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ABSTRACT

The per-token cost of transformer inference scales with context length, prevent-
ing its application to lifelong in-context learning. Linear attention is an efficient
alternative that maintains a constant memory footprint, even on infinite context
lengths. While this is a potential candidate for lifelong learning, it falls short in
memory capacity. In this paper, we propose LoLA, a training-free augmentation
to linear attention that boosts associative recall. LoLA distributes past key-value
pairs from context into three memory systems: (i) recent pairs in a local sliding
window cache; (ii) difficult-to-memorize pairs in a sparse, global cache; and (iii)
generic pairs in the recurrent hidden state of linear attention. We show through
ablations that our self-recall error metric is crucial to efficiently manage long-
term associative memories. On pass-key retrieval tasks, LoLA improves the base
model’s performance from 0.6% to 97.4% accuracy. This is achieved with a 4.6×
smaller cache than Llama-3.1 8B on 4K context length. LoLA also outperforms
other 1B and 8B parameter subquadratic models on zero-shot commonsense rea-
soning tasks.

1 INTRODUCTION

Transformer-based large language models (LLMs) rely on storing all past tokens in an ever-growing
key-value (KV) cache (Vaswani et al., 2017). This allows future query tokens to access past memo-
ries with associative recall, which enables in-context learning (Olsson et al., 2022). Since no previ-
ous information is discarded, the KV cache continues to grow with context length. This eventually
leads to a memory bottleneck on long context tasks, such as lifelong in-context learning. As a result,
transformers cannot condition next token predictions on arbitrarily long sequences.

Alternative architectures to transformers have been proposed—such as Mamba (Gu & Dao, 2024),
DeltaNet (Schlag et al., 2021), linear attention (Katharopoulos et al., 2020), and others (Yang et al.,
2024a; Behrouz et al., 2024; Sun et al., 2024)—to reduce the compute complexity from quadratic to
linear. Additionally, these approaches reduce the memory cost from linear to constant. In particular,
linear attention removes the exponential dot product in softmax (Katharopoulos et al., 2020). This
effectively collapses the unbounded KV-cache into a fixed-size matrix, which corresponds to a re-
currently formed hidden state (i.e., a linear RNN). This constructs a linear associative memory map
from keys to values. Past memories can be recalled through a vector-matrix product of an incoming
query vector and the hidden state matrix. Linear attention enables constant-cost prediction per token
when conditioned on arbitrarily long contexts.

While efficient and flexible, linear attention architectures lag behind transformers in terms of mem-
ory capacity. This is largely noticeable on tasks leveraging in-context learning (Paperno et al., 2016;
Hsieh et al., 2024). The removal of the exponential dot product allows for non-orthogonal keys to
interfere with the hidden state’s learned key-to-value map. This interference—denoted as a memory
collision—impairs associative recall. Previous work used nonlinear query and key activations to
improve the exponential dot product approximation (Choromanski et al., 2020; Zhang et al., 2024).
However, these attempts are essentially performing a low-rank approximation of the infinite-rank
exponential dot product kernel.

Additional use of sparse attention (Chen et al., 2021) can improve linear attention’s recall; however,
current hybrid approaches only focus on local information with sliding window attention (Arora
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et al., 2024; Zhang et al., 2025a; Lan et al., 2025; Van Nguyen et al., 2025). These approaches can
struggle to recall critical, long-term facts that fall outside the window.

This raises our fundamental research question:

How can long term associative memory for subquadratic language models be improved?

CONTRIBUTIONS

We present LoLA: Low-rank Linear Attention with sparse caching. LoLA is a novel, training-free
inference strategy that boosts the performance of hybrid linear attention layers. LoLA distributes
historical tokens into three forms of memory: (i) recent KV pairs are stored in a sliding window
cache, (ii) difficult-to-memorize pairs in a sparse global cache, and (iii) all other pairs are placed in
a recurrent hidden-state matrix via linear attention. LoLA performs a self-recall check to see which
KV pairs disagree with the current hidden state’s linear associative map. LoLA sparsely caches the
interfering memories in full rank. The selection mechanism effectively mitigates memory collisions
with a small, constant-sized cache. This inference strategy can be applied on top of previously
trained linear attention + sliding window models (e.g., LoLCATs) to significantly improve associa-
tive recall. As a result, LoLA extracts stronger language modeling capabilities from the same base
model weights.

Utilizes Self-Recall Error. We introduce an importance metric for key-value pairs to reduce mem-
ory collisions in the hidden state of linear attention. This is computed by determining if a key can
recall its own value with linear attention. In our ablations, we show that this performance increase
cannot be obtained from using a larger sliding window or other sparse attention metrics: self-recall
is essential.

Enables Associative Recall. As a lightweight inference strategy, LoLA enables pass-key retrieval
on up to 8K context lengths in needle-in-a-haystack tasks from the RULER benchmark (Hsieh et al.,
2024). With a 4.6x smaller cache than Llama-3.1 8B (Grattafiori et al., 2024), our approach boosts
accuracy from LoLCATs’ 0.6% to 97.4% at 4K context lengths with the same model weights.

Improves Language Modeling. LoLA shows superior performance on zero-shot commonsense
reasoning tasks among 1B and 8B parameter subquadratic architectures. This demonstrates that
effective memory management can boost language modeling performance.

2 PRELIMINARIES

In this section, we review softmax attention through the lens of associative memory. Then, we show
how linear attention naturally forms a recurrent hidden state. We address practical implementations
for training linear architectures and highlight unresolved drawbacks of previous approaches.

2.1 SOFTMAX ATTENTION AS A NONPARAMETRIC, ONLINE LEARNER

Transformers process a sequence of input tokens {xt}nt=1, for xt ∈ Rd (Vaswani et al., 2017). For
each attention head, the input tokens are transformed into three distinct representations—queries,
keys, and values—via trainable weight matrices Wq,Wk ∈ Rd×dk and Wv ∈ Rd×dv . For a given
token xt, define

qt = Wqxt︸ ︷︷ ︸
query

, kt = Wkxt︸ ︷︷ ︸
key

, vt = Wvxt︸ ︷︷ ︸
value

. (1)

Causal attention uses the current query to recall past information from key-value pairs. The similar-
ity between the query qt and key ki is denoted as αti ∈ (0, 1). This similarity score determines how
much value vi is used for the current output token at time t. The output token yt is defined by

yt =

t∑
i=1

αti vi ∈ Rdv , with αti =
exp

(
q⊤
t ki/

√
dk

)∑t
j=1 exp

(
q⊤
t kj/

√
dk

) . (2)

We view softmax attention as a nonparametric function mt : Rdk → Rdv that fits to the past context
at inference time. This online function mt learns to map keys to their associated value in context
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with mt(ki) ≈ vi for (ki,vi) ∈ {(ki,vi)}ti=1. Then, mt applies the learned transformation to the
query, yt = mt(qt). The set of past key-value pairs forms an online "training set" of input-output
labels. The query acts as an unsupervised "test set".

Softmax attention caches all past key-value pairs to perform this non-parametric, or “look-up table”,
operation. Since the function complexity scales with the context length, softmax attention can flexi-
bly learn new context without forgetting past key-value associations. However, this process leads to
an unbounded KV-cache size that scales linearly with sequence length n. Ultimately, this operation
cannot be used for extremely long context scenarios, such as lifelong learning.

