ent agent capabilities (like domain or task generalization)
provably require different degrees of causal knowledge.

LTL goal-conditioned agents. LTL is the natural choice
for expressing instructions, goals and safety constraints in
reinforcement learning and planning (Camacho et al.,|2019).
Recently, there have been several implementations of goal-
conditioned agents that generalize zero-shot to arbitrary
LTL goals (Qiu et al., |2023]; Jackermeier & Abate, 2025}
Vaezipoor et al., [2021; |Kuo et al., [2020). This maps pre-
cisely onto the setting we study, and future work could ex-
plore using Algorithm|T|or variants to recover world models
from these agents, and use them to debug agent behaviour.

Representation theorems such as Savage| (1972) and
Halpern & Piermont| (2024), establish that agents satisfying
certain rationality axioms behave as if they are maximiz-
ing the expected value of a utility function with respect to
a world model. For example, [Savage| (1972) can be used
to ‘fit’ a world model to agent’s behaviour, determining a
unique utility function U(s’) and set of beliefs (a world
model P, (a)) such that the policy that maximizes E plU]
is identical to the agents policy. However, this says nothing
about what (if anything) the agent has learned about the true
environment dynamics. For example, we may be able to
assign a specific world model and utility function to a purely
random policy 7(a | s) = 1/| A, but this clearly does not
imply that learning a world model is necessary to gener-
ate a random policy. Instead of attempting to recover an
agent’s subjective world model, we aim to recover the true
underlying dynamics of the environment from the policy of
the agent. In doing so, we show that learning such a policy
implies learning these dynamics, and so the learnability of
these dynamics bounds agent capabilities. Further, Theo-
rem [2] establishes that an optimal myopic agent does not
need to learn the transition probabilities Py (a), and repre-
sentation theorems typically focus on the myopic regime.

We can recover something like the agent’s subjective world
model by changing Def. [5|to the assumption that the agent
is d-optimal with respect to its own world model M,

Ppm(r =4 [, 80) = max Py (7 = ¢ | m,50) (1 = 6)

3)
This amounts to assuming the agent has a world model,
and that its behaviour is highly consistent with this world
model (with consistency given by ), but stops short of as-
suming the agent is optimal with respect to its own beliefs.
For example, 6 > 0 could represent a sub-optimal planner.
For this altered Def. [5] Theorem [I]is unchanged and Algo-
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rithm [T returns the agents subjective world model M with
bounded error. This may be appealing as a representation
theorem as it has much weaker assumptions than [Savage
(1972), e.g. we only assume the agent follows a policy that
is imperfectly consistent with its beliefs, whereas [Savage
(1972)) requires the agent specifies a preference order over
all actions (whereas a policy specifies only the most pre-
ferred action(s)), and makes strong rationality assumptions
which are not satisfied by most current systems (Raman
et al., [2024a).

Good regulator theorem. This influential theorem attempts
to establish a similar result to ours, than any agent capable of
controlling a system is in some sense a model of that system
(Conant & Ross Ashbyl [1970). However, as pointed out in
(Wentworth| 2021}, what the theorem actually shows is that,
under several strong assumptions, an agent that minimizes
the entropy of its environment must have a deterministic
policy. This deterministic policy is then interpreted as a
model of the environment, with the actions assigned to
different states corresponding to a state representation. This
is in spite of the fact that the policy (and hence the world
model) could be a constant function, assigning the same
action to every state. We do not consider an agent having
a deterministic policy to be meaningful evidence that the
agent has a model of its environment, and our theorem less
ambiguously demonstrates that a world model capable of
predicting the evolution of the environment has been learned
by the agent.

Theories of agency. That agents have world models is a
foundational assumption for several prominent theories in
psychology and neuroscience; from constructivist theories
of perception (Gregoryl [1980) to active inference (Friston,
2010) and theories of consciousness (Safron, [2020). Like
representation theorems, these theories aim to provide ex-
planatory models of natural agents, rather than proving that
agents necessarily conform to their assumptions. Our results
offer a strong theoretical justification for these frameworks
by demonstrating that goal-directed agents must acquire
world models to achieve a degree of behavioural flexibility.
Moreover, our findings remove the need to assume agents
have world models a priori. Instead, we can assume a level
of competency which implies their existence—arguably a
more defensible position as competence can be measured.

6. Conclusion

The idea that the microstructure of an agent reflects the
macrostructure of its environment is not new. It can be
traced as far back as Democritus, who claimed that “man is
a microcosm”—a miniature reflection of the cosmos (Allers,
1944)—and persists in contemporary scientific thinking—
for example, Friston’s assertion that “an agent does not have
a model of it’s world—it is a model” (Friston, [2013)). While

this relation between agents and environments has long been
hypothesised, we have sought to formalise and prove it. We
have shown that any agent capable of generalizing to a suffi-
ciently wide range of simple goal-directed tasks, must have
learned an accurate model of it’s environment. Essentially,
all the information required to accurately simulate the en-
vironment is contained in the agent’s policy. This implies
that learning a world model is not only beneficial, but neces-
sary for general agents. Consequently, efforts to create truly
general Al cannot sidestep the challenge of world modeling,
and instead should embrace it to unlock further capabilities
and address critical issues in safety and interpretability.

Future work could extend our analysis to different classes
of goals beyond Def.[3] and identify sets of simple ‘univer-
sal’ tasks that are sufficient to imply an agent has learned a
world model. These tasks may then be useful for training
general agents. Our results also point to new methods for
inferring an agent’s beliefs from their goals and behaviour
without making strong rationality assumptions. Future work
could build on Algorithm|l|to develop algorithms for recov-
ering world models that are more scalable or apply to more
general environments, and using these to improve agent
safety and interpretability. On the more foundational level,
Theorem|I] gives theoretical support to work in mechanistic
interpretability looking to uncover implicit world models—
for any agent capable of sufficiently general goal-directed
behavior, the world model must be in there. Future work
could use this necessity to derive new fundamental bounds
on agent capabilities from the learnability of world models.

Impact statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of Theorem 1]

A.1. Notation

In the following we denote random variables as capital letters X and lower case letters x denoting an event X = x
(equivalently, a value or state of X'). We use bold letters to denote sets of variables X = {X1, Xo,..., X,,} and x denotes
a set of events {x1,xa, ..., %, . We use square brackets to denote a proposition, e.g. [X = x| returns True if X = z and

False otherwise. I(p) denotes an indicator function, which returns 1 if the proposition p is True and 0 if False.

A.2. Environments

Definition 1 (Controlled Markov process). A controlled Markov process (cMP) is a Markov decision process (MDP) without
a specified reward function or discount factor. It is defined by the tuple (S, A, Pss (a)) where S is the state space, A is the
action space, and Pyg(a) = P(S = s’ | A= a, S = s) is the transition function.

