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ABSTRACT

Benchmarks shape scientific conclusions about model capabilities and steer model
development. This creates a feedback loop: stronger benchmarks drive better
models, and better models demand more discriminative benchmarks. Ensuring
benchmark reliability is therefore essential for trustworthy evaluation and mean-
ingful progress. In this work, we study benchmark reliability from a distribu-
tional perspective and introduce benchmark HARMONY, which measures how
uniformly a model’s performance is distributed across the subdomains of a bench-
mark. We posit that high HARMONY is a desirable benchmark property, indicating
that the aggregate metric reflects uniform competence across subdomains. Across
19 multiple-choice benchmarks and five model families, we map each benchmark
onto a mean-variance plane of HARMONY computed across models, where high
mean and low variance signal more reliable evaluation. Our analysis shows that
less harmonious benchmarks can give misleading results, since overall accuracy
may be disproportionately influenced by specific subdomains. For instance, ARC-
Easy is overwhelmed by questions on Biological Concepts, overshadowing other
critical subdomains such as Geography, Physics, Chemistry, and Environmental
Science. By recommending that HARMONY should be reported alongside accu-
racy, we reframe evaluation from simple performance averages to a more robust,
distributionally reliable measurement of performance.

1 INTRODUCTION

Benchmarks lie at the crux of measuring and shaping scientific progress in language models, forming
a feedback loop with model development. Discriminative benchmarks refine learning signals and
guide model design, while stronger models expose benchmark limitations and drive the creation of
more rigorous evaluations. In this reciprocal process, benchmark reliability is essential to ensure
that reported improvements reflect genuine capabilities rather than evaluation artifacts (Ott et al.,
2022). Yet, despite its importance, benchmark auditing (Swayamdipta et al., 2020; D’Amour et al.,
2020; Sainz et al., 2023) has received far less attention than algorithmic advances (Brown et al.,
2020; Ouyang et al., 2022; DeepSeek-AI et al., 2025).

Motivated by this gap, recent work identifies structural issues in widely used benchmarks, such
as redundancy (Polo et al., 2024; Perlitz et al., 2024b) and uneven data distributions (Huang et al.,
2025), that can skew results and mislead interpretations of model capability (Ruan et al., 2024; Ilić &
Gignac, 2024). In response, the research community interrogates the reliability of already-existing
benchmarks, in addition to proposing new ones. Rather than treating benchmark gains as defini-
tive, recent work urges caution about what benchmarks truly measure and how these measurements
are obtained (Singh et al., 2025; Heineman et al., 2025). This reframes evaluation as an ongoing
measurement challenge, highlighting the need for benchmarks whose properties and limitations are
understood well.

In our work, we investigate benchmark reliability from a distributional perspective. Since bench-
marks claim to assess competence over a stated domain, we ask whether their data evenly represents
its subdomains and whether performance is uniform on these subdomains. We instantiate this idea
with benchmark HARMONY, a measurement of performance uniformity among subdomains of a
benchmark (§2). Figure 1 illustrates our pipeline: Given a target benchmark, we first partition the
datapoints in this benchmark into semantic clusters, where each cluster represents a subdomain (Step
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Figure 1: Pipeline of evaluating HARMONY for a given benchmark. Step 1: We partition the bench-
mark into semantic clusters, where each cluster represents a subdomain. Step 2: We gather each
model’s performance on every cluster. Step 3: We calculate the harmony — the uniformity of the
distribution of performance across subdomains. We posit that high HARMONY implies that ag-
gregate metrics capture broad competence, whereas low HARMONY obscures strengths and weak-
nesses.

1); we then gather the performances per subdomain for different models (Step 2); finally, we com-
pute HARMONY for each benchmark-model pair, where high HARMONY suggests that aggregate
metrics capture broad competence, while low HARMONY obscures strengths and weaknesses of the
model (Step 3).

Figure 2: Plot of the mean and variance of HAR-
MONY across 36 models on 18 MCQA benchmarks.
A higher mean indicates benchmark scores are more
evenly distributed across subdomains, while a lower
variance shows this uniformity is consistent across
models. Benchmarks with both high mean and low
variance are thus more reliable and informative for
evaluation.

Using HARMONY, we conduct a range
of analyses on a variety of benchmarks
and models to assess the reliability of
benchmark evaluations (§3, §4). Here we
showcase one result: Figure 2 plots the
mean and variance of HARMONY across
36 different models for 18 commonly
used Multiple-Choice Question Answer-
ing benchmarks. We posit that high HAR-
MONY with low variance is a desirable
benchmark property, since it implies that
the benchmark reflects overall competence
consistently for different models. In sum-
mary, our contributions are twofold:

• We propose a distributional view of
benchmark reliability and introduce
HARMONY, an entropy-based metric
that quantifies how uniformly perfor-
mance is distributed across subdomains
in a benchmark.

• We provide a large-scale empirical
mapping of 19 MCQA benchmarks across five model families in the HARMONY mean-variance
plane, revealing the spectrum of benchmark reliability.

2 BENCHMARK HARMONY

2.1 PRELIMINARIES AND NOTATION

Let B = {(xi, yi)}Ni=1 be a benchmark consisting of input-output pairs (x, y). Our goal is to un-
derstand the underlying distribution of B by inducing a semantic partition G = {A1, . . . , Ak} of B,
where Ai ⊆ B, Ai ∩ Aj = ∅ for i ̸= j, and

⋃k
i=1 Ai = B. The partition is guided by a similarity

function S : X ×X → (0, 1] that measures the semantic similarity between data points xi, xj ∼ B.
Lastly, let f be a model and let Ψ(f ;Ai) denote a measure of performance (e.g., accuracy) for f
computed on a subset Ai ⊆ B.

2
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2.2 HARMONY: A MEASURE OF BALANCED COVERAGE AND UNIFORM PERFORMANCE

Intuition. Consider a biology benchmark spanning microbiology, animal biology, and plant biol-
ogy. If microbiology dominates and a model excels only there, the overall score may misleadingly
suggest broad competence in biology. Conversely, if microbiology is underrepresented and the
model is weak on it but strong elsewhere, the aggregate evaluation may conceal a critical weakness.
Moreover, even when subdomains are equal in size, large accuracy gaps make the aggregate metric
uninformative (e.g., 90% accuracy in microbiology and 50% accuracy in plant biology averages to
a number that reflects neither). A harmonious benchmark therefore mitigates these distortions by
balancing coverage and promoting comparable performance across subdomains.

Formal definition of HARMONY. Given a partition Gf = {Ai}ki=1, HARMONY measures how
uniformly performance is distributed across the subsets in this partition. For each Ai, let wi =

|Ai|
|B|

be the size weight and let µ =
∑k

i=1 wiΨ(f ;Ai) be the weighted mean. We convert differences
between µ and Ψ(f ;Ai) into smooth proximity scores via a Gaussian kernel:

Ki = exp
(
−
(Ψ(f ;Ai)−µ

b

)2)
,

where b > 0 is a bandwidth parameter.1 We then form performance masses

pi =
wiKi∑k

j=1 wjKj

,

k∑
i=1

pi = 1,

and compute the HARMONY (normalized Shannon entropy)

H(Gf ) = − 1

log k

k∑
i=1

pi log
(
pi + ε

)
∈ [0, 1],

with a small ε = 10−12 for numerical stability.

Subsets with accuracies far from µ receive exponentially smaller pi, lowering entropy. Thus, higher
HARMONY H(Gf ) indicates performance that is evenly distributed across subsets, while lower
HARMONY captures a more concentrated performance in a few subsets. Therefore, HARMONY
quantifies the uniformity of performance while considering the distributional balance.

Interpreting HARMONY. Let Π be a partitioning rule that maps a benchmark B and a model f to
a partition Gf (B) = Π(B; f) using S. Then, define the per-model harmony of B as

HB(f) := H
(
Gf (B)

)
∈ [0, 1].

Given a model set F , we evaluate B by the cross-model mean and variance

µH(B) = Ef∼F [HB(f)] , σ2
H(B) = Varf∼F (HB(f)) . (1)

Higher µH(B) indicates that, on average across models, performance is more uniformly distributed
across the subsets of B, while lower σ2

H(B) indicates that this property is stable across models.
Rather than dichotomizing benchmarks as good or bad, we adopt a comparative view, where B1 is
preferred to B2 if it attains a higher expectation and a lower variance.

Implications. We approach benchmarks as diagnostic tools rather than scoreboards. A bench-
mark with high mean HARMONY and low cross-model variance indicates that aggregate metrics
consistently capture broad competence rather than artifacts of data composition. In contrast, either
low mean or large variance signals fragility, since the conclusions about model evaluation may de-
pend excessively on a few subdomains and be less reliable. Notably, models with similar aggregate
accuracy can differ in HARMONY, implying different breadth of competence. In practice, bench-
marks with favorable mean-variance HARMONY profiles enable more trustworthy evaluation, fairer
comparisons, and clearer measure of progress.

1We set b by a robust scale of {Ψ(f ;Ai)}. Let ã = mediani Ψ(f ;Ai) and MAD = mediani|Ψ(f ;Ai)−
ã|, then b = max{0.02, 1.4826 ·MAD}.

3
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2.3 PARTITION INDUCTION

To compute HARMONY, we require a semantic partition of the benchmark. To this end, we introduce
a novel similarity metric named predictive similarity, a model-aware similarity between data points
based on the divergence of their probability distributions, and induce Gf via spectral clustering on
the resulting affinity matrix S.

Predictive Similarity. We define predictive similarity as a model-aware similarity measure that
quantifies how similarly a model f distributes probability over the output space for two data points.
For xi, xj ∼ B, let p̄f (x) denote the model’s length-normalized probability distribution over tokens.
Then, predictive similarity is computed as

S(xi, xj) = exp

(
− τ

2

[
DKL

(
p̄f (xi) ∥ p̄f (xj)

)
+ DKL

(
p̄f (xj) ∥ p̄f (xi)

)])
, (2)

where DKL(· ∥ ·) denotes the Kullback–Leibler divergence, τ is a scaling factor chosen as the re-
ciprocal of the median symmetric divergence, and the averaged predictive distribution is given by
p̄f (xi) = 1

T

∑T
t=1 pf (xi, y

<t
i ), with y<t

i denoting the ground-truth prefix up to token t− 1.2

Intuitively, predictive similarity S is large when the model treats xi and xj as interchangeable from
a predictive standpoint and small when the model sharply distinguishes them. We defer in-depth
discussion on different aspects of predictive similarity to Appendix B.

Clustering. Given the predictive similarity matrix S ∈ (0, 1]N×N , we induce the partition of a
benchmark via spectral clustering (Ng et al., 2001). We treat S as a precomputed affinity, form the
symmetric normalized Laplacian L = D−1/2(D − S)D−1/2 with D = diag(S1), compute
the k eigenvectors of L associated with its smallest eigenvalues, and apply k-means in this spectral
embedding to obtain a partition G = {A1, . . . , Ak}. To determine the optimal number of subsets,
we sweep 2 ≤ k ≤ 20 and select the value maximizing the silhouette score s(k) ∈ [−1, 1] as an
intrinsic compactness diagnostic (Rousseeuw, 1987).