2.2 LINEAR ATTENTION

To bound inference costs, linear attention methods replace the exponential dot product ker-
nel (Katharopoulos et al., 2020) with a low-rank approximation. This enables models to maintain
constant-size memory footprints even for infinite sequence lengths. With this replacement,

exp

(
q⊤
t kj√
dk

)
≈ ϕ(qt)

⊤ϕ(kj), for ϕ : Rdk → RD, (3)

the output token is approximated as

y⊤
t =

t∑
i=1

exp
(
q⊤
t ki/

√
dk

)
v⊤
i∑t

j=1 exp
(
q⊤
t kj/

√
dk

) ≈
t∑

i=1

ϕ(qt)
⊤ϕ(ki) v

⊤
i∑t

j=1 ϕ(qt)
⊤ϕ(kj)

=
ϕ(qt)

⊤
(∑t

j=1 ϕ(kj) v
⊤
j

)
ϕ(qt)⊤

(∑t
j=1 ϕ(kj)

)
=

ϕ(qt)
⊤Ht

ϕ(qt)⊤st
. (4)

This creates a hidden state matrix Ht ∈ RD×dv as the sum of key-value outer products. This
effectively bounds the memory cost to O(Ddv), constant with respect to sequence length n. The
hidden dimension size D controls the approximation quality at the cost of computational efficiency.
As a linear RNN, the hidden state Ht and normalization state st ∈ RD can be computed recurrently,

Ht = Ht−1 + ϕ(kt)v
⊤
t , st = st−1 + ϕ(kt). (5)

In this formulation, linear attention stores each observation, or KV-pair, as a rank-one outer product.
Rather than building a look-up table, linear attention parameterizes the key-to-value map as a linear
function. While this approach is efficient, linear attention falls short in memory capacity as the
number of orthogonal key-value pairs is bounded by the rank of Ht. “Memory collisions” (Yang
et al., 2024a) occur when new hidden state updates overwrite past key-value associations. This
prevents the linear map from accurately modeling the context.

2.3 EFFICIENT TRAINING OF LINEAR ATTENTION

To reduce training costs, LoLCATs (Zhang et al., 2025a) and others (Bick et al., 2024; Wang et al.,
2024; Bick et al., 2025; Goldstein et al., 2025) recycle large pretrained transformers into linear
attention models with knowledge distillation (Hinton et al., 2015). These approaches minimize the
difference between the pretrained transformer’s output y (i.e., the teacher) and linear attention’s
output ŷ (i.e., the student). In particular, LoLCATs uses a trainable nonlinear map for ϕ : Rdk →
RD, constructed as

ϕ(x) =
[
exp(w⊤

1 x), . . . , exp(w
⊤
D/2 x), exp(−w⊤

1 x), . . . , exp(−w⊤
D/2 x)

]
∈ RD, (6)

with learnable weights wi ∈ Rdk (Zhang et al., 2024). This distillation approach freezes all other
parameters, adjusting ϕ to minimize the loss

L(ϕ) =
∑
q,k,v

∥yt − ŷt∥, with ŷt =
ϕ(qt)

⊤Ht

ϕ(qt)⊤st
. (7)

After attention distillation, the whole model is finetuned with LoRA (Hu et al., 2022). Overall,
this procedure only requires 40 million training tokens from the Alpaca dataset (Taori et al., 2023),
grouped in 1024-long sequences.
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2.4 DISADVANTAGES OF PREVIOUS APPROACHES

Even with distillation, linear attention models struggle to accurately mimic the behavior of softmax
attention. Initial work in linear attention proposed nonlinear query and key activations to improve
the exponential dot product approximation (Choromanski et al., 2020; Zhang et al., 2024). These
methods fall short as they are essentially performing a low-rank approximation of the infinite-rank
exponential dot product kernel. In Appendix E, we show that the exponential dot product kernel has
slowly decaying singular values for simple data distributions. This implies that high-dimensional
hidden states may be required for modest approximation errors.

Recent approaches attempt to address the poor performance of the low-rank approximation in linear
attention by augmenting it with sliding window attention (Arora et al., 2024; Zhang et al., 2025a).
These methods compute a finite number of recent tokens in a window with softmax attention and
compute the rest with linear attention. Since natural language contains a significant amount of
local information, this hybrid approach nearly recovers the performance of pretrained transformers
on short-context tasks. For longer sequences, however, these methods struggle to recall important
information that falls outside the window and in the hidden state. We show in Table 1 that these
models cannot perform associative recall on simple needle-in-a-haystack tasks. Other forms of
sparse attention may be required alongside "low-rank" attention (Chen et al., 2021).

3 MITIGATING MEMORY COLLISIONS WITH SPARSE CACHING

Identifying Difficult-to-Remember KV Pairs. As our base assumption, strong associative mem-
ory systems should allow keys to retrieve their associated values. Online functions mt with perfect
recall interpolate the online training set, defined as

mt(ki) = vi, ∀i ≤ t (8)

For perfect recall in linear attention, equation 8 translates to

mt(ki)
⊤ =

ϕ(ki)
⊤Ht

ϕ(ki)⊤st
=

ϕ(ki)
⊤ ∑t

j=1 ϕ(kj)v
⊤
j

ϕ(ki)⊤
∑t

j=1 ϕ(kj)
= v⊤

i . (9)

In practice, however, "memory collisions" prohibit equation 9 from holding. Non-orthogonal keys
interfere with each other when forming the hidden state Ht. We measure the Self-Recall Error
(SRE) to measure how well a past key can retrieve its associated value with

SRE(k,v |Ht, st) =

∥∥∥∥ϕ(k)⊤Ht

ϕ(k)⊤st
− v

∥∥∥∥
2

= ∥v̂ − v∥2 . (10)

This determines the error between the predicted value v̂ for a given key k and the ground truth value
v.

Method Overview. We propose LoLA: a training-free inference strategy that boosts the perfor-
mance of hybrid linear attention models. LoLA addresses the limitations of previous linear attention
mechanisms by integrating a sparse caching strategy at inference time. This method employs three
memory systems to store long term associations

1. Linear Attention utilizes a finite-rank approximation to store an infinite amount of tokens.
2. Sliding Window Attention provides full-rank attention scores for finite, local context.
3. Sparse Caching identifies and stores key-value pairs that are challenging to remember,

preventing memory collisions in linear attention.

LoLA uses the self-recall error, equation 10, to decide which KV pairs should be stored separately
in full-rank. Large errors indicate the severity of the memory collision. As a result, LoLA keeps the
KV pairs with the largest error in a sparse cache. This limits the corruption of past memories and
improves associative recall.

