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Abstract

In this work, we present cross-attention masked autoencoders (CrossMAE). This1

framework employs only cross-attention in the decoder to independently read out2

reconstructions for a small subset of masked patches from encoder outputs, yet it3

achieves comparable or superior performance to traditional MAE across models4

ranging from ViT-S to ViT-H. CrossMAE challenges the necessity of interaction5

between mask tokens for effective masked pretraining and leads to much more6

efficient pretraining. Code is available here.7

1 Introduction8

Masked image modeling [20, 13, 25, 3] is a crucial unsupervised learning technique in computer9

vision. A notable approach is masked autoencoders (MAE), where the model reconstructs missing10

pixels from a small subset of visible image patches. MAE efficiently pre-trains large models on vast11

datasets, yielding strong results on various tasks [14, 16, 21].12

MAE uses self-attention across both visible and masked tokens. However, masked tokens lack13

information, and it’s unclear whether self-attention between masked tokens is beneficial. We break14

down the decoding process into self-attention among masked tokens and cross-attention with visible15

tokens. Notably, cross-attention dominates, with a score of 1.42 versus 0.39 for self-attention. This16

raises two questions: 1) Is self-attention between masked tokens necessary? 2) Can masked patches17

be reconstructed independently from the encoder, speeding up pretraining?18

To address these questions, we propose CrossMAE, which differs from MAE in three key ways:19

1. Cross-attention for decoding: Mask tokens act as queries in a cross-attention decoder to20

reconstruct patches from visible tokens, reducing sequence length and computation.21

2. Independent partial reconstruction: Mask tokens are decoded independently based on visible22

token features, allowing for faster pretraining by decoding fewer patches.23

3. Inter-block attention: CrossMAE uses features from different encoder blocks, leveraging both24

low- and high-level features for better learning.25

Our results show that CrossMAE reconstructs images coherently without masked token interactions,26

relying on the encoder’s global context. Performance remains strong, proving the encoder captures27

necessary information for reconstruction. Our main contributions are:28

1. We offer a new understanding of MAE. Our findings reveal that MAE reconstructs coherent29

images through the encoder’s global representation, not through interactions between masked patches30

in the decoder. The model performs well even without such interactions, showing the encoder31

effectively captures the necessary global information.32

2. We propose replacing self-attention with a cross-attention readout. Since the MAE encoder33

captures the full global representation, we recommend replacing self-attention in the decoder with34
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Figure 1: MAE [13] concatenates all mask tokens with the visible patch features from a ViT encoder and passes
them to a decoder with self-attention blocks to reconstruct the original image. Patches that correspond to visible
tokens are then dropped, and an L2 loss is applied to the rest of the reconstruction as the pretraining objective.
CrossMAE instead uses cross-attention blocks in the decoder to reconstruct only a subset of the masked tokens.

cross-attention to independently aggregate encoder outputs for each input token, eliminating the need35

for token-to-token communication in the decoder.36

3. CrossMAE offers similar or better performance with lower computational costs for tasks37

like image classification and instance segmentation compared to MAE, across vision transformer38

models from ViT-S to ViT-H.39

2 Related Works40

Self-Supervised Learning. In self-supervised learning, models are trained on tasks where the41

supervision comes from the input data itself, without labels. Contrastive learning methods, like42

SimCLR [6], CPC [19], and MoCo [12], learn by contrasting positive and negative samples. Other43

methods, such as BYOL [11], iBOT [26], and DINO [4], train a student model to imitate a teacher44

model without using negative pairs.45

Masked Modeling. Masked modeling learns representations by reconstructing missing parts of the46

input. In natural language processing (NLP), early works like BERT [8] and its extensions [18, 15]47

introduced masked language modeling to enable few-shot learning with bidirectional transformers. In48

computer vision, early studies like Stacked Denoising Autoencoders [24] and Context Encoder [20]49

used masked image modeling for denoising and representation learning. With the rise of transform-50

ers in vision tasks [9], researchers have explored adapting language sequence modeling to vision51

transformers. BEiT [2], MAE [13], and SimMIM [25] applied BERT-style pretraining to vision52

transformers. Unlike NLP models, MAE and SimMIM found that much higher mask ratios are53

needed for effective visual representation learning. Recent works have expanded masked pretraining54

to hierarchical architectures [25, 17] and explored the role of data augmentation [5, 10].55

3 CrossMAE56

3.1 Preliminaries: Masked Autoencoders57

Masked Autoencoders (MAE) [13] pretrain Vision Transformers (ViTs) [9] by dividing input images58

into patches, selecting a random subset as visible. The ViT encoder processes the visible patches59

and a learnable [CLS] token to produce a set of feature latents. These, with masked patch positional60

embeddings and a learnable mask token, are input to the MAE decoder. Both the encoder and decoder61

use transformer blocks with self-attention. The decoder’s output length matches the original input and62

assumes visible-masked token interactions. A final fully connected layer reconstructs the image, with63

loss applied only to masked positions. We explore simplifying the decoding process by eliminating64

self-attention among masked tokens, while maintaining the model’s downstream performance.65

