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Abstract

Establishing a reliable and iteratively refined robotic system is essential for de-
ploying real-world applications. While Vision-Language-Action (VLA) models
are widely recognized as the foundation model for such robotic deployment, their
reliance on offline expert demonstrations critically limits their capacity for post-
deployment refinement. To mitigate this limitation, we introduce Action Preference
Optimization (APQO), a method designed to refine VLA models by human-assisted
preference alignment gathered through interaction with environments. This method
begins with a human-robot collaboration framework for reliable failure correction
and interaction trajectory collection through human intervention. However, directly
leveraging these interaction trajectories for preference optimization is non-trivial
due to the challenges of irreversible robotic actions and token distribution mis-
match. To solve this, APO proposes an adaptive reweighting algorithm with binary
desirability signals derived from interaction, empowering VLA models effectively
suppress failure-prone actions while enhancing corrective action adaptation. Ulti-
mately, APO equips VLA models with the crucial capability to learn from failure,
paving the way for their iterative refinement and reliable deployment in dynamic
environments. The experiments conducted in simulation and real-world scenarios
prove superior generalization and robustness of our human-assisted framework
across a variety of manipulation tasks. We believe this work could bring insights
for efficient and stable optimization of VLA models through human-robot collabo-
ration. The code and dataset are released at https://github.com/GeWu-Lab/Action-
Preference-Optimization.

1 Introduction

Fostering continuous improvement is crucial for the development of robust robotic manipulation
systems in real-world scenarios [10, 28, 44]. Benefiting from the capacity for generalizable reasoning
and scalable learning, Vision-Language-Action (VLA) models [3} 14, 8} [18 43}, 21} 147] have been
widely recognized as the foundation model for such robotic deployment systems. However, prevailing
training paradigm for these models hinges on large-scale, offline datasets of expert demonstrations.
This severely limits their post-deployment refinement, as they lack the intrinsic ability to continually
learn from failures or adapt to novel scenarios encountered in the real world.

To enhance the continuous learning ability of robotic systems, interactive imitation learning frame-
works [[7,[17] have been developed to refine error-prone trajectories via iterative human-in-the-loop
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Figure 1: Our method consists of two key components: (a) the human-robot collaboration deployment
framework for reliable deployment and interaction trajectory collection with human intervention. (b)
the action preference optimization process with adaptive reweighting for VLA models learning from
sub-optimal interaction trajectories. The size of each circle represents its weight during training.

correction feedback. Among them, behavior cloning [15 23 [35] has been widely utilized to fine-tune
a base policy model with manually corrected intervention data in a supervised learning fashion.
In contrast, recent methods [20, 26] seek to propose effective off-policy reinforcement learning
algorithms from sub-optimal human intervention trajectories. However, behavior cloning fails to
fully exploit failure trajectories, which are valuable signals for learning robust policies. At the
same time, reinforcement learning methods encounter significant scalability limitations in training
large-scale VLA models, due to the inherent instability and challenge of developing generalizable
value functions. To date, the effective adaptation of VLA models for downstream manipulation tasks
remains understudied, particularly within sub-optimal human intervention paradigms.

To bridge this gap, we propose Action Preference Optimization (APQO), a new paradigm moves
beyond the limitations of both behavior cloning and reinforcement learning. By learning from action-
level preferences captured during interactions, our approach fully exploits the valuable information in
failure trajectories while maintaining the optimization stability required for large-scale VLA models.

Our method is founded on a human-robot collaboration framework designed to ensure reliable
deployment while simultaneously generating data for policy refinement, as illustrated in Figure[T|(a).
When the robot encounters challenging situations, real-time human interventions not only guarantee
successful task completion but also provide corrective trajectories. These trajectories are collected as
preference pairs to refine the policy. Furthermore, to address the imbalanced distribution of action
types in the collected data, we employ a balanced sampling method. This ensures a proportional
representation of all interaction data for the subsequent VLA preference optimization

However, directly applying this preference data to fine-tune autoregressive VLA models presents two
significant challenges: (1) Irreversible interaction: While LLMs often require paired preference data,
the irreversible nature of physical interaction makes it difficult to gather perfect positive-negative
action samples under identical conditions. (2) Token probability mismatch: Autoregressive VLA
models discretize continuous actions into tokens, causing a mismatch between token probabilities
and the true action loss, which complicates preference alignment. To address these problems, we
first employ Kahneman & Tversky’s prospect theory [[11}40] to formulate a preference alignment
objective that learns from binary desirability signals derived from interaction. This objective relaxes
the demands of preference pairs, making it suitable for learning from irreversible robotic interaction
trajectories. Furthermore, we propose an adaptive reweighting method that leverages decoded
continuous actions to guide preference optimization in the discrete action token space. This approach
addresses the challenge of action token probability mismatch via the dynamic modulation of sample-
wise training weighting, thereby concentrating gradient optimization on failure-prone interaction
actions. Through weight refinement, we apply preference alignment optimization to VLA models,
enhancing performance when learning from sub-optimal manipulation correction trajectories.