Since only a finite amount of tokens can be stored at each time step to maintain efficiency, LoLA
performs a greedy scoring approach. At every iteration, LoLA scores the KV pairs leaving the
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Figure 1: LoLA stores past KV pairs in three forms memory for each attention head.

sliding window and re-scores all pairs currently stored in the sparse cache. At each timestep, the
pairs with the lowest error are moved to the linear hidden state indefinitely. Re-scoring pairs in the
sparse cache is essential since the SRE is dependent on the current hidden state. For example, a
KV pair could become more aligned with the hidden state in the future after a few updates. In the
generation implementation of LoLA, we define the set of pairs that are scored at time t as

Et = Gt−1 ∪ {(kt−η,vt−η)}, (11)

where Gt−1 is the set of KV pairs in the sparse cache at time t− 1. Here, η is the maximum number
of pairs in the sliding window. We update the sparse cache by selecting the top-λ errors in Et, i.e,

Gt = argmax
G⊂Et:|G|=λ

∑
(k,v)∈G

SRE(k,v |Ht, st). (12)

The remaining pairs, denoted by St = Et ∩ Gc
t where Gc

t is the complement of Gt, are stored in
hidden state via

Ht = Ht−1 +
∑

(k,v)∈St

ϕ(k)v⊤, st = st−1 +
∑

(k,v)∈St

ϕ(k) (13)

Once the caches are up to date, LoLA computes the output token yt as

yt =

Linear Attn.︷ ︸︸ ︷
ϕ(qt)

⊤Ht +

Sparse Cache︷ ︸︸ ︷∑
i∈Gt

exp
(
q⊤
t ki/

√
d
)
vi +

Sliding Window︷ ︸︸ ︷
t∑

j=t−η+1

exp
(
q⊤
t kj/

√
d
)
vj

ϕ(qt)⊤st +
∑

i∈Gt
exp

(
q⊤
t ki/

√
d
)
+

∑t
j=t−η+1 exp

(
q⊤
t kj/

√
d
) . (14)

Both η and λ are hyper-parameters for the size of the sliding window and sparse cache, respectively.

Chunkwise Inference. When the input sequence is available ahead of time (e.g., prefill), LoLA is
accelerated with parallelization. By partitioning the input sequence into chunks of size C, we can
compute intra-chunk operations in parallel with dense matmuls (Yang et al., 2024b). This reduces
the number of recurrent iterations by a factor of C while preserving the constant-memory cost that
motivates LoLA.

LoLA computes softmax attention with the current chunk of queries and previous two chunks of
KV-pairs. For small chunk sizes, softmax attention is almost equally efficient to linear attention.
Artificially limiting softmax within a chunk will not improve efficiency, only hurt performance. The
past two chunks of KV-pairs are concatenated with the sparse cache in order to compute a single
FlashAttention (Dao et al., 2022) pass per chunk of queries. For the linear attention portion of the
forward pass, all queries within the chunk share the same hidden state.

After computing the past chunk of output tokens, we evict the oldest chunk of KV-pairs in the
window, sending them to the hidden state or sparse cache. All of the evicted and sparse cache pairs
are scored with the SRE, equation 10. The λ pairs with the largest errors in the eligible set,

Et = Gt−1 ∪ {(ki,vi) | t− 2C ≤ i < t− C}, (15)
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Figure 2: Illustration of where each KV pair is stored at every time step for each method.

will remain in the sparse cache. The remainder are integrated into the hidden state through the
standard outer product update as in equation 5.

The given hardware setup dictates the total fixed cache size of LoLA, but the ratio of chunk size to
sparse cache size depends on the application. Increasing the chunk or sliding window size reduces
the number of recurrent iterations and overhead costs from sparse caching; however, this requires
more VRAM. Increasing the sparse cache size λ will better mitigate collisions in the hidden state and
improve long context recall. In Appendix B, we explore this trade-off for various cache hyperparam-
eters in an efficiency analysis. Specifically we measure the total VRAM use, Time-to-First-Token,
and long context performance. Furthermore, we illustrate the bounded nature of LoLA, compared
to vanilla transformers.

4 EXPERIMENTS & RESULTS

In our experiments, we leverage the same attention distillation procedure in LoLCATs to obtain the
base model, then apply our inference strategy, LoLA, at test time. To train the base model, we
replace each attention module in Llama-3.1 8B (or Llama-3.2 1B) with a hybrid sliding window +
linear attention module. We use a sliding window size η = 64 for training and use a trainable feature
map for ϕ as described in equation 6. The output dimension of ϕ is D = 2dk. First, we freeze all
non-attention layers in the linearized Transformer and only train ϕ with distillation for two epochs
on Alpaca (Taori et al., 2023). Then, we perform LoRA (Hu et al., 2022) finetuning on the whole
model for two epochs. This procedure only uses 40M training tokens with 1024-long sequences.

4.1 ASSOCIATIVE RECALL

To see how LoLA improves associative recall, we conduct a study on Single-Needle-in-a-Haystack
(S-NIAH) tasks from RULER (Hsieh et al., 2024). In Table 1, we compare LoLA to the base model,
LoLCATs-8B, and variants with an extended sliding window for a fair comparison. We observe
LoLCATs struggles to recall information outside the sliding window. Extending the sliding window
size marginally improves performance. We explain the differences of each NIAH task in Appendix C
and discuss these results more in depth.

Next in Table 2, we measure the performance of LoLA on the rest of the RULER benchmark
at 4K context length. This covers much harder long context tasks, such as multi-key retrieval
(MK1,MK2,MK3), multi-query (MQ), multi-value (MV), variable tracking (VT), common word
extraction (CWE), frequent word extraction (FWE), Hotpot-QA (HQA), and Squad-QA (SQA).
We compare LoLA against a stronger version of LoLCATs—with an equivalent, larger cache size
(η = 896)—and Mamba2-8B (Dao & Gu, 2024; Waleffe et al., 2024).

LoLA improves recall with minimal additional caching. Table 1 demonstrates an improvement from
the base model’s 0.6% to 97.4% accuracy on S-NIAH-1. This is achieved with a 4.6× smaller cache
than Llama with η = 256, λ = 256. Furthermore, we show in Table 2 that sparse caching is essential
for more difficult tasks, improving an extended form of LoLCATs from 6.7% average accuracy to
45.2%. For example, tasks such as variable tracking (VT) require understanding all of the context.
Since no part of the sequence can be lost, naive metrics for sparse attention, such as (Zhang et al.,
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Table 1: Measuring long context recall with Needle-in-a-Haystack (NIAH) tasks from the RULER
benchmark. We report recall accuracy for each method across different context lengths (512, 1024,
etc.) for each task.

Model Cache Params S-NIAH-1 S-NIAH-2 S-NIAH-3
(η, λ) .5K 1K 2K 4K .5K 1K 2K .5K 1K 2K

Transformer
Llama-3.1-8B (∞, 0) 100 100 100 100 100 100 100 100 100 100

Base Subquadratic Model
LoLCATs-8B (64, 0) 9.0 3.2 1.4 0.6 100 7.6 2.0 97.4 1.6 0.6

Extended at Inference
LoLCATs-8B+ (128, 0) 29.4 9.6 3.4 1.4 100 17.4 7.2 98.2 14.6 3.2
LoLA-8B (64, 64) 99.0 95.4 79.4 69.4 100 39.4 3.0 99.8 7.4 1.6

LoLCATs-8B+ (512, 0) 100 65.6 24.6 8.8 100 71.8 21.6 100 66.0 10.6
LoLA-8B (256, 256) 100 100 99.6 97.4 100 100 85.4 99.8 99.8 27.2

LoLA-8B (512, 512) 100 100 100 99.9 100 100 100 100 100 100

Table 2: Extended RULER Benchmark on 4K context lengths. Compared to NIAH tasks, these
require much stronger forms of memory and state tracking. For cache parameters, LoLA uses η =
128, λ = 768 and LoLCATs uses η = 896.