First we assume the environment is described by a finite-dimensional, irreducible, controlled Markov process. For discussion
of these standard assumptions see [Puterman), [2014; [Sutton), 2018,

Assumption 1. We assume the environment is described by an irreducible, stationary, finite, controlled Markov process
(Def.[I) with at least two actions.

In the following we use S = s; and A = a; to denote the state of the environment and a the agent’s choice of action at time
t. The sequence of successive environment states and actions are referred to as a trajectory 7 = (sg, ag, S1, a1, . ..), with 7
denoting an infinite length trajectory and we introduce an index t;.; = (s;, a4, . . ., S¢, a;) to denote a finite length trajectory
between times ¢ and j. In some settings we use h;.; = (s;,a;,...,S:) to denote a finite length trajectory that should be
interpreted as a history, i.e. a trajectory that has occurred, and which is truncated at s; (i.e. does not include a;).

A.3. Goals

Linear Temporal Logic (LTL) (Pnueli, 1977} Baier & Katoenl |2008) is a formalism widely used for expressing instructions,
goals and safety constraints for agents (Littman et al.| 2017 [Li et al., 2017} Hasanbeig et al.,[2019; [Dzifcak et al., 2009;
Ding et al.,|2014). LTL extends classical propositional logic by introducing operators for reasoning about sequences of
states over time, primary among them being,

¢ (O (Next): The property holds in the next state,
¢ { (Eventually): The property will hold at some point in the future,
e [J (Always): The property holds at every state from now on,

e U (Until): One property holds until another becomes true,

which can be combined with standard logical connectives (AND A, OR Vv, NOT - and material implication —) to create
complex goal specifications. The environment + agent system is described by the joint states (s, a;) where s; is the state of
the environment and a, is the agent’s action, at time ¢. Trajectories (paths) are a sequence of these states which we denote
T = (80, ao, $1, a2, . . .). An LTL expression ¢ assigns a truth value to a given trajectory 7, denoted 7 = ¢, which is true if
T satisfies ¢ and false otherwise, with evaluation beginning at ¢ = 0. For example, the trajectory of the environment-agent
system 7 = (sp = 0,a9 = 0,81 = 1,a0 = 0,...) satisfies ¢ = [s = 0] A O[s = 1] as the agent is in state s = 0 initially
(at time ¢t = 0) and in the next time step is in state s = 1.

Our desire is to define a minimal class of goals that describe the simplest and most intuitive goal-directed behaviours. To
this end we focus on the most common definition of goals as being desirable states of the environment-agent system (Liu
et al.,|2022), which must be achieved within some time horizon.

Definition 2 (Goals). A goal ¢ is an LTL expression of the form ¢ = O([(s,a) € g]) where,

* g is a set of goal-states, a sub-set of the joint states of the environment-agent system (s,a) € S x A,

* O is a temporal operator specifying the time horizon for reaching g. We restrict to O € {0, ¢, T} where () = Next,
O = Eventually, T = Now.

10
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Rather than considering time horizons at the level of specific time indices ¢, which would require the agent to be capable
of a high degree of environment control (e.g. ‘reach state S = s in precisely three time steps’), we focus on two simple
time horizons; goals that are achieved immediately (now, T), in the next time step (next, (), or at any time in the future
(eventually, ¢). Note that in LTL expressions the ‘now’ temporal operator is the identity, and we use T (True) to denote this.
As T([X = z]) = [X = x] we suppress T, e.g. p; = [(s,a) € g;], for ease of notation.

Example: consider the following goal for a cleaning robot: move eventually to the kitchen and in the next time step turn
on the dish washer. This goal can be expressed as ¢ = O([S = in kitchen] A (O[A = turn on dishwasher]). A trajectory 7
satisfies this goal (denoted 7 = ) if 3 ¢ s.t. S; = in kitchen and A, = turn on dishwasher

Going beyond the simplest, one-step goal-directed tasks requires an agent to achieve multiple sub-goals in a particular order.
Our aim is to define a sequential goal ¢ in such a way that 7 |= 1) is true if and only if each sub-goal state g; is reached by
the agent in the correct order. Expressing these sequential goals in LTL can be cumbersome, so for notational neatness we
define a sequential goal formula ¢ = (1, ..., ) which stands in for the more complex LTL expression, which is given
by the the recursive formula in Def. [3] It will not be necessary to define sequential goals in general, as for our proofs we will
focus on a simple class of sequential goals where the agent must reach a goal state either immediately or eventually.

Definition 6 (Sequential goals). 1) = (1, ¥a,...,@L) denotes the sequence of sub-goals (Def.[2) 1, @2, ..., pn, where
©i = O0:([(s,a) € gi]), O; € {0, T} and n = depth(v)) is the goal depth. 1) can be expressed in linear temporal logic
using the following recursive formula,

[(S’a)egl]/\<<ﬂ2a---,<ﬂL>, O, =T
(01,02,-- 00) = O((s,a) € gi) Apa,....0L)), O1=0 @)
[(s,a) € g1)U ([(5,a) € gi) A {pa, ..., 0L)), O1=0

where T = True and O; = T denotes the Now (trivial) temporal operator, and for the singleton (@) = .

By applying (@) recursively we can convert any sequential goal ¢ into an LTL expression. To understand () we can consider
the simple case with two sub-goals ¢ = (1, p2) and trajectory 7 = (g, ag, 81, a1, ...). If O1 = T, then 1) is satisfied if
(s0,a0) € g1 and the trajectory starting from the next time step 71 = (s1, a1, $2, as, . . .) satisfies ¢o. For O1 = ¢ the LTL
expression we desire is (¢1, p2) = [(s,a) € g1]U([(s,a) € g1] A p2). To see this, consider the case where Oy = T, i.e.
the agent’s goal is to eventually reach g;, and then in the next time step to reach g. If we attempt to express this goal as
P =0([(s,a) € g1] A p2), note that 7 |= ¢ if I ¢ s.t. (s¢,a¢) € g1 and (S441, as4+1) € go. This includes trajectories where
the agent reaches g; and then fails to transition to g, in the next time step, arbitrarily many times, so long as eventually the
agent achieves the desired transition. Our aim is to express sequential goals where after satisfying a sub-goal ; the agent
switches to pursuing the sub-goal ¢;; in the next time step, and if the agent fails to satisfy this sub-goal then it fails to
satisfy the overall sequential goal. The expression [(s, a) & g1]U([(s, a) € g1] A p2) enforces the condition [(s,a) & g1]
(the agent is not in goal-state g;) until they eventually reach g; at some ¢, and their trajectory commencing ¢ + 1 satisfies o,
which captures the desired goal-switching behaviour.