To systematically evaluate the effectiveness of our proposed system, we conduct a comprehensive set
of experiments in RoboMimic [29]] simulation environments. The empirical results demonstrate that
APO facilitates rapid adaptation in in-distribution scenarios while maintaining robust performance
across a variety of unseen perturbations. Furthermore, lifelong learning experiments demonstrate
the framework’s capacity for iterative improvement through human intervention. To evaluate the
practical viability of the proposed framework, we conducted real-world experiments on fine-grained
insertion tasks under a range of disruption conditions, demonstrating its robustness and applicability
in real-world robotic manipulation scenarios.



2 Related Works

2.1 Vision-Language-Action Models

Achieving generalizable robotic manipulation remains a significant challenge within the field of
robotics. Motivated by recent advances in foundation models [19} [39| 142| 32} 45| 48], some
works [6, [12} 41]] attempt to construct large-scale real-world robotic datasets to facilitate devel-
opment of generalizable Vision-Language Action (VLA) models. Building upon these datasets,
recent research [5 18] 33]] formulates robotic action prediction as a next token prediction problem
within the framework of VLMs. In contrast, alternative studies [24, [38]] investigate the applicability
of diffusion-based methods to model multi-modal action distributions, thereby facilitating robustness
in manipulation tasks. While these works focus on behavior cloning from expert demonstrations,
Grape [49] proposes a trajectory-level preference alignment method to boost generalizability by
incorporating both successful and failed trials. However, the requirements of paired trajectories under
the same conditions make it infeasible in real-world scenarios. In this work, we propose the action
preference optimization method to continuously refine VLA models by integrating human-in-the-loop
intervention preference data.

2.2 Preference Alignment of Large Language Models

Contemporary methods [9, 30} 31} 50] implement Reinforcement Learning from Human Feedback
(RLHF) through a two-stage method, which first trains a reward estimation model and optimizes
LLMs to maximize the given estimated reward with a reinforcement learning method [13} 136, 25].
However, this paradigm is slow and unstable in practice. DPO [34] proposes a single-step alternative
that reparameterizes the RLHF objective into a closed-form loss function to directly maximize
the log-likelihood margin between preferred and dispreferred outputs. Extending this framework,
KTO [L1] introduces the human-aware losses for learning from a binary signal of whether an output
is desirable, which bypasses the need for intricate preference annotation altogether. In this work, we
adapt the preference alignment optimization method for Vision-Language-Action models. Through
an adaptive reweighting approach, we mitigate the irreversible interactions and token probability
mismatch challenges when transferring preference learning methods from LLMs to VLA models.

2.3 Human-robot Interactive Learning

Interactive imitation learning [[1}[7]] has been proposed to refine robot actions through human feedback.
While prior research [17, 23] 35] necessitates constant human supervision to intervene in the robot’s
actions, more recent studies [14, 22} [46] have introduced dynamic models for automatic failure
detection and real-time monitoring. In contrast, RLIF [26] leverages human intervention signals
as rewards for off-policy RL, while HIL-SERL [27] presents a human-in-the-loop, vision-based
RL system tailored for dexterous manipulation tasks. However, these RL approaches encounter
difficulties in large-scale VLA model training, primarily due to unstable gradient optimization. In
this work, we propose the action preference optimization method to ensure the stable optimization of
policies from action-level preferences captured during interaction.

3 Method

In this section, we introduce Action Preference Optimization (APO), a method designed to facilitate
continuous iterative improvement of Vision-Language-Action (VLA) models. As detailed in Algo-
rithm[T] APO aligns the model with human preferences gathered through human-robot collaboration
deployment within environment.

3.1 Human-robot Collaboration Deployment

To ensure reliable deployment and interaction trajectory collection, our method is founded on the
human-robot collaboration framework for real-time intervention and interaction data acquisition.

We first collect an expert demonstration dataset D, = {7!}!=V, where each trajectory ¢ consists of
observation-action pairs with expert annotations: 7. = {(o}, a}, c}) }i=], where ¢} = 1 indicates that
ay is executed by human expert. We employ behavior cloning to fine-tune the pretrained VLA model



on these expert demonstrations, obtaining an initial base policy 7j). This policy is then deployed for
interaction trajectory collection.

During policy execution, the human operator monitors policy execution and intervenes when the
policy encounters challenging scenarios. Through this process, we could collect a set of interaction
trajectories Dy, = {77 }i=M, where ci = 2 represents the action is corrected by human intervention
while ¢! = 1 denotes the action is executed by policy. Further, we re-label the interaction trajectories
to categorize the actions taken in the K steps preceding human interventions as undesirable, annotated
with cjg = 0. For each trajectory, we discretize the continuous action a into discrete action token a.
Finally, we combine the expert demonstrations D, and the interaction dataset D;, for further robotic
action preference optimization.

