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Abstract

Symbolic regression (SR) is the task of learning a model of data in the form of a mathematical
expression. By their nature, SR models have the potential to be accurate and human-
interpretable at the same time. Unfortunately, finding such models, i.e., performing SR,
appears to be a computationally intensive task. Historically, SR has been tackled with
heuristics such as greedy or genetic algorithms and, while some works have hinted at the
possible hardness of SR, no proof has yet been given that SR is, in fact, NP-hard. This
begs the question: Is there an exact polynomial-time algorithm to compute SR models? We
provide evidence suggesting that the answer is probably negative by showing that SR is
NP-hard.

1 Introduction

Symbolic regression (SR) is a sub-field of machine learning concerned with discovering a model of the given
data in the form of a mathematical expression (or equation) (Kozal 1994} [Schmidt & Lipsonl 2009)). For
example, consider having measurements of planet masses m; and mo, the distance r between them, and the
respective gravitational force F'. Then, an SR algorithm would ideally re-discover the well-known expression
(or an equivalent formulation thereof) F' = G x ™Lf2

132, with G = 6.6743 x 10—, by opportunely combining
the mathematical operations (here, of multiplication and division) with the variables and constant at play.

The appeal of learning models as mathematical expressions goes beyond obtaining predictive power alone, as
is commonplace in machine learning. In fact, SR models are particularly well suited for human interpretability
and in-depth analysis (Otte, 2013} |Virgolin et al., |2021b; La Cava et al.,[2021)). This aspect enables a safe and
responsible use of machine learning models for high-stakes societal applications, as requested in the Al acts
by the European Union and the United States (European Commission) [2021; |117th US Congress, 2022; [Jobin,
et al., 2019). Moreover, it enables scientists to gain deeper knowledge about the phenomena that underlie the
data. Consequently, SR enjoys wide applicability: SR has successfully been applied to astrophysics (Lemos
et al.l [2022), chemistry (Hernandez et all 2019)), control (Derner et all 2020)), economics (Verstyuk &
Douglas, [2022), mechanical engineering (Kronberger et al., |2018)), medicine (Virgolin et al., [2020b)), space
exploration (Méartens & Izzo, |2022), and more (Matsubara et al., [2022).

As we will describe in Sec. [2| many different algorithms have been proposed to address SR, ranging from
genetic algorithms to deep learning ones. Existing algorithms either lack optimality guarantees or heavily
restrict the space of SR models to consider. In fact, there is a wide belief in the community that SR is an
NP-hard problenﬂ (Lu et al., 2016; Petersen et al. [2019; Udrescu & Tegmark, 2020; |Li et al., 2022). However,
to the best of our knowledge, this belief had yet to be solidified in the form of a proof prior to the advent of
this paper. Indeed, we prove that there exist instances of the SR problem for which one cannot discover the
best-possible mathematical expression in polynomial time. Id est, SR is an NP-hard problem.

2 Background: Existing SR algorithms

The introduction of SR is generally attributed to John R. Koza (e.g.,|Zelinka et al.| (2005) make this claim);
however, the problem of finding a mathematical expression or equation that explains empirical measurements

Lu et al|(2016)) state that SR is NP-hard but provide no reference nor proof.
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was already considered in earlier works (Gerwin, |1974; |[Langleyl, [1981}; Falkenhainer & Michalski, 1986]). Such
works build mathematical expressions by iterative application of multiple heuristic tests on the data.

Koza is best known for his pioneering work on genetic programming
(GP), i.e., the form of evolutionary computation where candidate solutions °

are variable-sized and represent programs (Koza et al., |1989; [Koza, |1990;

[1994). Early forms of GP where proposed by |Cramer] (1985); |Hicklin| (1986). e °
Koza showed that GP can be used to discover SR models by encoding

mathematical expressions as computational trees (see Fig. . In such trees, @ @ @ @
internal nodes represent functions (e.g., +, —, X, etc.) that are drawn

from a pre-decided set of possibilities, and leaf nodes represent variables

or constants (e.g., x1, 2, ..., —1, m, etc.). GP evolves a population of @

trees by initially sampling random trees, and then conducts the following
steps: (1) stochastic replacement and recombination of their sub-trees; (2)
evaluation of the fitness by executing the trees and assessing their output;
and (3) stochastic survival of the fittest.