Model MK1 MK2 MK3 MQ MV VT CWE FWE HQA SQA Avg

Mamba2-8B 40.3 13.8 5.5 49.1 35.0 76.5 32.9 76.6 31.8 35.5 39.7
LoLCATs-8B+ 12.8 1.4 0.4 3.3 3.6 0.7 3.0 13.6 14.2 14.0 6.7
LoLA-8B 39.4 11.6 7.6 67.6 65.0 85.2 45.9 51.3 24.2 53.9 45.2

2023), cannot be used. Memory collisions must be mitigated. Sparse caching—specifically with our
self-recall error—unlocks a new capability for hybrid linear attention architectures.

4.2 COMMONSENSE REASONING

We demonstrate the language modeling performance of LoLA on various zero-shot commonsense
reasoning tasks using LM evaluation harness (Gao et al., 2024). To compare against previously
available approaches, we use PIQA (PI) (Bisk et al., 2020), ARC-Easy (AE) & ARC-Challenge
(AC) (Clark et al., 2018), HellaSwag (HS) (Zellers et al., 2019), WinoGrande (WG) (Sakaguchi
et al., 2021), MMLU (MM) (Hendrycks et al., 2020), and Lambada OpenAI (Paperno et al., 2016)).

In Table 3, we compare LoLA against other 7-9B subquadratic models (Mamba (Gu & Dao, 2024),
Mamba2 (Dao & Gu, 2024), RWKV-6 (Peng et al., 2024), Hawk & Griffin (De et al., 2024), Fal-
con Mamba (Zuo et al., 2024), RecurrentGemma (Botev et al., 2024), Mamba-in-the-Llama (Wang
et al., 2024), Llamba (Bick et al., 2025), Hedgehog (Zhang et al., 2024), and LoLCATs (Zhang et al.,
2025a)). Models that use any form of unbounded global attention (e.g interleaving SSM blocks and
Transformer blocks) still retain quadratic compute complexity and growing memory costs. These
are outside the scope of this work. We also report the number of training tokens used to create
each model in both tables. Though LoLA is a training-free inference strategy that can be used for
any sliding window + linear attention model, we report the cost of distilling the base subquadratic
model (Zhang et al., 2025a). In Appendix A, we show results for 1-2B subquadratic models. Ad-
ditionally, we provide a direct comparison of distilled models by measuring the average accuracy
relative to their teacher models.

On short context tasks such as Winogrande, we observe additional caching is not needed as only
local information is required for good performance. On the other hand, we find that gaps still
exist with Lambada and MMLU. Lambada requires longer context reasoning, leading to significant
improvements with sparse caching. Furthermore, Bick et al. (Bick et al., 2025) suggest that dataset
selection plays a large role for MMLU performance. Though sparse caching shows significant
improvement on MMLU, a more powerful distillation procedure or dataset may be needed to reach
Llama’s performance (Goldstein et al., 2025).
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Table 3: Performance comparison of 7-9B parameter fixed-memory models across various com-
mon sense reasoning tasks: PIQA (PI), Arc-Easy (AE), ARC-Challenge (AC), Winogrande (WG),
MMLU (MM), and Lambada-openai (LB). Bolded scores are the best and underlined scores are
the second best. We report accuracy for all applicable, except AC and HS use normalized logits.
MMLU (MM) uses 5-shot. Reported scores were compiled from (Bick et al., 2025; Zhang et al.,
2025a; Waleffe et al., 2024; Wang et al., 2024). * indicates our reproduced score is used and is
higher than reported score. LoLA uses small cache parameters, η = λ = 64.

Model Tokens (B) PI AE AC HS WG MM LB

Transformers
Llama-3.1-8B 15000 81.1 81.7 55.1 79.3 73.9 68.0 73.0

Subquadratic: Pretrained from scratch
Mamba-8B 1100 78.9 75.4 42.2 75.6 68.3 28.0 -
Mamba2-8B 3500 79.8 75.9 48.1 77.7 71.6 48.7 -
RWKV-6 (W2.1) 7B 1420 78.7 76.8 46.3 75.1 70.0 - -
Hawk 7B 300 80.0 74.4 45.9 77.6 69.9 35.0 -
Griffin 7B 300 81.0 75.4 47.9 78.6 72.6 39.3 -
Falcon3-Mamba-7B 7300 79.7 72.5 53.2 79.8 69.1 65.0 67.5
RecurrentGemma-9B 2000 80.6 78.9 57.1 80.1 73.7 55.1 54.1

Subquadratic: Distilled from Llama-3.1-8B
Mamba2-Llama3-8B (L3.1-Instr.) 20 76.8 74.1 48.0 70.8 58.6 43.2 -
Hedgehog-8B (Llama-3) 0.04 77.4 71.1 40.6 66.5 54.3 24.2 -
Llamba-8B 12 80.9 82.5 54.6 77.6 73.3 60.0 69.4
LoLCATs-8B 0.04 81.0 82.4 54.4 79.1 73.6* 54.9 67.6
LoLA-8B (ours) 0.04 81.6 82.5 55.4 79.8 73.6 57.6 74.9

Figure 3: Visualizing memory collisions by measuring SRE for stored KV pairs.

For 1B parameter models, sparse caching provides even more utility. Since the hidden state di-
mensionality scales with the head dimension of the base model, 1B models can face more memory
collisions. In Appendix A, LoLA demonstrates state-of-the-art performance among 1B subquadratic
models, even outperforming Llama-3.2-1B on average. Overall, LoLA pushes the pareto front for
training-efficient and high-performing subquadratic LLMs.

4.3 UNDERSTANDING MEMORY COLLISIONS

We visualize how memory collisions occur in practice. At each time step t, we measure the self-
recall error from equation 10 for every KV pair that is currently stored in the hidden state Ht. We
visualize the error for linear attention, sliding window + linear attention, and LoLA. We use a sliding
window size of η = 64 tokens and a sparse cache size of λ = 64 when applicable.

When only using linear attention, we observe large recall errors. At early time steps, the first few
KV pairs receive small errors, but quickly become larger after hidden state updates. In Appendix
G, we additionally plot the relative error to better show how this occurs. These stored associative
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memories become corrupted and tough to recall in the future. Furthermore, difficult-to-memorize
pairs are evident, illustrated as bright columns in Figure 3. The additional use of sliding window
attention only delays the inevitable memory collisions.

LoLA significantly reduces the errors for all KV pairs. Difficult-to-memorize pairs are appropriately
stored in the sparse cache, as seen by the zero-columns in the plot. This also prevents corrupting
older KV pairs that are already stored in the hidden state.

Scoring Method Ablation. In our final experiment, we measure alternative scoring functions to
understand which KV pairs should be sparsely cached. Traditional sparse attention metrics assume
"unimportant" tokens are evicted entirely from the context (Zhang et al., 2023; Singhania et al.,
2024; Zaheer et al., 2020). In our setting, these assumptions are invalid as unimportant tokens are
stored in low precision through linear attention.

Table 4: Ablation results for various scoring methods on S-NIAH-1 with 512 context length, η =
64, λ = 64. Extended details for the score calculation can be found in Appendix F.