3.2 Action Preference Optimization

To maximize the utility of sub-optimal interaction trajectories and ensure stable fine-tuning of the
VLA model, we adopt the preference alignment optimization method to guide the model to learn
from corrections and avoid failures.

Although previous Reinforcement Learning with Human Feedback (RLHF) methods [2}34] have
proven effective in LLM fine-tuning, there are additional challenges for the VLA models preference
optimization in robotic manipulation:

* The irreversible robotic manipulation process makes it challenging to acquire meaningful
paired positive-negative actions under the same observational conditions.

» The mapping of continuous robotic actions to discrete tokens by autoregressive VLAs causes

a mismatch between token probability and continuous action errors, complicating preference
optimization in action token prediction.

To address these issues, we adopt Kahneman & Tversky’s prospect theory [40] for preference
alignment optimization with binary desirability signals and propose an adaptive reweighting method
to bridge the gap between discrete token prediction and continuous action regression. We first
estimate the reward function r¢ of our model 7y as standard approach [311 34} 37]:
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where @ is the discrete action token and the reference model 7,.. ¢ is the base model 7}, at the beginning
of each deployment-optimization loop shown in algorithm [} Following [11} 40]], we formulate the
utility function v as below to estimate the relative gain on the robotic data:
U(O, d) _ {)\DU (TG (Ov d) - ;zO) lfC:L ~ C:]/desirab]e (2)
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where A\p and )y are utilized for importance sampling, the o is the sigmoid function. To ensure
that the model 7y does not deviate excessively from the reference model .. ¢, a penalty term zg is
introduced. This term is defined as the KL-Divergence between mg and . 2o = K L(mg||mre ).
Incorporating zy into the optimization process guides the model to learn from preference pair data
while simultaneously preserving knowledge acquired from prior models. We employ the following
loss function L to optimize the model 7y using preference optimization with desirability signals:

L(Trt?yﬂ-ref) = ]Ez,yNDh [—’U(il',y)] 3

By minimizing the loss function, we aim for the model 7y to get higher rewards for desirable pairs
while avoiding predicting undesirable actions, in comparison to the reference model 7. .

However, directly applying the preference alignment optimization from LLMs to autoregressive VLA
models is problematic, primarily due to the differences in their respective token definitions. While
word tokens correspond to distinct subwords, action tokens necessitate a non-differentiable mapping
to continuous ground truth actions. This creates a discrepancy between the token classification
probabilities and the regression loss associated with the continuous robotic actions.

To bridge the gap between token classification and continuous action regression in autoregressive
VLA models, we introduce an adaptive reweighting method. This approach guides the model to



prioritize samples exhibiting large regression errors by first estimating the L1 loss of the continuous
action [ for each sample, followed by batch-level normalization as detailed below:

li
Wi = =B * “4)
Zi:f; Li

The normalized weighting scheme operates by: 1) for desirable data, increasing the weight of samples
with high action prediction errors, and 2) for undesirable data, increasing the weight of samples
whose actions are proximate to the failure actions. By adaptively adjusting the values of A\p and Ay
in Equation [T using the normalized weights, we gain fine-grained control over the relative influence
of each sample during training:

Ap =1—e Frxw, )
Ay = e Pure, (©6)

By incorporating preference alignment optimization via sample-wise weight refinement, we enhance
the performance and optimization stability of the VLA model, when learning from sub-optimal
manipulation correction trajectories.

In conclusion, we propose the action preference optimization method as demonstrated in algorithm [T}
This approach leverages the human-robot collaboration deployment for reliable task execution and
interaction trajectories collection, while the action preference optimization process provides stable
autoregressive VLA optimization with adaptive reweighting. Through iterative human-robot collabo-
ration deployment and action preference optimization, we could achieve continual improvement from
interaction with environments for autoregressive VLA models.

Algorithm 1 Action Preference Optimization

1: Notations:
2: D.: expert demonstrations, Dp,: interaction dataset, 7r: interaction policy
3: Warm-start phase
4: Collect D, < {7¢,..., 7%}
5: Initialize BC policy 7§
6: 0" <+ argmaxg E(, q)pe [log 7r8(a|0)]
7: D?L +— D,
8: Deployment-optimization loop
9: fori <~ 0 to X do
Tref < 71'5
D!+ DEPLOYMENT(7}, Dj)
mi"! < OPTIMIZATION(7), Tre s, Dyt )
10: end for
11: function DEPLOYMENT(7g, D) 26: function OPTIMIZATION(7g,mrc£,Dp)
12: for n interaction rollouts do 27: for n gradient steps do
13: while task does not succeed do 28: Balanced Sample (o;, a;,¢;)i=8 ~ Dy,
14: if human intervenes then 29: l; + |mg(0i) — ai|x
i e 2w e s
: : 31: if ¢; # 0 then
17: else - — Bpws
18: a < mg(ot), ¢t + 1 Ap, =1-e
19: end if 32: else
20: 1P U (04, a4, ct) Ay, = e Burwi
21: end while 33: end if
22: Dy, < Dy U 7'1-h 34: 0" = argmaxg E[—v(0,a, 7o, Tref, AD, AU)]
23: end for 35: end for
24: return Dy, 36: return 7y«
25: end function 37: end function