3.2 Reconstruction with Cross-Attention66

We replace the self-attention in the decoder with cross-attention, using it to decode the encoder’s67

latent embeddings into pixel values. The decoder uses multi-head cross-attention, where queries come68

from previous decoder blocks (or from the masked patch positions for the first block), while keys and69

values are from the encoder features. We use weighted means of encoder feature maps (in Section 3.470

to serve as the keys and values for the decoder layers. Residual connections refine the decoded tokens71

as they pass through decoder blocks. Unlike the original Transformer [23], CrossMAE’s decoder72

skips the self-attention layer, allowing tokens to be decoded independently. We find that removing73
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Figure 2: Overview of CrossMAE. (a) The vanilla version of CrossMAE uses the output of the last encoder
block as the keys and queries for cross-attention. The first decoder block takes the sum of mask tokens and their
corresponding positional embeddings as queries, and subsequent layers use the output of the previous decoder
block as queries to reconstruct the masked patches. (b) Unlike the decoder block in [23], the cross-attention
decoder block does not contain self-attention, decoupling the generation of different masked patches. (c)
CrossMAE’s decoder blocks can leverage low-level features for reconstruction via inter-block attention. It
weighs the intermediate feature maps, and the weighted sum of feature maps is used as the key and value for
each decoder block.

the self-attention layer does not lead to a reduction in downstream performance and improve training74

efficiency (see the appendix for more detail). While MAE projects encoder features to the decoder75

space using an MLP, CrossMAE performs the projection in the multi-head cross-attention module.76

CrossMAE does not limit itself to a single cross-attention block but stacks multiple decoder blocks,77

similar to the traditional Transformer [23].78

3.3 Partial Reconstruction79

CrossMAE’s decoder uses cross-attention instead of self-attention, allowing independent decoding80

of mask tokens. This enables partial reconstruction of specific spatial locations, unlike MAE which81

requires all masked tokens due to self-attention. We introduce a "prediction ratio" (γ) as the ratio82

of predicted tokens to all image tokens, with γ ∈ (0, p] where p is the mask ratio. Reconstructing83

only a random subset of masked locations maintains the expected mean square error loss but in-84

creases variance by (p/γ). Adjusting the learning rate to γβ/p compensates for this. This partial85

reconstruction approach reduces computational complexity while preserving representation quality,86

as cross-attention scales linearly with the number of masked tokens.87

3.4 Inter-block Attention88

MAE’s self-attention decoder creates an information bottleneck by using only the last encoder block’s89

features with mask tokens. CrossMAE’s cross-attention decoder allows different decoder blocks to90

access features from various encoder blocks. To select which encoder features to use, we propose91

learnable inter-block attention for feature fusion. This approach takes a weighted sum of visible token92

embeddings across encoder blocks at the same spatial location, combining multi-block features for93

each decoder block. Specifically, each decoder block uses a weighted linear combination of encoder94

feature maps as keys and values. For a token tk in decoder block k of a model with encoder depth n,95

we initialize weights wk ∈ Rn ∼ N (0, 1/n). Then, tk =
∑n

j=1 w
k
j fj , where fj are encoder feature96

maps. This method of using weighted features from different encoder blocks significantly improves97

CrossMAE’s performance compared to using only the last block’s features.98

4 Experiments99

We perform self-supervised pretraining on ImageNet-1K, following MAE [13]’s hyperparameter100

settings, only modifying the learning rate and decoder depth. The hyperparameters were initially101
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Method ViT-S ViT-B ViT-L ViT-H

Supervised [22] 79.0 82.3 82.6 83.1
DINO [4] - 82.8 - -
MoCo v3 [7] 81.4 83.2 84.1 -
BEiT [2] - 83.2 85.2 -
MultiMAE [1] - 83.3 - -
MixedAE [5] - 83.5 - -
CIM [10] 81.6 83.3 - -
MAE [13] 78.9 83.3 85.4 85.8
CrossMAE (25%) 79.2 83.5 85.4 86.3
CrossMAE (75%) 79.3 83.7 85.4 86.4

Table 1: ImageNet-1K classification accuracy. Cross-
MAE performs on par or better than MAE. All experi-
ments are run with 800 epochs. The best results are in
bold while the second best results are underlined.

APbox APmask

Method ViT-B ViT-L ViT-B ViT-L

Supervised [16] 47.6 49.6 42.4 43.8
MoCo v3 [7] 47.9 49.3 42.7 44.0
BEiT [2] 49.8 53.3 44.4 47.1
MixedAE [5] 50.3 - 43.5 -
MAE [16] 51.2 54.6 45.5 48.6
CrossMAE 52.1 54.9 46.3 48.8

Table 2: COCO instance segmentation. Com-
pared to previous masked visual pretraining works,
CrossMAE performs favorably on object detection
and instance segmentation tasks.

determined on ViT-Base and then directly applied to ViT-Small, ViT-Large, and ViT-Huge. Both102

