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Abstract

We investigate how pair-wise data augmentation
techniques like Mixup affect the sample complex-
ity of finding optimal decision boundaries in a
binary linear classification problem. For a fam-
ily of data distributions with a separability con-
stant κ, we analyze how well the optimal classifier
in terms of training loss aligns with the optimal
one in test accuracy (i.e., Bayes optimal classi-
fier). For vanilla training without augmentation,
we uncover an interesting phenomenon named the
curse of separability. As we increase κ to make
the data distribution more separable, the sample
complexity of vanilla training increases exponen-
tially in κ; perhaps surprisingly, the task of finding
optimal decision boundaries becomes harder for
more separable distributions. For Mixup training,
we show that Mixup mitigates this problem by
significantly reducing the sample complexity. To
this end, we develop new concentration results
applicable to n2 pair-wise augmented data points
constructed from n independent data, by care-
fully dealing with dependencies between overlap-
ping pairs. Lastly, we study other masking-based
Mixup-style techniques and show that they can
distort the training loss and make its minimizer
converge to a suboptimal classifier in terms of test
accuracy.

1. Introduction
Mixup (Zhang et al., 2018) is a modern technique that aug-
ments training data with a random convex combination of
a pair of training points and labels. Zhang et al. (2018)
empirically show that this simple technique has various
benefits, such as better generalization, robustness to label
corruption and adversarial attack, and stabilization of gener-
ative adversarial network training. Inspired by the success
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of Mixup, several variants of Mixup have appeared in the
literature; e.g., Manifold Mixup (Verma et al., 2019), Cut-
mix (Yun et al., 2019), Puzzle Mix (Kim et al., 2020), and
Co-Mixup (Kim et al., 2021). The success of Mixup-style
training schemes is not only limited to improved generaliza-
tion performance in supervised learning; they are known to
be helpful in other aspects including model calibration (Thu-
lasidasan et al., 2019), semi-supervised learning (Berthelot
et al., 2019; Sohn et al., 2020), contrastive learning (Kalan-
tidis et al., 2020; Verma et al., 2021), and natural language
processing (Guo et al., 2019; Sun et al., 2020).

Although Mixup and its variants demonstrate surprising
empirical benefits, a concrete theoretical understanding of
such benefits still remains mysterious. As a result, a recent
line of research (Carratino et al., 2020; Zhang et al., 2020;
2022; Chidambaram et al., 2021; 2022; Park et al., 2022)
trying to theoretically understand Mixup and its variants has
appeared in the literature. Most results, including this paper,
compare the training procedure with Mixup against solving
the vanilla empirical risk minimization (ERM) problem
without any augmentation. For the remainder of this paper,
we refer to the training loss without augmentation as ERM
loss, and the training loss with Mixup as Mixup loss.

The parallel works of Carratino et al. (2020) and Zhang et al.
(2020) represent the Mixup loss as the ERM loss equipped
with additive data-dependent regularizers which penalize
the gradient and Hessian of a model with respect to data. Us-
ing these regularizers, Zhang et al. (2020) show that Mixup
training can yield smaller Rademacher complexity which al-
lows for a smaller uniform generalization bound. Also, Park
et al. (2022) extend these results to several Mixup variants
such as Cutmix (Yun et al., 2019). However, the benefits
of Mixup-style schemes from the Rademacher complexity
view shown by Zhang et al. (2020) and Park et al. (2022)
stand out only if the intrinsic dimension of data is small.

Chidambaram et al. (2021) try to understand Mixup by
investigating when Mixup training minimizes the ERM loss.
The authors show failure cases of Mixup and also sufficient
conditions for its success. Chidambaram et al. (2021) also
show that ERM loss and Mixup loss can have the same
optimal classifier by considering linear model and special
types of data distribution. Detailed comparisons to our work
are provided in Section 2.
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Another recent work (Chidambaram et al., 2022) shows that
Midpoint Mixup (Guo, 2021) can outperform ERM training
in terms of feature learning performance in a multi-view data
framework proposed by Allen-Zhu & Li (2020). However,
their analysis is limited to an extreme case of Mixup using
only the midpoint of two data points.