2.4 EMPIRICAL VALIDATION OF PARTITION INDUCTION

(a) RedundantQA (b) MMLU subtasks.

Figure 3: Validation of our approach on (a) RedundantQA and
(b) MMLU high school subtasks. Estimated HARMONY strongly
correlates with the ground truth and clearly separates low from
high HARMONY variants. Each dot represents one variant aver-
aged across five random seeds.

We need a controlled bench-
mark with a known partition
to evaluate our method’s ability
to induce well-defined seman-
tic partitions. We therefore in-
troduce RedundantQA, a syn-
thetic, four-domain3 MCQA
benchmark where each item
pairs a reference question with
two true-similar paraphrases
(same underlying knowledge)
and two false-similar distrac-
tors (high lexical overlap, dif-
ferent answers). This struc-
ture cleanly separates seman-
tic from lexical similarity and
allows us to control underly-
ing data distribution. See Ap-
pendix A for construction and
validation details of RedundantQA, along with representative examples.

2For t > 1, we condition on the ground-truth answer tokens rather than on the model’s own autoregressive
predictions, ensuring that accumulated model errors do not affect the similarity measure.

3Biology, History, Economics, Popular Culture.
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We empirically validate our partitioning approach on controlled variants of RedundantQA and a
compilation of MMLU high school subtasks.4 In each variant, we designate a domain as dominant
and assign it a proportion r ∈ {0.3, 0.4, 0.5, 0.6, 0.7} of the benchmark, with the remaining domains
sharing 1 − r equally. This yields a spectrum of distributional imbalance with known ground-truth
HARMONY. We repeat every (dominant domain, ratio) variant with five random seeds.

As shown in Fig. 3, HARMONY estimated by our method exhibits a strong positive correlation with
the ground-truth HARMONY. This alignment demonstrates that our measure reliably distinguishes
between high HARMONY and low HARMONY regimes across different degrees of imbalance. Im-
portantly, the trend persists across different (dominant domain, ratio) variants, indicating that the
signal is robust to variations in benchmark construction.

We further validate predictive similarity along three axes and defer all details and results to Ap-
pendix B: (i) discrimination of semantic vs. lexical similarity (App. B.2), (ii) recovery of ground-
truth domains on RedundantQA and MMLU (App. B.3), and (iii) fidelity of HARMONY estimates
under controlled distributional shifts (App. B.4).

3 MAIN ANALYSES: HOW HARMONIOUS ARE THE BENCHMARKS?

We now examine how harmonious widely used MCQA benchmarks are. Accordingly, we compute
HARMONY for each model and benchmark pair (as detailed in §2) and then aggregate it across
models to position each benchmark in the mean-variance plane given by (µH(B), σ2

H(B)) in Eq. 1.
This section first details the experimental setup (§3.1), then maps each benchmark to this plane and
provides an interpretation of this mapping (§3.2).

3.1 EXPERIMENTAL SETUP

We conduct evaluations using a modified version of lm-evaluation-harness5, covering a
wide range of model sizes across five prominent model families: Llama 3 (Grattafiori & et al,
2024), Qwen3 (Yang et al., 2025), Gemma 3 (Team et al., 2025), Phi-3 (Abdin et al., 2024),
and OLMo 2 (OLMo et al., 2025) (see App. C for full model list). Our setup spans 19 MCQA
benchmarks that assess a broad range of model capabilities:

• Reasoning: ARC-Challenge (Clark et al., 2018), ARC-Easy (Clark et al., 2018), ART (Bhaga-
vatula et al., 2020), BoolQ (Clark et al., 2019), CommonsenseQA (Talmor et al., 2018), COPA
(Roemmele et al., 2011), LogiQA (Liu et al., 2020), PIQA (Bisk et al., 2020), QUARTZ (Tafjord
et al., ”2019”), SocialIQA (Sap et al., 2019a), StrategyQA (Geva et al., 2021).

• Mathematical Problem-Solving: AQUA-RAT (Ling et al., 2017), MathQA (Amini et al., 2019).
• World Knowledge: GPQA (Rein et al., 2023), MMLU (Hendrycks et al., 2020), OpenBookQA

(Mihaylov et al., 2018a), PubMedQA (Jin et al., 2019), SciQ (Johannes Welbl, 2017).
• Truthfulness: TruthfulQA (Lin et al., 2021).

For evaluation, we use average token-level log-likelihood scoring over answer options as imple-
mented in the harness, selecting the option with the highest average log-probability. We follow each
benchmark’s evaluation protocol as implemented in the harness, using zero-shot evaluation by de-
fault, and report accuracy. We focus on MCQA benchmarks because (i) the discrete label space Y
yields unambiguous ground truth and exact accuracy,6 and (ii) evaluation is automatic and does not
rely on a judge, avoiding grading variance that is common in free-form scoring. However, we note
that our methodology extends to free-response benchmarks given an appropriate evaluation metric.

3.2 MAPPING BENCHMARK HARMONY

We analyze the widely used benchmarks from §3.1 with HARMONY, placing each benchmark in a
two dimensional plane whose axes are the mean and variance of HARMONY across our model suite.

4Biology, Geography, European History, Computer Science.
5https://github.com/EleutherAI/lm-evaluation-harness
6In free-response settings, multiple plausible intermediate steps can lead to the same answer, complicating

ground truth.
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Figure 4: The mean-variance plane for HARMONY across MMLU subtasks. Each point repre-
sents an MMLU subtask, plotted by the HARMONY mean (µH(B)) and variance (σ2

H(B)) over 36
different models. Upper-left (high mean, low variance) indicates higher benchmark reliability (i.e.,
consistently balanced performance across subsets), while rightward (higher variance) and down-
ward (lower mean) shifts signal diminished reliability. The star on the top left represents an optimal
benchmark. Harmony mean and variance are defined in Eq. 1.

Fig. 2 and 4 respectively position benchmarks and MMLU subtasks in the cross-model mean-
variance plane of HARMONY. The vertical axis is µH(B) (average uniformity of performance
across subdomains) and the horizontal axis is σ2

H(B) (stability of that uniformity across models).
Moving upward increases average distributional uniformity, while moving leftward increases cross-
model stability. Consequently, the upper-left region (high mean, low variance) identifies benchmarks
whose aggregate scores consistently reflect broad competence. In contrast, model performances on
benchmarks with low mean are distributionally skewed on average. If accompanied by low vari-
ance, this skew is consistent across models (i.e., consistently fragile), whereas if accompanied by
high variance, reliability becomes model-dependent. Thus, upward and leftward trajectories indi-
cate more reliable evaluation, whereas downward and rightward shifts suggest more concentrated
model performance on a few subdomains and conclusions that vary substantially across models.

4 CONTROLLED ANALYSES OF CONFOUNDING FACTORS

In this section, we (i) show how less harmonious benchmarks can distort model evaluations and
(ii) examine whether low HARMONY benchmarks warrant extra caution for larger models or those
trained with more tokens.

4.1 HOW DOES MODEL PERFORMANCE CHANGE WITH INCREASED HARMONY?

We analyze the extent to which less harmonious benchmarks can distort model evaluations via un-
representative aggregate metrics. To this end, we prune benchmarks using predictive similarity to
eliminate overly similar items. The pruning ratio is set to be inversely proportional to benchmark
HARMONY, such that high HARMONY benchmarks receive minimal pruning while low HARMONY
benchmarks are pruned more aggressively.7 By mitigating the skewness, this procedure reveals
models’ uniform performance on benchmarks.

7Specifically, we use the formula p = clip[0.05,0.5]

(
0.05 + (0.5− 0.05)

( 1−clip(H; 0.1, 1)
1−0.1

)1.5).

6
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Figure 5: Balancing benchmarks via pruning. We remove overly similar items with a pruning
rate inversely proportional to HARMONY. Top row shows more harmonious benchmarks, where
accuracy remains stable as HARMONY increases. Bottom row shows less harmonious benchmarks,
where HARMONY rises and accuracy shifts significantly.

As shown in Figure 5, model accuracies on high HARMONY benchmarks remain stable under prun-
ing, with differences that are not statistically significant despite increased HARMONY. In con-
trast, low HARMONY benchmarks are fragile, where pruning notably improves HARMONY and
aligns with statistically significant accuracy changes. Details of our significance tests appear in Ap-
pendix F. As HARMONY increases, per-subdomain accuracies tighten around the benchmark mean,
making the aggregate a more faithful representation of the underlying accuracy distribution. Over-
all, low HARMONY benchmarks can be misleading as they skew aggregate scores, whereas high
HARMONY benchmarks provide more reliable and representative evaluations.

While Figure 5 illustrates our findings for the Qwen3 family, we provide the comprehensive results
for the full experimental setup in Appendix G.

4.2 HOW DOES HARMONY CHANGE ACROSS MODEL SIZES AND TOKEN BUDGETS?

Given that low HARMONY signals fragility, we now ask whether this risk depends on model scale
or training budget. We therefore seek to characterize how HARMONY scales with model parameters
and pre-training budget. Rather than focusing on raw accuracy, our goal is to understand whether
larger models or longer pre-training runs yield more uniform performance across subdomains. Con-
cretely, we pose two questions. Model size: As parameter count increases within a family, does
HARMONY steadily rise, indicating broader competence across subsets? Token budget: Along a
fixed architecture, does increasing pre-training token budget improve HARMONY, suggesting a more
even reallocation of accuracy on the benchmark?

Model parameters. We observe that the relationship between model parameter count and HAR-
MONY is family-specific rather than universal. As shown in Fig. 6, within-family comparisons reveal
a negative correlation for Qwen and Llama families, indicating that larger models in these families
concentrate performance more on a few subdomains. In contrast, Gemma and OLMo families ex-
hibit a positive correlation between model size and HARMONY, with larger models distributing
accuracy more evenly across the subdomains in the benchmark. This suggests that parameter count
alone is not a sufficient indicator of uniformity of the performance.

7
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Figure 6: Model size vs. HARMONY. Scaling trends are family-specific: Qwen and Llama show
negative correlations, while Gemma and OLMo show positive correlations (larger models perform
more uniformly). Thus, parameter count alone is not predictive of performance uniformity.

Figure 7: Pre-training tokens vs. HAR-
MONY. For OLMo 2 1B/7B, HARMONY
dips then steadily rises with more pre-training
tokens while aggregate accuracy improves
slightly, indicating competence shifts from
dominant subsets toward greater uniformity.

Pre-training tokens. We examine how HAR-
MONY evolves under a fixed architecture by track-
ing OLMo2 1B and OLMo2 7B across increased
token budgets. As shown in Fig. 7, HARMONY dips
early and then rises steadily, while aggregate accu-
racy increases minimally across checkpoints. Thus,
we find that the distribution of performance im-
proves (i.e., increased HARMONY) even as aggre-
gate accuracy remains nearly unchanged. In other
words, additional pre-training reallocates compe-
tence from a few dominant subdomains toward a
more uniform spread, yielding a strictly more fa-
vorable accuracy profile without changing the ag-
gregate score drastically.

In addition to HARMONY, we also formulate the
uniformity of improvements that come with scal-
ing and share our findings in Appendix E. We em-
phasize that these findings are empirical rather than
causal. We leave modeling the mechanisms under-
lying these trends as valuable future work.