4 Experiments

To comprehensively evaluate our action preference optimization method for effective downstream
adaptation, we propose experiments to validate the following questions:

* How effective is APO at promoting adaptation to in-distribution scenarios? Section.2]

* Does APO maintain effective learning performance in novel scenarios despite various
disruptions? Section 3]

* Does APO demonstrate the ability to achieve iterative improvement during deployment?
Section 4.4

 How well does APO generalize to different VLA models? Scetion[4.3]
* Could APO be applied in fine-grained real-world scenarios? Section [4.6]

» To what extent does the action-level preference optimization method enable APO to learn
action correction? Section[d.7]

4.1 Experiment Settings

Implementation Details. In this work, we fine-tune the OpenVLA [41]] model for target manipulation
tasks as the base model. We employ LoRA [16] for parameter-efficient tuning, configuring rank
r = 32 with a batch size of 16 across 8 NVIDIA A100 GPUs. Further, we deploy the base model to
interact with environments, where human operators perform real-time corrective interventions via
a SpaceMouse device to rectify failures during execution. We set K = 10 to identify and annotate
undesirable behaviors automatically. The human-assisted interaction trajectory is shown in Figure [T}
which is segmented into robotic automatic execution, the failure action, and the human intervention
types by the timing of human correction. Based on the interaction trajectories collected during task
execution, we fine-tune the base model 7.y with our action preference optimization method, using a
learning rate of 5e-5 and a batch size of 8 across 4 NVIDIA A100 GPUs. To ensure the stability of
preference alignment training, we employ balanced sampling to ensure that each batch contains 50%
expert actions, 25% human intervention actions, and 25% failure actions.

Automatic Execution Fallure Action Human Intervention Automatic Execution

Figure 2: The demonstration of our human-assisted interaction trajectory.

Simulation Environments Details. For a comprehensive evaluation, we validate these methods
on fine-grained manipulation tasks within the RoboMimic simulation environment, such as
’make coffee’ and ’toy assembly’. In the RoboMimic environment, we fine-tune the pretrained
OpenVLA model for these 4 long-horizon manipulation tasks with 300 expert demonstrations. To
optimize policy with human preferences, we collect 50 trajectories per task under different seeds for
RoboMimic tasks. For evaluation, we conduct 50 trials under three unseen seeds for each task, and
report the average success rate.

4.2 Comparison Experiments

We compare APO with other approaches to evaluate the effectiveness for VLA model fine-tuning. To
ensure fairness, we fine-tune OpenVLA [18]] for manipulation tasks as a base model and improve the
base model with other comparison methods.

» Dagger [35]: We mix the expert demonstrations with interaction trajectories, fine-tuning
the base model using a behavior cloning objective.

¢ Sirius [23]: we apply sample reweighting to prioritize human intervention data and fine-tune
the base model using a weighted behavior cloning loss.

» DPO [34]]: We generate paired negative samples for interaction trajectories by perturbing
the actions predicted from the base model with Gaussian noise, and fine-tune the base model
using these paired data with the DPO method.
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Figure 3: In the position disruption setting, we change the position of the stick from a fixed point o to
a random position from the rectangle 1 in the Square_DO task as illustrated in (a). In the background
disruption setting, we replace the background with the gray one in the StackThree_DO task as shown
in (b). In the texture disruption setting, we replace the red blocks with the wooden ones.

» TPO [49]: We select positive and negative samples in interaction trajectories based on the
timing of intervention, then fine-tune model with trajectory-wise preference optimization.

« KTO [11]: We select positive and negative samples in interaction trajectories based on the
timing of intervention. Then, we sample positive and negative trajectories and optimize the
base model with KTO, with the constraint zg = K L(mg||mye ).

As shown in Table[T] we first compare the behavior cloning objective methods. The results reveal
that after fine-tuning with interaction data, these methods fail to outperform the base model, which
demonstrates that existing behavior cloning approaches struggle to achieve efficient adaptation in the
context of large-scale VLA models. A key challenge stems from the distribution shift between expert
trajectories and interaction trajectories. Without mechanisms to retain the base model’s knowledge
under the under standard behavior cloning objectives, this shift makes it particularly difficult for
large-scale VLA models to effectively fit the complex, multimodal distribution arising from the
combined expert and interaction datasets.

We further provide results of the preference optimization based methods. By integrating a regulariza-
tion constraint with the reference model 7, s, these methods could maintain useful knowledge from
the reference model while achieving improvement from interaction trajectories.

