
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOLA: LOW-RANK LINEAR ATTENTION WITH SPARSE
CACHING

Anonymous authors
Paper under double-blind review

ABSTRACT

The per-token cost of transformer inference scales with context length, prevent-
ing its application to lifelong in-context learning. Linear attention is an efficient
alternative that maintains a constant memory footprint, even on infinite context
lengths. While this is a potential candidate for lifelong learning, it falls short in
memory capacity. In this paper, we propose LoLA, a training-free augmentation
to linear attention that boosts associative recall. LoLA distributes past key-value
pairs from context into three memory systems: (i) recent pairs in a local sliding
window cache; (ii) difficult-to-memorize pairs in a sparse, global cache; and (iii)
generic pairs in the recurrent hidden state of linear attention. We show through
ablations that our self-recall error metric is crucial to efficiently manage long-
term associative memories. On pass-key retrieval tasks, LoLA improves the base
model’s performance from 0.6% to 97.4% accuracy. This is achieved with a 4.6×
smaller cache than Llama-3.1 8B on 4K context length. LoLA also outperforms
other 1B and 8B parameter subquadratic models on zero-shot commonsense rea-
soning tasks.

1 INTRODUCTION

Transformer-based large language models (LLMs) rely on storing all past tokens in an ever-growing
key-value (KV) cache (Vaswani et al., 2017). This allows future query tokens to access past memo-
ries with associative recall, which enables in-context learning (Olsson et al., 2022). Since no previ-
ous information is discarded, the KV cache continues to grow with context length. This eventually
leads to a memory bottleneck on long context tasks, such as lifelong in-context learning. As a result,
transformers cannot condition next token predictions on arbitrarily long sequences.

Alternative architectures to transformers have been proposed—such as Mamba (Gu & Dao, 2024),
DeltaNet (Schlag et al., 2021), linear attention (Katharopoulos et al., 2020), and others (Yang et al.,
2024a; Behrouz et al., 2024; Sun et al., 2024)—to reduce the compute complexity from quadratic to
linear. Additionally, these approaches reduce the memory cost from linear to constant. In particular,
linear attention removes the exponential dot product in softmax (Katharopoulos et al., 2020). This
effectively collapses the unbounded KV-cache into a fixed-size matrix, which corresponds to a re-
currently formed hidden state (i.e., a linear RNN). This constructs a linear associative memory map
from keys to values. Past memories can be recalled through a vector-matrix product of an incoming
query vector and the hidden state matrix. Linear attention enables constant-cost prediction per token
when conditioned on arbitrarily long contexts.

While efficient and flexible, linear attention architectures lag behind transformers in terms of mem-
ory capacity. This is largely noticeable on tasks leveraging in-context learning (Paperno et al., 2016;
Hsieh et al., 2024). The removal of the exponential dot product allows for non-orthogonal keys to
interfere with the hidden state’s learned key-to-value map. This interference—denoted as a memory
collision—impairs associative recall. Previous work used nonlinear query and key activations to
improve the exponential dot product approximation (Choromanski et al., 2020; Zhang et al., 2024).
However, these attempts are essentially performing a low-rank approximation of the infinite-rank
exponential dot product kernel.

Additional use of sparse attention (Chen et al., 2021) can improve linear attention’s recall; however,
current hybrid approaches only focus on local information with sliding window attention (Arora

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2024; Zhang et al., 2025a; Lan et al., 2025; Van Nguyen et al., 2025). These approaches can
struggle to recall critical, long-term facts that fall outside the window.

This raises our fundamental research question:

How can long term associative memory for subquadratic language models be improved?

CONTRIBUTIONS

We present LoLA: Low-rank Linear Attention with sparse caching. LoLA is a novel, training-free
inference strategy that boosts the performance of hybrid linear attention layers. LoLA distributes
historical tokens into three forms of memory: (i) recent KV pairs are stored in a sliding window
cache, (ii) difficult-to-memorize pairs in a sparse global cache, and (iii) all other pairs are placed in
a recurrent hidden-state matrix via linear attention. LoLA performs a self-recall check to see which
KV pairs disagree with the current hidden state’s linear associative map. LoLA sparsely caches the
interfering memories in full rank. The selection mechanism effectively mitigates memory collisions
with a small, constant-sized cache. This inference strategy can be applied on top of previously
trained linear attention + sliding window models (e.g., LoLCATs) to significantly improve associa-
tive recall. As a result, LoLA extracts stronger language modeling capabilities from the same base
model weights.

Utilizes Self-Recall Error. We introduce an importance metric for key-value pairs to reduce mem-
ory collisions in the hidden state of linear attention. This is computed by determining if a key can
recall its own value with linear attention. In our ablations, we show that this performance increase
cannot be obtained from using a larger sliding window or other sparse attention metrics: self-recall
is essential.

Enables Associative Recall. As a lightweight inference strategy, LoLA enables pass-key retrieval
on up to 8K context lengths in needle-in-a-haystack tasks from the RULER benchmark (Hsieh et al.,
2024). With a 4.6x smaller cache than Llama-3.1 8B (Grattafiori et al., 2024), our approach boosts
accuracy from LoLCATs’ 0.6% to 97.4% at 4K context lengths with the same model weights.

Improves Language Modeling. LoLA shows superior performance on zero-shot commonsense
reasoning tasks among 1B and 8B parameter subquadratic architectures. This demonstrates that
effective memory management can boost language modeling performance.

2 PRELIMINARIES

In this section, we review softmax attention through the lens of associative memory. Then, we show
how linear attention naturally forms a recurrent hidden state. We address practical implementations
for training linear architectures and highlight unresolved drawbacks of previous approaches.

2.1 SOFTMAX ATTENTION AS A NONPARAMETRIC, ONLINE LEARNER

Transformers process a sequence of input tokens {xt}nt=1, for xt ∈ Rd (Vaswani et al., 2017). For
each attention head, the input tokens are transformed into three distinct representations—queries,
keys, and values—via trainable weight matrices Wq,Wk ∈ Rd×dk and Wv ∈ Rd×dv . For a given
token xt, define

qt = Wqxt︸ ︷︷ ︸
query

, kt = Wkxt︸ ︷︷ ︸
key

, vt = Wvxt︸ ︷︷ ︸
value

. (1)

Causal attention uses the current query to recall past information from key-value pairs. The similar-
ity between the query qt and key ki is denoted as αti ∈ (0, 1). This similarity score determines how
much value vi is used for the current output token at time t. The output token yt is defined by

yt =

t∑
i=1

αti vi ∈ Rdv , with αti =
exp

(
q⊤
t ki/

√
dk

)∑t
j=1 exp

(
q⊤
t kj/

√
dk

) . (2)

We view softmax attention as a nonparametric function mt : Rdk → Rdv that fits to the past context
at inference time. This online function mt learns to map keys to their associated value in context

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with mt(ki) ≈ vi for (ki,vi) ∈ {(ki,vi)}ti=1. Then, mt applies the learned transformation to the
query, yt = mt(qt). The set of past key-value pairs forms an online "training set" of input-output
labels. The query acts as an unsupervised "test set".

Softmax attention caches all past key-value pairs to perform this non-parametric, or “look-up table”,
operation. Since the function complexity scales with the context length, softmax attention can flexi-
bly learn new context without forgetting past key-value associations. However, this process leads to
an unbounded KV-cache size that scales linearly with sequence length n. Ultimately, this operation
cannot be used for extremely long context scenarios, such as lifelong learning.

2.2 LINEAR ATTENTION

To bound inference costs, linear attention methods replace the exponential dot product ker-
nel (Katharopoulos et al., 2020) with a low-rank approximation. This enables models to maintain
constant-size memory footprints even for infinite sequence lengths. With this replacement,

exp

(
q⊤
t kj√
dk

)
≈ ϕ(qt)

⊤ϕ(kj), for ϕ : Rdk → RD, (3)

the output token is approximated as

y⊤
t =

t∑
i=1

exp
(
q⊤
t ki/

√
dk

)
v⊤
i∑t

j=1 exp
(
q⊤
t kj/

√
dk

) ≈
t∑

i=1

ϕ(qt)
⊤ϕ(ki) v

⊤
i∑t

j=1 ϕ(qt)
⊤ϕ(kj)

=
ϕ(qt)

⊤
(∑t

j=1 ϕ(kj) v
⊤
j

)
ϕ(qt)⊤

(∑t
j=1 ϕ(kj)

)
=

ϕ(qt)
⊤Ht

ϕ(qt)⊤st
. (4)

This creates a hidden state matrix Ht ∈ RD×dv as the sum of key-value outer products. This
effectively bounds the memory cost to O(Ddv), constant with respect to sequence length n. The
hidden dimension size D controls the approximation quality at the cost of computational efficiency.
As a linear RNN, the hidden state Ht and normalization state st ∈ RD can be computed recurrently,

Ht = Ht−1 + ϕ(kt)v
⊤
t , st = st−1 + ϕ(kt). (5)

In this formulation, linear attention stores each observation, or KV-pair, as a rank-one outer product.
Rather than building a look-up table, linear attention parameterizes the key-to-value map as a linear
function. While this approach is efficient, linear attention falls short in memory capacity as the
number of orthogonal key-value pairs is bounded by the rank of Ht. “Memory collisions” (Yang
et al., 2024a) occur when new hidden state updates overwrite past key-value associations. This
prevents the linear map from accurately modeling the context.