Importance Metric S-NIAH-1 @ .5K Informal Assumption for “Important” Pairs∥∥∥∥ϕ(k)⊤Hϕ(k)⊤s
− v

∥∥∥∥ 99.0% Pairs that do not align with the hidden state’s prediction

(exp(q⊤k)− ϕ(q)⊤ϕ(k))2 11.4% Keys with incorrect attention weights

| exp(q⊤k)− ϕ(q)⊤ϕ(k)| 20.0% Keys with incorrect attention weights

ϕ(q)⊤ϕ(k)

exp(q⊤k)
52.0% Keys that Linear Attention over estimates

exp(q⊤k) 10.6% Keys that are attended to during sliding window attention

None, extend sliding window 29.4% Most recent pairs

In Table 4, we observe that storing keys with poor exponential dot product approximations under-
performs the naive extension of sliding window attention. This hints that a better softmax approxi-
mation should not be the main objective for linear attention methods. Keys over-estimated by linear
attention seem to be “more important” than local keys; however, all tested alternatives fall short of
enabling associative recall.

We also compare against traditional sparse attention ideas that use softmax attention scores as a
proxy for importance, such as in H2O (Zhang et al., 2023) and LESS (Dong et al., 2024). Specifi-
cally, we found that a key’s average similarity score, exp(q⊤k), does not translate well in the hybrid
linear attention setting. Since queries are used to influence the selection of keys in the sparse cache,
we believe highly similar phrases in the haystack may interfere with finding the needle. LoLA, on
the other hand, benefits from its query-agnostic metric.

5 CONCLUSION

LoLA integrates linear attention with sparse caching to effectively mitigate memory collisions.
By selectively retaining KV pairs that do not align with the current hidden state, LoLA enables
passkey retrieval when the base model fails. Our experimental results demonstrate that targeted
sparse caching substantially improves long context performance over naively increasing the slid-
ing window size. LoLA demonstrates strong language modeling performance over other 1B or 8B
subquadratic models.

Future work. The sparse cache carries a small overhead compute cost of O(λd) for scoring. For
high-complexity, long-context tasks, we found that larger sparse cache sizes are needed to reduce
interference in the hidden state. We believe that these limitations can addressed in the future with
a better base subquadratic model. More advanced base architectures, such as LaCT (Zhang et al.,
2025b) or Atlas (Behrouz et al., 2025), use nonlinear key-to-value maps, which may lead to smaller
caches.
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REPRODUCIBILITY STATEMENT

For reproducibility of distilling base subquadratic model, see (Zhang et al., 2025a). This also in-
cludes released weights for the 8B parameter model on Huggingface. All evaluations were per-
formed using LM Evaluation Harness (Gao et al., 2024). pseudo-code is available for reproducing
LoLA’s attention operation in Appendix H. This is a drop-in replacement for the hybrid linear atten-
tion in the base model. Full code will be provided in the camera-ready version. Lastly, LLMs had
minor contributions to the paper writing, such as spell-check and formatting.
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A EXTENDED LANGUAGE MODELING RESULTS

1B parameter model results. Following Section 4.2, we extend this comparison in Table 5 for
various 1-2B parameter subquadratic models (Grattafiori et al., 2024; Li et al., 2023; Sun et al.,
2023; Qin et al., 2024; Schlag et al., 2021; Yang et al., 2024a; Gu & Dao, 2024; Dao & Gu, 2024;
Beck et al., 2024; Peng et al., 2024; Bick et al., 2024; Zhang et al., 2025a; Bick et al., 2025; Ren
et al., 2025). Compared to the 8B models, we observe that sparse caching is more important in the
1B parameter regime since there exist more memory collisions. This is a direct result of a smaller
hidden state dimension. The size of Ht scales with the head dimension of the base model. Llama-3.2
1B’s head dimension is half that of Llama-3.1 8B.

Table 5: Performance comparison across zero-shot commonsense reasoning tasks for various 1-2B
parameter subquadratic models. * indicates normalized logits were reported instead.

Model Tokens PIQA ARC-e ARC-c Hella. Wino. LMB. LMB.
(B) acc ↑ acc ↑ acc_n ↑ acc_n ↑ acc ↑ acc ↑ ppl ↓

Transformers (Bick et al., 2024; Zhang et al., 2025a)
Llama-3.2-1B 9000 74.4 65.5 35.8 63.7 60.5 60.1 -
Phi-1.5-1.3B 150 76.6 75.6 48.0 62.6 73.4 53.4 -

Subquadratic: Pretrained from scratch on FineWeb-Edu (Yang et al., 2024a; Penedo et al., 2024)
RetNet-1.3B 100 70.1 67.3 33.8 49.2 54.1 40.5 17.3
HGRN2-1.3B 100 70.5 69.4 35.3 49.5 52.8 39.5 17.7
DeltaNet-1.3B 100 70.7 68.5 35.7 50.9 53.4 42.5 16.9
Gated-DeltaNet-1.3B 100 72.3 71.2 38.4 55.8 57.5 46.7 12.2
Mamba1-1.3B 100 71.3 69.5 35.4 52.9 53.0 44.0 15.1
Mamba2-1.3B 100 71.9 72.5 37.9 55.7 55.2 45.7 12.6

Subquadratic: Pretrained from scratch on various sources (Bick et al., 2024; 2025)
Mamba1-1.4B 315 74.2 65.5 32.8 59.1 61.5 64.9 -
Mamba2-1.3B 315 73.2 64.3 33.3 59.9 60.9 65.7 -
xLSTM-1.4B 300 74.6 64.3 32.6 60.9 60.6 57.8 -
Finch-1.6B 1100 72.6 64.2 34.1 57.3 59.4 66.8 -
RecurrentGemma-2B 2000 67.2 35.6 51.2 60.3 55.7 52.5 -
Samba-1.3B 100 72.4 58.2 - 54.7 55.7 51.7 -

Subquadratic: Distilled from Phi-1.5-1.3B (Bick et al., 2024; Zhang et al., 2025a)
Phi-Mamba-1.5B 3 75.5 74.0 44.1 60.2 71.7 50.1 -
LoLCATs-Phi-1.3B 0.04 76.9 77.0 46.9 62.3 72.7 - -

Subquadratic: Distilled from Llama-3.2-1B (Bick et al., 2025; Zhang et al., 2025a)
Llamba-1B 8 74.0* 69.5* 37.2 61.2 60.6 48.4 -
LoLCATs-Llama-1B 0.04 74.6 63.0 35.1 63.7 61.5 53.4 9.3
LoLA-1B (ours) 0.04 76.2 66.2 36.9 64.1 60.9 61.9 5.3

We provide additional notes for the results in Table 5. Mamba and Mamba2 are popular architectures
and have been trained many times with different datasets and hyperparameters. We report variations
from two sources for robust results. In addition, LoLCATs demonstrated results on both Llama-3.2
1B and Phi-1.5. The model and code for reproducing LoLCATS-Phi-1.3B is not publicly available,
so we could not produce Lambada scores. Similarly, we do not have LoLA results for this either.
We were able to reproduce LoLCATs-Llama-1B, however, our achieved Winogrande accuracy was
lower. We reported the score from the paper, 61.5%, over our reproduced 60.9%.