Among all compared preference learning based methods, DPO yields the weakest performance.
This result stems from its exclusive reliance on synthetic paired failure actions for optimization,
which lacks exposure to real-world errors essential for teaching robots mistake avoidance through
interaction. On the other side, TPO fails to deliver stable performance gains on multiple tasks while
APO attains stable performance gains relative to the base model. The TPO method employs negative
samples to regularize model preference alignment optimization, but introduces instability through
random sampling. In contrast, APO utilizes KL divergence to estimate the mean margin between the
updated model and the reference model, which not only enables more stable learning but also better
preserves prior knowledge. Compared with KTO, APO leverages the adaptive reweighting method
to achieve more precise control over the importance weights of both positive and negative samples,
delivering more notable performance improvements.

Table 1: Comparison experiment results across 4 manipulation tasks in RoboMimic Simulation. The
results demonstrate that our adaptive reweighting preference optimization method achieves stable
improvement compared with other behavior cloning and preference optimization methods.

Methods Coffee_D0O StackThree_DO ThreePieceAssebly_DO Square_D0 Mean

Base policy 44% 46% 44% 28% 40.5%
Dagger [33] 42% 50% 36% 28% 39.0%
Sirius 34% 52% 34% 38% 39.5%
DPO [34] 52% 46% 28% 22% 37.0%
TPO 54% 54% 40% 18% 41.5%
KTO[11] 48% 52% 46 % 32% 43.5%
APO 60 % 54% 46 % 32% 48.0%




Table 2: The results on disruption scenarios. Table 3: The results on original tasks.

Methods Pos Dis.  BgDis.  Tex Dis. Mean Methods Square  StackThree  ThreePiece Mean
Base policy 12% 42% 10% 21.3% Base policy 28% 46% 44% 39.3%
Dagger 18% 46% 4% 22.7% Dagger 16% 46% 30% 30.7%
Sirius 12% 42% 2% 18.7% Sirius 18% 48% 18% 28%
DPO 14% 26% 2% 14.0% DPO 20% 50% 30% 33.3%
TPO 18% 32% 8% 19.3% TPO 30% 36% 40% 35.3%
KTO 20% 46% 6% 24.0% KTO 30% 46% 42% 39.3%
APO 26% 46 % 12% 28.0% APO 34% 62% 40% 45.3%
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Figure 4: Lifelong learning results of APO method.

4.3 Generalization to Novel Tasks

In this section, we assess APO’s generalization capability under three novel scenarios, as illustrated in
Figure|3| (1) Position Disruption: For the Square_DO task, we replace the fixed initial stick position
with randomized placements within a bounded operational area. (2) Background Disruption: In
the StackThree_DO task, we substitute the default white background with a gray one. (3) Texture
Disruption: In the ThreePiece_DO task, the original red blocks are transmuted to wood-grain visual
properties. These experiments systematically evaluate robustness against spatial, background, and
visual texture variations. To fine-tune the base model on novel disruption scenarios, we collect 20
interaction trajectories under disruption scenarios and combine them with 20 expert demonstrations
from the original task for subsequent fine-tuning.

Our objective is to develop an action preference optimization method that facilitates continuous
improvement, enabling performance enhancements in novel disruption scenarios while retaining
original task capabilities during model fine-tuning. Thus, we evaluate the performance of the
fine-tuned model across both disruption scenarios and original scenarios.

As shown in Tabel [2| the base policy exhibits some degree of performance degradation in disruption
scenarios. However, the performance decline is relatively minor in cases of background disruption,
whereas disruptions in object texture and position significantly impact performance. Both behavior
cloning methods and preference optimization methods struggle to achieve significant performance
improvements in novel disruption scenarios. In contrast, APO can effectively adapt to new disruption
scenarios through adaptive reweighting.

Table [3|presents the performance of the optimized model after being fine-tuned from disruption data
on the original task. The results reveal that behavior cloning methods exhibit severe catastrophic
forgetting, resulting in substantial performance degradation. By contrast, the preference optimization
method achieves mitigated performance decline with the constraints of the reference model.

Besides, APO utilizes adaptive reweighting to effectively integrate knowledge from both expert
demonstrations and interaction trajectories. This mechanism not only facilitates learning from diverse
data sources but also leads to improved performance on the original task.

4.4 The Performance of Lifelong Learning

To investigate whether APO can iteratively improve via environment interaction, we deploy APO to
interact with environments while updating the model every 20 interaction rollouts. e provide compar-
ison results using a behavior cloning policy trained with the same number of expert demonstrations
as our baseline. For each updated model, we conduct 50 trials and report the success rate.



Table 4: The results on m0-FAST model. Table 5: The results on real-world experiments.

Methods Coffee_DO  StackThree_DO  Insert Square Methods InDis. PosDis. BgDis. Tex Dis.
Base policy 68% 64% 85% Base policy 65% 25% 10% 25%
Dagger 64% 66% 85% Dagger 65% 10% 10% 25%
TPO 48% 52% 90% TPO 75% 40% 20% 45%
APO 76% 74% 95% APO 85% 55% 30% 55%

Insert the square into the stick

Pos Dis. Black Stick Green Stick

(b) Position Disruption (c) Background Disruption (d) Texture Disruption

Figure 5: Demonstrations of real-world experiments with disruption settings.