Figure 1: Example of a tree that
encodes f(x) = (sin(z1) + z3) X
x3/27.

Recently, [La Cava et al| (2021) proposed SRBench, a benchmarking

platform for SR that includes more than 20 algorithms have been applied on more than 250 data sets.
SRBench shows that several state-of-the-art algorithms for SR are GP-based. Among these, at the time
of writing, Operon by Burlacu et al. (2020) was found to perform best in terms of discovering accurate
SR models; and GP-GOMEA by [Virgolin et al| (2021a)) was found to perform best in terms of discovering
decently-accurate and relatively-simple SR models (i.e., shorter mathematical expressions). Other forms of
GP, such as strongly-typed GP 1995), grammar-guided GP (McKay et al., 2010), and grammatical
evolution (O’Neill & Ryan| 2001)), are often used to tackle dimensionally-aware SR, i.e., the search of
mathematical expressions with constraints to achieve meaningful combinations of units of measurement.

SR has been addressed with many other types of algorithms than genetic ones, oftentimes in order to obtain
a deterministic behavior. Worm & Chiul (2013)) and Kammerer et al.| (2020)) proposed enumeration algorithms
which make SR tractable by restricting the space of possible models to consider and including dynamic
programming and pruning strategies. |Cozad| (2014); |Cozad & Sahinidis| (2018) showed how SR can be
addressed with mixed integer nonlinear programming. [McConaghy| (2011]) proposed FFX, which generates
a linear combination of many functions that are linearly-independent from each other, and then fits its
coefficients with the elastic net (Zou & Hastie, [2005) to promote sparsity. |Olivetti de Franca| (2018) and
[Rivero et al.| (2022)) propose greedy algorithms that start from small mathematical expressions and iteratively
expand them, by replacing existing components with larger ones from a set of possibilities.

Lastly, recent years have seen the proposal of deep learning-based algorithms for SR. [Petersen et al.| (2020))
cast the SR problem as a reinforcement learning one and train a recurrent neural network to generate
accurate SR models. [Udrescu & Tegmark]| (2020) leverage neural networks in order to test for symmetries and
invariances in the data that are then used to prune the space of possible SR models. An end-to-end approach
is taken by [Kamienny et al.| (2022]) and [Vastl et al(2022)), who train deep neural transformers to produce SR
models directly from the data. |Li et al.| (2022)) seek SR models by proposing a convexified formulation of

deep reinforcement learning.

In summary, existing SR algorithms are either heuristics, which do not guarantee optimality (e.g., genetic,
greedy, or deep learning-based algorithms), or they are exact algorithms that achieve optimality but only over
a small subset of all possible SR models, to limit the runtime (e.g., dynamic programming and mixed-integer
nonlinear programming algorithms). This strongly hints to the fact that SR is NP-hard. As mentioned earlier,
no proof has yet been given.

3 Preliminaries

We will hereon refer to SR models as functions when appropriate, as this is their fundamental nature. To
begin, let us recall the concept of function composition, which is central to SR.

Definition 1. Function composition
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Given two functions f : A — B and g : B — C, function composition, which we denote by g o f, is the
operation that produces a third function h : A — C, such that h(z) = g(f(z)).

Thanks to function composition, we can now define the concept of search space of an SR, problem.
Definition 2. Search space of SR

Let P be a set of functions and variables. The search space of SR is the function space F that contains all
functions that can be formed by composition of the elements of P and their compositions.