5 RELATED WORK

Assessing Benchmark Reliability. Beyond proposing new tasks, a growing body of work interro-
gates the reliability of benchmarks themselves. A line of work targets the robustness of the test sets,
focusing on building dynamic benchmarks to replace static benchmarks (Kiela et al., 2021; Chiang
et al., 2024) and building adversarial perturbations to eliminate spurious cues present in static bench-
marks (Nie et al., 2020; Croce et al., 2021). Closely related are concerns about overfitting to public
test sets and contamination from pre-training corpora, which can inflate reported gains (Deng et al.,
2024; Golchin & Surdeanu, 2024; Roberts et al., 2023; Dong et al., 2024). Barton (2025) analyzes
a collection of benchmarks, showing that some benchmarks (e.g. Hellaswag (Zellers et al., 2019))
scale smoothly with increased scale and compute, while others (e.g. CommonsenseQA (Talmor
et al., 2018)) do not. Another branch of literature audits data reliability and distributional coverage
by introducing shifted test sets to probe generalization (Recht et al., 2019; Taori et al., 2020; Teney
et al., 2020) and correcting pervasive label errors in widely used benchmarks (Northcutt et al., 2021;
Gema et al., 2025). Beyond individual datasets, meta-evaluation work proposes frameworks and
documentation practices to systematically assess benchmark design, provenance, and intended use
(Reuel et al., 2024; Mazumder et al., 2023; Gebru et al., 2021). Another important topic is the exter-
nal validity of benchmarks, such as how well leaderboard gains translate to real-world performance
(Ott et al., 2022) and what reported scores actually measure (Dehghani et al., 2021; Singh et al.,
2025). Finally, a complementary line of work separates signal from noise in benchmark results by
quantifying variance and prescribing protocols that stabilize rankings in order to make compara-
tive conclusions more reliable (Madaan et al., 2024; Wang et al., 2024a; Heineman et al., 2025).
Advancing this field of work, we contribute a distributional perspective on benchmark reliability.

8
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Rather than treating a benchmark evaluation as a single score, we model the benchmark as a mixture
over the subdomains of the stated benchmark domain. We then measure how performance mass is
distributed across these subdomains. This perspective diagnoses whether aggregate metrics reflect a
broad competence over the benchmark or are dominated by certain subdomains.

Distributional Frameworks for Efficient Evaluation. Scaling laws of neural language models
suggest that performance improves with model size (Kaplan et al., 2020), encouraging the devel-
opment of increasingly larger and costlier models. Consequently, there has been growing interest
in developing efficient evaluation methods that reduce computational and financial costs without
compromising reliability. Perlitz et al. (2024a) introduce a reliability metric that dynamically ad-
justs compute by performance tier while preserving rank fidelity. Rodriguez et al. (2021) propose
Item Response Theory (Tatsuoka et al., 1971) based leaderboards that jointly model difficulty and
discrimination to identify examples that best differentiate model performance. Similarly, Polo et al.
(2024) propose tinyBenchmarks, an efficient evaluation method that uses IRT to model the discrim-
inative power of benchmark examples, allowing the selection of a small yet representative subset
of items that can accurately estimate performance. Vivek et al. (2024) propose anchor point selec-
tion to identify small, representative subsets by leveraging cross-model correlations in instance-level
predictions. Ethayarajh et al. (2022) identify informative data points via usable information (how
much input a model family can exploit) extending Shannon information to account for model con-
straints. Notably, these works introduce distinct metrics such as IRT item parameters, cross-model
instance correlations, and information-theoretic usable information to characterize the benchmark
distribution and guide principled compression of benchmarks. Ultimately, these metrics enable tar-
geted downsampling (e.g., selecting maximally discriminative or most informative items) that pre-
serves rankings and reduces evaluation cost while maintaining coverage. In contrast, we do not seek
cheaper evaluations. We instead assess whether a benchmark reliably measures its stated domain
and, where it does not, we question the original evaluation rather than preserve it.

Prior work mainly 1) proposes new or dynamic tests, 2) compresses evaluation via discriminative
selection, and 3) stabilizes leaderboards through variance control and guidelines. We instead audit
existing benchmarks through a distributional lens, modeling a benchmark as a mixture over sub-
domains and measuring whether models spread accuracy uniformly. Unlike efficiency work that
preserves overall scores while reducing cost, HARMONY reveals where aggregate metrics fail to pro-
vide a representative understanding of model competency. Our method is post hoc and lightweight,
complements robustness and contamination audits, and yields practical guidance: report HARMONY
with accuracy and rebalance low HARMONY benchmarks.

We further discuss additional related work on language model evaluation in Appendix J.

6 CONCLUSION

We introduce HARMONY, an entropy-based measure of how uniformly performance is distributed
across a benchmark’s subdomains. Mapping 19 MCQA benchmarks across five model families on
the HARMONY mean-variance plane reveals a spectrum of reliability. High mean and low variance
indicate that aggregate metrics consistently reflect broad competence across models. In contrast,
low mean signals that performance concentrates on a few subdomains and high variance indicates
model-dependent reliability. Therefore, benchmarks with high mean and low variance of HARMONY
enable more reliable evaluation.

Controlled pruning shows that increasing HARMONY stabilizes aggregate accuracy by reducing
overrepresented subdomains. Moreover, we find that scaling trends of performance uniformity are
family specific, rendering the number of parameters as an unreliable indicator for the uniformity of
model performance. Nevertheless, models perform more uniformly on average as the pre-training
budget increases. HARMONY complements aggregate accuracy by exposing when performance
gains reflect uniform competence versus concentrated strengths and supports multi-dimensional
evaluation that makes subdomain trade-offs explicit.
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A REDUNDANTQA

To rigorously evaluate the discriminative power of similarity metrics, we construct RedundantQA,
a controlled benchmark designed to disentangle genuine semantic similarity from superficial lexical
overlap. Each set in RedundantQA consists of a reference question accompanied by two true-similar
and two false-similar questions. The true-similar questions are paraphrases that evaluate the same
underlying knowledge as the reference, while differing in surface form.8 In contrast, the false-similar
questions exhibit high lexical similarity to the reference but target distinct conceptual content. This
design ensures that strong similarity metrics must go beyond surface-level cues, rewarding semantic
alignment while ignoring spurious correlations.

In this section, we detail the construction (A.1) and validation (A.2) of RedundantQA, as well as
showcasing examples (A.3).

A.1 CONSTRUCTION

We construct RedundantQA through a two-phase pipeline followed by strict validation: (i) Seed
Set Selection. We begin by manually authoring three high-quality reference questions across four
domains (Biology, Economics, Popular Culture, History). For each reference question, we also craft
two paraphrases that target the same underlying knowledge (true-similar) and two distractors that
share surface tokens but probe different concepts (false-similar). (ii) Generative Expansion. Using
the seed sets as in-context learning examples, we prompt Gemini-2.0-flash (DeepMind, 2023)
to generate 100 sets that consist of one reference question, two true-similar questions, and two false-
similar questions for each domain. For different domains, we use a fixed template (Listing A.1) with
domain-specific examples. This pipeline yields a large, automatically generated candidate pool.

8E.g., variations in vocabulary, syntax, or phrasing.
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Prompt for Generating RedundantQA (Biology)

Come up with question sets. Each set must contain:

• A reference question,

• Two same-meaning questions: These should require the same factual answer and test the
same biological concept as the reference question, but they should use different wording,
phrasing styles, and sentence structures.

• Two distractor questions: These should look superficially very similar to the reference ques-
tion but evaluate a different knowledge or skill with different answers than the reference
question.

Notes:
• Focus on the domain of biological knowledge.

• Same-meaning questions should preserve deep semantic equivalence but vary stylistically.
These must have the same answer.

• Distractor questions should maximize shallow textual similarity (e.g., shared nouns, verbs,
syntactic patterns) while changing the underlying meaning. So, distractor questions should
trick an incapable similarity measure into thinking they are similar.

Examples:
Set 1

• Reference Question: What organ pumps blood throughout the human body?

• Same-meaning Question 1: Which organ circulates blood to deliver oxygen and nutrients?

• Same-meaning Question 2: What body system structure maintains blood flow across the
body?

• Distracting Question 1: What organ removes carbon dioxide from the blood?

• Distracting Question 2: What organ transports nutrients through the blood?

Set 2
• Reference Question: What process converts glucose into energy in cells?

• Same-meaning Question 1: Which process produces ATP from sugar molecules?

• Same-meaning Question 2: What pathway transforms glucose into usable cellular energy?

• Distracting Question 1: What process stores glucose in cells?

• Distracting Question 2: What process breaks down proteins for energy?

Set 3
• Reference Question: What type of blood vessel carries blood away from the heart?

• Same-meaning Question 1: Which vessels transport oxygenated blood from the heart?

• Same-meaning Question 2: What structures move blood outward from the heart?

• Distracting Question 1: What type of blood vessel brings blood to the heart?

• Distracting Question 2: What blood vessel type filters blood in the kidneys?

A.2 VALIDATION

We validate each set generated by Gemini-2.0-flash through a two-stage pipeline: (a) an au-
tomated and simple consistency check using Gemini-2.0-flash to confirm that true-similar
paraphrases produce identical answers while false-similar distractors yield divergent ones (using
Listing A.2); and (b) a manual review by expert annotators to correct any misclassifications, format-
ting issues, or errors introduced during automated filtering. After the validation step, we obtain 71,
39, 72, and 73 sets from Biology, Economics, Culture, and History domains respectively, with each
set consisting of one reference question, two true-similar questions, and two false-similar questions.

This procedure yields a benchmark in which effective similarity metrics must discriminate semantic
equivalence from mere lexical coincidence.
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Prompt for Validating RedundantQA

Do the following questions have the same answer? Output only yes or no.
Question 1: REFERENCE QUESTION
Question 2: TRUE SIM 1

A.3 EXAMPLES

We provide examples from RedundantQA across all four domains in Table 1.

Biology Economics History Popular Culture
Reference
What process converts
glucose into energy in cells?
A: Cellular respiration
B: Photosynthesis
C: Osmosis
D: Transcription

True Similar
Which process produces
ATP from sugar molecules?
A: Cellular respiration
B: Photosynthesis
C: Osmosis
D: Transcription

False Similar
What process stores
glucose in cells?
A: Glycogenolysis
B: Gluconeogenesis
C: Glycogenesis
D: Glycolysis

Reference
How does increased government
spending affect aggregate demand?
A: Increases it.
B: Decreases it.
C: Has no effect.
D: Only affects aggregate supply.

True Similar
What happens to total demand in economy
when the government increase its spending?
A: Increases it.
B: Decreases it.
C: Has no effect.
D: Only affects aggregate supply.

False Similar
How does increased government
spending affect government debt?
A: Increases it.
B: Decreases it.
C: Has no effect.
D: Only affects short-term debt.