Example: Consider the goal of transitioning eventually to S = s, then in the next time step transitioning to state
S = &' and then eventually returning to S = s. This is captured by the sequential goal ¥ = (1, @2, p1) With sub-
goals w3 = Og; where g1 = {(a,s)Va € A} and ¢p; = go where g1 = {(a,s')Va € A}. Applying @) gives
P =(s,a) € g1]U([(s,a) € gi] A O([(s,a) € g2] A O([(s,a) € g1])), which is satisfied by any 7 s.t. i) I¢s.t. Sy = s
and Sy #£ sVt < t,ii) Spy1 = ¢ andii) 3¢’ >t + 1s.t. Sy = s.

Finally, we consider the case where there are multiple sequential goals the agent could satisfy, each corresponding to a
different course of action that would be sufficient to achieve an overall goal. For example, a doctor’s goal of providing
primary care to a patient can be satisfied by several mutually exclusive pathways, such as providing a primary diagnosis
and prescription, referring to a specialist for diagnosis, and so on. Each of these is its own task described by a sequence of
sub-goals (e.g. attempting a primary diagnosis may involve question asking, performing an examination, etc), the outcome
of which can inform the path the doctor takes (e.g. if an examination is inconclusive, they may refer to a specialist). Each of
these pathways therefore corresponds to a different sequential goal, and satisfying any of these sequential goals satisfies the
overall goal of providing care to the patient.

To formalise this we consider goals that are disjunctions over multiple sequential goals. Let ¥ denote the set of all composite
goals, which includes all disjunctions over all sequential goals (Def.[6), i.e. 1,¢' € ¥ = 1 V¢’ € ¥. For a conjunction
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over goals ¢ = 1) V4, then agent satisfies 1"’ if its policy generates a trajectory 7 = (sg, a1, S1, az, . . .) that satisfies ¢ or
(O

Definition 3 (Composite goals). A sequential goal 1) is an ordered sequence of sub-goals (Def.[2) 1 = (1, ... ¢n), where
the agent must achieve sub-goal p; before p; 1. The depth of a sequential goal is the number of sub-goals depth(v) = n. A
composite goal is a disjunction of one or more sequential goals 1) = \/:11 iy, I.e. the agent must achieve any sub-goal 1);
to achieve 1. The depth of a composite goal is the max depth of its sub-goals depth(1) = maxy, depth(v;). W, is the set
of all composite goals v with depth(v)) < n.

Example: Consider the simple navigation task where a robot cleaner is required to clean the kitchen and the living room in
any order, and then return to its charging station. There are two pathways that satisfy this; 1) clean the kitchen (eventually),
then clean the living room (eventually), then return to the charging point (eventually), 2) the same as 1) but with the
kitchen and living room swapped. Formally, the robot satisfies the overall goal if it generates a trajectory 7 that satisfies
the LTL expression 1) = 11 V ¥y where ¥1 = (1, 02, ¢3), Y1 = (92,01, ¢3), 01 = O([(s,a) € g1 = {(s51,a1)}]), 2 =
O([(s,a) € g2 = {(s2,a1)}]), w3 = O([s € g3 = {s3}]), s1 = inkitchen, s = in livingroom, s3 = at charging station
and a; = clean.

A.4. Agents

We assume the environment is described by a cMDP (Def. [I). Due to the generally non-Markovian nature of sequential
goals, we consider the most general definition of agents as maps from histories and goals to actions. A goal conditioned
agent is a policy 7(a; | h¢; 1), where 9 is a (composite) goal. For simplicity we restrict our attention to agents that follow
deterministic policies. In general the environment may evolve non-deterministically, so the objective is to maximise the
probability that 7 = Vb, which is determined by summing over the probabilities of all trajectories that could result from 7
and that satisfy v (Qiu et al., 2024)).

Definition 4 (optimal goal-conditioned agent). For a given set of goals W (Def.[3) an optimal agent is a goal-conditioned
policy m* (ay | hy; 1) where 7 is deterministic and satisfies,

7 =argmax P(T = ¢ | 7, sp) (1

YV sg s.t. P(sg) > 0, where sg is the initial state of the environment att = 0, and ¥V ¢ € .

P(r =1 | 7, s0) is the probability that the trajectory T generated by the agent under policy 7 satisfies the composite goal
1 (LTL expression is given by Def. 3],

P(r = |ms0) =Y Plr|ms0)([r = ¢]) 5)

In other words, an optimal goal-conditioned agent can achieve any composite goal 1) € ¥ with the maximum probability of
success attainable for every initial state Sy = sq that the agent could start in.

It is of course unreasonable to assume that any realistic agent is capable of optimally satisfying any given composite goal 1)
in its environment, and so we consider two relaxations of Def. 4} sub-optimal agents, and restricted the complexity of the
goals the agent is capable of achieving.

Firstly, the most intuitive way to bound the agent’s optimality carries over from regret bounds in reinforcement learning
(Sutton, 2018), but instead of providing a lower bound on the cumulative discounted reward compared to the optimal agent,
we can lower bound on the probability that the agent achieves a given goal compared to the optimal agent. Secondly,
achieving goals that involve a larger number of sub-goals (a higher goal depth n, Def. [3) is more difficult than achieving
short-term or myopic goals, and intuitively requires more knowledge of the environment. For example, if we restricted to
one-step goals (O; = T and n = 1), simply knowing arg max, Pss (a) would be sufficient to identify an optimal policy,
thus a full world model capable of simulating the environment is clearly not required. On the other hand, if an agent uses a
world model to plan, effectively planning for longer sequences of sub-goals requires an increasingly accurate model, as
errors compound over time. Hence, in deriving our results it is natural to consider agents with some bounded maximum goal
depth n, such that there is no guarantee that agent can satisfy the regret bound for sequential goals with depth greater than n.
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To this end, we propose the following definition of a bounded goal-conditioned agent defined by two parameters; o (the
lower bound on the probability of achieving a goal compared to an optimal agent), and n (the maximum goal depth for
which the § bound applies).

Definition 5 (bounded goal-conditioned agent). A bounded goal-conditioned agent is a goal-conditioned policy mw(ay; | hy; 1))
satisfying,

P(rEy |7, s0) > mTEerP(T E|m,s)(1—09) 2)

Vi € W, where n is the maximum goal depth and s is the initial state of the environment at t = 0.

A.5. Overview of proof of Theorem

At a high level, the proof of Theoremcan be understood as deriving an algorithm that estimates P4 (a) by querying the
bounded agent’s policy 7(a; | h¢, 1) with different composite goals and observing how the agent’s action choice changes.
We consider composite goals where the agent is required to navigate (eventually) to a specific state S = s and take an action
A = q, transitioning to an outcome state, and then returns eventually to S = s (Figure[d). We compare two goals, the first
11 (r,n) which is satisfied if the outcome state is S = s at most r times, out of a total of n trials (taking action A = a in
S = s), and the second 5 (r, n) where the outcome is S = s at least  + 1 times. An optimal agent can achieve the first
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Figure 4: Figure illustrates the composite goal in the proof of Theorem

goal with a probability given by the cumulative binomial distribution P,(X < r) where X is the total number of ‘successful’
transitions (a, s) — s’, which occur with probability P4 (a), and likewise the second goal can be achieved with probability
P,(X > r). Hence, as we increase 7 from 0 to n, an optimal agent will switch from pursuing the second goal to pursuing
the first goal when r reaches a value that exceeds the median number of successes, and we show it is possible to identify this
‘goal switching’ in the agent’s policy w(a; | he, 11(r, n) V 92(r,n)). The median is given by | Pss (a)(n + 1)] and so we
can bound Pk, (a) with an error that scales as 1/n. For § > 0, the goal-switching behaviour of the agent cannot precisely
determine the median, but bounds it within a region, and this allows us to approximate Py (a) with an error that depends on

J.