CrossMAE and MAE are trained for 800 epochs.103

4.1 ImageNet Classification104

Setup. The model performance is evaluated with end-to-end fine-tuning, with top-1 accuracy used105

for comparison. We compare two versions of CrossMAE: one with a prediction ratio of 25% (1/3 of106

the mask tokens) and another with 75% (all mask tokens). Both models are trained with a mask ratio107

of 75% and a decoder depth of 12.108

Results. As shown in Table 1, CrossMAE outperforms vanilla MAE using the same ViT-B encoder109

in terms of fine-tuning accuracy. This shows that replacing the self-attention with cross-attention110

does not degrade the downstream classification performance of the pre-trained model. Moreover,111

CrossMAE outperforms other self-supervised and masked image modeling baselines, e.g., DINO [4],112

MoCo v3 [7], BEiT [2], and MultiMAE [1]. We also conduct ablations in Appendix A.113

4.2 Object Detection and Instance Segmentation114

Setup. We additionally evaluate models pretrained with CrossMAE for object detection and instance115

segmentation, which require deeper spatial understanding than ImageNet classification. Specifically,116

we follow ViTDet [16], a method that leverages a Vision Transformer backbone for object detection117

and instance segmentation. We report box AP for object detection and mask AP for instance118

segmentation, following MAE [13].119

Results. As listed in Table 2, CrossMAE, with the default 75% prediction ratio, performs better120

compared to these baselines, including vanilla MAE. This suggests that similar to MAE, CrossMAE121

performance on ImageNet positively correlates with instance segmentation. Additionally, Cross-122

MAE’s downstream performance scales similarly to MAE as the model capacity increases from ViT-B123

to ViT-L. This observation also supports our hypothesis that partial reconstruction is suprisingly124

sufficient for learning dense visual representation.125

4.3 Training Throughput and Memory Utilization126

Due to partial reconstruction and confining attention to between mask tokens and visible tokens,127

CrossMAE improves pre-training efficiency over MAE. According to our experimental results, the128

FLOPs reduction does translate to an 1.54× training throughput and at least 50% reduction in GPU129

memory utilization compared to MAE.130

5 Discussion and Conclusion131

Our study shows that image reconstruction in MAE is driven by the encoder’s global representation,132

not patch interactions in the decoder. We simplify the decoder by using cross-attention to aggregate133

encoder outputs, tested on models from ViT-S to ViT-H. This approach matches or outperforms134

traditional methods in image classification and instance segmentation while being more efficient.135

CrossMAE is scalable and well-suited for large-scale visual pretraining, especially with video data.136
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Method Acc. (%)
MAE 83.0
CrossMAE 83.3
CrossMAE + Self-Attn 83.3

(a) Attention type in decoder
blocks. Adding back self-attention
between mask tokens does not im-
prove performance.

Mask Ratio Acc. (%)
65% 83.5
75% 83.3
85% 83.3

(b) Mask ratio. CrossMAE has
consistent performance across high
mask ratios.

Pred. Ratio Acc. (%)
15% 83.1
25% 83.2
75% 83.3

(c) Prediction ratio. CrossMAE
performs well even when only a
fraction of mask tokens are recon-
structed.

# Feature
Maps Fused

Acc.
(%)

1 82.9
3 83.3
6 83.5
12 83.3

(d) Inter-block attention. A com-
bination of six select encoder fea-
ture maps is best.

Decoder
Depth

Acc.
(%)

1 83.0
4 83.1
8 83.1
12 83.3

(e) Decoder depth. CrossMAE
performance scales with decoder
depth.

Image
Resolution

Acc.
(%)

224 83.2
448 84.6

(f) Input resolution. CrossMAE
scales to longer input sequences.

Table 3: Ablations on CrossMAE. We report fine-tuning performance on ImageNet-1K classification with 400
epochs (i.e., half of the full experiments) with ViT-B/16. MAE performance is reproduced using the official
MAE code. Underline indicates the default setting for CrossMAE. Bold indicates the best hyperparameter
among the tested ones. 1 feature map fused (row 1, Table 3(d)) indicates using only the feature from the last
encoder block. We use 25% prediction ratio for both settings in Table 3(f) to accelerate training.

A Ablations207

In our ablation studies, we found that CrossMAE, with its cross-attention decoder, outperforms208

vanilla MAE in downstream tasks, as shown in Table 3a, and combining cross-attention with self-209

attention does not improve performance, indicating cross-attention alone is sufficient. CrossMAE also210

effectively learns representations by reconstructing as few as 15% of tokens, compared to the 100%211

required by vanilla MAE, with minimal impact on downstream fine-tuning performance, as shown in212

Table 3b and Table 3c. Additionally, as detailed in Table 3d, using multiple encoder feature maps213

in the inter-block attention mechanism enhances performance, with the best results from using six214

feature maps. While a deeper 12-block decoder slightly improves performance, CrossMAE achieves215

similar results with just one block, as shown in Table 3e, demonstrating its efficiency. Furthermore,216

we found that models with lower prediction ratios benefit more from deeper decoders, as seen in ??.217

Lastly, increasing input resolution improves classification accuracy, indicating that CrossMAE can218

scale well with longer input sequences, as observed in Table 3f.219
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