2.3 EFFICIENT TRAINING OF LINEAR ATTENTION

To reduce training costs, LoLCATs (Zhang et al., 2025a) and others (Bick et al., 2024; Wang et al.,
2024; Bick et al., 2025; Goldstein et al., 2025) recycle large pretrained transformers into linear
attention models with knowledge distillation (Hinton et al., 2015). These approaches minimize the
difference between the pretrained transformer’s output y (i.e., the teacher) and linear attention’s
output ŷ (i.e., the student). In particular, LoLCATs uses a trainable nonlinear map for ϕ : Rdk →
RD, constructed as

ϕ(x) =
[
exp(w⊤

1 x), . . . , exp(w
⊤
D/2 x), exp(−w⊤

1 x), . . . , exp(−w⊤
D/2 x)

]
∈ RD, (6)

with learnable weights wi ∈ Rdk (Zhang et al., 2024). This distillation approach freezes all other
parameters, adjusting ϕ to minimize the loss

L(ϕ) =
∑
q,k,v

∥yt − ŷt∥, with ŷt =
ϕ(qt)

⊤Ht

ϕ(qt)⊤st
. (7)

After attention distillation, the whole model is finetuned with LoRA (Hu et al., 2022). Overall,
this procedure only requires 40 million training tokens from the Alpaca dataset (Taori et al., 2023),
grouped in 1024-long sequences.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.4 DISADVANTAGES OF PREVIOUS APPROACHES

Even with distillation, linear attention models struggle to accurately mimic the behavior of softmax
attention. Initial work in linear attention proposed nonlinear query and key activations to improve
the exponential dot product approximation (Choromanski et al., 2020; Zhang et al., 2024). These
methods fall short as they are essentially performing a low-rank approximation of the infinite-rank
exponential dot product kernel. In Appendix E, we show that the exponential dot product kernel has
slowly decaying singular values for simple data distributions. This implies that high-dimensional
hidden states may be required for modest approximation errors.

Recent approaches attempt to address the poor performance of the low-rank approximation in linear
attention by augmenting it with sliding window attention (Arora et al., 2024; Zhang et al., 2025a).
These methods compute a finite number of recent tokens in a window with softmax attention and
compute the rest with linear attention. Since natural language contains a significant amount of
local information, this hybrid approach nearly recovers the performance of pretrained transformers
on short-context tasks. For longer sequences, however, these methods struggle to recall important
information that falls outside the window and in the hidden state. We show in Table 1 that these
models cannot perform associative recall on simple needle-in-a-haystack tasks. Other forms of
sparse attention may be required alongside "low-rank" attention (Chen et al., 2021).

3 MITIGATING MEMORY COLLISIONS WITH SPARSE CACHING

Identifying Difficult-to-Remember KV Pairs. As our base assumption, strong associative mem-
ory systems should allow keys to retrieve their associated values. Online functions mt with perfect
recall interpolate the online training set, defined as

mt(ki) = vi, ∀i ≤ t (8)

For perfect recall in linear attention, equation 8 translates to

mt(ki)
⊤ =

ϕ(ki)
⊤Ht

ϕ(ki)⊤st
=

ϕ(ki)
⊤ ∑t

j=1 ϕ(kj)v
⊤
j

ϕ(ki)⊤
∑t

j=1 ϕ(kj)
= v⊤

i . (9)

In practice, however, "memory collisions" prohibit equation 9 from holding. Non-orthogonal keys
interfere with each other when forming the hidden state Ht. We measure the Self-Recall Error
(SRE) to measure how well a past key can retrieve its associated value with

SRE(k,v |Ht, st) =

∥∥∥∥ϕ(k)⊤Ht

ϕ(k)⊤st
− v

∥∥∥∥
2

= ∥v̂ − v∥2 . (10)

This determines the error between the predicted value v̂ for a given key k and the ground truth value
v.

Method Overview. We propose LoLA: a training-free inference strategy that boosts the perfor-
mance of hybrid linear attention models. LoLA addresses the limitations of previous linear attention
mechanisms by integrating a sparse caching strategy at inference time. This method employs three
memory systems to store long term associations

1. Linear Attention utilizes a finite-rank approximation to store an infinite amount of tokens.
2. Sliding Window Attention provides full-rank attention scores for finite, local context.
3. Sparse Caching identifies and stores key-value pairs that are challenging to remember,

preventing memory collisions in linear attention.

LoLA uses the self-recall error, equation 10, to decide which KV pairs should be stored separately
in full-rank. Large errors indicate the severity of the memory collision. As a result, LoLA keeps the
KV pairs with the largest error in a sparse cache. This limits the corruption of past memories and
improves associative recall.

Since only a finite amount of tokens can be stored at each time step to maintain efficiency, LoLA
performs a greedy scoring approach. At every iteration, LoLA scores the KV pairs leaving the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

…k3 kt

vt

…

v3k2k1

v2

v1

qt

…

q3

q2

q1

ỹt

…

ỹ3

ỹ2

ỹ1

k1

q1

=

=exp

ϕ(qt)

ϕ(kt)

exp

q1k1

q4k1

q2k1 q2k2

q3k3

q4k4

q5k5

q3k2

q4k3

q5k4q5k3

q4k2

q3k1

q5k2q5k1

Its more efficient to compute attention for the first (SW+floor(D/2))

2*d*S vs. d*D
Use SW when 2*(t-S) <= D

SW=2, D=4
When t <= S+D/2

2*d*S vs. d*D
Use SW when 2*(t-S) <= D

SW=2, D=2
When t <= S+D/2

Purple not in sliding window, but
will be called with attention
anyways.

Here chunk size = 2, eta=4
1 chunk needs leading diag
1 needs back diag (pruple)
The rest chunks are dense
attention.

2*d*S vs. d*D
Use SW when 2*(t-S) <= D

SW=4, D=1
When t <= S+D/2 =

ht ht

SW

SW

ht

(min heap)

Sparse KV-Cache

(FIFO queue)

Sliding Window

kt-η

vt-η

k’

v’

kt

vt

Score the difficulty of
each token in the window

Store difficult to
remember tokens

Tokens with smaller
scores get replaced

Store easy to
remember tokens in the
recurrent hidden state

Linear Attn.
Capacity: ∞
Rank: D (Low)
Global Context

Sparse Cache
Capacity: λ
Rank: Full
Global Context

Sliding Window Attn.
Capacity: η
Rank: Full
Local Context

Hidden
State

Incoming token
enters the
window

LoLA uses three forms of memory,

(min heap)

Sparse KV-Cache

(FIFO queue)

Sliding Window Cache

Score the difficulty
of each token in the
window

Store difficult to
remember tokens

Tokens with smaller
scores get replaced

Store easy to remember
tokens in the recurrent

hidden state

Linear Attention
Capacity:
Rank: D (Low)
Global Context

Sparse, Global Attention
Capacity:
Rank: Full
Global Context

Sliding Window Attention
Capacity:
Rank: Full
Local Context

Hidden
State

Incoming token
enters the
window

Sliding Window

Sparse Cache

Linear Attn.

(min heap)

Sparse KV-Cache

(FIFO queue)

Sliding Window

kt-η

vt-η

k’

v’

kt

vt

Score the difficulty of each
token in the window

Store difficult to
remember tokens

Tokens with smaller
scores get replaced

Store easy to remember
tokens in the recurrent

hidden state

Linear Attn.
Max # Tokens: ∞
Rank: D (Low)
Global Context

Sparse Cache
Max # Tokens: λ
Rank: Full
Global Context

Sliding Window Attn.
Max # Tokens: η
Rank: Full
Local Context

Hidden
State

Incoming token
enters the
window

keys

qu
er

ie
s

LoLCATs (base model) LoLA Chunkwise LoLA

Figure 1: LoLA stores past KV pairs in three forms memory for each attention head.

sliding window and re-scores all pairs currently stored in the sparse cache. At each timestep, the
pairs with the lowest error are moved to the linear hidden state indefinitely. Re-scoring pairs in the
sparse cache is essential since the SRE is dependent on the current hidden state. For example, a
KV pair could become more aligned with the hidden state in the future after a few updates. In the
generation implementation of LoLA, we define the set of pairs that are scored at time t as

Et = Gt−1 ∪ {(kt−η,vt−η)}, (11)

where Gt−1 is the set of KV pairs in the sparse cache at time t− 1. Here, η is the maximum number
of pairs in the sliding window. We update the sparse cache by selecting the top-λ errors in Et, i.e,

Gt = argmax
G⊂Et:|G|=λ

∑
(k,v)∈G

SRE(k,v |Ht, st). (12)

The remaining pairs, denoted by St = Et ∩ Gc
t where Gc

t is the complement of Gt, are stored in
hidden state via

Ht = Ht−1 +
∑

(k,v)∈St

ϕ(k)v⊤, st = st−1 +
∑

(k,v)∈St

ϕ(k) (13)

Once the caches are up to date, LoLA computes the output token yt as

yt =

Linear Attn.︷ ︸︸ ︷
ϕ(qt)

⊤Ht +

Sparse Cache︷ ︸︸ ︷∑
i∈Gt

exp
(
q⊤
t ki/

√
d
)
vi +

Sliding Window︷ ︸︸ ︷
t∑

j=t−η+1

exp
(
q⊤
t kj/

√
d
)
vj

ϕ(qt)⊤st +
∑

i∈Gt
exp

(
q⊤
t ki/

√
d
)
+

∑t
j=t−η+1 exp

(
q⊤
t kj/

√
d
) . (14)

Both η and λ are hyper-parameters for the size of the sliding window and sparse cache, respectively.