A.6. Proof of Theorem[I]

We now prove our main results.

Lemma 1. For a finite dimensional, stationary and irreducible cMPD (Assumption[)) there exists a deterministic Markovian
policy wg/(a | h = (s0, a0, .. .,57)) = s (a | sT) that eventually reaches a given state S = s’ from any other state S = s
with probability 1.

Proof. Trreducibility states that for any s’ # s there exists a finite sequence of actions that reaches any S = s’ from any
S = s with non-zero probability. Therefore, for any S = s’ we can construct a tree of states by; i) starting with the
root s" and defining the set Z = S\ {s'}, ii) foreach s” € Z,if 3 A = a” s.t. Pysg(a”) > 0 then s” is a parent of
s’ in the tree and we remove s from Z, iii) repeat for all parents of s’ and so on, until Z = (). As the cMDP is finite
dimensional and irreducible, the resulting tree traverses the state space and is of finite depth, and by construction every
state in the tree s; has a single child s; and the tree contains no loops. For each s; we can associate an action a(s;) given
by a(s;) = argmax, P;,,(a). Consider the Markovian policy m(A = a | h = (s¢, a0, ..., s7) = [a = a(sr)], which
attempts to move from the most recent state st to s’ by traversing the tree. For every state, there is a non-zero probability
that 7 succeeds in traversing the tree to the root S = s’. If the agent fails a given transition Sy = s; — Siy1 = s;, the
process of traversing the tree begins again from S; 1, and as the policy and environment are Markovian, each attempt to
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traverse to S = s’ is independent. Hence, 7 attempts to reach S = s’ with an unbounded number of independent trials, each
with non-zero probability of success, and hence eventually reaches S = s’ with probability 1.

For s’ = s, the problem is identical except that the deterministic policy can take any action in S = s. Let S = s; be the
state that this transitions to. If s; = s then the policy has reached S = s. If s; # s we follow the deterministic Markovian
policy derived in the previous section which eventually reaches S = s with probability 1. [

The following lemma allows us to simplify our analysis by letting us consider optimal policies in environments with extended
action spaces, where determining optimal policies is easier.

Lemma 2. Consider extending the action space of the environment cMDP with a single action A = a, A’ = AU {a}
where the extended transition function P' has P._(a) = Pss/(a) ¥ a # @, and P._, (@) is any valid conditional probability
distribution. For any given composite goal 1) the optimal policy for the extended action space A’ achieves 1 with a
probability greater or equal to that for the optimal policy in the unextended action space A,

max P'(1 =1 | 7,80) > max P(T = | 7, s0)

Proof. Let P, (a) denote the new transition function in the extended environment. As P!, (a) = Pss(a) ¥V a # a, the
probability of any 7 that does not take action A = a satisfying any given composite goal 1) is the same in the extended and
unextended environments. As the optimal policy 7% over A does not take action A = a (as a ¢ A), then

P'(r =4 | 74, 80) = P(T = ¢ | T, 50) (©)

Therefore there exists a policy for the extended action space (namely 7% ) that achieves v with the same probability as the
optimal policy for the unextended action space. Therefore,

max P'(1 1 | 7,80) > max P(T = | 7, s0) (7

We now derive Lemmas that let us factor and simplify sequential goals.

Lemma 3. For ¢ = (p1,...,¢1) and a cMP obeying Assumption[l] if p1 = O([S = s4, A = ag4]) and 7(ay | hy) =
m(ay | 8¢) is a stationary Markovian policy that eventually reaches S = s, and takes A = ay from Sy = so with probability
1, then,

P(T':<¢1a<P2a-~-a<PL>‘7TaSO) :P(T): <9027"'790L>|7T759)

Proof. Using Def. [} we can simplify (@1, @2,...,0L) = [S # s4JU([S = sg] A (@a,...,0L)). If so = s4 then ¢y is
satisfied at ¢ = 0 and ¢ is trivialised, i.e. P(7 |= (1, p2,...,01) | 7T, 89) = P(T = (¥2,...,¢L) | T, 54). Therefore we
need only consider the case where sp # sg4.

As 7 reaches S = s, from Sy = sg with probability 1, every trajectory generated by 7 eventually reaches S = s, by
assumption, and at some 1" > 0 as s # s4. For a given 7 let 1" be the time step that 7 first reaches s,. Because 7 is
deterministic and Markovian, and the environment is Markovian, then for sg # s, we can express,

T
P(t | s, m) = HP(si | Sic1, 7 (8i—1))P(Tr41 | ST = 84,7 (St = 84)) (8)
i=1

where 7’ is the policy for ¢ > 0, and as 7’ is stationary we have that P(tp11 | Sp = s4,7'(S¢ = s4)) = P(7r41 |
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S4,7 (s4)). Let hr be the trajectory up to St = s,4. Using the LTL expression for ) from Def. |§| gives,
P(7 = (1,02, 00) | mys0) = D Plhr [ s0,m) Y P(rra | heyw(he)) (7 | (S # sglU([S = sg] A @2, -, 01)])
hrt

TT+41
®
(10)
= P(hr | s0,®)I([S # sgUS = 55]) Y P(rrya | by, w(h))I([rr |= (2, -, 0L)])
hr TT41
Y
=Y P(hr | s0,m) Y Plrras | sgn(sg)I(frr = (g2, .. L)) (12)
ht TT41
= ZP(hT ‘ So,ﬂ')P(TTJrl ): <g02, .. .,QDL> | ST = Sg,At = 71'(89)) (13)
hr
:P(T|:<<p2a""<pL> |Sga7r)) (14)
where in the last line we have used ), P(hr | m,50) = 1 by assumption (as 7 reaches S = s, from Sy = so with
probability 1). O

Lemma 4. For i = (1,92, ¢3,..., L) and a cMP obeying Assumption|[l] if o1 = O([s € g1]) and g2 = O([S =
Sq, A = a4]) and m is a deterministic, Markovian policy then

P(r =4 | so,m) = P(S1 € g1 | s0,m)P(7 |= (¢3,...,0L) | 59, 7)
Proof. Using Def.[fland 71, = (s, ay, . ..) we get,
P(rEv | so,m) = ZP(ﬁ | s0,a0 = 7(s0))I([O([s € g1] A {2, ..., L))]) (15)