To better understand what Def. [2] states, consider that P can be set to contain a mix of functions that perform
basic algebraic operations such as addition, subtraction, multiplication, and division; transcendental functions
such as sin, cos, log, exp; constant functions (or simply constants), such as cqa(z) = 42 and ¢, (x) = 7 for
any x; and variables of interest for the problem at hand, such as z1,z9,x3. P is typically referred to as the
primitive set, and its elements as primitives (Poli et al.| [2008). Once P has been decided, F is determined. For
example, choosing P = {+(-,-), —(-,), X(, ), ®1, 2, —1, +1} means that F will contain a subset of all possible
polynomials of arbitrary degree in x; and zs. In particular, F is a subset because only some coefficients can
be expressed, by composing constants with addition, subtraction, and multiplication.

Let us clarify a point regarding constants in particular. Normally, one would include constants considered
to be relevant to the instance of SR at hand. For example, if the unknown phenomenon for which an SR
model is sought is suspected to have sinusoidal components, it may be advisable to include multiples of 7 in
‘P. Moreover, P can be set to contain special elements that represent probability distributions from which
constants can be sampled (see the concept of ephemeral random constant described by [Koza] (1994)); [Poli et al.
(2008)). We denote one such element by R and, e.g., 23 can be chosen to represent the uniform distribution
between two numbers, or the normal distribution with a certain mean and variance. When an SR algorithm
picks R from P to compose an SR model, a constant is sampled from the distribution identified by R. Here
(more specifically, in Corollary 1)) we will generously assume that any constant can be sampled directly from
R, and therefore that there is no need for a real-valued optimizer to be part of the SR algorithm. For example,
having P = {+(-,-), — (-, ), X (-, ), 1, X2, R} will mean that F contains all polynomials of arbitrary degree in
z1 and zo.

We can now proceed by providing a definition of the SR problem. While this definition can be extended to
other domains, we focus on handling real-valued numbers as the majority of the works takes place in this
domain, and subsets thereof.

Definition 3. Symbolic Regression (SR) problem

Given a set P of functions and variables, a metric £ : R™ x R™ — R, vectors x; = (T14,...,%d;) € R? and
scalars y; € R, fori=1,...,n, the SR problem asks for finding a function f* such that:

fr=argminL(y, f(x)), (1)
fer

where F is the search space that is defined by P.

We provide some remarks concerning the proposed definition of the SR problem. Firstly, let us map the
objects provided in the definition to terms familiar to a machine learning audience. The pair (x;,y;) is
normally what is referred to as observation, data point, evample, or sample, where x;; is the value of the
jth feature or variable for the ith observation, and y; is the value of the label or target variable for the same
observation. The set that contains the observations upon which £ is computed, i.e., D = {(x;,y;)}{, is
called training set. Moreover, the metric L is called loss function.

Normally, we actually desire f to generalize to new (or also called unseen) observations, i.e., observations
which are similar to those in D but not exactly the same (they come from the same underlying and unknown
distribution). In other words, it is not sufficient that f* is a best-possible function with respect to the training
set, as the loss should remain minimal also for new observations that are not available to us. Still, considering
a “pure optimization” formulation, as given in Eq. , can be considered to be a pre-requisite for being able
to machine-learn accurate models from the data; in fact, much literature that concerns the generation of
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provably-optimal models provides proofs with respect to the training set alone (see, e.g., results for decision
trees (Hu et all 2019))). In a similar fashion, here we will consider the case of minimizing the loss with respect
to the training set D and show that this is already problematic for any SR algorithm.

As loss function, we consider £ to be a metric (i.e., distance) which operates between the output f(x;) and
the label y; across i = 1,...,n. Commonly-used loss functions such as the mean absolute error, mean squared
error, and root mean squared error fit this definition. However, certain works include regularization terms in
the loss function, such as A x C(f), where A € R controls the regularization strength and C' : F - R is a
function of the complexity of f. Typical goals of such regularization terms are improving generalization (by
limiting effects akin to Runge’s phenomenon (Fornberg & Zuevl |2007))) and improving the interpretability
of f. For the latter, implementations of C' range from weighed counting of the number of primitives that
constitute f (Ekart & Nemeth) [2001; |[Hein et al., [2018]), to machine learning models trained from human
feedback to predict f’s interpretability (Virgolin et all, |2020a} 2021b). Here, for simplicity, we focus on £
being a plain metric as stated in Def. [3| or, equivalently put, we consider A = 0.