Chunkwise Inference. When the input sequence is available ahead of time (e.g., prefill), LoLA is
accelerated with parallelization. By partitioning the input sequence into chunks of size C, we can
compute intra-chunk operations in parallel with dense matmuls (Yang et al., 2024b). This reduces
the number of recurrent iterations by a factor of C while preserving the constant-memory cost that
motivates LoLA.

LoLA computes softmax attention with the current chunk of queries and previous two chunks of
KV-pairs. For small chunk sizes, softmax attention is almost equally efficient to linear attention.
Artificially limiting softmax within a chunk will not improve efficiency, only hurt performance. The
past two chunks of KV-pairs are concatenated with the sparse cache in order to compute a single
FlashAttention (Dao et al., 2022) pass per chunk of queries. For the linear attention portion of the
forward pass, all queries within the chunk share the same hidden state.

After computing the past chunk of output tokens, we evict the oldest chunk of KV-pairs in the
window, sending them to the hidden state or sparse cache. All of the evicted and sparse cache pairs
are scored with the SRE, equation 10. The λ pairs with the largest errors in the eligible set,

Et = Gt−1 ∪ {(ki,vi) | t− 2C ≤ i < t− C}, (15)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

…k3 kt

vt

…

v3k2k1

v2

v1

qt

…

q3

q2

q1

ỹt

…

ỹ3

ỹ2

ỹ1

k1

q1

=

=exp

ϕ(qt)

ϕ(kt)

exp

q1k1

q4k1

q2k1 q2k2

q3k3

q4k4

q5k5

q3k2

q4k3

q5k4q5k3

q4k2

q3k1

q5k2q5k1

Its more efficient to compute attention for the first (SW+floor(D/2))

2*d*S vs. d*D
Use SW when 2*(t-S) <= D

SW=2, D=4
When t <= S+D/2

2*d*S vs. d*D
Use SW when 2*(t-S) <= D

SW=2, D=2
When t <= S+D/2

Purple not in sliding window, but
will be called with attention
anyways.

Here chunk size = 2, eta=4
1 chunk needs leading diag
1 needs back diag (pruple)
The rest chunks are dense
attention.

2*d*S vs. d*D
Use SW when 2*(t-S) <= D

SW=4, D=1
When t <= S+D/2 =

ht ht

SW

SW

ht

(min heap)

Sparse KV-Cache

(FIFO queue)

Sliding Window

kt-η

vt-η

k’

v’

kt

vt

Score the difficulty of
each token in the window

Store difficult to
remember tokens

Tokens with smaller
scores get replaced

Store easy to
remember tokens in the
recurrent hidden state

Linear Attn.
Capacity: ∞
Rank: D (Low)
Global Context

Sparse Cache
Capacity: λ
Rank: Full
Global Context

Sliding Window Attn.
Capacity: η
Rank: Full
Local Context

Hidden
State

Incoming token
enters the
window

LoLA uses three forms of memory,

(min heap)

Sparse KV-Cache

(FIFO queue)

Sliding Window

kt-η

vt-η

k’

v’

kt

vt

Score the difficulty of
each token in the
window

Store difficult to
remember tokens

Tokens with smaller
scores get replaced

Store easy to
remember tokens in the
recurrent hidden state

Linear Attn.
Capacity: ∞
Rank: D (Low)
Global Context

Sparse Cache
Capacity: λ
Rank: Full
Global Context

Sliding Window Attn.
Capacity: η
Rank: Full
Local Context

Hidden
State

Incoming token
enters the
window

Sliding Window

Sparse Cache

Linear Attn.

(min heap)

Sparse KV-Cache

(FIFO queue)

Sliding Window

kt-η

vt-η

k’

v’

kt

vt

Score the difficulty of each
token in the window

Store difficult to
remember tokens

Tokens with smaller
scores get replaced

Store easy to remember
tokens in the recurrent

hidden state

Linear Attn.
Max # Tokens: ∞
Rank: D (Low)
Global Context

Sparse Cache
Max # Tokens: λ
Rank: Full
Global Context

Sliding Window Attn.
Max # Tokens: η
Rank: Full
Local Context

Hidden
State

Incoming token
enters the
window

keys

qu
er

ie
s

LoLCATs (base model) LoLA Chunkwise LoLA

Figure 2: Illustration of where each KV pair is stored at every time step for each method.

will remain in the sparse cache. The remainder are integrated into the hidden state through the
standard outer product update as in equation 5.

The given hardware setup dictates the total fixed cache size of LoLA, but the ratio of chunk size to
sparse cache size depends on the application. Increasing the chunk or sliding window size reduces
the number of recurrent iterations and overhead costs from sparse caching; however, this requires
more VRAM. Increasing the sparse cache size λ will better mitigate collisions in the hidden state and
improve long context recall. In Appendix B, we explore this trade-off for various cache hyperparam-
eters in an efficiency analysis. Specifically we measure the total VRAM use, Time-to-First-Token,
and long context performance. Furthermore, we illustrate the bounded nature of LoLA, compared
to vanilla transformers.

4 EXPERIMENTS & RESULTS

In our experiments, we leverage the same attention distillation procedure in LoLCATs to obtain the
base model, then apply our inference strategy, LoLA, at test time. To train the base model, we
replace each attention module in Llama-3.1 8B (or Llama-3.2 1B) with a hybrid sliding window +
linear attention module. We use a sliding window size η = 64 for training and use a trainable feature
map for ϕ as described in equation 6. The output dimension of ϕ is D = 2dk. First, we freeze all
non-attention layers in the linearized Transformer and only train ϕ with distillation for two epochs
on Alpaca (Taori et al., 2023). Then, we perform LoRA (Hu et al., 2022) finetuning on the whole
model for two epochs. This procedure only uses 40M training tokens with 1024-long sequences.

4.1 ASSOCIATIVE RECALL

To see how LoLA improves associative recall, we conduct a study on Single-Needle-in-a-Haystack
(S-NIAH) tasks from RULER (Hsieh et al., 2024). In Table 1, we compare LoLA to the base model,
LoLCATs-8B, and variants with an extended sliding window for a fair comparison. We observe
LoLCATs struggles to recall information outside the sliding window. Extending the sliding window
size marginally improves performance. We explain the differences of each NIAH task in Appendix C
and discuss these results more in depth.

Next in Table 2, we measure the performance of LoLA on the rest of the RULER benchmark
at 4K context length. This covers much harder long context tasks, such as multi-key retrieval
(MK1,MK2,MK3), multi-query (MQ), multi-value (MV), variable tracking (VT), common word
extraction (CWE), frequent word extraction (FWE), Hotpot-QA (HQA), and Squad-QA (SQA).
We compare LoLA against a stronger version of LoLCATs—with an equivalent, larger cache size
(η = 896)—and Mamba2-8B (Dao & Gu, 2024; Waleffe et al., 2024).

LoLA improves recall with minimal additional caching. Table 1 demonstrates an improvement from
the base model’s 0.6% to 97.4% accuracy on S-NIAH-1. This is achieved with a 4.6× smaller cache
than Llama with η = 256, λ = 256. Furthermore, we show in Table 2 that sparse caching is essential
for more difficult tasks, improving an extended form of LoLCATs from 6.7% average accuracy to
45.2%. For example, tasks such as variable tracking (VT) require understanding all of the context.
Since no part of the sequence can be lost, naive metrics for sparse attention, such as (Zhang et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Measuring long context recall with Needle-in-a-Haystack (NIAH) tasks from the RULER
benchmark. We report recall accuracy for each method across different context lengths (512, 1024,
etc.) for each task.

Model Cache Params S-NIAH-1 S-NIAH-2 S-NIAH-3
(η, λ) .5K 1K 2K 4K .5K 1K 2K .5K 1K 2K

Transformer
Llama-3.1-8B (∞, 0) 100 100 100 100 100 100 100 100 100 100

Base Subquadratic Model
LoLCATs-8B (64, 0) 9.0 3.2 1.4 0.6 100 7.6 2.0 97.4 1.6 0.6

Extended at Inference
LoLCATs-8B+ (128, 0) 29.4 9.6 3.4 1.4 100 17.4 7.2 98.2 14.6 3.2
LoLA-8B (64, 64) 99.0 95.4 79.4 69.4 100 39.4 3.0 99.8 7.4 1.6

LoLCATs-8B+ (512, 0) 100 65.6 24.6 8.8 100 71.8 21.6 100 66.0 10.6
LoLA-8B (256, 256) 100 100 99.6 97.4 100 100 85.4 99.8 99.8 27.2

LoLA-8B (512, 512) 100 100 100 99.9 100 100 100 100 100 100

Table 2: Extended RULER Benchmark on 4K context lengths. Compared to NIAH tasks, these
require much stronger forms of memory and state tracking. For cache parameters, LoLA uses η =
128, λ = 768 and LoLCATs uses η = 896.

