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Abstract
Molecular dynamics (MD) simulations provide
atomistic insight into biomolecular systems but
are often limited by high computational costs re-
quired to access long timescales. Coarse-grained
machine learning models offer a promising av-
enue for accelerating sampling, yet conventional
force matching approaches often fail to capture
the full thermodynamic landscape as fitting a
model on the gradient may not fit the absolute
differences between low-energy conformational
states. In this work, we incorporate a complemen-
tary energy matching term into the loss function.
We evaluate our framework on the Chignolin pro-
tein using the CGSchNet model, systematically
varying the weight of the energy loss term. While
energy matching did not yield statistically signif-
icant improvements in accuracy, it revealed dis-
tinct tendencies in how models generalize the free
energy surface. Our results suggest future op-
portunities to enhance coarse-grained modeling
through improved energy estimation techniques
and multi-modal loss formulations.

1. Introduction
Molecular dynamics (MD) simulations are a cornerstone
of computational biophysics, offering atomistic insights
into protein folding, conformational transitions, and molec-
ular interactions. However, the fine temporal and spatial
resolution required to resolve these events imposes severe
computational costs. Due to the high dimensionality of
molecular systems and the presence of stiff intramolecu-
lar forces, MD simulations typically use femtosecond-scale
integration time steps, necessitating billions of steps to ob-
serve biologically relevant timescales. This bottleneck has
prompted significant interest in alternative strategies that
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accelerate sampling without compromising physical realism
(Kidder et al., 2021).

Recent advances in machine learning have enabled the con-
struction of coarse-grained potentials that approximate free
energy surfaces from atomistic data. Most models rely on
force matching, which fits the gradients of the free energy
surface to reproduce local forces. While effective for captur-
ing short-timescale dynamics, this approach can miss global
thermodynamic structure since it ignores the absolute en-
ergy values and may poorly distinguish between metastable
states (Fu et al., 2023; Thaler et al., 2022).

To address these limitations, we incorporated energy match-
ing into the learning objective by leveraging the Boltzmann
relation, which links free energies to probability densities
over reduced coordinates. This approach enabled us to su-
pervise the model not only with force data but also with
approximate free energy estimates. While our current im-
plementation of energy matching did not yield a statistically
significant performance improvement, the results highlight
promising directions for enhancing the model. These in-
sights offer a foundation for refining our methodology and
potentially achieving more accurate and robust outcomes in
future iterations.

2. Time-lagged Independent Component
Analysis Background

Time-lagged Independent Component Analysis (TICA) is a
linear dimensionality reduction technique that isolates the
slowest dynamical modes in time-series data (Scherer et al.,
2015). These modes often correspond to biologically mean-
ingful transitions, such as folding, conformational switching,
or binding events. By constructing a new coordinate system
where components are both uncorrelated and optimized for
long-time autocorrelation, TICA filters out fast, thermally
driven fluctuations and emphasizes the kinetically dominant
directions in configuration space. The TICA process begins
with a set of high-dimensional features, such as backbone
dihedrals, contact maps, or pairwise distances, represented
as time-ordered vectors x(t). Unlike PCA, which solves the
simple eigenvalue decomposition

C0v⃗ = λv⃗
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where cij = Cov(xi(t), xj(t)), TICA computes the time-
lagged and instantaneous covariance matrices, then solves
the generalized eigenvalue problem

C ′(τ)v⃗ = λC0v⃗

where C ′(τ) is a time lagged covariance matrix where

c′ij(τ) = Cov(xi(t), xj(t+ τ))

Due to sampling variance, the empirical covariance
Cov(xi(t), xj(t+τ)) may differ from Cov(xi(t+τ), xj(t)),
even though they are theoretically equal in the absence of
noise. To address this, the covariance is typically sym-
metrized with

c′ij(τ) =
1

2
Cov(xi(t), xj(t+ τ))+

1

2
Cov(xi(t+ τ), xj(t))

to ensure that the resulting matrix is Hermitian. This sym-
metrization guarantees real eigenvalues and eigenvectors,
which is often desirable in practical applications.