Cross-teacher comparison of distilled subquadratic models. We gathered results from both Ta-
ble 5 and Table 3 to compare language model performance relative to the teacher models. We aver-
age the performance across tasks and compute the relative average. This is calculated by dividing
the model’s average by the teacher model’s average.

In Table 6, LoLA outperforms other distilled model approaches. We find that LoLCATs and Llamba
perform similarly overall, with LoLCATs demonstrating better token efficiency. Overall, LoLA
pushes the pareto front for high-performing and token-efficient models.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison of distilled subquadratic models from different teacher models. We report the
average accuracy across tasks when applicable (i.e., all scores are reported or available). We also
report the relative accuracy, measured as the student average / the teacher average. Results were
taken from various related works with the section header containing the sources.

Model Tokens (B) PI AE AC HS WG LB Avg. Rel. Avg.

Transformers
Phi-1.5-1.3B 150 76.6 75.6 48.0 62.6 73.4 53.4 64.9 -
Llama-3.2-1.3B 9000 74.4 65.5 35.8 63.7 60.5 60.1 60.0 -
Llama-3.1-8B 15000 81.1 81.7 55.1 79.3 73.9 73.0 74.0 -
Llama-3.1-8B-Instr. 15000+ 80.8 81.8 55.2 79.2 73.9 - 74.0 -

Subquadratic: Distilled from Phi-1.5-1.3B
Phi-Mamba1.5B 3 75.5 74.0 44.1 60.2 71.7 50.1 62.6 0.965×
LoLCATs-1.3B 0.04 76.9 77.0 46.9 62.3 72.7 - - -

Subquadratic: Distilled from Llama-3.2-1.3B
Llamba-1.3B 8 74.0* 69.5* 37.2 61.2 60.6 48.4 58.5 0.975×
LoLCATs-1.3B 0.04 74.6 63.0 35.1 63.7 61.5 53.4 58.6 0.977×
LoLA-1.3B (ours) 0.04 76.2 66.2 36.9 64.1 60.9 61.9 61.0 1.017×
Subquadratic: Distilled from Llama-3.1-8B Instruct
Mamba2-Llama3-8B 20 76.8 74.1 48.0 70.8 58.6 43.2 61.9 0.837×
Subquadratic: Distilled from Llama-3.1-8B
Llamba-8B 12 80.9 82.5 54.6 77.6 73.3 69.4 73.1 0.987×
LoLCATs-8B 0.04 81.0 82.4 54.4 79.1 73.6 67.6 73.0 0.987×
LoLA-8B 0.04 81.6 82.5 55.4 79.8 73.6 74.9 74.6 1.009×

B EFFICIENCY ANALYSIS

Cache Parameters. Here, we analyze the efficiency of chunkwise LoLA. For various sliding win-
dow (η) and sparse cache (λ) sizes, we measure the peak VRAM cost and Time-to-First-Token
for LoLA-8B with 4K long context on an Nvidia RTX 4090. Additionally, we show how differ-
ent cache parameters lead to varying performance on RULER’s variable tracking task (Hsieh et al.,
2024). There exists a trade-off between speed, memory footprint, and performance. There is no
one-size-fits-all solution; we provide a short guide on navigating this tradeoff.
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Figure 4: Measuring Time-to-First-Token for various sliding window and sparse cache sizes. This
measurement is averaged across 100 trials and assumes data is already loaded into VRAM.
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Figure 4 illustrates that optimal throughput is achieved by maximizing the sliding window size that
fits into VRAM and minimizing the sparse cache size. This reduces the number of chunks computed
in sequential order, allowing for more intra-chunk parallelization.
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Figure 5: Measuring Peak VRAM usage for various sliding window and sparse cache sizes. This
measurement includes the base model weights, the data sequence, and online activations such as KV
caches.

Figure 5 suggests the total cache size (η & λ) needs to be reduced to lower VRAM cost. In our
implementation, the data (4K long context sequence) already exists in VRAM, so this is included in
the peak VRAM measurement. Furthermore, the TTFT does not include loading this data.
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Figure 6: Cache Sizes vs. Variable Tracking performance at 4K context length from RULER (Hsieh
et al., 2024)

.

Lastly, we show the variable tracking performance for various cache parameters in Figure 6. Variable
tracking requires understanding all of the context. The base subquadratic model—or even extended
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sliding window variants—cannot perform this task without a sparse cache. As a guideline to in-
crease general long context performance, the sparse cache size should be maximized. This mitigates
memory collisions, preserving linear attention’s hidden state on long sequences.

In summary, LoLA introduces a new trade-off for subquadratic models. Low VRAM and high
performance can be achieved (maximize λ, minimize η), but the model will be slow. Low VRAM,
fast models (minimize λ, moderate η) will not be able to perform well on long-context tasks (e.g. the
base subquadratic model, LoLCATs). Finally, fast and high performing models will require a much
larger memory footprint (maximize both λ and η). This will extend the applicability of subquadratic
models across various hardware platforms such as small inference chips or large training servers.

LoLA Cache vs. Transformers. In Figure 7, we compare LoLA’s bounded inference costs with
vanilla, softmax attention. We compute the cache size as the total number of elements in all vectors
and matrices stored for each attention head. For transformers, we store key and value vectors for
each token in context, t (dk + dv). For LoLA, we add up the elements in each of the three memory
systems: sliding window cache, sparse cache, and linear attention’s hidden state & normalizing
state. Here, we provide both "small" and "large" cache size variants of LoLA for reference. In short
context lengths, LoLA does not instantiate linear attention’s hidden state or measure the SRE. LoLA
is equally efficient to softmax attention here.
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Figure 7: Cache Size vs. Context Length for LoLA and vanilla transformers.

This figure illustrates why we are interested in subquadratic models to begin with. As context scales,
we must linearly increase VRAM and compute per token. For example, we observed out-of-memory
errors with Llama-3.1-8B at 4K context length in our experiments. LoLA, on the other hand, can be
scaled with η and λ to maximize performance on specific hardware. The VRAM cost is agnostic to
context length, meaning this model will always be able to fit.

C EXTENDED LONG CONTEXT TASKS

To further extend our needle-in-a-haystack results from Table 1, we provide more scores in Table 7
across a greater variety of cache parameter combinations. For simplicity, we chose η = λ and varied
the total cache size, marked with "+". Each additional "+" doubles the total cache size (i.e baseline
holds 64 tokens, + holds 128, ++ holds 256, etc.). Additionally, we provide longer sequences for
S-NIAH-1 in Table 8.

In these tasks, the “haystack” is synthetically constructed with various context lengths. The first task,
S-NIAH-1, uses random sentences (e.g., “The grass is green.“) as the haystack, while S-NIAH-2 &
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3 use essays. The needle—represented as a (word, number) pair—is placed in the haystack. At
the end of the prompt, the model is tasked with returning the associated number with the special
word. The first two tasks (S-NIAH-1 & 2) use a 7-digit number in the needle, and S-NIAH-3 uses a
32-digit UUID, requiring more tokens to represent the needle.

Table 7: Measuring long context recall with Needle-in-a-Haystack tasks from the RULER bench-
mark. We report recall accuracy for each method across different context lengths (512, 1024, etc.)
for each task.