Lastly on Def. 3] we consider only cases in which f is not a recursive function, which to the best of our
knowledge is the case for the majority of the literature on SR. Recursive function discovery is an interesting
topic in general (see, e.g.,|d’Ascoli et al.|(2022])), but it is not interesting here because recursive functions can
take exponential time to compute (consider, e.g., Fibonacci’s sequence). Therefore, it is obvious that the SR
problem cannot be solved in polynomial time if certain recursive functions can be considered. Here, we will
assume that computing f(x) and L(y, f(x)) can be done in polynomial time. Regarding £, our assumption
is met for all commonly-used metrics by which £ is implemented (mean absolute error, mean squared error,
variants thereof with margins, etc.). In fact, computing losses of such form takes O(n) time, i.e., the runtime
is linear in the number of observations. Regarding the computation of f(x), f itself can be implemented
as a directed acyclic graph, where nodes represent the functions and variables from P, and edges represent
compositions. To compute f(x), it suffices to visit each node of the graph for each observation, thus requiring
O(¢ x n), where ¢ is the number of primitives in f. Fig. [I| shows an example of such a graph, especially in
the form of a tree, which is perhaps the most common way of encoding mathematical expressions in SR (see,
e.g., the SR algorithms benchmarked by |La Cava et al.| (2021))).

We conclude this section with the following important definition.
Definition 4. Decision version of the SR problem (SR-Dec)
Given an SR instance and an € € R}, SR-Dec outputs YES if and only if:

AfeF: Ly fx)<e (2)

Essentially, Def. [] is the problem of deciding whether there exists a function f in the search space such that
its loss is smaller than a chosen threshold e.

4 The result

We proceed directly by providing the main result of this paper.
Theorem 1. The SR problem is NP-hard.

Proof. Let us begin by stating that SR-Dec is in NP. Recall that the computations of f(x) and L(y, f(x))
take polynomial time (see Sec. [3). Of course, the check < e takes O(1) time. Thus, if f is guessed by an
oracle, then we can provide an answer to SR-Dec in polynomial time.

We proceed by considering the unbounded subset sum problem (USSP). USSP is a similar problem to the
unbounded knapsack problem, where a same item can be put in the knapsack an arbitrary number of times,
and the weight of an item corresponds exactly to the profit gained by including that item in the knapsack.
The decision version of USSP, USSP-Dec, is defined as follows. Given j =1,...,k (k items), w; € N (weight
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of that item), and ¢ € N (the target), USSP-Dec asks:

k
dm : ijmj =17 (3)

Jj=1

where m; € Ny (multiplicity with which an item is picked). USSP-Dec is known to be NP-complete (Kellerer
et al., [2004)).

To prove that SR-Dec is NP-complete, we show that any instance of USSP-Dec can be reduced to some
instance of SR-Dec in polynomial time. To this end, we will restrict SR-Dec as follows: (1) We pick the set
of primitives P to be P = {4+, z1,...,24}; (2) We set e = 0. In other words, we set the search space F to
contain only linear sums of the features in the data set D, i.e., functions of the form f(x) = Z?zl x;m; with
m; € Ng. SR-Dec will output YES if and only if there exists such a function in F that achieves zero loss, i.e.,
it perfectly interpolates all observations in D.

Next, we craft D to have a single observation (n = 1) and k features (d = k). For the only observation in D
(dropping the index for the observation number, since there is only one), we set x; = w1, x2 = wa, ..., T = Wy,
and y = t.