Reference
Who was the first president
of the United States?
A: George Washington
B: Abraham Lincoln
C: Thomas Jefferson
D: John Adams

True Similar
Who assumed leadership as
America’s first head of state?
A: George Washington
B: Abraham Lincoln
C: Thomas Jefferson
D: John Adams

False Similar
Who was the first vice
president of the United States?
A: John Adams
B: Thomas Jefferson
C: Alexander Hamilton
D: James Madison

Reference
Who played Iron Man in the
Marvel Cinematic Universe?
A: Robert Downey Jr.
B: Chris Evans
C: Hugh Jackman
D: Tobey Maguire

True Similar
Which actor portrayed
Tony Stark in the MCU?
A: Robert Downey Jr.
B: Chris Evans
C: Hugh Jackman
D: Tobey Maguire

False Similar
Who played Captain America in
the Marvel Cinematic Universe?
A: Chris Evans
B: Chris Pratt
C: John Krasinski
D: Matt Damon

Table 1: Example sets across all domains in RedundantQA.

B PREDICTIVE SIMILARITY

B.1 ALTERNATIVE BASELINES

In this section, we describe the alternative baselines compared against predictive similarity across a
range of controlled settings.

Bigram. We compute an n-gram-overlap Jaccard similarity matrix. For each text xi, we lowercase
and split on whitespace, then form the set Gi of contiguous bigrams. The pairwise similarity is

Sij =
|Gi ∩Gj |
|Gi ∪Gj |

with Sii = 1 for all i.9 The resulting S ∈ [0, 1]N×N is symmetric and measures

surface-form overlap.

BERTScore F1. We use BERTScore (Zhang et al., 2020) to measure semantic similarity between
pairs of texts by comparing their contextualized token embeddings. Tokens are greedily matched
via cosine similarity to compute precision and recall, and the final sentence-sentence score is the
F1 aggregate, where F1 = 2PR

P+R . We treat this F1 value as the pairwise similarity, which yields a
symmetric matrix S ∈ [−1, 1]N×N . We employ RobertaLarge (Liu et al., 2019) for obtaining the
contextualized token embeddings.

Input Embeddings Cosine Similarity. We map each input to a single vector and measure pair-
wise similarity via cosine in embedding space. We use two variants: (i) for each example,

9Note that if a text has fewer than n tokens, its n-gram set is empty. In such a case, the pairwise similarity
is set to be 1. However, this is not observed in practice.
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we take the last-token hidden state from the model under evaluation, ℓ2-normalize it, and set
Sij = ĥ⊤

i ĥj , (ii) we encode each input with a frozen sentence-embedding model, normalize the
embeddings, and compute the same cosine-based matrix. In both cases, we obtain a symmetric ma-
trix S ∈ [−1, 1]N×N . For the sentence-embedding variant, we use MiniLM10 (Wang et al., 2020)
and gte-Qwen2-7B-instruct11 (Li et al., 2023); for the model-under-evaluation variant, we
use microsoft/Phi-3-mini-4k-instruct12 (Abdin et al., 2024), which yields the best
performance in Appendix B.2.

Input and Output Embeddings Cosine Similarity. We represent each input-output pair (e.g.,
question+answer) as a single vector by taking the last-token hidden state of the concate-
nated sequence from the model under evaluation. We ℓ2-normalize these vectors and de-
fine pairwise similarity via cosine with Sij = ĥ⊤

i ĥj . The resulting S ∈ [−1, 1]N×N is
symmetric and reflects similarity over both the question and its associated answer. We use
microsoft/Phi-3-mini-4k-instruct (Abdin et al., 2024) for obtaining the hidden states,
as it yields the best performance in Appendix B.2.

G-Vendi. Following Jung et al. (2025), we quantify the diversity of per–example gradients via a
sketch-based spectral entropy. For each example, we form a compact count-sketch of the gradient of
the (negative) log-probability of the correct answer under a proxy LM, yielding a matrix G∈RN×d.
We compute C = 1

NG⊤G and its eigenvalues {λi}. Let pi = λi/
∑

j λj ; the G-Vendi score is the
exponential Shannon entropy of this spectrum:

G-Vendi = exp
(
−
∑
i

pi log pi

)
,

which acts as an effective rank where higher values indicate gradients spread across more orthog-
onal directions and lower values indicate concentration in a low dimensional subspace. For pair-
wise similarity, we ℓ1-normalize the sketch rows of G and take their dot products to obtain a sym-
metric similarity matrix with unit diagonal. Following the original implementation, we employ
Qwen2.5-0.5B-Instruct (Qwen et al., 2025) as the proxy model.

Method Duplicate Catch Ratio (↑)

N-gram & Token
Bigram 96.3
BERTScore F1 100.0

Embedding-Based
Input EmbeddingsMiniLM 100.0
Input Embeddingsgte-Qwen2 100.0
Input Embeddingsphi3 100.0
Input+Output Embeddingsphi3 100.0

Literature
G-Vendi 100.0
CORRSLlama 100.0
CORRSall 100.0
IRT Representation 100.0

Predictive Similarity 100.0

Table 2: Validation of our metric im-
plementations. All metrics other than bi-
gram similarity perfectly catch exact dupli-
cate question, satisfying the minimum re-
quirement to ensure implementation accu-
racy.

CORRS. Following Vivek et al. (2024), given a
bank of source models, we map each input i to a
vector vi ∈ RM whose m-th entry is the logit of
the probability that model m assigns to the correct
choice. Then, the similarity between two examples
is defined as the Pearson correlation of these vec-
tors with Sij = corr(vi, vj). The resulting S ∈
[−1, 1]N×N is symmetric and represents the cross-
model agreement in correct class confidence across
inputs. We instantiate the source bank using the
Llama model family (Grattafiori & et al, 2024) and
the full set of models used in our experiments.

IRT Representation. Following Polo et al.
(2024), from a bank of source models, we form a
binary response matrix Y ∈ {0, 1}L×N whose (ℓ, i)
entry indicates whether model ℓ answered example
i correctly. We then fit a d-dimensional IRT model
with per-example parameters (αi ∈ Rd, βi ∈ R)
and per-model ability vectors θℓ ∈ Rd, using

Pr(Yℓi = 1) = σ
(
− θ⊤ℓ αi + βi

)
.

Here, optimization alternates between gradient up-
dates for θ (with ℓ2 regularization and recentring) and logistic regressions to update (αi, βi). Fi-
nally, we obtain the embedding Ei =

[
αi;βi

]
∈ Rd+1 and define pairwise similarity by cosine

10https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
11https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
12https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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similarity as Sij =
E⊤

i Ej

∥Ei∥ ∥Ej∥ , which yields a symmetric matrix S ∈ [−1, 1]N×N . We use d = 200

and instantiate the source bank using the full set of models used in our experiments.

As open-source implementations of efficient evaluation metrics are unavailable, we re-implement
them following the specifications in prior work. We then validate our implementations via a sanity
check in which each metric was tasked with detecting verbatim duplicate questions. As shown in
Table 2, all metrics (with the exception of bigram similarity) achieve perfect performance, satisfying
the minimum requirement to ensure implementation accuracy.

B.2 MEASURING SEMANTIC SIMILARITY

An effective similarity measure for uncovering underlying data distributions must exhibit strong dis-
criminative power, reliably identifying semantically similar data points while rejecting distractors.
We empirically validate that predictive similarity meets this criterion, as it consistently distinguishes
true semantic matches from misleading surface-level overlaps in RedundantQA.

Method True Similar (↑) False Similar (↓)

Biology Economics Culture History All Biology Economics Culture History All

N-gram & Token
Bigram 1.4 0.0 6.9 7.0 4.5 70.0 67.6 30.6 47.9 53.7
BERTScore F1 8.6 0.0 12.5 21.1 12.4 74.3 83.8 33.3 54.9 60.3

Embedding-Based
Input EmbeddingsMiniLM 42.9 24.3 62.5 66.2 54.1 27.1 51.4 5.6 12.7 21.1
Input Embeddingsgte-Qwen2 18.6 18.9 23.6 39.4 26.9 38.6 51.4 26.4 22.5 33.5
Input Embeddingsphi3 21.4 5.4 16.7 36.6 22.7 47.1 75.7 37.5 31.0 45.5
Input+Output Embeddingsphi3 51.4 62.2 40.3 56.3 52.9 22.9 27.0 16.7 15.5 20.2

Literature
G-Vendi 62.9 37.8 36.1 46.5 47.9 5.7 2.7 6.9 5.6 5.8
CORRSLlama 2.9 8.1 9.7 14.1 9.1 1.4 0.0 1.4 1.4 1.2
CORRSall 35.7 13.5 59.7 59.2 47.5 1.4 5.4 0.0 1.4 1.7
IRT Representation 1.4 0.0 1.4 0.0 0.8 1.4 0.0 0.0 2.8 1.2

Predictive Similarity 80.0 86.5 66.6 73.2 77.7 1.4 2.7 0.0 4.2 2.1

Table 3: Proportion of identified true-similar (↑) and false-similar (↓) pairs by method and domain.

As shown in Table 3, predictive similarity achieves the highest retrieval of true semantic matches
across all domains, while maintaining one of the lowest rate of false matches. This indicates that
it captures semantic equivalence without being misled by superficial lexical similarity. In contrast,
embedding-based and bigram baselines suffer from high false positives, conflating surface-level
resemblance with meaning. Metrics from efficient evaluation literature show stronger performance
but still fall short of predictive similarity. Overall, these results highlight the unique discriminative
advantage of predictive similarity in measuring semantic similarity.

B.3 INDUCING THE SEMANTIC PARTITION

Method RedundantQA RedundantQA-Ref MMLU-HS
ARI NMI ARI NMI ARI NMI

N-gram & Token
Bigram -0.3 2.5 -0.4 6.7 0.1 6.2
BERTScore F1 -0.2 1.6 2.2 8.6 1.4 7.9

Embedding-Based
Input EmbeddingsMiniLM 55.8 64.4 59.4 68.4 47.4 56.8
Input Embeddingsgte-qwen2-7b-instruct 28.6 34.9 36.3 45.9 27.1 34.4
Input Embeddingsphi3 27.8 37.1 33.0 45.6 25.1 31.6
Input+Output Embeddingsphi3 57.1 67.0 58.9 70.3 51.3 59.6

Literature
G-Vendi 6.5 11.3 4.7 10.9 3.2 9.2
CORRSall 6.1 8.2 4.8 8.2 2.8 8.4
IRT Representation 2.1 2.7 0.4 1.9 0.4 1.5

Predictive Similarity 60.4 70.4 62.5 76.5 55.4 62.1

Table 4: Validation of our partition induction method
on RedundantQA and MMLU. Adjusted Rand In-
dex (ARI) and Normalized Mutual Information (NMI)
(both are higher is better) are shown for different meth-
ods on RedundantQA, RedundantQA-Ref, and
MMLU-HS. Predictive similarity consistently achieves
the best domain recovery.

A core requirement for our work is that
the similarity function should induce a se-
mantic partition of the data. We evaluate
this property by inducing cluster assign-
ments from each metric and measuring
agreement with the ground-truth domain
labels in RedundantQA and its reference-
only subset (RedundantQA-Ref) using
Adjusted Rand Index (ARI) and Nor-
malized Mutual Information (NMI). In
addition, we apply the same protocol
to MMLU high school subtasks, testing
whether clusters recover canonical subject
domains (e.g., computer science, biology,
physics).