Model MK1 MK2 MK3 MQ MV VT CWE FWE HQA SQA Avg

Mamba2-8B 40.3 13.8 5.5 49.1 35.0 76.5 32.9 76.6 31.8 35.5 39.7
LoLCATs-8B+ 12.8 1.4 0.4 3.3 3.6 0.7 3.0 13.6 14.2 14.0 6.7
LoLA-8B 39.4 11.6 7.6 67.6 65.0 85.2 45.9 51.3 24.2 53.9 45.2

2023), cannot be used. Memory collisions must be mitigated. Sparse caching—specifically with our
self-recall error—unlocks a new capability for hybrid linear attention architectures.

4.2 COMMONSENSE REASONING

We demonstrate the language modeling performance of LoLA on various zero-shot commonsense
reasoning tasks using LM evaluation harness (Gao et al., 2024). To compare against previously
available approaches, we use PIQA (PI) (Bisk et al., 2020), ARC-Easy (AE) & ARC-Challenge
(AC) (Clark et al., 2018), HellaSwag (HS) (Zellers et al., 2019), WinoGrande (WG) (Sakaguchi
et al., 2021), MMLU (MM) (Hendrycks et al., 2020), and Lambada OpenAI (Paperno et al., 2016)).

In Table 3, we compare LoLA against other 7-9B subquadratic models (Mamba (Gu & Dao, 2024),
Mamba2 (Dao & Gu, 2024), RWKV-6 (Peng et al., 2024), Hawk & Griffin (De et al., 2024), Fal-
con Mamba (Zuo et al., 2024), RecurrentGemma (Botev et al., 2024), Mamba-in-the-Llama (Wang
et al., 2024), Llamba (Bick et al., 2025), Hedgehog (Zhang et al., 2024), and LoLCATs (Zhang et al.,
2025a)). Models that use any form of unbounded global attention (e.g interleaving SSM blocks and
Transformer blocks) still retain quadratic compute complexity and growing memory costs. These
are outside the scope of this work. We also report the number of training tokens used to create
each model in both tables. Though LoLA is a training-free inference strategy that can be used for
any sliding window + linear attention model, we report the cost of distilling the base subquadratic
model (Zhang et al., 2025a). In Appendix A, we show results for 1-2B subquadratic models. Ad-
ditionally, we provide a direct comparison of distilled models by measuring the average accuracy
relative to their teacher models.

On short context tasks such as Winogrande, we observe additional caching is not needed as only
local information is required for good performance. On the other hand, we find that gaps still
exist with Lambada and MMLU. Lambada requires longer context reasoning, leading to significant
improvements with sparse caching. Furthermore, Bick et al. (Bick et al., 2025) suggest that dataset
selection plays a large role for MMLU performance. Though sparse caching shows significant
improvement on MMLU, a more powerful distillation procedure or dataset may be needed to reach
Llama’s performance (Goldstein et al., 2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of 7-9B parameter fixed-memory models across various com-
mon sense reasoning tasks: PIQA (PI), Arc-Easy (AE), ARC-Challenge (AC), Winogrande (WG),
MMLU (MM), and Lambada-openai (LB). Bolded scores are the best and underlined scores are
the second best. We report accuracy for all applicable, except AC and HS use normalized logits.
MMLU (MM) uses 5-shot. Reported scores were compiled from (Bick et al., 2025; Zhang et al.,
2025a; Waleffe et al., 2024; Wang et al., 2024). * indicates our reproduced score is used and is
higher than reported score. LoLA uses small cache parameters, η = λ = 64.

Model Tokens (B) PI AE AC HS WG MM LB

Transformers
Llama-3.1-8B 15000 81.1 81.7 55.1 79.3 73.9 68.0 73.0

Subquadratic: Pretrained from scratch
Mamba-8B 1100 78.9 75.4 42.2 75.6 68.3 28.0 -
Mamba2-8B 3500 79.8 75.9 48.1 77.7 71.6 48.7 -
RWKV-6 (W2.1) 7B 1420 78.7 76.8 46.3 75.1 70.0 - -
Hawk 7B 300 80.0 74.4 45.9 77.6 69.9 35.0 -
Griffin 7B 300 81.0 75.4 47.9 78.6 72.6 39.3 -
Falcon3-Mamba-7B 7300 79.7 72.5 53.2 79.8 69.1 65.0 67.5
RecurrentGemma-9B 2000 80.6 78.9 57.1 80.1 73.7 55.1 54.1

Subquadratic: Distilled from Llama-3.1-8B
Mamba2-Llama3-8B (L3.1-Instr.) 20 76.8 74.1 48.0 70.8 58.6 43.2 -
Hedgehog-8B (Llama-3) 0.04 77.4 71.1 40.6 66.5 54.3 24.2 -
Llamba-8B 12 80.9 82.5 54.6 77.6 73.3 60.0 69.4
LoLCATs-8B 0.04 81.0 82.4 54.4 79.1 73.6* 54.9 67.6
LoLA-8B (ours) 0.04 81.6 82.5 55.4 79.8 73.6 57.6 74.9

Figure 3: Visualizing memory collisions by measuring SRE for stored KV pairs.

For 1B parameter models, sparse caching provides even more utility. Since the hidden state di-
mensionality scales with the head dimension of the base model, 1B models can face more memory
collisions. In Appendix A, LoLA demonstrates state-of-the-art performance among 1B subquadratic
models, even outperforming Llama-3.2-1B on average. Overall, LoLA pushes the pareto front for
training-efficient and high-performing subquadratic LLMs.

4.3 UNDERSTANDING MEMORY COLLISIONS

We visualize how memory collisions occur in practice. At each time step t, we measure the self-
recall error from equation 10 for every KV pair that is currently stored in the hidden state Ht. We
visualize the error for linear attention, sliding window + linear attention, and LoLA. We use a sliding
window size of η = 64 tokens and a sparse cache size of λ = 64 when applicable.

When only using linear attention, we observe large recall errors. At early time steps, the first few
KV pairs receive small errors, but quickly become larger after hidden state updates. In Appendix
G, we additionally plot the relative error to better show how this occurs. These stored associative

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

memories become corrupted and tough to recall in the future. Furthermore, difficult-to-memorize
pairs are evident, illustrated as bright columns in Figure 3. The additional use of sliding window
attention only delays the inevitable memory collisions.

LoLA significantly reduces the errors for all KV pairs. Difficult-to-memorize pairs are appropriately
stored in the sparse cache, as seen by the zero-columns in the plot. This also prevents corrupting
older KV pairs that are already stored in the hidden state.

Scoring Method Ablation. In our final experiment, we measure alternative scoring functions to
understand which KV pairs should be sparsely cached. Traditional sparse attention metrics assume
"unimportant" tokens are evicted entirely from the context (Zhang et al., 2023; Singhania et al.,
2024; Zaheer et al., 2020). In our setting, these assumptions are invalid as unimportant tokens are
stored in low precision through linear attention.

Table 4: Ablation results for various scoring methods on S-NIAH-1 with 512 context length, η =
64, λ = 64. Extended details for the score calculation can be found in Appendix F.

Importance Metric S-NIAH-1 @ .5K Informal Assumption for “Important” Pairs∥∥∥∥ϕ(k)⊤Hϕ(k)⊤s
− v

∥∥∥∥ 99.0% Pairs that do not align with the hidden state’s prediction

(exp(q⊤k)− ϕ(q)⊤ϕ(k))2 11.4% Keys with incorrect attention weights

| exp(q⊤k)− ϕ(q)⊤ϕ(k)| 20.0% Keys with incorrect attention weights

ϕ(q)⊤ϕ(k)

exp(q⊤k)
52.0% Keys that Linear Attention over estimates

exp(q⊤k) 10.6% Keys that are attended to during sliding window attention

None, extend sliding window 29.4% Most recent pairs

In Table 4, we observe that storing keys with poor exponential dot product approximations under-
performs the naive extension of sliding window attention. This hints that a better softmax approxi-
mation should not be the main objective for linear attention methods. Keys over-estimated by linear
attention seem to be “more important” than local keys; however, all tested alternatives fall short of
enabling associative recall.

We also compare against traditional sparse attention ideas that use softmax attention scores as a
proxy for importance, such as in H2O (Zhang et al., 2023) and LESS (Dong et al., 2024). Specifi-
cally, we found that a key’s average similarity score, exp(q⊤k), does not translate well in the hybrid
linear attention setting. Since queries are used to influence the selection of keys in the sparse cache,
we believe highly similar phrases in the haystack may interfere with finding the needle. LoLA, on
the other hand, benefits from its query-agnostic metric.