Model Compression S-NIAH-1 S-NIAH-2 S-NIAH-3
Rate @ 2-4K .5K 1K 2K 4K .5K 1K 2K .5K 1K 2K

Transformer
Llama-3.1-8B 1× 100 100 100 100 100 100 100 100 100 100

Base Subquadratic Model
LoLCATs-8B 11×-22× 9.0 3.2 1.4 0.6 100 7.6 2.0 97.4 1.6 0.6

Extended at Inference
LoLCATs-8B+ 6.4×-13× 29.4 9.6 3.4 1.4 100 17.4 7.2 98.2 14.6 3.2
LoLA-8B+ 6.4×-13× 99.0 95.4 79.4 69.4 100 39.4 3.0 99.8 7.4 1.6

LoLCATs-8B++ 4.0×-8.0× 87.2 26.8 10.2 3.2 100 37.0 12.2 100 32.4 6.0
LoLA-8B++ 4.0×-8.0× 100 99.6 96.4 89.6 100 98.8 15.0 99.8 33.4 9.2

LoLCATs-8B+++ 2.3×-4.6× 100 65.6 24.6 8.8 100 71.8 21.6 100 66.0 10.6
LoLA-8B+++ 2.3×-4.6× 100 100 99.6 97.4 100 100 85.4 99.8 99.8 27.2

LoLA-8B++++ 1.2×-2.4× 100 100 100 99.0 100 100 100 100 100 100

Table 8: Extended Results on S-NIAH-1. Reported as [Accuracy / Compression Rate]. We evaluated
performance across 500 synthetic samples on all context lengths except 16K, which used 250.

Model .5K 1K 2K 4K 8K 16K

LoLA-8B 4+ 100% / 1× 100% / 1× 100% / 1.2× 99.0% / 2.4× 92.2% / 4.9× 13.6% / 9.8×

In general, extending the cache size can improve performance while still maintaining high compres-
sion rates over transformers. For even longer context lengths, LoLA’s cache can easily be scaled at
inference to achieve the desired recall performance. This can be seen in Table 8, where LoLA per-
forms well up to 8K context length, which is 8× longer than the sequences seen during distillation.

For large haystacks, the accuracy of LoLCATs is roughly the proportion of context that the sliding
window covers. For smaller haystacks, the performance is slightly higher than that ratio since fewer
pairs are stored in the hidden state. This results in fewer collisions; though of course, this does not
scale. Additionally, we observe that fewer collisions exist in essay-based haystacks (S-NIAH-2 &
3), likely as a result of being more similar to the distillation data. Lastly, we observe that harder
needle-in-a-haystack tasks (e.g., S-NIAH-3 with 32-digit needles) may require more sparse caching.
To further extend these results, we believe training with longer sequences should yield stronger
performance.

D RELATED WORK

In this section, we position LoLA within the broader landscape of subquadratic models and efficient
attention mechanisms.

Linear Attention and State Space Models (SSMs) State Space Models (SSMs) have emerged
as powerful architectures for efficient long-range sequence modeling, offering constant memory
complexity irrespective of context length. Pioneered by methods like S4 (Gu et al., 2021), recent de-
velopments include various efficient architectures such as RetNet (Sun et al., 2023) and Mamba (Gu
& Dao, 2024). Concurrently, original linear attention methods have explored efficient approxima-
tions of the softmax kernel (Katharopoulos et al., 2020; Choromanski et al., 2020; Qin et al.; Peng
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et al., 2020; Zhang et al., 2024). Research between SSMs and linear attention has recently con-
verged. Modern SSMs, such as DeltaNet (Schlag et al., 2021), Mamba2 (Dao & Gu, 2024) and
Gated DeltaNet (Yang et al., 2024a), can be interpreted as linear attention models equipped with
additional gating or delta-update mechanisms. Models like DeltaProduct (Siems et al., 2025) fur-
ther generalize these linear updates through higher-rank modifications, while Titans (Behrouz et al.,
2024) and TTT (Sun et al., 2024) extend the capacity for associative recall using richer hidden-state
representations.

Test-time Regression (Wang et al., 2025) offers a unifying perspective for SSMs and linear atten-
tion. These sequence models perform online regression to fit hidden states to past context. Each
state update can be interpreted as a gradient step in online SGD. This lens clarifies the roles of dif-
ferent mechanisms within these models. For example, forget gates in Mamba2 and Gated DeltaNet
play an analogous role to weight decay. Similarly, momentum-based updates can be oversed in
Titans (Behrouz et al., 2024).

Distilling transformers into subquadratic models. The cost of pretraining LLMs is the primary
obstacle in finding the successor of the transformer. To address this issue, recent approaches employ
knowledge distillation, transferring the capabilities of pretrained transformers into subquadratic ar-
chitectures (Bick et al., 2024; Zhang et al., 2025a; Mercat et al.; Bick et al., 2025; Goldstein et al.,
2025). This significantly reduces training costs by recycling large pretrained models.

MOHAWK (Bick et al., 2024; 2025) demonstrated successful distillation of pretrained transformers
into Mamba, maintaining competitive performance. Similarly, “Mamba in the Llama” (Wang et al.,
2024) interleaves transformer and SSM blocks to retain transformer-level performance with signif-
icantly reduced inference costs. Though, this approach maintains an unbounded memory footprint
due to the residual quadratic attention.

In contrast, LoLCATs use a simpler and cheaper distillation approach by using a student architecture
that is more similar to the transformer. The combination of linear attention and sliding window atten-
tion significantly reduces the distillation complexity, requiring significantly fewer training tokens.
LoLA directly builds on LoLCATs, leveraging its efficient distillation approach while introducing
sparse caching to substantially enhance associative recall without extensive retraining.

Sparse attention methods. Sparse attention methods present another orthogonal approach to re-
ducing Transformer complexity by limiting the set of attended tokens (Nawrot et al., 2025). Methods
such as Longformer (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) adopt fixed sparse pat-
terns that incorporate sliding windows and selective global attention, efficiently capturing both local
and sparse global contexts. Recent dynamic sparsification approaches, including Loki (Singhania
et al., 2024) and Native Sparse Attention (NSA)(Yuan et al., 2025), employ data-dependent strate-
gies, selectively attending to the most relevant tokens based on learned or projected keys. Native
Sparse Attention, specifically, combines sparse attention with latent attention mechanisms(Liu et al.,
2024), effectively approximating attention via low-rank and sparse structures.

We believe sparse attention can be complementary to linear attention. With LoLA, we encourage the
use of hybrid attention techniques within the same attention head. This allows important tokens to
leverage more computation when needed. This work contrasts the use of interleaving soft attention
blocks with linear attention blocks (Ren et al., 2025; Glorioso et al., 2024) which allocates the
compute costs equally between all tokens.