As shown in Table 4, predictive similar-
ity achieves the highest agreement on all
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Figure 8: Validation of our partition induction method on RedundantQA. Predictive similarity
achieves the strongest correlation between the ground truth HARMONY and estimated HARMONY,
while input embeddings derived from MiniLM is a close runner-up.

Figure 9: Validation of our partition induction method on MMLU. Similar to the results on
RedundantQA, predictive similarity achieves the strongest correlation between the ground truth
HARMONY and estimated HARMONY, while input embeddings derived from MiniLM is a close
runner-up.

three sets, while strong embedding-based
baselines are competitive yet consistently
behind. By contrast, token/ngram measures and metrics from the efficient evaluation literature fail
to recover domain structure, indicating that they are unreliable for semantic grouping. Taken to-
gether with the pairwise retrieval evidence, these results show that predictive similarity not only
discriminates true semantic matches from distractors, but also organizes instances into compact and
consistent clusters. This behavior is precisely what enables a cluster-centric analysis of benchmarks,
yielding low within-cluster variance and high between-cluster separation.

B.4 CAPTURING BENCHMARK HARMONY

We evaluate all alternative similarity baselines from Appendix B.1 in the identical setting of §2.4.
For each baseline, we induce clusters from its similarity matrix, compute HARMONY H(G), and
report correlations between the ground-truth HARMONY and its counterpart computed from the
partition induced by each baseline.
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Gemma Llama OLMo Phi Qwen Average

Benchmark Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson

AQUA-RAT 61.8 62.7 63.3 65.9 47.0 49.3 49.8 50.9 76.1 76.5 59.6 61.1
ARC-Challenge 41.9 42.7 76.3 76.9 72.9 73.9 71.9 73.9 74.5 76.1 67.5 68.7
ARC-Easy 41.6 42.0 66.6 67.1 67.9 68.7 75.3 76.3 62.7 64.0 62.8 63.6
ART 25.5 26.4 84.1 84.6 76.6 77.9 78.6 79.8 75.7 76.8 68.1 69.1
BoolQ 25.5 25.9 58.3 59.8 35.3 36.3 18.2 18.9 27.5 28.9 33.0 34.0
CommonsenseQA 33.8 35.6 33.6 34.4 62.8 64.5 42.4 43.8 39.1 39.8 42.3 43.6
COPA 27.9 29.5 76.7 78.4 68.7 70.2 64.8 67.2 51.4 52.8 57.9 59.6
GPQA 77.8 78.0 53.4 51.9 64.1 65.2 82.1 83.0 85.5 86.1 72.6 72.8
LogiQA 55.4 57.3 77.7 79.8 67.8 67.2 70.3 72.1 80.1 80.3 70.3 71.3
MathQA 33.5 34.2 61.0 62.0 55.2 56.0 54.9 54.0 57.1 56.4 52.3 52.5
OpenBookQA 33.2 34.0 73.9 75.0 70.1 72.3 74.0 75.5 71.0 72.5 64.4 65.9
PIQA 38.6 39.6 78.6 80.2 77.3 79.4 67.0 68.2 74.6 76.4 67.2 68.8
PubMedQA 50.5 50.0 60.8 60.8 37.8 36.8 50.6 50.6 63.0 61.1 52.5 51.9
QUARTZ 37.9 39.0 81.4 80.3 65.9 63.9 76.0 74.9 70.0 68.1 66.2 65.2
SciQ 22.0 22.5 55.7 58.3 60.3 61.4 56.0 56.0 58.0 60.3 50.4 51.7
SocialIQA 20.7 21.3 72.9 73.5 64.6 65.6 63.5 64.9 61.2 62.0 56.6 57.5
StrategyQA 3.6 3.7 48.2 49.6 20.5 20.9 21.6 21.4 27.9 28.9 24.4 24.9
TruthfulQA 50.4 52.7 78.4 80.7 71.4 73.6 85.3 86.4 77.1 79.3 72.5 74.5

Average 37.9 38.7 66.7 67.7 60.3 61.3 61.2 62.1 62.9 63.7 57.8 58.7

Table 5: Cross-model consistency of predictive similarity: Spearman and Pearson correlations
(values ×100) between the upper-triangle entries of affinity matrices, by benchmark (rows) and
model family (columns). The rightmost block reports per-benchmark averages across families; the
bottom row reports per-family averages across benchmarks; the bottom-right cell shows overall
means.

As shown in Fig. 8 and 9, predictive similarity achieves the strongest correlation with ground-truth
entropy. Similar to prior validation experiments (App. B.2, B.3), embedding-based baselines are the
next-best performers but consistently lag behind, whereas token-and-n-gram overlap measures per-
form substantially worse. These results establish predictive similarity as the most reliable similarity
metric choice for capturing the benchmark dynamics.

B.5 CONSISTENCY OF PREDICTIVE SIMILARITY ACROSS MODELS

As defined in §2.3, predictive similarity induces, for each benchmark B and model f , a symmetric
similarity matrix S(f,B) ∈ (0, 1]NB×NB over the NB items of B. In this section, we ask whether
these model-specific neighborhoods are idiosyncratic. To quantify cross-model consistency, we
correlate the upper-triangular entries of the corresponding similarity matrices using both rank-based
(Spearman) and linear (Pearson) correlations:

rBS (f1, f2) = ρS
(
vec(S(f1,B)), vec(S(f2,B))

)
, rBP(f1, f2) = ρP

(
vec(S(f1,B)), vec(S(f2,B))

)
,

where vec(·) stacks the upper triangle of a matrix into a vector, ρS is Spearman’s rank correlation,
and ρP is Pearson’s correlation. We report both, as Spearman is invariant to monotone re-scalings
and thus robust to calibration differences across models, while Pearson captures linear alignment in
similarity magnitudes.

As shown in Table 5, predictive similarity neighborhoods exhibit substantial within-family consis-
tency across many benchmarks. Averaging across families yields high per-benchmark means clus-
tered in the mid-60s, with notable peaks for LogiQA (70.3 Spearman / 71.3 Pearson), TruthfulQA
(72.5 / 74.5), PIQA (67.2 / 68.8), and ART (68.1 / 69.1). Family-wise averages further show broad
stability for Llama (66.7 / 67.7), Qwen (62.9 / 63.7), and Phi (61.2 / 62.1), with OLMo close behind
(60.3 / 61.3) and Gemma lower (37.9 / 38.7). In particular, ART, COPA, LogiQA, PIQA, and Truth-
fulQA attain high agreement for Llama, Phi, and Qwen (typically 70–85), indicating that the induced
item-item structure is largely task-driven rather than model idiosyncratic. Knowledge-centric GPQA
is also strong for Phi and Qwen (82–86). By contrast, StrategyQA, BoolQ, and, to a lesser extent, So-
cialIQA show weaker agreement particularly for Gemma and Phi, suggesting greater family-specific
effects on these benchmarks.

B.6 PROBING THE DETERMINANTS OF PREDICTIVE SIMILARITY

Dependence on the Tail. We test sensitivity to the probability tail by constructing a truncated
variant that re-normalizes mass over the union of the top-50 tokens, yielding S

(f,B)
KL-top-50, and

contrasting it with the full S(f,B)
KL .
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JS vs. KL-based Similarity. Equation 2 defines S as an RBF of the Jeffreys divergence, producing
sharp, tunable neighborhoods that strongly penalize coverage errors (as near-zeros drive J higher
and S lower). Jensen-Shannon (JS) instead compares to the mixture M = 1

2 (p̄f (xi) + p̄f (xj)),
yielding a bounded, tail-robust divergence that is easier to compare across benchmarks. To place JS
on the same similarity scale, we apply the same RBF transform from Equation 2 entrywise, obtaining
S
(f,B)
JS .

SJS SKL-top-50

Benchmark Pearson Spearman Pearson Spearman

AQUA-RAT 96.1 95.5 97.4 97.4
ARC-Challenge 95.7 95.2 98.5 98.5
ARC-Easy 95.4 95.0 98.7 98.7
ART 95.5 95.4 97.1 96.9
BoolQ 93.5 92.5 98.4 98.4
CommonsenseQA 97.0 96.7 99.5 99.5
COPA 94.7 95.2 95.1 94.9
GPQA 97.1 97.1 99.1 99.0
LogiQA 98.7 98.5 98.5 98.5
MathQA 99.1 99.4 96.4 96.3
OpenBookQA 97.6 97.7 97.5 97.6
PIQA 96.4 96.1 96.2 95.9
PubMedQA 96.8 96.7 99.6 99.6
QUARTZ 95.8 95.8 99.8 99.8
SciQ 93.6 93.3 98.8 98.9
SocialIQA 98.2 98.2 97.0 96.8
StrategyQA 99.4 99.5 97.0 97.0
TruthfulQA 94.6 94.2 98.1 97.7

Table 6: Agreement between predictive similar-
ity variants. Per-benchmark Pearson/Spearman
correlations between S

(f,B)
KL and (i) S(f,B)

JS and (ii)
S
(f,B)
KL-top-50 shows that neighborhoods are driven

by head probability mass and remain stable under
truncation or mixture smoothing.

Following Appendix B.5, we compute Spear-
man and Pearson correlations between the
upper-triangular entries of S(f,B)

KL and, respec-
tively, S(f,B)

KL-top-50 and S
(f,B)
JS . We report per-

benchmark scores where f is OLMo 2 7B.
High agreement indicates that neighborhoods
are driven by high probability mass and remain
stable under truncation or mixture smoothing,
while low agreement indicates sensitivity to tail
mismatches or calibration asymmetries that Jef-
freys magnifies but JS attenuates.

Across benchmarks, correlations between
S
(f,B)
KL and (i) S

(f,B)
KL-top-50 and (ii) S

(f,B)
JS

variants are uniformly high (typically 95-99%)
(Table 6). This indicates that the divergence
of probability distributions generated by
OLMo 2 7B are governed by head probability
mass rather than the tail. Truncation pre-
serves structure nearly perfectly as SKL-top-50
matches or exceeds SJS on most tasks, while
SJS remains strongly aligned, reflecting robust-
ness to calibration and coverage noise. Modest
dips (e.g., COPA, PIQA) suggest settings
where tail mismatches or asymmetries matter
more, but overall the stability under truncation
and mixture smoothing supports that S captures meaningful, head-driven divergence.

B.7 THEORETICAL AND COMPUTATIONAL DISCUSSIONS

A Theoretical Perspective on Predictive Similarity. We measure similarity via the (sym-
metrized) DKL between model predictive distributions because it aligns with how models differ
operationally and geometrically. First, DKL has a clear testing meaning, as it governs optimal error
exponents in distinguishing two distributions. Hence, larger DKL divergence implies that the model
would more reliably tell the two inputs apart (by Stein/Chernoff asymptotics) (Cover & Thomas,
2006). Second, small DKL guarantees closeness in total variation by Pinsker’s inequality, imply-
ing high indistinguishability and hence high similarity for our purposes (Cover & Thomas, 2006).
Third, DKL is information monotone under coarse-graining, making the measure stable to relabel-
ing or merging answer tokens/options that preserve semantics (Csiszár & Shields, 2004). Finally,
locally DKL induces the Fisher-Rao geometry on the probability simplex, so exp(−τ DKL) behaves
like a Gaussian kernel in the natural metric of the model’s predictive space, yielding compact clus-
ters of similar predictive behavior (Amari, 2016). We use the Jeffreys (symmetrized) form to remove
directionality while retaining these properties.