5 CONCLUSION

LoLA integrates linear attention with sparse caching to effectively mitigate memory collisions.
By selectively retaining KV pairs that do not align with the current hidden state, LoLA enables
passkey retrieval when the base model fails. Our experimental results demonstrate that targeted
sparse caching substantially improves long context performance over naively increasing the slid-
ing window size. LoLA demonstrates strong language modeling performance over other 1B or 8B
subquadratic models.

Future work. The sparse cache carries a small overhead compute cost of O(λd) for scoring. For
high-complexity, long-context tasks, we found that larger sparse cache sizes are needed to reduce
interference in the hidden state. We believe that these limitations can addressed in the future with
a better base subquadratic model. More advanced base architectures, such as LaCT (Zhang et al.,
2025b) or Atlas (Behrouz et al., 2025), use nonlinear key-to-value maps, which may lead to smaller
caches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For reproducibility of distilling base subquadratic model, see (Zhang et al., 2025a). This also in-
cludes released weights for the 8B parameter model on Huggingface. All evaluations were per-
formed using LM Evaluation Harness (Gao et al., 2024). pseudo-code is available for reproducing
LoLA’s attention operation in Appendix H. This is a drop-in replacement for the hybrid linear atten-
tion in the base model. Full code will be provided in the camera-ready version. Lastly, LLMs had
minor contributions to the paper writing, such as spell-check and formatting.

REFERENCES

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput
tradeoff. In International Conference on Machine Learning, pp. 1763–1840. PMLR, 2024.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Ex-
tended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time.
arXiv preprint arXiv:2505.23735, 2025.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Aviv Bick, Kevin Li, Eric Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models. Advances in Neural Information Processing Sys-
tems, 37:31788–31812, 2024.

Aviv Bick, Tobias Katsch, Nimit Sohoni, Arjun Desai, and Albert Gu. Llamba: Scaling distilled
recurrent models for efficient language processing. arXiv preprint arXiv:2502.14458, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Aleksandar Botev, Soham De, Samuel L Smith, Anushan Fernando, George-Cristian Muraru, Ruba
Haroun, Leonard Berrada, Razvan Pascanu, Pier Giuseppe Sessa, Robert Dadashi, et al. Recur-
rentgemma: Moving past transformers for efficient open language models. CoRR, 2024.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
fying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In International Conference on Machine Learning (ICML),
2024.

10

https://arxiv.org/abs/2004.05150

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George-Cristian Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing
gated linear recurrences with local attention for efficient language models. CoRR, 2024.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint
arXiv:2405.16712, 2024.

Daniel Goldstein, Eric Alcaide, Janna Lu, and Eugene Cheah. Radlads: Rapid attention distillation
to linear attention decoders at scale. arXiv preprint arXiv:2505.03005, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2024. URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Disen Lan, Weigao Sun, Jiaxi Hu, Jusen Du, and Yu Cheng. Liger: Linearizing large language
models to gated recurrent structures. arXiv preprint arXiv:2503.01496, 2025.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2312.00752

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Jean Mercat, Igor Vasiljevic, Sedrick Scott Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and
Thomas Kollar. Linearizing large language models. In First Conference on Language Modeling.

Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and Edoardo M
Ponti. The sparse frontier: Sparse attention trade-offs in transformer llms. arXiv preprint
arXiv:2504.17768, 2025.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. CoRR, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, and Thomas Wolf. Fineweb: Decanting the
web for the finest text data at scale. HuggingFace. Accessed: Jul, 12, 2024.

Bo Peng, Daniel Goldstein, Quentin Gregory Anthony, Alon Albalak, Eric Alcaide, Stella Biderman,
Eugene Cheah, Teddy Ferdinan, Kranthi Kiran GV, Haowen Hou, et al. Eagle and finch: Rwkv
with matrix-valued states and dynamic recurrence. In First Conference on Language Modeling,
2024.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng Kong.
Random feature attention. In International Conference on Learning Representations, 2020.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Conference
on Learning Representations.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. In First Conference on Language Modeling, 2024.

Liliang Ren, Yang Liu, Yadong Lu, Chen Liang, Weizhu Chen, et al. Samba: Simple hybrid state
space models for efficient unlimited context language modeling. In The Thirteenth International
Conference on Learning Representations, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International conference on machine learning, pp. 9355–9366. PMLR, 2021.

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
Grazzi. Deltaproduct: Increasing the expressivity of deltanet through products of householders.
In ICLR 2025 Workshop on Foundation Models in the Wild, 2025.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

12

https://arxiv.org/abs/2307.08621

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Chien Van Nguyen, Ruiyi Zhang, Hanieh Deilamsalehy, Puneet Mathur, Viet Dac Lai, Haoliang
Wang, Jayakumar Subramanian, Ryan A Rossi, Trung Bui, Nikos Vlassis, et al. Lizard: An
efficient linearization framework for large language models. arXiv preprint arXiv:2507.09025,
2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models. Advances in Neural Information Processing
Systems, 37:62432–62457, 2024.

Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-time regression: a unifying framework for
designing sequence models with associative memory. arXiv preprint arXiv:2501.12352, 2025.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. arXiv preprint arXiv:2412.06464, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024b.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the porcu-
pine: Expressive linear attentions with softmax mimicry. In The Twelfth International Conference
on Learning Representations, 2024.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal,
Krithik Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large language models.
In The Thirteenth International Conference on Learning Representations, 2025a.

Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint
arXiv:2505.23884, 2025b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem, Ilyas Chahed, Younes Belkada, Guillaume
Kunsch, and Hakim Hacid. Falcon mamba: The first competitive attention-free 7b language
model. arXiv preprint arXiv:2410.05355, 2024.

13

https://github.com/tatsu-lab/stanford_alpaca

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXTENDED LANGUAGE MODELING RESULTS

1B parameter model results. Following Section 4.2, we extend this comparison in Table 5 for
various 1-2B parameter subquadratic models (Grattafiori et al., 2024; Li et al., 2023; Sun et al.,
2023; Qin et al., 2024; Schlag et al., 2021; Yang et al., 2024a; Gu & Dao, 2024; Dao & Gu, 2024;
Beck et al., 2024; Peng et al., 2024; Bick et al., 2024; Zhang et al., 2025a; Bick et al., 2025; Ren
et al., 2025). Compared to the 8B models, we observe that sparse caching is more important in the
1B parameter regime since there exist more memory collisions. This is a direct result of a smaller
hidden state dimension. The size of Ht scales with the head dimension of the base model. Llama-3.2
1B’s head dimension is half that of Llama-3.1 8B.

Table 5: Performance comparison across zero-shot commonsense reasoning tasks for various 1-2B
parameter subquadratic models. * indicates normalized logits were reported instead.

Model Tokens PIQA ARC-e ARC-c Hella. Wino. LMB. LMB.
(B) acc ↑ acc ↑ acc_n ↑ acc_n ↑ acc ↑ acc ↑ ppl ↓

Transformers (Bick et al., 2024; Zhang et al., 2025a)
Llama-3.2-1B 9000 74.4 65.5 35.8 63.7 60.5 60.1 -
Phi-1.5-1.3B 150 76.6 75.6 48.0 62.6 73.4 53.4 -

Subquadratic: Pretrained from scratch on FineWeb-Edu (Yang et al., 2024a; Penedo et al., 2024)
RetNet-1.3B 100 70.1 67.3 33.8 49.2 54.1 40.5 17.3
HGRN2-1.3B 100 70.5 69.4 35.3 49.5 52.8 39.5 17.7
DeltaNet-1.3B 100 70.7 68.5 35.7 50.9 53.4 42.5 16.9
Gated-DeltaNet-1.3B 100 72.3 71.2 38.4 55.8 57.5 46.7 12.2
Mamba1-1.3B 100 71.3 69.5 35.4 52.9 53.0 44.0 15.1
Mamba2-1.3B 100 71.9 72.5 37.9 55.7 55.2 45.7 12.6

Subquadratic: Pretrained from scratch on various sources (Bick et al., 2024; 2025)
Mamba1-1.4B 315 74.2 65.5 32.8 59.1 61.5 64.9 -
Mamba2-1.3B 315 73.2 64.3 33.3 59.9 60.9 65.7 -
xLSTM-1.4B 300 74.6 64.3 32.6 60.9 60.6 57.8 -
Finch-1.6B 1100 72.6 64.2 34.1 57.3 59.4 66.8 -
RecurrentGemma-2B 2000 67.2 35.6 51.2 60.3 55.7 52.5 -
Samba-1.3B 100 72.4 58.2 - 54.7 55.7 51.7 -

Subquadratic: Distilled from Phi-1.5-1.3B (Bick et al., 2024; Zhang et al., 2025a)
Phi-Mamba-1.5B 3 75.5 74.0 44.1 60.2 71.7 50.1 -
LoLCATs-Phi-1.3B 0.04 76.9 77.0 46.9 62.3 72.7 - -

Subquadratic: Distilled from Llama-3.2-1B (Bick et al., 2025; Zhang et al., 2025a)
Llamba-1B 8 74.0* 69.5* 37.2 61.2 60.6 48.4 -
LoLCATs-Llama-1B 0.04 74.6 63.0 35.1 63.7 61.5 53.4 9.3
LoLA-1B (ours) 0.04 76.2 66.2 36.9 64.1 60.9 61.9 5.3

We provide additional notes for the results in Table 5. Mamba and Mamba2 are popular architectures
and have been trained many times with different datasets and hyperparameters. We report variations
from two sources for robust results. In addition, LoLCATs demonstrated results on both Llama-3.2
1B and Phi-1.5. The model and code for reproducing LoLCATS-Phi-1.3B is not publicly available,
so we could not produce Lambada scores. Similarly, we do not have LoLA results for this either.
We were able to reproduce LoLCATs-Llama-1B, however, our achieved Winogrande accuracy was
lower. We reported the score from the paper, 61.5%, over our reproduced 60.9%.

