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Abstract

Accurate segmentation of the pectoral muscle is crucial for improving breast cancer diag-
nosis in mammograms. While modern deep learning models excel in segmentation, they
often lack uncertainty quantification, which is essential for reliable clinical decisions. In this
work, we propose a novel method for modeling uncertainty in pectoral muscle segmenta-
tion by combining the prediction of probabilistic heatmaps with heteroscedastic regression.
For that, we investigate both an existing and a novel loss function derived from the het-
eroscedastic Laplace distribution, and show that our loss function is more robust in our
setting for pectoral muscle segmentation. Further, we demonstrate that our method is
capable of producing heatmaps with high-likelihood predictive distributions within a single
model while outperforming an ensemble baseline in terms of accuracy.
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1. Introduction

Breast cancer is one of the leading causes of mortality among all cancer types (Siegel et al.,
2016). To improve early detection, digital mammography is the predominant method for
screening patients due to its high cost-efficiency and effectiveness. In mammography image
analysis, one important preprocessing step is the segmentation of the pectoral muscle (PM),
for which various methods were introduced, ranging from traditional concepts that model
the PM boundary (Ferrari et al., 2004) to modern deep learning based solutions that predict
the PM region (Rampun et al., 2019), but they typically do not model uncertainty.

A common approach to modeling uncertainty is the assessment of variability in the
predictive distribution generated by model ensembles. In the context of PM segmentation,
these ensembles can be obtained using Monte Carlo dropout (Klanecek et al., 2023), dif-
ferent model states at various training stages (Tang et al., 2025) or training on different
data subsets (Huemmer et al., 2024). However, ensembles primarily capture (epistemic)
uncertainty in the model parameters rather than input-dependent heteroscedastic uncer-
tainty (Cipolla et al., 2018; Chan et al., 2024), which is critical when the PM is partially
undetectable due to dense glandular tissue and structural similarity to skin folds. In such
ambiguous situations, modeling input-dependent uncertainty is crucial, as it is more infor-
mative than an overconfident yet inaccurate prediction. Hence, we propose a novel PM
segmentation approach based on heteroscedastic uncertainty to capture local variations in
noise and occlusions, requiring only a single model training.
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Figure 1: Illustration of our method, where the orange line shows the row-wise mean and
the uncertainty band represents the row-wise variance of the predicted heatmap.

2. Methods

This paper builds on the work of Huemmer et al. (2024), who proposed to perform the PM
segmentation as a regression task by leveraging a unique row-to-column index mapping to
directly predict the PM boundary as a column-index (CI) vector. As a major difference,
we employ an encoder-decoder architecture (U-Net) to perform heatmap regression through
row-wise application of the soft-argmax operation (Luvizon et al., 2019), as shown in Fig-
ure 1. The integrated softmax operation enables a probabilistic interpretation and allows
to compute relevant row-wise statistics from the heatmap

µ̂i =
∑
j

j · hi,j , σ̂2
i =

∑
j

hi,j · (j − µ̂i)
2 (1)

with mean µ̂i as PM boundary prediction, variance σ̂2
i as measure for the uncertainty,

and hi,j as value of the softmax-activated heatmap at row i and column j. To train the
uncertainty aware heatmap regression we utilize the β-NLL loss of Seitzer et al. (2022)
which extends the standard heteroscedastic regression loss with a variance weighting for
more stable convergence. It is derived from the negative log-likelihood (NLL) of the nor-
mal distribution and thus denoted as Lβ−N -NLL. Initial experiments empirically revealed
that squared error terms, such as the mean-squared-error (MSE) can lead to poor mean
predictions compared to the mean-absolute-error (MAE). Hence, we propose a similar loss
function Lβ−Lap-NLL that is derived from the Laplace distribution and leads to an absolute
difference term in the heteroscedastic loss:

Lβ−Lap-NLL :=
1

N

N∑
i=1

⌊
b̂βi

⌋( |yi − µ̂i|
b̂i

+ log(2b̂i)

)
with b̂i =

√
σ̂2
i

2
. (2)

Here, ⌊.⌋ denotes a gradient-stop operation and yi refers to the target at row i. Equivalent to

Lβ−N -NLL (Seitzer et al., 2022), b̂βi is multiplied to the NLL to interpolate between uniform
sample weighting and the NLL loss by selecting β between 0 and 1.

Furthermore, we extend the loss function regularization in (2), inspired by the static
variance regularization of Nibali et al. (2018), by using

Lreg =
1

N

N∑
i=1

DJS(hi∥ Qi) with Qi =

N (µ̂i, σ̂
2
i ) (Gaussian)

Lap(µ̂i, b̂i) (Laplace)
(3)
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where DJS(hi∥ Qi) denotes the Jensen-Shannon divergence between the softmax-activated
heatmap hi (row index i) and a template distribution Qi, constructed from the predicted
heatmaps’ statistics in (1). The regularization term of (3) is weighted by a constant factor
λ = 100 and added to the NLL loss with the goal to produce meaningful distributions that
align with the probabilistic model of the underlying loss function.

3. Experiments and results

We evaluate our method on 8861 mediolateral oblique (MLO) mammograms (both left and
right laterality) from the MBTST dataset (Dahlblom et al., 2019). Ground truth labels were
provided by clinical experts. For independent testing, 15% of the images were extracted
while keeping patient boundaries. Mammograms were resized to 128 × 128, normalized to
range of [0, 1], and edge-padded by 1/4 of their spatial dimensions for boundary context.
Left-lateral images were horizontally flipped for consistent right-laterality. We trained our
method using the Lβ−N -NLL and Lβ−Lap-NLL with various β parametrizations, and com-
pared it against the CI vector regression ensemble of DenseNets by Huemmer et al. (2024).
All architectures were adapted to have ∼ 450k parameters. The results shown in Table 1 are
averaged over five runs with different data splits, maintaining the same test set. Aligning
with prior assumptions, our method using Lβ−Lap-NLL produces more accurate mean fits,
particularly for higher β-values, where β controls the tradeoff between accuracy and log-
likelihood. Additionally, it outperforms the ensemble baseline in terms of accuracy while
providing high-likelihood predictive distributions within a single model. Upon visual in-
spection of the test set, we observed an increase in row-wise variance in regions where the
muscle outline is obscured, indicating valuable information about the models’ uncertainty
in difficult situations. This is further supported by the Pearson coefficient, which measures
image-wise correlation between absolute error and variance.

Table 1: Comparison of our method against an ensemble baseline.

Method Loss β MAE ↓ RMSE ↓ Pearson ↑ Log-Likelihood ↑
Ensemble SAE − 0.53 0.99 0.70 -82.90

U-Net (Ours)

Lβ−N -NLL

+λLreg

0.0 0.52 1.09 0.70 52.09
0.5 0.48 1.01 0.69 -20.09
1.0 0.53 1.09 0.68 -75.79

Lβ−Lap-NLL

+λLreg

0.0 0.51 1.12 0.72 111.97
0.5 0.46 1.01 0.72 104.93
1.0 0.46 0.98 0.72 87.26

4. Conclusion

In conclusion, we introduce a novel approach to PM segmentation that models input-
dependent uncertainty. Preliminary results are promising and suggest to further validate
the methods ability to provide meaningful and reliable uncertainty measures.

Disclaimer: The presented methods in this paper are not commercially available and their
future availability cannot be guaranteed.
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