Computational Overhead of Predictive Similarity. Predictive similarity is a post hoc compu-
tation, since we operate on the logits already cached from the benchmark evaluation. Hence, no
additional model forward passes are required. Given these logits, we convert them to predictive
distributions and evaluate the pairwise KL terms that define the similarity in Eq. 2.

The principal cost arises from forming pairwise interactions across N items, which is quadratic in
N and linear in the label-space size D (i.e., O(N2 ·D) time). Memory is dominated by storing the
evaluation logits (O(N ·D)) and the similarity matrix (O(N2)). In practice, D corresponds to the
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size of the vocabulary of a given model and can be large. We therefore view the cost as O(N2D)
and the memory requirement as O(N · D). When N is large, standard remedies (e.g. blockwise
evaluation) reduce peak memory without changing the definition of the metric. Overall, computing
predictive simlarity adds negligible inference overhead and modest analysis overhead relative to
running the benchmarks themselves.

Compared to alternative baselines discussed in Appendix B.1, predictive similarity is computation-
ally frugal: it reuses cached logits and requires neither additional inference nor any backward passes.
By contrast, embedding baselines, as well as BERTScore, invoke separate encoders (extra forward
passes), G-Vendi relies on gradients (backward passes), and CORRS/IRT aggregate signals from a
bank of models (multiple evaluations per item). While string-based methods such as Bigram are
lightweight, they do not leverage model behavior. Thus, predictive similarity offers a favorable
trade-off between compute and quality when benchmarks are already being run.

B.8 DISCUSSION ON MODEL-SPECIFIC SIMILARITY

Our goal is to evaluate benchmarks, not to define a single, task-agnostic neighborhood data points.
A benchmark can be reliable for one model but unreliable for another. Accordingly, the similarity
function used to induce the partition Gf should be conditional on the model f . We provide our
rationale below.

Evaluation target is HB(f). Section 2 defines harmony per model, HB(f), and then aggregates
across f via (µH , σ2

H) in Eq. 1. Using a global, model-agnostic similarity collapses distinct predic-
tive neighborhoods into a single partition, implicitly assuming that Gf is invariant across f . This
undermines the very statistic we report: two models with the same accuracy profile but different
predictive structure could receive the same H under a fixed partition, obscuring model specialities.

Benchmarks are instruments relative to a model. A benchmark is a diagnostic instrument for a
given model: priors, tokenization, calibration, and pre-training exposure all change which items are
similar from the model’s perspective. Hence, a model can perform uniformly on a benchmark while
another one overfits to certain subdomains. Model specific similarity preserves this relativity, letting
reliability vary meaningfully across families.

C MODEL LIST

We list all evaluated models and provide links to their open-source weights.
• Qwen3: Qwen3-0.6B-Base, Qwen3-1.7B-Base, Qwen3-4B-Base, Qwen3-8B-Base, Qwen3-14B-

Base, Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B.
• Llama 3: Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B, Llama-3.1-70B, Llama-3.2-1B-Instruct,

Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct.
• Olmo 2: OLMo-2-0425-1B, OLMo-2-1124-7B, OLMo-2-1124-13B, OLMo-2-0325-32B, OLMo-

2-0425-1B-Instruct, OLMo-2-1124-7B-Instruct, OLMo-2-1124-13B-Instruct, OLMo-2-0325-
32B-Instruct.

• Gemma 3: gemma-3-1b-pt, gemma-3-4b-pt, gemma-3-12b-pt, gemma-3-27b-pt, gemma-3-1b-it,
gemma-3-4b-it, gemma-3-12b-it, gemma-3-27b-it.

• Phi-3: Phi-3-mini-4k-instruct, Phi-3-medium-4k-instruct.

D MODEL-WISE DECOMPOSITION OF BENCHMARK HARMONY

Figure 10: Model-wise decomposition of
HARMONY for MCQA benchmarks.

In §3.2, we position each benchmark B using the
cross-model mean µH(B) and variance σ2

H(B). We
now resolve this view at the model level. For
each benchmark, Fig. 10 plots the per-model vector
{HB(f)}f∈F , revealing structure that is obscured by
aggregation. Similarly, Fig. 11 provides the anal-
ogous decomposition for MMLU subtasks, treating
each subtask as a benchmark on its own.
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(a) MMLU subtask group 1. (b) MMLU subtask group 2. (c) MMLU subtask group 3.

Figure 11: Model-wise decomposition of HARMONY for MMLU subtasks.

Tight horizontal groupings (small spread across
models) indicate model-invariant distributional bal-
ance, where different families assign similar HAR-
MONY to the same benchmark, suggesting that ag-
gregate accuracy reflects uniform competence irre-
spective of architectural or training choices. Con-
versely, wide horizontal scatter exposes model-dependent reliability, as some families concentrate
performance on a few subsets (low HARMONY), while others distribute performance more evenly
(high HARMONY).

We note that benchmarks with tight clusters are favorable for cross-family comparison, as accuracy
rankings are less likely to be artifacts of benchmark composition. In contrast, wide scatter warns
that leaderboard deltas may be driven by subsets that particular families exploit. In such cases,
we suggest reporting accuracy alongside the HARMONY profiles of the models under evaluation,
{H(Gf )}f .

E IMPROVEMENT HARMONY

In §4.2, we show that scaling behavior varies across model families as parameter count increases:
some families (e.g., Qwen3) exhibit increasing HARMONY, while others (e.g., Gemma 3) show the
opposite. We now ask whether performance improvements from scaling are distributed evenly across
subsets. For two adjacent model sizes within a family, let the per-subset change be

di = Ψ(flarge;Ai) − Ψ(fsmall;Ai),

with subset weights wi and partition G = {Ai}ki=1 defined as in §2.1. Let d̄ =
∑

i widi be
the weighted mean and reuse the HARMONY computation by replacing accuracies Ψ(f ;Ai) with
changes di:

Ki = exp
(
−
(
di−d̄

b

)2)
, pi =

wiKi∑
j wjKj

, H∆(G) = − 1

log k

k∑
i=1

pi log
(
pi + ε

)
.

High H∆ indicates that scaling yields uniform changes across subsets, while low H∆ indicates spiky
changes concentrated in a few clusters. Similar to § 2, we adopt a comparative perspective, asking
which models improve more uniformly and which benchmarks most facilitate uniform gains. To
ensure within-family comparability, we fix the partition to that induced by the smallest model in
each family and evaluate all larger models on these partitions.

Improvement HARMONY of Benchmarks (Fig. 12). Due to the lack of a principled baseline for
H∆, we interpret results comparatively rather than absolutely. Benchmarks vary in improvement
HARMONY, and those with higher performance HARMONY tend to exhibit higher H∆. Using all
benchmarks in our setup, the fitted-line correlation is r = 0.226, which increases to r = 0.387
after excluding the three lowest-HARMONY benchmarks. Thus, higher HARMONY benchmarks are
associated with more uniform improvements in a comparative sense, though the effect size is modest
and sensitive to less harmonious outliers.
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Figure 12: H∆ across benchmarks. Higher performance HARMONY modestly correlates with im-
provement HARMONY (r = 0.226; r = 0.387 excluding the three lowest HARMONY) benchmarks,
indicating an outlier-sensitive correlation.

Figure 13: Model size vs. H∆. Improvement harmony scales differently by family: it increases
with size for Qwen, Llama, and OLMo, while decreasing for Gemma.

Improvement HARMONY of Models (Fig. 13). We measure improvement HARMONY H∆ for
adjacent sizes within each family. For Qwen and Llama, despite a decline in performance HAR-
MONY with scale (§4.2), H∆ increases with the model scale, as larger models distribute their gains
more evenly across subsets, whereas smaller variants exhibit spikier changes. Gemma shows the
complementary pattern, where its larger models, which had higher performance HARMONY, dis-
play lower H∆, indicating that improvements concentrate on fewer subsets as scale grows. By
contrast, in OLMo model family, both performance HARMONY and improvement HARMONY rise
with model size. Taken together, these results underscore that aggregate HARMONY and improve-
ment HARMONY can decouple, since models may become less harmonious overall yet still scale
their improvements uniformly, or vice versa.

F DETAILS OF STATISTICAL SIGNIFICANCE TEST

We assess whether the subset we keep after pruning has a higher mean than the full set using a
nonparametric, coupled bootstrap sign test. Let a1, . . . , aN be per-example accuracy and ki ∈ {0, 1}
indicate membership in the keep subset K = {i : ki = 1}. For b = 1, . . . , B, we draw a bootstrap
sample of indices S(b) of size N (with replacement), compute both means on the same resample,
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and then take their difference:

ā
(b)
all =

1

N

∑
i∈S(b)

ai, (3)

n
(b)
keep =

∑
i∈S(b)

ki, (4)

ā
(b)
keep =

1

n
(b)
keep

∑
i∈S(b)

ki ai, (5)

∆(b) = ā
(b)
keep − ā

(b)
all . (6)

Resamples with n
(b)
keep = 0 are discarded (to avoid degenerate runs we cap total draws at 3B); let

m ≤ B be the number of valid differences retained. We then form a two-sided p-value from the sign
statistic with a plus-one small-sample correction:

r =

m∑
b=1

1
{
∆(b) ≥ 0

}
, (7)

p = min

{
1, 2min

(
r + 1

m+ 1
,
m− r + 1

m+ 1

)}
. (8)

We fix the random seed for reproducibility and declare significance at level α when p < α (testing
H0 : E[∆] = 0 vs. H1 : E[∆] ̸= 0). We use B = 10000 and set α(N) as follows:

α(N) =


0.1, N < 500,

0.05, 500 ≤ N < 1500,

0.01, 1500 ≤ N < 3000

G EXTENDED RESULTS: HOW DOES MODEL PERFORMANCE CHANGE WITH
INCREASED HARMONY?

In this section, we generalize the pruning experiments from §4.1 beyond the illustrative cases to all
model families and benchmarks in our setup. Our aim is methodological: we examine how aggregate
accuracy and per-subset dispersion evolve as we progressively rebalance a benchmark. Concretely,
for each (model, benchmark) pair we sweep a pruning budget (scheduled inversely to baseline HAR-
MONY), recompute HARMONY and accuracy at each budget, and compare the pruned-set accuracy
to the full-set accuracy using the coupled bootstrap significance test detailed in App. F. Family-wise
plots in this section visualize these trajectories, allowing us to observe whether increased HAR-
MONY coincides with stable (or shifting) aggregate scores and tighter per-subset distribution of
performance.

Across all model families (Fig. 14, 15, 16, 17), two patterns consistently hold. (i) Accuracy shifts
with increased harmony. As pruning raises HARMONY, aggregate accuracy frequently changes in
a statistically significant manner (App. F), indicating that low HARMONY composition can result in
a misleading aggregate score. (ii) Low HARMONY benchmarks are fragile. Benchmarks starting
with lower HARMONY exhibit more instances of significant accuracy change under the pruning pro-
cedure than high HARMONY benchmarks, underscoring their susceptibility to presenting misleading
aggregate scores.