Cross-teacher comparison of distilled subquadratic models. We gathered results from both Ta-
ble 5 and Table 3 to compare language model performance relative to the teacher models. We aver-
age the performance across tasks and compute the relative average. This is calculated by dividing
the model’s average by the teacher model’s average.

In Table 6, LoLA outperforms other distilled model approaches. We find that LoLCATs and Llamba
perform similarly overall, with LoLCATs demonstrating better token efficiency. Overall, LoLA
pushes the pareto front for high-performing and token-efficient models.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison of distilled subquadratic models from different teacher models. We report the
average accuracy across tasks when applicable (i.e., all scores are reported or available). We also
report the relative accuracy, measured as the student average / the teacher average. Results were
taken from various related works with the section header containing the sources.

Model Tokens (B) PI AE AC HS WG LB Avg. Rel. Avg.

Transformers
Phi-1.5-1.3B 150 76.6 75.6 48.0 62.6 73.4 53.4 64.9 -
Llama-3.2-1.3B 9000 74.4 65.5 35.8 63.7 60.5 60.1 60.0 -
Llama-3.1-8B 15000 81.1 81.7 55.1 79.3 73.9 73.0 74.0 -
Llama-3.1-8B-Instr. 15000+ 80.8 81.8 55.2 79.2 73.9 - 74.0 -

Subquadratic: Distilled from Phi-1.5-1.3B
Phi-Mamba1.5B 3 75.5 74.0 44.1 60.2 71.7 50.1 62.6 0.965×
LoLCATs-1.3B 0.04 76.9 77.0 46.9 62.3 72.7 - - -

Subquadratic: Distilled from Llama-3.2-1.3B
Llamba-1.3B 8 74.0* 69.5* 37.2 61.2 60.6 48.4 58.5 0.975×
LoLCATs-1.3B 0.04 74.6 63.0 35.1 63.7 61.5 53.4 58.6 0.977×
LoLA-1.3B (ours) 0.04 76.2 66.2 36.9 64.1 60.9 61.9 61.0 1.017×
Subquadratic: Distilled from Llama-3.1-8B Instruct
Mamba2-Llama3-8B 20 76.8 74.1 48.0 70.8 58.6 43.2 61.9 0.837×
Subquadratic: Distilled from Llama-3.1-8B
Llamba-8B 12 80.9 82.5 54.6 77.6 73.3 69.4 73.1 0.987×
LoLCATs-8B 0.04 81.0 82.4 54.4 79.1 73.6 67.6 73.0 0.987×
LoLA-8B 0.04 81.6 82.5 55.4 79.8 73.6 74.9 74.6 1.009×

B EFFICIENCY ANALYSIS

Cache Parameters. Here, we analyze the efficiency of chunkwise LoLA. For various sliding win-
dow (η) and sparse cache (λ) sizes, we measure the peak VRAM cost and Time-to-First-Token
for LoLA-8B with 4K long context on an Nvidia RTX 4090. Additionally, we show how differ-
ent cache parameters lead to varying performance on RULER’s variable tracking task (Hsieh et al.,
2024). There exists a trade-off between speed, memory footprint, and performance. There is no
one-size-fits-all solution; we provide a short guide on navigating this tradeoff.

0 64 256 512
Sparse Cache Size (lambda)

512

256

64

Sl
id

in
g

W
in

do
w

 S
iz

e
(e

ta
)

0.57 0.6 0.61 0.63

0.59 0.73 0.72 0.71

0.99 1.51 1.51 1.46

Time-to-First-Token (sec) with 4K Context

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Se
co

nd
s

Figure 4: Measuring Time-to-First-Token for various sliding window and sparse cache sizes. This
measurement is averaged across 100 trials and assumes data is already loaded into VRAM.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4 illustrates that optimal throughput is achieved by maximizing the sliding window size that
fits into VRAM and minimizing the sparse cache size. This reduces the number of chunks computed
in sequential order, allowing for more intra-chunk parallelization.

0 64 256 512
Sparse Cache Size (lambda)

512

256

64

Sl
id

in
g

W
in

do
w

 S
iz

e
(e

ta
)

18.5 18.6 18.8 19.0

18.3 18.3 18.5 18.7

18.1 18.1 18.3 18.6

VRAM Cost (GB) of Model + Data

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

G
B

Figure 5: Measuring Peak VRAM usage for various sliding window and sparse cache sizes. This
measurement includes the base model weights, the data sequence, and online activations such as KV
caches.

Figure 5 suggests the total cache size (η & λ) needs to be reduced to lower VRAM cost. In our
implementation, the data (4K long context sequence) already exists in VRAM, so this is included in
the peak VRAM measurement. Furthermore, the TTFT does not include loading this data.

0 64 256 512
Sparse Cache Size (lambda)

512

256

64

Sl
id

in
g

W
in

do
w

 S
iz

e
(e

ta
)

0.0 31.1 45.7 72.2

0.0 18.7 59.0 86.9

0.0 15.3 70.2 78.3

Variable Tracking Performance (% Acc)

0

20

40

60

80

100

%
 A

cc
ur

ac
y

Figure 6: Cache Sizes vs. Variable Tracking performance at 4K context length from RULER (Hsieh
et al., 2024)

.

Lastly, we show the variable tracking performance for various cache parameters in Figure 6. Variable
tracking requires understanding all of the context. The base subquadratic model—or even extended

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

sliding window variants—cannot perform this task without a sparse cache. As a guideline to in-
crease general long context performance, the sparse cache size should be maximized. This mitigates
memory collisions, preserving linear attention’s hidden state on long sequences.

In summary, LoLA introduces a new trade-off for subquadratic models. Low VRAM and high
performance can be achieved (maximize λ, minimize η), but the model will be slow. Low VRAM,
fast models (minimize λ, moderate η) will not be able to perform well on long-context tasks (e.g. the
base subquadratic model, LoLCATs). Finally, fast and high performing models will require a much
larger memory footprint (maximize both λ and η). This will extend the applicability of subquadratic
models across various hardware platforms such as small inference chips or large training servers.

LoLA Cache vs. Transformers. In Figure 7, we compare LoLA’s bounded inference costs with
vanilla, softmax attention. We compute the cache size as the total number of elements in all vectors
and matrices stored for each attention head. For transformers, we store key and value vectors for
each token in context, t (dk + dv). For LoLA, we add up the elements in each of the three memory
systems: sliding window cache, sparse cache, and linear attention’s hidden state & normalizing
state. Here, we provide both "small" and "large" cache size variants of LoLA for reference. In short
context lengths, LoLA does not instantiate linear attention’s hidden state or measure the SRE. LoLA
is equally efficient to softmax attention here.

0 1000 2000 3000 4000
Context Length

0

100000

200000

300000

400000

500000

of

 E
le

m
en

ts
 C

ac
he

d
pe

r A
tte

nt
io

n
H

ea
d

Cache Size vs. Context Length

LoLA (eta=128,lambda=768)
LoLA (eta=64, lambda=64)
Transformer

Figure 7: Cache Size vs. Context Length for LoLA and vanilla transformers.

This figure illustrates why we are interested in subquadratic models to begin with. As context scales,
we must linearly increase VRAM and compute per token. For example, we observed out-of-memory
errors with Llama-3.1-8B at 4K context length in our experiments. LoLA, on the other hand, can be
scaled with η and λ to maximize performance on specific hardware. The VRAM cost is agnostic to
context length, meaning this model will always be able to fit.

C EXTENDED LONG CONTEXT TASKS

To further extend our needle-in-a-haystack results from Table 1, we provide more scores in Table 7
across a greater variety of cache parameter combinations. For simplicity, we chose η = λ and varied
the total cache size, marked with "+". Each additional "+" doubles the total cache size (i.e baseline
holds 64 tokens, + holds 128, ++ holds 256, etc.). Additionally, we provide longer sequences for
S-NIAH-1 in Table 8.

In these tasks, the “haystack” is synthetically constructed with various context lengths. The first task,
S-NIAH-1, uses random sentences (e.g., “The grass is green.“) as the haystack, while S-NIAH-2 &

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

3 use essays. The needle—represented as a (word, number) pair—is placed in the haystack. At
the end of the prompt, the model is tasked with returning the associated number with the special
word. The first two tasks (S-NIAH-1 & 2) use a 7-digit number in the needle, and S-NIAH-3 uses a
32-digit UUID, requiring more tokens to represent the needle.