As shown in Figure[d{a-b), APO achieves superior performance compared to the baseline, demonstrat-
ing its ability to effectively leverage sub-optimal human intervention trajectories for iterative model
improvement. When the base policy exhibits diminishing improvement with increasing expert demon-
strations, APO enables continual performance gains from the interaction trajectories. Besides, this
improvement trend is accompanied by a corresponding reduction in the required human intervention
ratio, as shown in Figure Ekc)

4.5 Generalization to various VLA models

To validate that APO can be adapted to different VLA models, we applied APO to fine-tune the
w0-FAST [33] model. 70-FAST applies discrete cosine transform encoding to encode the action
chunking into discrete tokens for VLA training. To adopt this model for downstream tasks, We
regenerate the action tokenizer with 5 action chunking step for each task.

As shown in Table[T} the base model could achieve a higher success rate compared with the OpenVLA
model, benefiting from its ability to predict action chunking for robotic manipulation. Further, we
compare APO with both the behavior cloning method and preference optimization method, the
results demonstrate that APO could achieve consistent improvement for the 70-FAST fine-tuning.
The results prove that APO could be applied to the fine-tuning of various VLA models, achieving
consistent performance gains.

4.6 Real-world Experiments

In this work, we conduct the challenging fine-grained robotic manipulation task “Insert the square
into the stick” as shown in Figure [2(a), which requires the robot to grasp the square and precisely
insert into the stick. To collect expert demonstrations, we utilize the spacemouse device to gather 100
high-quality trajectories at an action frequency of 20 Hz. We fine-tune the OpenVLA model with
the collected demonstration as the base model. Further, we deploy the base model to interact with
environments and propose the real-time human-in-the-loop interventions to collect 20 interaction
trajectories for subsequent action preference optimization. All methods are evaluated under the same
experimental setup, and we report the average success rate from 20 trials. For a comprehensive
evaluation in real-world scenarios, APO was also tested on the “hang cup on the rack” and “put lemon
on the plate” tasks. The corresponding results are detailed in the supplementary material.

To comprehensively evaluate APO, experiments are conducted not only under in-distribution but
also across three distinct disruption settings as shown in Figure 2{b-¢): (1) Position Disruption: We
change the position distribution of the stick. (2) Background Disruption: We replace the tablecloth
from white to brown. (3) Texture Disruption: We replace the black stick to the green one.



As demonstrated in Table[5] APO demonstrated robust adaptability to these downstream disruption
scenarios. The results empirically validate the method’s practical utility for real-world deployment in
unstructured environments.

We also adopt APO to fine-tune the mo-FAST model in the real world scenario. The results in Table[T]
prove APO could achieve consistent performance gains over other methods.

4.7 Correction from Failure scenarios

In this work, we propose the APO method that enables models not only to avoid failure modes but
also to self-correct within failure scenarios. As shown in Figure[6] we provide examples of failure
correction across multiple tasks, demonstrating the corrective strategies learned by APO.

For instance, in Figure [f[a,b), when the model initially fails to grasp an object, APO identifies the
failure and initiates a re-grasp attempt. Similarly, in Figure[f[c), when a precise insertion operation
is obstructed, APO learns to iteratively adjust its gripper position until the insertion is successfully
completed. These examples illustrate that APO has successfully learned to recover from common
failure scenarios, which directly contributes to its improved overall performance.

(a) Insert the square into the stick

Figure 6: The rollout trajectory of APO. As indicated by the bold red and green boxes, APO can
autonomously correct form failure scenarios.

5 Conclusion

In this work, we introduce the Action Preference Optimization (APO) method to fully exploit valuable
information in failure trajectories while maintaining the stability required for large-scale VLA models.
This method builds on a human-robot collaboration framework for reliable deployment, and utilizes an
adaptive reweighting preference optimization algorithm with action-level binary desirability signals
for stable VLA model optimization. Through APO, we could promote continuous improvement
during the deployment of VLA models. We hope APO could bring insights for efficient and effective
VLA model adaptation on downstream manipulation tasks.

Discussion and Future Work. While our work study the preference alignment optimization for VLA
models, the experiments are based solely on autoregressive VLA models. Future work should explore
a broader range of VLA frameworks, including regression-based approaches and diffusion policy
models, to ensure the generalizability of our method across different architectures.

10



6 Acknowledgement

The project was supported by the fund for building world-class universities (disciplines) of Renmin
University of China, and CCF-Zhipu.Al Large Model Innovation Fund. The project was also
supported by National Natural Science Foundation of China (NO.62106272).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469-483, 2009.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GrO0t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. piO : A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform
for scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

Carlos Celemin, Rodrigo Pérez-Dattari, Eugenio Chisari, Giovanni Franzese, Leandro
de Souza Rosa, Ravi Prakash, Zlatan Ajanovié, Marta Ferraz, Abhinav Valada, Jens Kober, et al.
Interactive imitation learning in robotics: A survey. Foundations and Trends® in Robotics,
10(1-2):1-197, 2022.

Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu,
Hongtao Wu, Jiafeng Xu, Yichu Yang, et al. Gr-2: A generative video-language-action model
with web-scale knowledge for robot manipulation. arXiv preprint arXiv:2410.06158, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang, and Dorsa
Sadigh. No, to the right: Online language corrections for robotic manipulation via shared
autonomy. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot
Interaction, HRI °23, page 93—101, New York, NY, USA, 2023. Association for Computing
Machinery.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi Zhu,
and Cewu Lu. Rh20t: A comprehensive robotic dataset for learning diverse skills in one-shot.
arXiv preprint arXiv:2307.00595, 2023.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835-10866. PMLR, 2023.

11



[14] Cem Gokmen, Daniel Ho, and Mohi Khansari. Asking for help: Failure prediction in behavioral
cloning through value approximation. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 5821-5828. IEEE, 2023.

[15] Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, Karthik Dharmarajan, Brijen Thanan-
jeyan, Pieter Abbeel, and Ken Goldberg. Fleet-dagger: Interactive robot fleet learning with
scalable human supervision. In Conference on Robot Learning, pages 368-380. PMLR, 2023.

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[17] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-
dagger: Interactive imitation learning with human experts. In 2019 International Conference on
Robotics and Automation (ICRA), pages 8077-8083. IEEE, 2019.

[18] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

[19] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024.

[20] Quanyi Li, Zhenghao Peng, and Bolei Zhou. Efficient learning of safe driving policy via
human-ai copilot optimization. arXiv preprint arXiv:2202.10341, 2022.

[21] Kong Ling-Huan, He Wei, Chen Wen-Shi, Zhang Hui, and Wang Yao-Nan. Dynamic movement
primitives based robot skills learning. Machine Intelligence Research, 20:396-407, 2023.

[22] Huihan Liu, Shivin Dass, Roberto Martin-Martin, and Yuke Zhu. Model-based runtime moni-
toring with interactive imitation learning. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 4154-4161. IEEE, 2024.

[23] Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on
the job: Human-in-the-loop autonomy and learning during deployment. In Robotics: Science
and Systems (RSS), 2023.

[24] Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu,
Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv
preprint arXiv:2410.07864, 2024.

[25] Jingxian Lu, Wenke Xia, Dong Wang, Zhigang Wang, Bin Zhao, Di Hu, and Xuelong Li.
Koi: Accelerating online imitation learning via hybrid key-state guidance. arXiv preprint
arXiv:2408.02912, 2024.

[26] Jianlan Luo, Perry Dong, Yuexiang Zhai, Yi Ma, and Sergey Levine. Rlif: Interactive imitation
learning as reinforcement learning. arXiv preprint arXiv:2311.12996, 2023.

[27] Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic
manipulation via human-in-the-loop reinforcement learning. arXiv preprint arXiv:2410.21845,
2024.

[28] Ajay Mandlekar, Danfei Xu, Roberto Martin-Martin, Yuke Zhu, Li Fei-Fei, and Silvio
Savarese. Human-in-the-loop imitation learning using remote teleoperation. arXiv preprint
arXiv:2012.06733, 2020.

[29] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning
from offline human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298,
2021.

[30] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

12



[31] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730-27744, 2022.

[32] Xincheng Pang, Wenke Xia, Zhigang Wang, Bin Zhao, Di Hu, Dong Wang, and Xuelong Li.
Depth helps: Improving pre-trained rgb-based policy with depth information injection. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
7251-7256, Oct 2024.

[33] Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

[34] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36:53728-53741, 2023.

[35] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627-635. JMLR Workshop and
Conference Proceedings, 2011.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in neural information processing systems, 33:3008-3021, 2020.

[38] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[40] Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation
of uncertainty. Journal of Risk and uncertainty, 5:297-323, 1992.

[41] Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh, Ria Doshi,
Charles Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open x-embodiment: Robotic learning
datasets and rt-x models. In Towards Generalist Robots: Learning Paradigms for Scalable Skill
Acquisition@ CoRL2023, 2023.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[43] Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025.

[44] Wenke Xia, Ruoxuan Feng, Dong Wang, and Di Hu. Phoenix: A motion-based self-reflection
framework for fine-grained robotic action correction. In Proceedings of the Computer Vision
and Pattern Recognition Conference (CVPR), pages 6981-6990, June 2025.

[45] Wenke Xia, Dong Wang, Xincheng Pang, Zhigang Wang, Bin Zhao, Di Hu, and Xuelong Li.
Kinematic-aware prompting for generalizable articulated object manipulation with llms. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pages 2073-2080,
2024.

13



[46]

[47]

[48]

[49]

[50]

Esen Yel and Nicola Bezzo. Fast run-time monitoring, replanning, and recovery for safe
autonomous system operations. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1661-1667. IEEE, 2019.