T1

= P(r1 | s0,a0 = 7(s0))I([s1 € g1] A 11 |= (2, -, 01)]) (16)

T1

=Y P(s1 | 50,00 = w(s0))I([s1 € g1]) D P(72 | s0,a0 = w(s0), 51,01 = m(s1))I([r1 = (2, -, p1)])

(17)
=Y P(s1|s0,a0 =w(so)I([s1 € 1)) Y P(m2 | s,a1r = w(si)I([m1 = (w2,--00)])  (18)
= P(s1 | s0,a0 = w(s0))I([s1 € g1))P(r2 = (2, -, 1) | s1,01 = (1)) (19)
= EP(Sl | s0,a0 =m(s0))I([s1 € g1])P(T = (s, 0L) | 84, 7) (20)
:];1(51 €91 |s0,mP(T E{p3,...,0L) | 8¢,7) (21)
where in line (20) we apply LemmalJ]
O

Lemma 5. For ¢ = (1, ¢a,...,¢L) and a cMP obeying Assumption[l} if o1 = T([A = a]) and  is a deterministic
policy s.t. w(so) = a then P(T |= 1 | so,m) = P(7 |= (p2,..., L) | s0,7)

Proof. This follows simply from Def. [f]and that the policy is deterministic,

P(T ': w ‘ 80,7'1') = ZP(Tl | Sp, ap = 7'('(80))]([7’ ': [Ao = a] A <<p2,,<pN>) (22)
= P(ri|s0,a0 = a = m(s0))I([m(s0) = a)I(I7 = (22, o)) (23)
= P(t E (p2,..., 1) | 0, 7) (24)
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where 7, = (Sk, ak, - . .)- O

We now derive a family of composite goals for which the optimal policy satisfies the goal with a probability given by the
cumulative binomial distribution for which the probability parameters is a specific transition probability.

Lemma 6. Let 1)(r,n) be the composite goal which is the disjunction over all sequential goals of the form

P = (p1, 92,03, 92, P3, - - - P2, P3)

n times

where the agent

i) takes action A = b, p; = [A = b|, and then transitions eventually to S = s and takes action A = a, p3 = Q([S =
5, A=al),

ii) transitions next to a goal state which is either S = ', p3 = Q[S = 8], or S £ &, o = QIS # ¢'],

iii) returns eventually to S = s and takes action A = a, o, and repeats the cycle ii)-iii) a total of n times, with the
transition w3 =[S’ = s] occurring r times and the transition @5 = [S # s'] occurring n — r times.

For s # ', the optimal policy achieves this goal with probability,

n!

max P(7 E ¢(r,n) | m, s0) = Pss(a)" (1 — Psg (@)™ ™" (25)

(n—mr)lr!

Proof. Let v = \/, ;. Each 1; involves a specific ordering of the r sub-goals p3 = [S = s]| and the n —  sub-goals
©% =[S # s'], hence they are mutually exclusive, i.e. A7 such that [T |= 1] A [T = v;] for any v);, 1), in the disjunction s.t.
; # 15, and hence,

P(r E4(r,n) | s0) = ZP(T = s | T, 50) (26)

First we evaluate max, P(7 = 9(r,n) | m,so) in the environment with the extended action space (Lemma [2)) with
A'=Au{a}, P, (a) =1Vs" € Sand P, (a # a) = Psy(a). Le. we extend with the action A = @ which returns
the agent to S = s from any state with probability 1. Note that until the agent has returned to S = s a total of n times, in
order to satisfy any sequential goal t; comprising the composite goal ¢)(r, n) the agent must take action A = batt =0
and A = a when it is in S = s. The only freedom left to the agent is how it returns to S = s (to satisfy o) from whatever
state it transitions to after taking A = a in S = s, and for the extended action space it can achieve this immediately with
probability 1 simply by taking action A = a. Therefore, the following policy is optimal for satisfying ¢ (n, r) with the
extended action space,

27)

FA=a|h= (o000, 5) = {I([a’:a}/\[st =S+ I =alAfse#3]), t>0

i.e. the agent first takes action A = b (required to satisfy 1), and from then on it takes action A = a in S = s (required for
3 and %) and A = @ otherwise, which returns the agent immediately to S = s. Applying Lemma and Lemmaallows
us to eliminate the first ¢ and o, giving

P(r i | 7%, 50) = P(T = ( @2,08,- -, 02,95 ) |77,5) (28)

X 2,p3 and (n—r) X Y2,

where 7 is 7* for t > 0, which we denote 7* from now on for ease of notation, and can treat 7T+ as a stationary policy.
Repeatedly applying Lemma[d]to (28) gives,

PI(T =i | T, 50) = Pssr(@)"(1 = Psgr(a))" ™" (29)
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Applying (26)) and noting P'(7 |= 1; | ©*,s50) = P'(7 |=9; | T, s0) for all ¢, j for ¢(r,n) = \/; ¥, and the total number
of sequential goals comprising (7, n) is given by the number of combinations of size r from n objects (n transitions, r of
which are s — s’), and so we recover,

n!

max P'(1 = (r,n) | 7,s0) = Py (a)"(1 = Psgr(a))™" 30)

Finally, we construct a policy 7 in the original (unextended) environment, and show that this saturating the upper bound in
(30) and so by Lemma[2]is optimal, therefore Equation (25]) holds. By LemmalI] there exists a deterministic Markovian
policy w4 (a | $) that transitions eventually to S = s from any state with probability 1. Let,

I([a’ =0]), t=0
7(ar | st) =S me(a]sy), t>0ands; #s (3D
I([a" =a]), t>0ands;=s

Note 7 is identical to 7* except that instead of taking action A = a in S = s (as this action does not exist) the agent follows
s . As Ty is deterministic, stationary and Markovian, and eventually reaches S = s with probability 1 from any S = s, so
we can apply Lemma [5]and Lemmad]as before giving,

P(r |= i | 7, 50) = Pow(a)"(1 = Pagr(a)"™" (32)

which saturates the upper bound implied by (30) and Lemma 2] hence 7 is optimal, and using nC'r = n!/((n — r)!r!) we
recover (23). O

We are now in a position to prove our main theorem.