The resulting eigenvectors vi define directions in the input
space with maximal time-autocorrelation, and the projec-
tions yi(t) = v−1

i x(t) serve as the reduced coordinates.

Once a trajectory is projected into the TICA space, the
probability density over this space can be estimated using a
KDE or histogram. From this, the Gibbs free energy G can
be computed up to a constant by applying the Boltzmann
relation:

G(y) = −kBT log(P (y))

where P (y) is the estimated density in TICA space and
−kBT is the thermal energy. This transformation reveals
the free energy surface, a map where valleys correspond
to metastable conformations and barriers suggest transition
states.

3. Force matching
Force matching on a continuous coarse grained function
f ∈ R3N → R3n usually defines the loss to be the gradient
of the free energy (Ciccotti et al., 2005)

Lforce(θ) =
1

N

N∑
i=1

∥∥∥∇R⃗U(f(r⃗))
(
B(r⃗i)∇r⃗E(r⃗i)

− kBTB(r⃗i)∇r⃗

)∥∥∥
2

(1)

Langevin sampling will by nature sample lower energy
states, meaning that the high energy transitions between
energy minima may not be well sampled. Due to only match-
ing the gradient, the absolute free energy levels between low
energy conformational states may not be accurate.

4. Energy Matching Theory
The Boltzmann distribution describes the probability of a
configuration R in the canonical ensemble:

P (R) =
e
−G(R)

kBT

Z

where G(R) is the free energy, kB is the Boltzmann con-
stant, T is the temperature, and Z is the partition function.

By inverting this relationship, we obtain an expression for
the free energy:

G(R) = −kBT ln(P (R)) + C

where C = −kBT ln(Z) is an additive constant.

Assuming that the configuration vector R ∈ R3n can be
transformed into a set of statistically independent compo-
nents K ∈ Rm, such that Cov(Ki,Kj) = 0 for i ̸= j, the
free energy can be decomposed as:

G(R) = −kBT ln(P (K)) + C (2)

= −kBT

m∑
i=1

ln(P (Ki)) + C (3)

This formulation allows the free energy to be estimated up
to an additive constant based on the probability distribution
of the independent components Ki.

To incorporate this into model training, we introduce an
energy-based loss term alongside the force matching loss
from Section 1. The total loss function becomes:

L(θ) =λforceLforce(θ)

+ λenergy
1

N

N∑
i=1

[
U(θ, R⃗i)−G(Ri) + C

]
Here, U(θ, R⃗i) is the predicted energy for configuration R⃗i,
and C is a protein-specific constant allowing for comparison
up to an additive offset. The hyperparameters λforce and
λenergy control the trade-off between force matching and
energy matching in the optimization objective.

5. Methodology
We used the CGSchnet model (Zhang et al., 2020) with a
coarse grain function as a matrix keeping only the carbon
alpha atoms of the protein. Our initial data was derived
from Majewski et al. (Majewski et al., 2023) at 350K, and
resampled from diverse initial conformations at 300K.

For each TICA component k ∈ {1, . . . , d}, we estimate the
marginal probability density function Pk(y) of component
values across the entire dataset using either a Gaussian ker-
nel density estimator or a histogram-based approach. The
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free energy of a trajectory point y along a TICA component
is computed using the Boltzmann inversion:

Gk(y) = −kBT logPk(y),

where kB is the Boltzmann constant and T is the tempera-
ture (set to 300 K in our experiments). To obtain the total
free energy for a point y in TICA space, we sum the contri-
butions from each independent component:

G(y) =

d∑
k=1

Gk(yk) = −kBT

d∑
k=1

logPk(yk).

For each trajectory, we load the precomputed prior en-
ergy Eprior and calculate the energy correction ∆E =
G(y) − Eprior. This correction ∆E is saved and can be
used as the scalar target in machine learning models trained
to predict absolute free energy differences across protein
conformational states.

Figure 1. Predicted Mean TICA free energy landscape of Chigno-
lin projected onto TICA space. Energy values were computed by
binning TICA data into a 100×100 grid and averaging over each
bin.