Then, the following holds:

(Eq. @) 3feF:L(y f(x)<e (4)
(Choosing e =0) 3f € F: L(y, f(x)) <0? (5)
(L(y, f(x) =0 <= f(x)=y) 3feF:fx) =y (6)
(Equivalence y =t due to D) 3If € F: f(x) =t? (7)
d
(Ezpanding F based on choice of P) 3f € Za:jmj tmj € Ng p @ f(x) =1t? (8)
j=1
k
(Equivalence x; = w;,d =k due to D) 3f € ijmj cmj € Ng p @ f(x) =1t? (9)
j=1
k
(Re-formulating in terms of m) Jm : ijmj =7 (10)
j=1

In other words, there exist some instances of SR-Dec that can be re-formulated as USSP-Dec (cfr. Egs.
and (10)). Now, since assembling P as stated above takes linear time in k, picking € = 0 takes O(1) time,
and constructing D as stated above takes linear time in k, then any instance of USSB-Dec can be reduced to
some instance of SR-Dec in polynomial time: SR-Dec is NP-complete.

We conclude the proof with a reductio ab absurdum. Let us assume that there exists an algorithm to compute
an optimal f* for the SR problem (Def. [3) in polynomial time. An optimal f* is the one for which the loss is
minimal, which means that using f* in Eq. allows us to immediately answer SR-Dec. Since verifying that
L(y, [*(x)) < e takes polynomial time, we conclude that if the SR problem can be solved in polynomial time,
then we can also solve SR-Dec in polynomial time. Therefore, the SR problem is NP-hard.

O

We remark that, in the proof of Theorem [I} we construct P so as not to contain 93 (nor any constant). Some
readers might disagree with this quite broad definition of SR. In fact, some SR algorithms heavily rely on
the presence of constants as well as on their optimization (e.g., FF'X by McConaghy| (2011) and FEAT
by [La Cava et al. (2018)). Not allowing for arbitrary constants to be present in the functions of the search
space might be seen as a violation of the very definition of SR. In other words, some might think that P
must contain R. We next show that SR remains NP-hard in this special case.
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Corollary 1. The SR problem is NP-hard even when P must include R.

Proof. We follow a similar construction of the proof of Theorem Namely, the only difference from
before is in the way we pick P and construct D. This time, we set P to additionally contain *R, i.e.,
P ={+,z1,29,...,24,R}. This means that the function space F now contains functions of the form f(x) =
c+ Zj:l x;m; with m; € Ny and ¢ € R (sampled from R). As to D, we will now include two observations
instead of a single one. The first observation is set as before, ie., 11 = wi,221 = wa,...,TH1 = Wi
(d = k) and y; = t. As to the second observation, we set x12 = 0,222 = 0,..., 252 = 0 and y2 = 0,
i.e., the value of all features and of the label are set to zero. Now, L(y, f(x)) =0 < f(x;) = y; for
both i = 1,2. For f(x2) = yo = 0, since any f has the form f(x) = ¢+ Z?:l zym; and zj2 = 0, for
all j, then f(x2) = ¢+ Z;l:l() xmj = c. But f(x2) =y2» =0 <= ¢ = 0. In other words, we know
that every f for which ¢ # 0 is one for which SR-Dec outputs NO. Therefore, by construction, we can
immediately ignore all of those functions, and consider only the subset of F that contains functions of
the form f(x) =0+ Z‘;:l Tim; = Z‘;—l:l xzjm;. For every one of such functions, the loss for the second
observation is by construction zero and we can therefore ignore it. Consequently, we are now back to the
same setting considered in Theorem [I] which concludes the proof.

O

5 Conclusion

Our main contribution here was to prove that symbolic regression (SR), i.e., the problem of discovering an
accurate model of data in the form of a mathematical expression, is in fact NP-hard. In particular, we have
provided formal definitions of what SR should entail, and showed how the decision version of the unbounded
subset sum problem can be reduced to a decision version of the SR problem. Except for the general definition
of SR we considered, we have additionally shown that SR remains NP-hard even when the set of primitives
must contain distributions from which constants can be sampled.

We hope that this note inspires more works on lower and upper bounds of different SR, variants.
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