Theorem 1. Let Py (a) = P(Siy1 =8| At = a, St = 8) be the transition probabilities of an environment satisfying
Assumption([l] Let 7 be a goal-conditioned agent (Def. ) with a maximum failure rate § for all goals 1) € ¥, where ¥, is
the set of all composite goals with maximum goal depth n. > 1. T fully determines a model for the environment transition
probabilities Psy: (a) with errors satisfying

. 2Py (a)(l — Py (a))
Pss' (a) - Pss’ ((Z)‘ < \/ (n — 1)(1 — 6)

for any n, 0, and for 6 < 1, n > 1 the error scales as,

Py (a) = Pas(a)| ~ O (5/v/n) +O(1/n)
Proof in Appendix|[A.6]
Proof. Let ¢, (k,n) denote composite goal as in Lemma@which is a disjunction over all sequential goals of the form

11[}: <90079017§02a"'9017@,2> (33)
—_—

n times

where the agent

i) takes action A = a (¢y = [A = a]), and then transitions eventually to S = s and takes action A = a (p; = Q([S =
s, A =al)),

ii) transitions next to a goal state which is either S = s’ (po = Q[S = §']) or S #£ s’ (¢ = OIS # §)),

iii) returns eventually to S = s and takes action A = a (¢1), and repeats the cycle ii)-iii) a total of n times, with the
transition o = (O[S’ = s] occurring r times and the transition @, = (O[S # s'] occurring n — r times, for all » < k.
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Le. the agent’s goal is to first take action A = a and then to achieve the transition (a, s) — s’ at most k times out of n
attempts. Note that n attempts corresponds to a goal depth of 2n + 1.

Consider the sequential goals v, (k, n) that is identical to ¢, (k, n) except that the first sub-goal i) takes action A = b instead
of A =qattimet = 0, and in iii) we have r > k instead of < k. Le. the agents goal is to first take action A = b and then
to achieve the transition (a, s) — s’ more than k times out of n attempts.

Consider the composite goal 1, 4 (k, n) = 14 (k,n) V ¢p(k,n) for any pair of action a, b such that a # b (we assume there
are at least two distinct action in Assumption [I)).

Note that 1, (k, n) and ¢y (k, n) are mutually exclusive, 7 |= ¢, (k,n) = 7 F ¥(k,n) and vice versa, hence,

P(r = Yap(k,n) | m,s0) = P(T = vo(k,n) | 7, s0) + P(T = ¥p(k,n) | 7, 50) (34)

and for any 7 only one of the terms on the right hand side is non-zero. Hence we can evaluate max,, P(7 = v, (k,n) | 7, so)
and max, P(7 = ¢y(k,n) | 7, sp) separately.

Consider a bounded goal-conditioned agent (Def. [5). As the policy is deterministic by assumption, the agent is can
only choose one of two sub-goals to attempt to satisfy, 1, (k, n) or 1 (k, n), depending on its first action choice Ag. If
m(ao | s0) = I([ap = a]) then the agent is pursuing ¥, (k, n). For 14 (k,n) = \/, 1; all ¥4, 1; are mutually exclusive for
Vi #;, T =¥, = 7 [~ ¢; and vice versa, and hence,

P(r |= ¢a(k,n) | 7, 50) ZP = i | T, 50) (35)

and by Lemma [6|the maximum probability that this goal can be satisfied is given by,

k
max P(7 |= $a(k,n) | m,50) = > Po(X =7) = Po(X < k) (36)
r=0
where |
n: r n—r
Pn(X = T') = mpssl(a) (]. — Pss/(a)) (37)

is the binomial probability mass function and P, (X < k) is the cumulative distribution function.

Likewise if 7(ag | so) = I([ap = b]) the agent is pursuing 1, (k, n), which can be achieved with a maximum probability,

max P(1 = iy (k,n) | 7, s0) Z P,( = P,(X > k) (38)
r=k+1

Finally if 7(ag | s0) = I([ap = a']) where @’ & {a, b} then the agent satisfies v, ;(k, n) with probability zero.

By assumption the agent’s policy is deterministic, and max{P,,(X < k), P,(X > k)} > 0, so for any n, k the agent must
take action A = a or A = b at ¢ = 0. Therefore for any given n, k the agent’s policy 7(ag | So; ¥a,5(k,n)) selects either
ap = a or ag = b, and the choice of Ag for a given k witnesses the following inequalities;

m(ao | s0;Vap(k,n)) = I([ag = a]) = Pu(X < k) = Po(X > k)(1-6) (39
m(ao | s0;Yap(k,n)) =I(jag =b]) = P, (X >k)> P(X <Ek)(1-9) (40)

For ease of notation we denote Pss (a) = p. The median of the binomial distribution X = m is an integer 0 < m < n
that satisfies np — 1 < m < np + 1. The proof proceeds by incrementing % from 0 to n, increasing P, (X < k) while
decreasing P,,(X > k), and finding the smallest value k* such that P, (X > k* — 1) > P,(X < k* —1)(1 — ¢) and
P, (X < k*) > P(X > k*)(1 — ¢). If the agent always chooses Ay = a we set k* = 0, and if they always choose
Ap = b we set k* = n. This will turn out to be equivalent to a sparsity bias in the procedure for estimating Psy (a), as
it will result in us treating any transition probability below a given threshold value as 0, or above a maximum value as
1. Note that P,(X > 0) = 1,P,(X <0) =0, and P,(X > n) = 0,P,(X < n) =1, soforany § < 1 there must
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exist 0 < k* < n satisfying (39) and @0). Using P, (X > k) =1 — P (X < k), Po,(X > k—1) = P,(X > k) and
P, (X <k—-1)=1- P,(X > k) these inequalities simplify to,

1-6

<k*) > ——
P(X <K) 25— (41)

1-§

> k") > ——
P(X 2 k)2 5 (42)

Note that the median m satisfies P,,(X > m) > 1/2 and P,,(X < m) > 1/2, so for § = 0 we will recover the median
exactly, and 6 > 0 constitutes a relaxation of the bounds on the median, which we will show results in k£* that has a bounded
distance from the mean np.

We derive two bounds on k*, first in the case where § is small and n is large. To derive this first bound we use Berry-Esseen
theorem, which allows us to bound the distance of the (normalised) cumulative binomial distribution from the cumulative
normal distribution,

<A (43)

P, <an§k> —B(X <k)
np(1l —p)

where @ is the cumulative normal distribution and A = Cp/+/n where C is a constant satisfying C' < 0.4748 and
p=(1-2p(1—p))/+/p(1— p). For simplicity we relax this upper bound by taking,

AL (44)

2¢/np(1 —p)

which is larger than C'p/+/n. Defining Y := (X — np)/+/np(l —p), and using P,,(Y > k) =1—-P(Y <k -1), @)
and (@T)) become,

oy < k* —np 21_6—A 43)
w(l—p)) =20
= -1 1
oy< < +A (46)
np(l—p)) ~ 2-0
(47)
which can be rearranged to give,
St B S (1_5 - A> (48)
np(1—p) 2-0
Momp—l_ g (1 +A> (49)
np(1 —p) 2-9
(50

For § < 1 and A < 1 we can approximate the right hand side of @#8) and (@9) using the Taylor expansion of ®~!(y) at
y=1/2,
1
Y = 5+e) =eV21+0(), ex1 (51)

which is a valid approximation when €2 < 1. We therefore recover the bounds,

1 1) 1
* = > — v -
k 52 2mnp(1 — p) <4 +A 5 (52)
. J 1
k* — 5~ < V2mnp(l — p) it A+ 3 (53)
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Using p = (k* — 1/2)/n as our estimate of p therefore satisfies

2mp(1 — ) 1
h—pl < M(+A)+
n 4 2n

SNCIEREY (C
8n n \ 2

which is valid for 6> < 1 and A? = 1/(np(1 — p)) < 1i.e. np(1 — p) > 1. We have therefore shown that in this regime
the approximation errors scales as O(d/y/n) + O(1/n).