H MULTI-DIMENSIONAL EVALUATION

Motivated by the skewed aggregate scores in low HARMONY benchmarks, we conduct model eval-
uation at finer granularity. Following recent work on fine-grained evaluation (Zeng et al., 2025), we
recursively induce partitions as described in §2.3. This procedure yields a labeled tree, where the
root is the full benchmark; each internal node is a subset from the partitioning of its parent node; and
leaves are atomic subdomains that admit no further valid split (see App. K for details). The resulting
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Figure 14: Full results of balancing benchmarks via pruning in Qwen3 model family. We
remove overly similar items with a pruning rate inversely proportional to HARMONY, which consis-
tently improves HARMONY. We find that aggregate scores often change statistically significantly on
less harmonious benchmarks, whereas they remain more stable on more harmonious benchmarks.
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Figure 15: Full results of balancing benchmarks via pruning in Llama 3 model family. We
remove overly similar items with a pruning rate inversely proportional to HARMONY, which consis-
tently improves HARMONY. We find that aggregate scores often change statistically significantly on
less harmonious benchmarks, whereas they remain more stable on more harmonious benchmarks.
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Figure 16: Full results of balancing benchmarks via pruning in Olmo 2 model family. We
remove overly similar items with a pruning rate inversely proportional to HARMONY, which consis-
tently improves HARMONY. We find that aggregate scores often change statistically significantly on
less harmonious benchmarks, whereas they remain more stable on more harmonious benchmarks.
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Figure 17: Full results of balancing benchmarks via pruning in Gemma 3 model family. We
remove overly similar items with a pruning rate inversely proportional to HARMONY, which consis-
tently improves HARMONY. We find that aggregate scores often change statistically significantly on
less harmonious benchmarks, whereas they remain more stable on more harmonious benchmarks.
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Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B

Overall 47.2 68.1 82.6 86.8 91.0
Multicellular Biology (42.4%) 45.9 68.9 88.5 88.5 93.4
Evolutionary & Ecological Processes (25.7%) 51.4 59.5 86.5 91.9 91.9
Molecular & Cellular Biology (31.9%) 45.7 73.9 71.7 80.4 87.0
HARMONY 0.951 0.918 0.757 0.784 0.859

Table 7: Multi-dimensional evaluation results of Qwen3 model family in MMLU College Biology.
Bold implies the best performance.

Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B

Overall 24.5 34.3 58.8 57.8 69.6
Quantum Mechanics Principles and Applications (22.5%) 56.5 34.8 65.2 69.6 73.9
Thermodynamics (8.8%) 0.0 55.6 66.7 55.6 77.8
Special Relativity Concepts (13.7%) 21.4 14.3 71.4 50.0 57.1
Classical Physics Principles and Relationships (20.6%) 9.5 38.1 47.6 52.4 61.9
Physics Phenomena and Application (16.7%) 0.0 11.8 11.8 17.6 58.8
Electromagnetism (5.9%) 16.7 16.7 83.3 83.3 66.7
Solid State Physics (11.8%) 50.0 75.0 100.0 100.0 100.0
HARMONY 0.686 0.712 0.765 0.815 0.789

Table 8: Multi-dimensional evaluation results of Qwen3 model family in MMLU College Physics.
Bold implies the best performance.

hierarchy enables interpretable, multi-dimensional evaluation, where each dimension corresponds
to a subdomain of the benchmark.

We illustrate this approach on two examples: MMLU College Biology and MMLU College Physics.
The average HARMONY across Qwen3 models is markedly higher for biology (0.8538) than for
physics (0.7534). This suggests that the aggregate accuracy for biology is a more representative
reflection of the performance across subdomains. Indeed, Table 7 shows that rankings in biology
subdomains mirror the overall ordering: models that achieve higher overall accuracy also achieve
higher accuracy in every subdomain. In other words, no model with superior overall performance
is ever surpassed by a model with lower overall performance in any biology subdomain.13 This
alignment underscores that the aggregate score is a consistent and reliable summary of subdomain
performance in biology.

In contrast, physics exhibits lower HARMONY and more notable divergences (Table 8). For ex-
ample, Qwen3-4B lags behind Qwen3-14B in overall accuracy (58.8% vs. 69.6%), yet it surpasses
it in Special Relativity (71.4% vs. 57.1%) and Electromagnetism (83.3% vs. 66.7%). Similarly,
Qwen3-0.6B, despite its weak overall score (24.5%), achieves competitive performance in Quan-
tum Mechanics (56.5%), outperforming Qwen3-1.7B (34.8%). These cases highlight how aggregate
scores can obscure areas of relative strength, and how fine-grained, multi-dimensional evaluation
reveals nuanced interpretation of model competence across subdomains.

We provide extended results for Qwen3 and Llama 3 model families across 2 MCQA benchmarks
and 6 MMLU subtasks in Appendix I.

I EXTENDED RESULTS: MULTI-DIMENSIONAL EVALUATION

We provide the extended results of multi-dimensional evaluation conducted as described in Ap-
pendix H. Our setup consists of Qwen3 and Gemma 3 model families and ARC-Easy, BoolQ,
MMLU Anatomy, MMLU College Biology, MMLU College Computer Science, MMLU College
Mathematics, MMLU College Physics, MMLU High School US History.

I.1 QWEN3 FAMILY

See Tables 9, 10, 11, 12, 13, 14, 15, and 16 for the extended results of Qwen3 model family.

13Comparison of 1.7B and 4B in Molecular & Cellular Biology is the only exception.
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Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 60.7 72.2 80.5 83.5 84.2

Geology and Earth Sciences (15.0%) 64.4 73.4 83.8 83.8 83.8
Scientific Principles and Processes (32.6%) 56.3 70.1 79.9 83.5 84.3
Biological Processes and Concepts (24.1%) 65.4 74.0 78.8 82.9 83.6
Physics Principles in Engineering and Science (9.4%) 64.3 75.9 82.1 86.6 86.6
Environmental and Energy Assessment (6.5%) 60.4 63.6 78.6 81.2 79.9
Fundamental Concepts in Astronomy (7.6%) 56.1 76.7 80.6 83.3 87.2
Fundamentals of Chemical and Material Properties (4.8%) 56.1 71.9 81.6 84.2 84.2

Table 9: Multi-dimensional evaluation results for the Qwen3 model family on ARC-Easy.

Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 64.1 77.5 85.0 86.6 89.3

Product Composition, Properties, and Standards (8.8%) 66.8 80.6 83.7 86.9 88.9
Geographic, Operational, and Temporal Analysis (11.0%) 69.3 77.3 85.3 88.4 91.7
Media Standards and Analysis (24.8%) 61.3 77.7 86.8 88.7 91.0
Scientific and Analytical Principles (9.0%) 67.9 81.2 83.3 84.6 89.1
Sports History and Regulations (10.1%) 63.5 75.1 82.1 84.5 87.2
Governmental Laws and Regulations (10.6%) 64.1 72.8 80.3 84.6 86.1
Human Biology and Medical Science (6.5%) 60.6 81.2 87.8 85.4 87.8
Economic Systems (8.3%) 61.6 75.3 85.2 85.6 87.5
Sociocultural, Geopolitical, and Linguistic Analysis (7.1%) 63.9 76.8 88.0 86.7 89.7
Fictional Narrative Analysis and Elements (3.8%) 64.8 80.8 89.6 88.0 93.6

Table 10: Evaluation results for the Qwen3 model family on BoolQ.

I.2 GEMMA 3 FAMILY

See Tables 17, 18, 19, 20, 21, 22, 23, and 24 for the extended results of Gemma 3 model family.

J ADDITIONAL RELATED WORK

Language Model Evaluation. Reliable evaluation is essential for accurately assessing model ca-
pabilities and enabling fair comparisons, which in turn informs future developments. Hence, there
has been a surge in the development of benchmarks designed to test various model capabilities,
such as reasoning (Bisk et al., 2019; Sap et al., 2019b; Zellers et al., 2019; Liu et al., 2020), world
knowledge (Mihaylov et al., 2018b; Hendrycks et al., 2020; et al., 2023), and truthfulness (Lin
et al., 2022; Khatun & Brown, 2024). Beyond individual benchmarks, holistic frameworks have
emerged to offer a more comprehensive assessment of model performance (Liang et al., 2023; Chi-
ang et al., 2024; Gao et al., 2024; Fourrier et al., 2023; et al., 2023). Reciprocally, understanding and
improving current benchmarks have been equally important. MMLU Pro (Wang et al., 2024b) and
Big-Bench-Hard (Suzgun et al., 2022) address benchmark saturation by constructing more challeng-
ing variants of MMLU (Hendrycks et al., 2020) and Big-Bench (bench authors, 2023) respectively.
As top models approach ceiling effects on narrow probes, evaluation has shifted toward complex
end-to-end tasks and composite suites. HLE and ARC-AGI assess multi-step reasoning, tool use,
and robustness across domains (Phan et al., 2025; Chollet et al., 2025). Execution-grounded tasks
such as SWE-bench measure real-world software problems and end-to-end correctness (Jimenez
et al., 2024). Competitive exams like AIME and IMO, and professional exams such as the bar,
push systems toward expert-level competence. Another recent practice is evaluation with online
leaderboards, which use hidden test sets, fixed prompts, and compute disclosures in order to support
fair comparison and consistent progress tracking (Chiang et al., 2024). Yet, these advances rest on
a common premise that benchmarks reliably evaluate models on their stated domains. We audit
this premise by testing whether benchmarks provide balanced coverage and promote comparable
performance across subdomains.

K HIERARCHICAL LABELING FOR MULTI-DIMENSIONAL EVALUATION

We build a tree benchmark over questions, then assign concise, human-readable labels to every node.
Leaves summarize the shared evaluation focus of their questions, while internal nodes summarize
their children.
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Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 37.8 56.3 62.2 71.1 80.7

General Human Anatomy, Physiology, and Terminology (31.9%) 51.2 67.4 79.1 76.7 86.0
Head and Neck Anatomy (21.5%) 20.7 34.5 34.5 62.1 82.8
Skeletal Development and Anatomy (14.1%) 26.3 42.1 47.4 52.6 57.9
Neurological Disorders (10.4%) 21.4 50.0 50.0 71.4 78.6
Bone Anatomy and Terminology (3.0%) 0.0 50.0 50.0 50.0 50.0
Anatomy of Circulatory System (2.2%) 66.7 100.0 100.0 100.0 100.0
Developmental Structures (6.7%) 22.2 44.4 55.6 77.8 88.9
Nephrology (10.4%) 78.6 92.9 100.0 92.9 92.9

Table 11: Evaluation results for the Qwen3 model family on MMLU Anatomy.

Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 47.2 68.1 82.6 86.8 91.0

Multicellular Biology (42.4%) 45.9 68.9 88.5 88.5 93.4
Evolutionary and Ecological Processes (25.7%) 51.4 59.5 86.5 91.9 91.9
Molecular and Cellular Biology (31.9%) 45.7 73.9 71.7 80.4 87.0

Table 12: Evaluation results for the Qwen3 model family on MMLU College Biology.