6. Results
Regions with the greatest density of TICA points are ex-
pected to correlate strongly with low-energy conformational
states of the system. These areas likely represent thermo-
dynamically stable states, where the system resides for ex-
tended periods due to minimal free energy, as inferred from
the clustering behavior in TICA space.

We compare the distribution of point density in TICA space
with the corresponding TICA energy landscape and observe
that the resulting energy landscape is noticeably flatter than
the empirical density, suggesting that the marginal energy

estimates may underrepresent the depth and sharpness of
energy wells as illustrated by Figure 1 and Figure 2. This
raises the possibility that TICA energy may not capture the
full extent of the system’s dynamical or thermodynamic
structure.

We trained a series of models on the Chignolin protein, vary-
ing the values of the weighting parameters λenergy and λforce,
constrained such that λenergy + λforce = 1. We assess perfor-
mance using the Kullback-Leibler (KL) divergence between
the model output and ground-truth data, computed on the
first two TICA components. These components are chosen
because they account for over 70% of the variance in the
system’s slow dynamics. TICA determines the explained
variance of each component based on its associated eigen-
value, making the first two components the most informative
for capturing the dominant slow modes.

Figure 2. Contour plot illustrating the density of Ground-Truth
TICA points, overlaid with strided data points for clarity.

Models trained with low values of λenergy (e.g., 0.01, 0.05,
0.075) when compared to ground truth force matching
demonstrated a slight improvement in accurately captur-
ing the free energy surface seen in Figure 3 compared to
Figure 4. However, the differences observed may be at-
tributable to stochastic variation as there was no statistically
significant difference in free energy estimation accuracy. As
λenergy was increased to intermediate and high values (0.1,
0.5, and 1.0), the models exhibited a tendency to overfit to
the lowest-energy basins, becoming trapped in deep wells
of the potential energy surface as displayed in Figure 5.
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Figure 3. Plot of TICA points with λenergy = 0 (pure force match-
ing) for inference on a Chignolin trained model (Blue is ground-
truth, red is machine learning model). Includes a contour repre-
senting the density of the TICA points of TIC 0 and TIC 1, as well
as the associated PDFs.

Figure 4. Plot of TICA points with λenergy = 0.01 for Chignolin
model.

Figure 5. Plot of TICA points with λenergy = 0.8 for Chignolin
model.

7. Future Work
Although our energy matching results did not demonstrate
significant improvements with the techniques presented, we
believe that further research and alternative methodologies
hold promise for effectively learning free energy.

We theorize that more complex proteins, such as Protein G
or a3D, which exhibit deeper and more varied energy basins,
may present a better testbed for evaluating energy matching
techniques. To test this hypothesis, we plan to extend our
methodology to such proteins and assess whether the richer
energy structures improve learning and generalization. Ad-
ditionally, we will explore simplified, synthetic benchmark
systems with known energy surfaces to better isolate the
effects of energy well depth, barrier heights, and statistical

dependencies. These controlled environments will help us
disentangle model performance from biological variability
and guide the refinement of energy-based loss formulations.
While the current results highlight challenges, they also un-
derscore important design considerations that will inform
our future efforts in learning accurate free energy surfaces.

While we have utilized TICA-based density estimation to
approximate free energies, alternative approaches offer com-
plementary insights into the thermodynamics and kinetics
of molecular systems. For example, Markov State Models
(MSMs) provide a principled method for analyzing long-
timescale behavior by discretizing the system’s configura-
tion space into metastable microstates and estimating transi-
tion probabilities between them over a fixed lag time τ .

MSMs can be constructed by clustering molecular config-
urations in the TICA-projected space and computing the
transition probability matrix T from observed trajectory
transitions. The stationary distribution π of T then yields
an equilibrium probability for each state, from which free
energies can be recovered using the Boltzmann relation:

Gi = −kBT log(πi)

This approach effectively converts high-dimensional dynam-
ical information into a coarse-grained free energy landscape.

We aim to explore MSM-derived free energies as an alter-
native to TICA-based density estimates for the energy loss
term. This could enhance model robustness, especially for
systems with complex metastable behavior, and support a
broader range of physical constraints in energy matching.
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