Finally, we derive an absolute error bound for the estimate p that is valid for all values of p,n,d. Le. for § « 1 and/or
np(l — p) 3 1, k* can be relatively far from the median, and so we require a bound that is satisfied for the tails of the
cumulative binomial distribution. To this end we apply the one-sided Chebyshev inequality,

1
P(X >pu+to) < e (54)
where © = np and 0 = /np(1 — p). Changing variables t = (k* — np)/o in (54) yields,
. 1
PIX 2 1) € e )
np(1—p)
which combined with {@2) yields,
" np(l —p)
kt — < 56
k" —np| < 3 (56)
Using p := k* /n as our estimate of the transition probability gives,
X p(1 —p)
_pl < 57
h—pl < n(1=0) (57)
Finally, as attempting the transition n times corresponds to a goal depth of 2n + 1, we arrive at our final expression.
O

Note that the bound in Theorem [l| asserts that we can identify p € {0, 1} with perfect precision. While this appears
surprising at first, note that the sparsity constraint we previously enforced when selecting £* means that we estimate all
sufficiently small p as Pssr(a) = 0 and similar for P, (a) = 1, hence for deterministic transition probabilities we do
recover the exact value. This is also intuitive from the definition of the bounded goal-conditioned agent Def. [5] as for any
d < 1 the agent will never choose sub-goal ¢, if Pss (a) = 0, and hence any such transition will always be assigned k* = 0
which yields an estimate P,y (a) = 0.

B. Proof of Theorem 2

Theorem 2. Let the set of myopic goals W ,ypic be the subset of depth-1 composite goals W1 such that the goal state(s) must
be attained immediately after the agents first action, o = Q|(s,a) € g|. We define an optimal myopic agent as a policy
7 (ay | he, ) that is optimal for all 1) € W ,y0pic. For an environment satisfying Assumption|I| any bounds on the transition
probabilities | Pyy (a) — Pyy (a)| < € than can be determined from 7 are trivial (e = 1) and tight. Proof in Appendix@

Proof. We will prove this by contradiction, determining partial information of the environment transition function that
is sufficient to construct an optimal myopic agent, and showing that this partial information is insufficient to bound the
transition probabilities (the trivial bound is tight). Hence, there can exist no procedure that bounds the transition probabilities
given this partial information, and so no procedure that does so given the optimal myopic policy.

Any ¢ € Wyyopic is of the form 1 V @1 V... V ¢ where ¢; = O([(s,a) € g;). Using the transitivity of the Next
operator, this can be simplified to ¢y = O([(s,a) € g1] V...V [(s,a) € gi]), and using y = g1 Ugs U ... U g we get
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¥ =[(s1,a1) € y] where Y C S is some arbitrary subset of S. For Ay = a the probability that 1) is satisfied is given by
P | m,50) = P(s1 € y | a, s0). The optimal agent therefore returns an action

7 (ap | s0;%) = argmax P(s; € y | a, o) (58)

Let a*(sg,y) := argmaxP(sy € y | a,sp). We can construct an optimal policy 7*(ag | so;¢) given A* =
a

{a*(s0,¥y) |50, Y C S, Y = y} as 7w (ao | so;¢) = I([ap = a*(so,y)]). Next, we show that the set of transition
functions that are compatible with any given A* includes all values of Pss(a) € [0, 1] for any given transition, and so A*
does not partially identify Py, (a). This can be seen simply by choosing P (a) = Psg (i.e. the transition probabilities
are the same for all actions). For any choice of P,y € [0, 1], such a transition function is compatible with all possible
A*. Hence, for any given A* the set of compatible values of P (a) is [0, 1], and knowing A* provides no bound on the
possible values of any given transition probability Ps. (a) (i.e. partial identification is impossible (Bellot, 2023)). Hence, as
7* is a function of A*, 7* can provide no non-trivial bound on P (a).

O
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C. Algorithms

First we present the pseudocode for the procedure Algorithm [ used in the proof of Theorem [I]to derive error-bounded
estimates of the transition probabilities P (a) given the regret-bounded goal-conditioned policy 7 (as | ht; ). We then
present Algorithm [2|an alternative algorithm for estimating Py (a) which has weaker errors bounds than Algorithm but
significantly simplified implementation. Note that in both Algorithm [T]and Algorithm 2] we employ a linear search of &, but
we can greatly reduce the complexity in practice e.g. by performing a binary search over k € [0, n]. We use Algorithm [2[to
generate our experimental results in Section and Appendix [D| Note that by looping over all transitions (s, a, s’) and
applying Algorithm[I]we can recover the full transition function.

Algorithm 1 Estimate Transition Probability P, (a) from Policy

Require: Goal-conditioned policy 7(a|hs; 1))
Require: Choice of state s, action a, outcome s’
Require: Precision parameter n € N (related to maximum goal depth 2n + 1)

Require: An alternative action b # a
1: function ESTIMATETRANSITIONPROBABILITY(T, s, a, s',n, b)

2: Initialize £* <— n
3: for k =1tondo
4: Define base LTL components:
5: ©o [AO = a]
6: > Take action a N
7. ol < [Ao = b]
8: > Take action b N
9: p1+ O[A=a,S =4
10: > Transitions eventually to state s and takes action a <
11: w2 < QS =]
12: > Transition Next to state s' N
3 ey — OIS # ]
14: > Transition Next to any state other than s N
15: Define composite goal:
16: Yo < (1, 95)
17: > Sequential goal labelled Fail N
18: Y1+ (p1, p2)
19: > Sequential goal labelled Success N
20: Ya(k,n) < Vsequences with r <k successes (00, (tho 01 1) )
21: ¢b(k7 n) A \/sequences with r>k successes<<p6’ (wo or wl) ><7l>
22: > LTL expressions calculated with Def. N
23: wa,b(kan) — wa(kan) \/wb(kan)
24: ag + m(ao|s0; Vap(k,n))
25: > Query the policy for the first action N
26: if ag = a then
27: k'« k
28: break
29: | > Found smallest k s.t. where agent prefers goal involving < k successes N
30:  Estimate Py (a) « (k* —1/2)/n
31:  return P, (a)

Algorithm 2] requires the agent to generalize to simpler sequential goals than Algorithm [T]

22



General agents need world models

Algorithm 2 Simplified method for estimating Transition Probability Py (a) from Policy 7 with weaker error bounds than
AlgorithmT]