To build the tree, we recursively induce partitions as discussed in §2.3, starting from the root (i.e.,
the entire benchmark) and ending at leaves (i.e., the clusters that do not admit a valid partition).
For labeling leaves, we gather brief question annotations within a leaf and ask a model for one
specific noun-phrase label. For labeling internal nodes of the tree, we pass the child labels to the
model and ask for a slightly more abstract label that still captures the shared theme. Therefore,
this procedure yields a bottom-up label propagation from leaves to internal nodes then to the root.
We use Gemini-2.0-flash to annotate individual questions, assign each leaf a label from its
question annotations, and propagate labels upward by aggregating child labels.

Prompts. We share the prompts we use for annotating the questions (Prompt K), labeling the
leaves (Prompt K), and labeling the internal nodes (Prompt K).

Prompt for annotating questions.

You are given a question from the BENCHMARK benchmark.
Given this question, generate a single, concise sentence that clearly describes the **specific evaluation
focus** of the question.
Question: QUESTION
Requirements:
- Do not have a prefix, simply provide a brief phrase or a gerund.
- Do not add commentary.

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used large language models (LLMs) only for light polishing (grammar, wording,
and clarity) after the technical content was written. LLMs were not used for research ideation,
experimental design or execution, analysis, figure or table generation, or drafting technical sections.
All substantive content, results, and conclusions are authored by the listed authors, who take full
responsibility for the paper’s contents, including any text edited with LLM assistance. LLMs are not
eligible for authorship, and no LLM is listed as an author.
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Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 28.0 41.0 66.0 72.0 68.0

Theoretical Foundations of Computation (52.0%) 26.9 40.4 59.6 69.2 65.4
Computer Architecture and Optimization (7.0%) 28.6 42.9 71.4 57.1 57.1
Operating Systems (10.0%) 50.0 80.0 90.0 90.0 80.0
Network Layer Protocols and Technologies (5.0%) 60.0 60.0 80.0 100.0 100.0
Data Processing (12.0%) 8.3 8.3 66.7 50.0 66.7
Sorting Algorithms (4.0%) 25.0 25.0 75.0 100.0 100.0
Graph Algorithms and Data Structures (10.0%) 20.0 40.0 60.0 80.0 50.0

Table 13: Evaluation results for the Qwen3 model family on MMLU College Computer Science.

Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 31.0 39.0 55.0 59.0 68.0

Advanced Real Analysis (19.0%) 26.3 26.3 42.1 52.6 52.6
Abstract Algebra (11.0%) 27.3 45.5 90.9 63.6 81.8
Probability (7.0%) 28.6 71.4 28.6 57.1 57.1
Properties of Mathematical Operations and Functions (5.0%) 20.0 20.0 40.0 80.0 80.0
Advanced Mathematical Concepts and Applications (16.0%) 31.3 37.5 75.0 56.3 75.0
Mathematical Modeling and Algorithms (10.0%) 30.0 50.0 60.0 60.0 70.0
Multivariable Calculus (27.0%) 25.9 37.0 40.7 59.3 63.0
Mathematical Optimization Methods (5.0%) 100.0 40.0 80.0 60.0 100.0

Table 14: Evaluation results for the Qwen3 model family on MMLU College Mathematics.

Prompt for labeling leaves.

You are a taxonomy assistant. Your task is to read short annotations that describe what each question
evaluates and produce one concise but descriptive label that summarizes the shared knowledge or
concept.
Guidelines:
- The label must be highly specific, directly capturing the core idea, while still generalizable across
closely related items.
- Prioritize specificity: avoid vague or overly broad terms.
- Use a clear noun phrase.
- Return only the label text.

Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 24.5 34.3 58.8 57.8 69.6

Quantum Mechanics Principles and Applications (22.5%) 56.5 34.8 65.2 69.6 73.9
Thermodynamics (8.8%) 0.0 55.6 66.7 55.6 77.8
Special Relativity Concepts (13.7%) 21.4 14.3 71.4 50.0 57.1
Classical Physics Principles and Relationships (20.6%) 9.5 38.1 47.6 52.4 61.9
Physics Phenomena and Applications (16.7%) 0.0 11.8 11.8 17.6 58.8
Electromagnetism (5.9%) 16.7 16.7 83.3 83.3 66.7
Solid State Physics Concepts (11.8%) 50.0 75.0 100.0 100.0 100.0

Table 15: Evaluation results for the Qwen3 model family on MMLU College Physics.

Qwen3-0.6B Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
Overall 52.5 66.2 83.3 88.7 91.7

US Sociopolitical Ideologies, Movements, and Issues (46.1%) 52.1 64.9 83.0 90.4 95.7
Progressive Era Economic and Social Initiatives (3.9%) 75.0 87.5 100.0 100.0 100.0
United States Governance and Politics (37.3%) 46.1 61.8 81.6 85.5 88.2
Ideological and Territorial Expansion in the Americas (9.8%) 70.0 80.0 90.0 95.0 85.0
American History Eras (2.9%) 50.0 66.7 66.7 66.7 83.3

Table 16: Evaluation results for the Qwen3 model family on MMLU High School U.S. History.
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Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 72.0 81.6 87.2 87.5

Geology and Earth Sciences (15.0%) 74.5 84.6 87.7 89.4
Scientific Principles and Processes (32.6%) 71.2 79.7 86.5 87.0
Biological Processes and Concepts (24.1%) 74.3 83.0 88.5 87.8
Physics Principles in Engineering and Science (9.4%) 70.5 83.0 88.8 88.8
Environmental and Energy Assessment (6.5%) 68.2 80.5 83.1 84.4
Fundamental Concepts in Astronomy (7.6%) 72.8 79.4 86.7 87.2
Fundamentals of Chemical and Material Properties (4.8%) 64.0 79.8 86.8 86.8

Table 17: Multi-dimensional evaluation results for the Gemma 3 model family on ARC-Easy.

Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 66.5 79.0 85.3 87.1

Product Composition, Properties, and Standards (8.8%) 67.5 76.1 82.4 88.6
Geographic, Operational, and Temporal Analysis (11.0%) 67.6 83.7 84.8 87.3
Media Standards and Analysis (24.8%) 66.7 80.6 88.5 89.6
Scientific and Analytical Principles (9.0%) 65.2 75.1 82.9 86.0
Sports History and Regulations (10.1%) 63.2 78.7 83.0 86.0
Governmental Laws and Regulations (10.6%) 64.1 75.7 80.3 82.0
Human Biology and Medical Science (6.5%) 77.0 82.6 86.9 89.2
Economic Systems (8.3%) 66.1 77.1 85.6 85.6
Sociocultural, Geopolitical, and Linguistic Analysis (7.1%) 61.8 78.1 87.6 84.1
Fictional Narrative Analysis and Elements (3.8%) 71.2 79.2 91.2 90.4

Table 18: Multi-dimensional evaluation results for the Gemma 3 model family on BoolQ.

Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 25.9 61.5 70.4 70.4

General Human Anatomy, Physiology, and Terminology (31.9%) 27.9 69.8 83.7 79.1
Head and Neck Anatomy (21.5%) 27.6 41.4 55.2 48.3
Skeletal Development and Anatomy (14.1%) 21.1 52.6 52.6 57.9
Neurological Disorders (10.4%) 42.9 64.3 57.1 71.4
Bone Anatomy and Terminology (3.0%) 50.0 50.0 50.0 50.0
Anatomy of Circulatory System (2.2%) 0.0 100.0 100.0 100.0
Developmental Structures (6.7%) 11.1 44.4 77.8 88.9
Nephrology (10.4%) 14.3 92.9 92.9 92.9

Table 19: Multi-dimensional evaluation results for the Gemma 3 model family on MMLU Anatomy.

Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Multicellular Biology (42.4%) 27.9 68.9 98.4 93.4
Evolutionary and Ecological Processes (25.7%) 21.6 67.6 86.5 86.5
Molecular and Cellular Biology (31.9%) 21.7 65.2 87.0 91.3

Table 20: Multi-dimensional evaluation results for the Gemma 3 model family on MMLU College
Biology.

Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 30.0 48.0 57.0 63.0

Theoretical Foundations of Computation (52.0%) 36.5 38.5 51.9 61.5
Computer Architecture and Optimization (7.0%) 28.6 57.1 71.4 57.1
Operating Systems (10.0%) 20.0 60.0 80.0 80.0
Network Layer Protocols and Technologies (5.0%) 20.0 60.0 100.0 100.0
Data Processing (12.0%) 25.0 33.3 41.7 41.7
Sorting Algorithms (4.0%) 0.0 100.0 100.0 75.0
Graph Algorithms and Data Structures (10.0%) 30.0 70.0 30.0 60.0

Table 21: Multi-dimensional evaluation results for the Gemma 3 model family on MMLU College
Computer Science.
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Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 33.0 41.0 50.0 58.0

Advanced Real Analysis (19.0%) 57.9 52.6 47.4 52.6
Abstract Algebra (11.0%) 27.3 72.7 63.6 54.5
Probability (7.0%) 14.3 57.1 42.9 57.1
Properties of Mathematical Operations and Functions (5.0%) 60.0 40.0 40.0 80.0
Advanced Mathematical Concepts and Applications (16.0%) 25.0 31.3 56.3 68.8
Mathematical Modeling and Algorithms (10.0%) 20.0 30.0 50.0 60.0
Multivariable Calculus (27.0%) 29.6 25.9 40.7 55.6
Mathematical Optimization Methods (5.0%) 20.0 40.0 80.0 40.0

Table 22: Multi-dimensional evaluation results for the Gemma 3 model family on MMLU College
Mathematics.

Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 20.6 41.2 52.9 63.7

Quantum Mechanics Principles and Applications (22.5%) 8.7 39.1 43.5 73.9
Thermodynamics (8.8%) 11.1 22.2 55.6 55.6
Special Relativity Concepts (13.7%) 28.6 35.7 42.9 50.0
Classical Physics Principles and Relationships (20.6%) 42.9 28.6 57.1 66.7
Physics Phenomena and Applications (16.7%) 5.9 41.2 29.4 41.2
Electromagnetism (5.9%) 0.0 66.7 83.3 50.0
Solid State Physics Concepts (11.8%) 33.3 75.0 91.7 100.0

Table 23: Multi-dimensional evaluation results for the Gemma 3 model family on MMLU College
Physics.

Gemma 3 1B Gemma 3 4B Gemma 3 12B Gemma 3 27B
Overall 26.0 75.5 88.2 91.2

US Sociopolitical Ideologies, Movements, and Issues (46.1%) 26.6 80.9 87.2 92.6
Progressive Era Economic and Social Initiatives (3.9%) 25.0 100.0 100.0 87.5
United States Governance and Politics (37.3%) 26.3 67.1 89.5 90.8
Ideological and Territorial Expansion in the Americas (9.8%) 20.0 75.0 85.0 90.0
American History Eras (2.9%) 33.3 66.7 83.3 83.3

Table 24: Multi-dimensional evaluation results for the Gemma 3 model family on MMLU High
School U.S. History.

Prompt for labeling internal nodes.

You are a taxonomy assistant. Your task is to read the labels of child clusters and generate one concise
but descriptive parent label that captures their common theme at a higher level of abstraction.
Guidelines:
- The label must be specific and clearly meaningful, while still broad enough to encompass all
children.
- Prioritize specificity: avoid vague or generic terms that do not capture the essence of the group.
- Use a clear noun phrase.
- Return only the label text.
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