Table 7: Measuring long context recall with Needle-in-a-Haystack tasks from the RULER bench-
mark. We report recall accuracy for each method across different context lengths (512, 1024, etc.)
for each task.

Model Compression S-NIAH-1 S-NIAH-2 S-NIAH-3
Rate @ 2-4K .5K 1K 2K 4K .5K 1K 2K .5K 1K 2K

Transformer
Llama-3.1-8B 1× 100 100 100 100 100 100 100 100 100 100

Base Subquadratic Model
LoLCATs-8B 11×-22× 9.0 3.2 1.4 0.6 100 7.6 2.0 97.4 1.6 0.6

Extended at Inference
LoLCATs-8B+ 6.4×-13× 29.4 9.6 3.4 1.4 100 17.4 7.2 98.2 14.6 3.2
LoLA-8B+ 6.4×-13× 99.0 95.4 79.4 69.4 100 39.4 3.0 99.8 7.4 1.6

LoLCATs-8B++ 4.0×-8.0× 87.2 26.8 10.2 3.2 100 37.0 12.2 100 32.4 6.0
LoLA-8B++ 4.0×-8.0× 100 99.6 96.4 89.6 100 98.8 15.0 99.8 33.4 9.2

LoLCATs-8B+++ 2.3×-4.6× 100 65.6 24.6 8.8 100 71.8 21.6 100 66.0 10.6
LoLA-8B+++ 2.3×-4.6× 100 100 99.6 97.4 100 100 85.4 99.8 99.8 27.2

LoLA-8B++++ 1.2×-2.4× 100 100 100 99.0 100 100 100 100 100 100

Table 8: Extended Results on S-NIAH-1. Reported as [Accuracy / Compression Rate]. We evaluated
performance across 500 synthetic samples on all context lengths except 16K, which used 250.

Model .5K 1K 2K 4K 8K 16K

LoLA-8B 4+ 100% / 1× 100% / 1× 100% / 1.2× 99.0% / 2.4× 92.2% / 4.9× 13.6% / 9.8×

In general, extending the cache size can improve performance while still maintaining high compres-
sion rates over transformers. For even longer context lengths, LoLA’s cache can easily be scaled at
inference to achieve the desired recall performance. This can be seen in Table 8, where LoLA per-
forms well up to 8K context length, which is 8× longer than the sequences seen during distillation.

For large haystacks, the accuracy of LoLCATs is roughly the proportion of context that the sliding
window covers. For smaller haystacks, the performance is slightly higher than that ratio since fewer
pairs are stored in the hidden state. This results in fewer collisions; though of course, this does not
scale. Additionally, we observe that fewer collisions exist in essay-based haystacks (S-NIAH-2 &
3), likely as a result of being more similar to the distillation data. Lastly, we observe that harder
needle-in-a-haystack tasks (e.g., S-NIAH-3 with 32-digit needles) may require more sparse caching.
To further extend these results, we believe training with longer sequences should yield stronger
performance.

D RELATED WORK

In this section, we position LoLA within the broader landscape of subquadratic models and efficient
attention mechanisms.

Linear Attention and State Space Models (SSMs) State Space Models (SSMs) have emerged
as powerful architectures for efficient long-range sequence modeling, offering constant memory
complexity irrespective of context length. Pioneered by methods like S4 (Gu et al., 2021), recent de-
velopments include various efficient architectures such as RetNet (Sun et al., 2023) and Mamba (Gu
& Dao, 2024). Concurrently, original linear attention methods have explored efficient approxima-
tions of the softmax kernel (Katharopoulos et al., 2020; Choromanski et al., 2020; Qin et al.; Peng

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

et al., 2020; Zhang et al., 2024). Research between SSMs and linear attention has recently con-
verged. Modern SSMs, such as DeltaNet (Schlag et al., 2021), Mamba2 (Dao & Gu, 2024) and
Gated DeltaNet (Yang et al., 2024a), can be interpreted as linear attention models equipped with
additional gating or delta-update mechanisms. Models like DeltaProduct (Siems et al., 2025) fur-
ther generalize these linear updates through higher-rank modifications, while Titans (Behrouz et al.,
2024) and TTT (Sun et al., 2024) extend the capacity for associative recall using richer hidden-state
representations.

Test-time Regression (Wang et al., 2025) offers a unifying perspective for SSMs and linear atten-
tion. These sequence models perform online regression to fit hidden states to past context. Each
state update can be interpreted as a gradient step in online SGD. This lens clarifies the roles of dif-
ferent mechanisms within these models. For example, forget gates in Mamba2 and Gated DeltaNet
play an analogous role to weight decay. Similarly, momentum-based updates can be oversed in
Titans (Behrouz et al., 2024).

Distilling transformers into subquadratic models. The cost of pretraining LLMs is the primary
obstacle in finding the successor of the transformer. To address this issue, recent approaches employ
knowledge distillation, transferring the capabilities of pretrained transformers into subquadratic ar-
chitectures (Bick et al., 2024; Zhang et al., 2025a; Mercat et al.; Bick et al., 2025; Goldstein et al.,
2025). This significantly reduces training costs by recycling large pretrained models.

MOHAWK (Bick et al., 2024; 2025) demonstrated successful distillation of pretrained transformers
into Mamba, maintaining competitive performance. Similarly, “Mamba in the Llama” (Wang et al.,
2024) interleaves transformer and SSM blocks to retain transformer-level performance with signif-
icantly reduced inference costs. Though, this approach maintains an unbounded memory footprint
due to the residual quadratic attention.

In contrast, LoLCATs use a simpler and cheaper distillation approach by using a student architecture
that is more similar to the transformer. The combination of linear attention and sliding window atten-
tion significantly reduces the distillation complexity, requiring significantly fewer training tokens.
LoLA directly builds on LoLCATs, leveraging its efficient distillation approach while introducing
sparse caching to substantially enhance associative recall without extensive retraining.

Sparse attention methods. Sparse attention methods present another orthogonal approach to re-
ducing Transformer complexity by limiting the set of attended tokens (Nawrot et al., 2025). Methods
such as Longformer (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) adopt fixed sparse pat-
terns that incorporate sliding windows and selective global attention, efficiently capturing both local
and sparse global contexts. Recent dynamic sparsification approaches, including Loki (Singhania
et al., 2024) and Native Sparse Attention (NSA)(Yuan et al., 2025), employ data-dependent strate-
gies, selectively attending to the most relevant tokens based on learned or projected keys. Native
Sparse Attention, specifically, combines sparse attention with latent attention mechanisms(Liu et al.,
2024), effectively approximating attention via low-rank and sparse structures.

We believe sparse attention can be complementary to linear attention. With LoLA, we encourage the
use of hybrid attention techniques within the same attention head. This allows important tokens to
leverage more computation when needed. This work contrasts the use of interleaving soft attention
blocks with linear attention blocks (Ren et al., 2025; Glorioso et al., 2024) which allocates the
compute costs equally between all tokens.

E LINEAR ATTENTION IS A BAD LOW-RANK APPROXIMATION

In this section, we analyze why linear attention struggles to closely approximate softmax attention,
specifically highlighting difficulties in approximating the exponential dot product kernel. We start
by defining the exponential kernel’s Gram matrix G as Gi,j = exp(x⊤

i xj) for inputs xi,xj ∈ Rd.
This kernel implicitly corresponds to an inner product in a potentially infinite-dimensional Hilbert
space H via a feature map ϕexp : Rd → H, such that

exp(x⊤
i xj) = ϕexp(xi)

⊤ϕexp(xj). (16)

Since explicitly working in an infinite-dimensional space H is infeasible, linear attention methods
approximate this kernel using a finite-dimensional feature map ϕ : Rd → RD. Consequently, linear

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

attention approximates the Gram matrix as

Gi,j ≈ Ĝi,j = ϕ(xi)
⊤ϕ(xj), (17)

which has a maximum rank of D. Ideally, Ĝ would closely approximate G, minimizing the
squared Frobenius norm error. However, linear attention’s approximation error is fundamentally
lower-bounded by the truncated singular value decomposition (SVD) of G (Eckart & Young, 1936).
Specifically, for the SVD decomposition G = UΣV⊤ with singular values σi, we have:

∥G− Ĝ∥2F ≥ ∥G−UDΣDV⊤
D∥2F =

rank(G)∑
i=D+1

σ2
i , (18)

where UDΣDVD is the rank D truncated SVD approximation of G.

While the truncated SVD provides the optimal low-rank approximation, it requires the entire Gram
matrix to be computed and stored, making it impractical for linear attention which demands compu-
tationally efficient, online feature mappings.

To empirically demonstrate the severity of this approximation challenge, we construct the Gram
matrix under different input distributions and analyze its singular values. In our simulations, we vary
both n (the number of independently sampled input vectors) and d (input vector dimensionality) and
observe how they affect singular value distributions. Specifically, we draw inputs from a scaled
Gaussian distribution xi ∼ N (0, d−1/4) to mimic typical transformer scaling of dot products by√
d.