E LINEAR ATTENTION IS A BAD LOW-RANK APPROXIMATION

In this section, we analyze why linear attention struggles to closely approximate softmax attention,
specifically highlighting difficulties in approximating the exponential dot product kernel. We start
by defining the exponential kernel’s Gram matrix G as Gi,j = exp(x⊤

i xj) for inputs xi,xj ∈ Rd.
This kernel implicitly corresponds to an inner product in a potentially infinite-dimensional Hilbert
space H via a feature map ϕexp : Rd → H, such that

exp(x⊤
i xj) = ϕexp(xi)

⊤ϕexp(xj). (16)

Since explicitly working in an infinite-dimensional space H is infeasible, linear attention methods
approximate this kernel using a finite-dimensional feature map ϕ : Rd → RD. Consequently, linear
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attention approximates the Gram matrix as

Gi,j ≈ Ĝi,j = ϕ(xi)
⊤ϕ(xj), (17)

which has a maximum rank of D. Ideally, Ĝ would closely approximate G, minimizing the
squared Frobenius norm error. However, linear attention’s approximation error is fundamentally
lower-bounded by the truncated singular value decomposition (SVD) of G (Eckart & Young, 1936).
Specifically, for the SVD decomposition G = UΣV⊤ with singular values σi, we have:

∥G− Ĝ∥2F ≥ ∥G−UDΣDV⊤
D∥2F =

rank(G)∑
i=D+1

σ2
i , (18)

where UDΣDVD is the rank D truncated SVD approximation of G.

While the truncated SVD provides the optimal low-rank approximation, it requires the entire Gram
matrix to be computed and stored, making it impractical for linear attention which demands compu-
tationally efficient, online feature mappings.

To empirically demonstrate the severity of this approximation challenge, we construct the Gram
matrix under different input distributions and analyze its singular values. In our simulations, we vary
both n (the number of independently sampled input vectors) and d (input vector dimensionality) and
observe how they affect singular value distributions. Specifically, we draw inputs from a scaled
Gaussian distribution xi ∼ N (0, d−1/4) to mimic typical transformer scaling of dot products by√
d.
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Figure 8: Visualization of singular values of the Gram matrix and minimum squared Frobenius norm
error for linear attention as in equation 18. We vary the number of i.i.d. vectors n used to construct
the Gram matrix, but maintain the same input dimension d.

Figures 8 and 9 show that applying an exponential operation to the query-key products significantly
increases the rank and complexity of the resulting Gram matrix. The singular values and approxima-
tion error increase with the number of unique input vectors n (see Figure 8) and the input dimension
d (see Figure 9) . Practically, in transformer architectures, head dimensions are typically modest
(d = 64 for Llama-3.2 1B and d = 128 for Llama-3.1 8B). Additionally, linear attention approaches
typically select feature dimensions D around 2d (Zhang et al., 2024; 2025a) which can be problem-
atic without additional sparse attention or gating mechanisms.

These experiments underscore the inherent limitation of linear attention as a softmax replacement.
For an arbitarily large vocabulary size, a high dimensional hidden state is needed to truly mimic
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Figure 9: Visualization of singular values of the Gram matrix and minimum squared Frobenius norm
error for linear attention as in equation 18. We vary the input dimension d between columns in the
plot.

softmax. We argue that future research should exploit the inherent strengths of linear attention
when it makes sense to (e.g., applying linear attention on easier-to-remember tokens), rather than
attempting to replicate softmax attention in all situations.
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F SCORING ABLATION EXTENSION

In section 4.3, we ablated different scoring approaches for the sparse cache. Here, we describe
exactly how each alternative score is computed. As a reminder, LoLA is motivated by the occurence
of memory collisions in the hidden state. LoLA explicitly attempts to maintain self-recall for stored
key-value pairs. An alternative perspective could be aiming for the best softmax approximation.
Similar to previous kernel work (Choromanski et al., 2020), this aims to minimize the attention
weight error

N∑
i

N∑
j

(
exp(q⊤

i kj)− ϕ(qi)
⊤ϕ(kj)

)2
. (19)

A natural scoring method for this objective would be to keep the keys with the highest attention
weight error. As a proxy for this approach, each key’s error can be summed over all queries it sees
in the sliding window with

Score(ki) =

i+η−1∑
t=i

(
exp(q⊤

t ki)− ϕ(qt)
⊤ϕ(ki)

)2
. (20)

Alternatively, we can use absolute error over mean squared error instead.

From traditional sparse attention literature (Zhang et al., 2023; Dong et al., 2024), keys that are
highly attended to may be important. We compute this as

Score(ki) =

i+η−1∑
t=i

exp(q⊤
t ki). (21)

From a third perspective, keys that are over-represented by linear attention’s query-key interactions
may seem important to cache. We compute these as

Score(ki) =

i+η−1∑
t=i

ϕ(qt)
⊤ϕ(ki)

exp(q⊤
t ki)

. (22)

Lastly, we compare these methods against a larger sliding window.
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G EXTENDED MEMORY COLLISION VISUALIZATION

Figure 10: Visualizing the relative SRE for stored KV pairs.

In Section 4.3, we visualized how memory collisions can occur in practice. This was computed
by measuring the SRE for all stored KV pairs. We found that the first few stored KV pairs do not
achieve a large error when added to the hidden state. However, these quickly become corrupted after
hidden state updates. This phenomenon was difficult to see in Figure 3, so we provide an additional
visualization with Figure 10. Specifically, we measure the SRE of each KV pair, relative to the error
of when that pair was added. For row i column j in the plot, the relative error is computed as∥∥∥∥ϕ(kj)

⊤Hi

ϕ(kj)⊤si
− vj

∥∥∥∥
2

−
∥∥∥∥ϕ(kj)

⊤Ht

ϕ(kj)⊤st
− vj

∥∥∥∥
2

. (23)

where t is the time pair j was added to the hidden state. Thus, we have j ≤ t ≤ i.

Here, we see the first few KV pairs have high relative errors for pure linear attention. These pairs
observe small SREs at early time steps, but achieve much higher SREs later. On the other hand,
sparse caching actively mitigates SREs, improving associative recall for stored KV pairs.
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H ALGORITHM PSUEDO-CODE

We provide PyTorch-like pseudo-code for the cache during decoding or generation. In this example,
we update the cache every iteration (rather than chunkwise inference) for simplicity. Lastly, this
pseudo-code does not contain any optimization tricks for ease of understanding.

#Simplified LoLA Cache for Decoding:
class LoLA_Cache:

def init():
#Cache for Sliding Window Attention
local_cache = {keys:[], values:[]} #max size η

#Cache for Sparse Attention
global_cache = {keys:[], values:[]} #max size λ

#"Cache" for Linear Attention
H, s = zeros(D,d), zeros(D)

#Update memory systems with an incoming KV pair
def update(k, v):

eligible_keys = concat(global_cache.keys, k)
eligible_values = concat(global_cache.values, v)

#Predict the associated value of each key
predicted_v = (phi(eligible_keys) @ H) / (phi(eligible_keys) @ s)
scores = L2_norm(eligible_values - predicted_v)

#Add min scoring KV pair to hidden state
min_idx = argmin(scores)
min_k = eligible_keys[min_idx]
min_v = eligible_values[min_idx]
H = H + phi(min_k) @ min_v.T
s = s + phi(min_k)

#Update Global Cache as all other KV pairs
global_cache.keys = eligible_keys[not min_idx]
global_cache.values = eligible_values[not min_idx]

#Return the output associated with the query.
def attend(q):

global_weights = exp(q @ global_cache.keys / sqrt(d) )
local_weights = exp(q @ local_cache.keys / sqrt(d) )

unnormalized_attn = sum(global_weights * global_cache.values)
+ sum(local_weights * local_cache.values)
+ phi(q) @ h #linear attn

normalizing_const = sum(global_weights)
+ sum(local_weights)
+ phi(q) @ s #linear attn

return unnormalized_attn / normalizing_const
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