Require: Goal-conditioned policy 7(a|h¢; )

Require: Choice of state s, action a, outcome s’
Require: Precision parameter n € N (related to maximum goal depth 2n + 1)

Require: An alternative action b # a
1: function ESTIMATETRANSITIONPROBABILITY(T, s, a, s’, n, b)

2: Define base LTL components:
3 ©o [Ao = a}
4 > Take action a N
5: v < [Ao = 0]
6: > Take action b <
7 01+ O0lA=1a,S =5
8 > Transitions eventually to state s and takes action a <
90 2+ OlS=4]
10: > Transition Next to state s' N
1 gy OIS # 5
12: > Transition Next to any state other than s’ q
13: Define sequential goals:
14: 1 tha < (po, p1,p2)
15: | 9y = (@0, @1, Ph)
16: 'wa,b =t V Uy
17: ag < 7T(a0|80; wa,b)
18: > Query the policy for the first action N
19: if ag = a then
20: > Witnessing Pss (a) > (1 — Psgr(a))(1 —9) N
21: Ya < (o, (V1,%2) xn)
22: VoK) < (@0, (Y1, ¥3) xk)
23: fork =1tondo
24: a (k) < ba V (k)
25: ag < m(ao|s0; Ya,b(k))
26: > Query the policy for the first action N
27: if ag = a then
28: L k* <k
29: break
30; Estimate P, (a) < Solve(P™ = (1 — P)¥" ~1/2)
31 return P, (a)
32: else
33: P 4= (0, (¥1,¥5) xn)
34: Ya(k) < (@0, (V1,V2)xk)
35: for k = 1tondo
36: ¢a,b(k) — Pa(k) V iy
37: ag < ’/T(CLO|80; l)f)a,b(k))
38: > Query the policy for the first action N
39: if ag = b then
40: L k* « k
41: break
42: Estimate P,y (a) < Solve(P* ~1/2 = (1 — P)")
43: | return P,y (a)
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D. Experiments
Here we detail the experiment setup including the environment, agent and results.

Environment. Our environment is a cMP Def. [T| comprising of 20 states and 5 actions, and satisfying Assumption [I] It has
arandomly generated transition function with a sparsity constraint such that each state-action pair has at most 5 outcomes
that occur with non-zero probability, so as to ensure that navigating eventually to a given goal-state is non-trivial (e.g. is not
achieved by all deterministic policies).

Agent. The agent is model based, with the model learned from experienced generated by sampling state-action
trajectories from the environment under the maximally random policy of a given number of time steps Ngmples €
{500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000}. Note that Algorithm |2| does not have access to
the agents internal world model (the algorithm takes as input only the agent’s policy). Algorithm [2]queries the agent with
different composite goals of the form 1), (1, m), and the agent determines the optimal policy with respect to its world
model, which corresponds to 1) at ¢ = 0 taking action A = « if the agent believes Psy(a)™ > (1 — Psgr(a))™ else A=b
2) identifying a deterministic policy that eventually reaches the target state S = s from any other state, and taking action
A=ain S =s.

Experimental setup. We train 10 agents for each sample size Ngymples, With a different random seed for the experience
trajectories, and take the average of the experimental results over the set of agents with the same sample size. For each
agent we run Algorithmfor different max goal depths N € {10, 20, 50, 75, 100, 200, 300, 400, 500, 600}, and record the
regret 0 for each input goal, whichis 1 — P(7 |= ¥y | 7)/P(T = ¥n,m | 7*) where P(7 = 4y, | 7) is the probability
the agent achieves the goal agent’s policy and P(7 |= 9y, ,,, | 7*) is the probability that the optimal policy achieves the
goal. We then calculate the average regret () all goals the agent is queried with by Algorithm and the average error (c)
(averaged over all state-action-outcome tuples) for the estimated transition function returned by Algorithm[2] We determine
Nmax ({9) = k) through least-squares regression of N (goal depth) v.s. () for a given agent.

Results.
Table 1: Mean Error and Standard Deviation for Different Ngymples and Nyepm Values
Naeptn Niamples
500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10 0.171 £0.007 0.137 £0.008 0.111 £0.009 0.097 +0.006 0.088 4+ 0.005 0.082 +0.003 0.078 +0.003 0.076 £ 0.004 0.075 £ 0.004 0.072 + 0.005 0.066 £ 0.005
20 0.160 +0.008 0.118 +0.008 0.088 £ 0.005 0.073 +0.004  0.064 4+ 0.002 0.059 + 0.003  0.054 +0.003 0.052 £ 0.003 0.049 +0.003 0.047 +0.002  0.044 £ 0.003
50 0.157 £0.008 0.108 &+ 0.008 0.077 £ 0.005 0.063 +0.003  0.054 £+ 0.003  0.048 + 0.003  0.044 +0.003 0.041 £ 0.003 0.039 £ 0.003 0.037 + 0.002  0.034 £ 0.002
75 0.157 £0.008 0.107 +0.008 0.075 £0.005 0.061 +0.003 0.052 +0.003 0.047 £ 0.002 0.042 +0.002 0.040 £ 0.003 0.038 £0.003 0.035+0.002 0.033 £ 0.002

100 0.156 £ 0.008  0.106 + 0.008  0.074 +0.004  0.060 = 0.003  0.051 = 0.002  0.046 = 0.002  0.041 0.002  0.039 £0.003  0.037 £0.003  0.034 £0.002  0.032 £ 0.002
200 0.155+£0.008 0.10540.007  0.073 +0.004  0.059 4+ 0.003  0.050 4 0.002  0.045 £+ 0.002  0.040 £ 0.002  0.038 £ 0.003  0.036 £ 0.003  0.034 £ 0.002  0.031 £ 0.002
300 0.155+£0.008 0.104 +0.007 0.072 +0.004 0.058 & 0.003  0.049 4 0.002  0.044 & 0.002  0.040 £ 0.002  0.038 £0.003  0.036 £0.003  0.033 £0.002  0.031 £ 0.002
400 0.155+£0.008 0.104 +0.007  0.072 +0.004  0.058 4+ 0.003  0.049 4= 0.002  0.044 £ 0.002  0.040 £ 0.002  0.038 £ 0.003  0.035 £0.003  0.033 £0.002  0.031 £ 0.002
500 0.155+£0.008 0.104 +0.007  0.072 +0.004  0.058 4+ 0.003  0.049 4 0.002  0.044 £ 0.002  0.040 £ 0.002  0.037 £ 0.003  0.035 £0.003  0.033 £0.002  0.031 £ 0.002
600 0.155+£0.008 0.104 +0.007 0.072 +0.004 0.058 & 0.003  0.049 4 0.002  0.044 +0.002  0.040 £ 0.002  0.037 £0.003  0.035 £0.003  0.034 £0.002  0.031 £ 0.002
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