0 500 1000 1500 2000
Index i

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Si
ng

ul
ar

 V
al

ue

Singular Values (d=64, n=512)
Squared Singular Values of Gram Matrix
Squared Singular Values of QK

(a)

0 500 1000 1500 2000
Index i

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Si
ng

ul
ar

 V
al

ue

Singular Values (d=64, n=1024)
Squared Singular Values of Gram Matrix
Squared Singular Values of QK

(b)

0 500 1000 1500 2000
Index i

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Si
ng

ul
ar

 V
al

ue

Singular Values (d=64, n=2048)
Squared Singular Values of Gram Matrix
Squared Singular Values of QK

(c)

0 500 1000 1500 2000
D-rank Truncated SVD

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Fr
ob

en
iu

s N
or

m
 E

rro
r

Truncation Error (d=64, n=512)
Error of truncating exp(QK)
Error of truncating QK

(d)

0 500 1000 1500 2000
D-rank Truncated SVD

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Fr
ob

en
iu

s N
or

m
 E

rro
r

Truncation Error (d=64, n=1024)
Error of truncating exp(QK)
Error of truncating QK

(e)

0 500 1000 1500 2000
D-rank Truncated SVD

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Fr
ob

en
iu

s N
or

m
 E

rro
r

Truncation Error (d=64, n=2048)
Error of truncating exp(QK)
Error of truncating QK

(f)

Figure 8: Visualization of singular values of the Gram matrix and minimum squared Frobenius norm
error for linear attention as in equation 18. We vary the number of i.i.d. vectors n used to construct
the Gram matrix, but maintain the same input dimension d.

Figures 8 and 9 show that applying an exponential operation to the query-key products significantly
increases the rank and complexity of the resulting Gram matrix. The singular values and approxima-
tion error increase with the number of unique input vectors n (see Figure 8) and the input dimension
d (see Figure 9) . Practically, in transformer architectures, head dimensions are typically modest
(d = 64 for Llama-3.2 1B and d = 128 for Llama-3.1 8B). Additionally, linear attention approaches
typically select feature dimensions D around 2d (Zhang et al., 2024; 2025a) which can be problem-
atic without additional sparse attention or gating mechanisms.

These experiments underscore the inherent limitation of linear attention as a softmax replacement.
For an arbitarily large vocabulary size, a high dimensional hidden state is needed to truly mimic

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
Index i

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Si
ng

ul
ar

 V
al

ue

Singular Values (d=64, n=2048)
Squared Singular Values of Gram Matrix
Squared Singular Values of QK

(a)

0 500 1000 1500 2000
Index i

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Si
ng

ul
ar

 V
al

ue

Singular Values (d=128, n=2048)
Squared Singular Values of Gram Matrix
Squared Singular Values of QK

(b)

0 500 1000 1500 2000
Index i

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Si
ng

ul
ar

 V
al

ue

Singular Values (d=256, n=2048)

Squared Singular Values of Gram Matrix
Squared Singular Values of QK

(c)

0 500 1000 1500 2000
D-rank Truncated SVD

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Fr
ob

en
iu

s N
or

m
 E

rro
r

Truncation Error (d=64, n=2048)
Error of truncating exp(QK)
Error of truncating QK

(d)

0 500 1000 1500 2000
D-rank Truncated SVD

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Fr
ob

en
iu

s N
or

m
 E

rro
r

Truncation Error (d=128, n=2048)
Error of truncating exp(QK)
Error of truncating QK

(e)

0 500 1000 1500 2000
D-rank Truncated SVD

10 1

102

105

108

1011

1014

1017

Sq
ua

re
d

Fr
ob

en
iu

s N
or

m
 E

rro
r

Truncation Error (d=256, n=2048)

Error of truncating exp(QK)
Error of truncating QK

(f)

Figure 9: Visualization of singular values of the Gram matrix and minimum squared Frobenius norm
error for linear attention as in equation 18. We vary the input dimension d between columns in the
plot.

softmax. We argue that future research should exploit the inherent strengths of linear attention
when it makes sense to (e.g., applying linear attention on easier-to-remember tokens), rather than
attempting to replicate softmax attention in all situations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F SCORING ABLATION EXTENSION

In section 4.3, we ablated different scoring approaches for the sparse cache. Here, we describe
exactly how each alternative score is computed. As a reminder, LoLA is motivated by the occurence
of memory collisions in the hidden state. LoLA explicitly attempts to maintain self-recall for stored
key-value pairs. An alternative perspective could be aiming for the best softmax approximation.
Similar to previous kernel work (Choromanski et al., 2020), this aims to minimize the attention
weight error

N∑
i

N∑
j

(
exp(q⊤

i kj)− ϕ(qi)
⊤ϕ(kj)

)2
. (19)

A natural scoring method for this objective would be to keep the keys with the highest attention
weight error. As a proxy for this approach, each key’s error can be summed over all queries it sees
in the sliding window with

Score(ki) =

i+η−1∑
t=i

(
exp(q⊤

t ki)− ϕ(qt)
⊤ϕ(ki)

)2
. (20)

Alternatively, we can use absolute error over mean squared error instead.

From traditional sparse attention literature (Zhang et al., 2023; Dong et al., 2024), keys that are
highly attended to may be important. We compute this as

Score(ki) =

i+η−1∑
t=i

exp(q⊤
t ki). (21)

From a third perspective, keys that are over-represented by linear attention’s query-key interactions
may seem important to cache. We compute these as

Score(ki) =

i+η−1∑
t=i

ϕ(qt)
⊤ϕ(ki)

exp(q⊤
t ki)

. (22)

Lastly, we compare these methods against a larger sliding window.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G EXTENDED MEMORY COLLISION VISUALIZATION

Figure 10: Visualizing the relative SRE for stored KV pairs.

In Section 4.3, we visualized how memory collisions can occur in practice. This was computed
by measuring the SRE for all stored KV pairs. We found that the first few stored KV pairs do not
achieve a large error when added to the hidden state. However, these quickly become corrupted after
hidden state updates. This phenomenon was difficult to see in Figure 3, so we provide an additional
visualization with Figure 10. Specifically, we measure the SRE of each KV pair, relative to the error
of when that pair was added. For row i column j in the plot, the relative error is computed as∥∥∥∥ϕ(kj)

⊤Hi

ϕ(kj)⊤si
− vj

∥∥∥∥
2

−
∥∥∥∥ϕ(kj)

⊤Ht

ϕ(kj)⊤st
− vj

∥∥∥∥
2

. (23)

where t is the time pair j was added to the hidden state. Thus, we have j ≤ t ≤ i.

Here, we see the first few KV pairs have high relative errors for pure linear attention. These pairs
observe small SREs at early time steps, but achieve much higher SREs later. On the other hand,
sparse caching actively mitigates SREs, improving associative recall for stored KV pairs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

H ALGORITHM PSUEDO-CODE

We provide PyTorch-like pseudo-code for the cache during decoding or generation. In this example,
we update the cache every iteration (rather than chunkwise inference) for simplicity. Lastly, this
pseudo-code does not contain any optimization tricks for ease of understanding.

#Simplified LoLA Cache for Decoding:
class LoLA_Cache:

def init():
#Cache for Sliding Window Attention
local_cache = {keys:[], values:[]} #max size η

#Cache for Sparse Attention
global_cache = {keys:[], values:[]} #max size λ

#"Cache" for Linear Attention
H, s = zeros(D,d), zeros(D)

#Update memory systems with an incoming KV pair
def update(k, v):

eligible_keys = concat(global_cache.keys, k)
eligible_values = concat(global_cache.values, v)

#Predict the associated value of each key
predicted_v = (phi(eligible_keys) @ H) / (phi(eligible_keys) @ s)
scores = L2_norm(eligible_values - predicted_v)

#Add min scoring KV pair to hidden state
min_idx = argmin(scores)
min_k = eligible_keys[min_idx]
min_v = eligible_values[min_idx]
H = H + phi(min_k) @ min_v.T
s = s + phi(min_k)

#Update Global Cache as all other KV pairs
global_cache.keys = eligible_keys[not min_idx]
global_cache.values = eligible_values[not min_idx]

#Return the output associated with the query.
def attend(q):

global_weights = exp(q @ global_cache.keys / sqrt(d))
local_weights = exp(q @ local_cache.keys / sqrt(d))

unnormalized_attn = sum(global_weights * global_cache.values)
+ sum(local_weights * local_cache.values)
+ phi(q) @ h #linear attn

normalizing_const = sum(global_weights)
+ sum(local_weights)
+ phi(q) @ s #linear attn

return unnormalized_attn / normalizing_const

24

	Introduction
	Preliminaries
	Softmax Attention as a Nonparametric, Online Learner
	Linear Attention
	Efficient Training of Linear Attention
	Disadvantages of Previous Approaches

	Mitigating Memory Collisions with Sparse Caching
	Experiments & Results
	Associative Recall
	Commonsense Reasoning
	Understanding Memory Collisions

	Conclusion
	Extended Language Modeling Results
	Efficiency Analysis
	Extended Long Context Tasks
	Related Work
	Linear Attention is a Bad Low-Rank Approximation
	Scoring Ablation Extension
	Extended Memory Collision Visualization
	Algorithm Psuedo-code