Zheng Ying, Yao Lei, Su Yuejiao, Zhang Yi, Wang Yi, Zhao Sicheng, Zhang Yiyi, and Chau
Lap-Pui. A survey of embodied learning for object-centric robotic manipulation. Machine
Intelligence Research, 22:588-626, 2025.

Jia Zeng, Qingwen Bu, Bangjun Wang, Wenke Xia, Li Chen, Hao Dong, Haoming Song, Dong
Wang, Di Hu, Ping Luo, et al. Learning manipulation by predicting interaction. arXiv preprint
arXiv:2406.00439, 2024.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang,
Mingyu Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference
alignment. arXiv preprint arXiv:2411.19309, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

14



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have claimed the contributions in Abstract Section and Introduction
Section[T]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in the Conclusion Section[3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: In this work, we apply Kahneman & Tversky’s prospect theory to prefer-
ence alignment of Vision-Language-Action models, without introducing new theoretical
contributions
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have reported the implementation details to support reproduction in the
Experiment Settings Section @1}

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the data and code for reproduction in the supplemental
material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided the implementation details in Experiment Settings Sce-
tion 411
Guidelines:
» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We conduct the main experiments across 3 random seeds and report the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided the compute resources in Experiment Settings Section
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In this work, we propose a human-robot collaboration framework to ensure op-
erational safety during robotic deployment, facilitating the broader adoption of autonomous
robotic systems in real-world applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model and dataset pose no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We follow the license of OpenVLA model.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We would release our code, model, and corresponding human intervention
trajectories.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We collect human intervention trajectories by ourselves.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We utilize the LLMs as the foundation models for our further Vision-Language-
Action Models fine-tuning.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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SUPPLEMENTARY MATERIAL

1 Supplementary Video

In this work, we propose the action preference optimization method to correct interaction failure
and achieve stable optimization for VLA models. In the supplementary video, we illustrate our
human-assisted interaction trajectories collection process as demonstrated in Figure [T We also
provide comparison videos against other methods, highlighting the effectiveness of our approach in
both real-world and simulation scenarios.

Automatic Execution Fallure Action Human Intervention Automatic Execution

Figure 1: The demonstration of our human-assisted interaction trajectory.

2 Human-assisted Collaboration Deployment

In this work, we propose a human-assisted collaboration deployment framework to support reliable
deployment and interaction trajectory collection. The blue block in Figure [T]illustrates the initial
deployment of the base policy for autonomous environment interaction. However, the base policy
is trained solely on expert demonstrations. When its predicted action causes failures, this model
struggles to recover from these failure states, as shown in the red block. To address this, we provide
human intervention to manually adjust the robotic arm’s movements for failure correction, as shown
in the green blocks.

Through this human-assisted approach, we ensure reliable deployment of the model in manipulation
tasks. Furthermore, we annotate these interaction trajectories for subsequent preference learning.
Specifically, we designate the last 10 actions before human intervention as undesirable data (repre-
senting failure actions), while the remaining trajectories serve as desirable data.

3 Implementation Details

In our work, we build the utility function v as below to estimate the relative gain on the robotic data:

”U(O d) _ Apo (TG(Ov &) - ZO) if & ~ Qgesirable (1)
, Avo (ZO — T (07 &)) if & ~ Gundesirable

where zg = K L(mg||mcf) to guide the model to learn from preference pair data while simultaneously
preserving knowledge acquired from prior models. We compute the KL-divergence z; by leveraging
the KTO [11]] method, which leverages mismatched sample pairs for KL estimation. Further, we
ignore the reject reward of the gripper action token to prevent erroneous rejection of the same gripper
state.

4 More Real-world Experiments

4.1 Generalization to various VLA models

In this section, we adopt our method to fine-tune the mp-FAST model. As shown in Table[T] the
7o-FAST model achieves a higher success rate, benefiting from its action chunking prediction.
Besides, our method could achieve consistent performance gains in real-world experiments. Because
our method needs to decode to continuous action for adaptive reweighting, however, the my-FAST
model may fail to decode predicted action tokens into meaningful continuous actions, thus when the
predicted action token sequences cannot be decoded to x, we would set the weight as 1 to promote
the model focus on predicting correct action token sequences.
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(a) Hang the cup on the rack
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(b) Put the lemon on the plate

Figure 2: The demonstrations of real-world experiments.

Table 1: The results on 70-FAST model. Table 2: The results on real-world experiments.
Methods Square Methods Hang  Put
Base policy  85% Base policy 70%  85%
Dagger 85% Dagger 65%  85%
TPO 90% TPO 75%  80%
Ours 95% Ours 90% 100%

4.2 More real-world tasks

In this section, we provide two more real-world experiments as shown in Figure 2] For each task,
we collect 100 expert demonstrations to train the base policy. Further, we deploy the base policy
to interact with environments and collect 20 human-intervened trajectories. We mix the 20 human-
intervened trajectories with 20 expert demonstrations for model preference optimization. As shown
in Table 2] our method could achieve better performance compared with other behavior cloning and

preference optimization methods.
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