1.1. Our Contributions

In this paper, we study the problem of finding optimal de-
cision boundaries in a binary linear classification problem
with logistic loss (i.e., logistic regression). We consider
a data generating distribution whose positive and negative
examples come from two symmetric Gaussian distributions.
The two distributions have the same covariance matrices
inversely proportional to a separability constant κ, which
controls the degree to which the two classes are separable.

Our data generating distribution has the advantage that the
Bayes optimal classifier (i.e., the classifier with the best
test accuracy) is given as a closed-form linear classifier.
This motivates us to study how well the optimal classifier
in terms of training loss is aligned with the Bayes optimal
classifier, and how many data points are required to make
sure that the two classifiers are close enough. Therefore,
we focus on the sample complexity of vanilla ERM training
and Mixup-style training for achieving close-to-one cosine
similarity between the two classifiers.

Our results demonstrate that Mixup provably requires a
much smaller number of samples to achieve the same cosine
similarity compared to vanilla ERM training. Our contribu-
tions can be summarized as the following:

• In Section 3, we investigate the sample complexity
of (vanilla) ERM under our data distribution. Theo-
rem 3.1 shows that the expected value of ERM training
loss has a unique optimal solution aligned with the
Bayes optimal classifier. We then prove that the sam-
ple complexity for making the ERM loss optimum
closely aligned with the Bayes optimal classifier grows
exponentially with the separability constant κ; we show
that the exponential growth is both sufficient (Theo-
rem 3.4) and necessary (Theorem 3.7). Interestingly,
these results demonstrate that ERM suffers the curse of
separability, where the sample complexity increases
as the data distribution becomes more separable.

• In Section 4, we study a unified class of Mixup-style
training scheme that includes Mixup (Zhang et al.,
2018) with various choices of hyperparameters. Theo-
rem 4.2 shows that the expected value of Mixup loss
has a unique optimal solution still aligned with the
Bayes optimal classifier, which indicates that Mixup-
style augmentations do not “distort” the training loss
in a misleading way, at least in our setting. In Theo-

rem 4.4, we show that the sample complexity for get-
ting a near-Bayes-optimal Mixup loss solution grows
only quadratically in κ. This result indicates that Mixup
provably mitigates the curse of separability.

• In Section 5, we analyze how recent masking-based
variants of Mixup such as CutMix (Yun et al., 2019)
behave in our setting. Unfortunately, Theorem 5.3
shows that masking-based augmentation can distort the
training loss and the expected value of masking-based
Mixup loss can have optimal solutions far away from
the Bayes optimal classifier. Ironically, Theorem 5.4
indicates the sample complexity for approaching such
a “wrong” minimizer does not grow with separability.
These results show that, at least in our setting, masking-
based techniques have small sample complexity but
may not converge to the Bayes optimal classifier.

2. Problem Setting and Notation
In this section, we introduce our formal problem setting and
notation. We consider a binary linear classification problem
with training dataset S = {(xi, yi)}ni=1 where xi ∈ Rd are
data points and yi ∈ {0, 1} are labels. The vanilla empirical
risk minimization (ERM) loss under training set S can be
formulated as follows:

LS(w) :=
1

n

n∑
i=1

yil(w
⊤xi) + (1− yi)l(−w⊤xi), (1)

where l(·) is the logistic loss l(z) := log(1 + exp(−z)).

Data Generating Distribution. We mainly focus on the
following family of data generating distributions, where we
obtain positive and negative examples from two symmetric
Gaussian distributions. More precisely, for a given constant
κ ∈ (0,∞), we define a data generating distribution Dκ as
the following: we say that (x, y) ∼ Dκ when y is uniformly
drawn from {0, 1} and

x | y = 1 ∼ N(µ, κ−1Σ),

x | y = 0 ∼ N(−µ, κ−1Σ).

where µ ∈ Rd is nonzero, Σ ∈ Rd×d is positive definite,
and ∥µ∥2 = ∥Σ∥. Here, ∥·∥ denotes the ℓ2 norm for a
vector and the spectral norm for a matrix. We further define
a data generating distribution D∞ as the limiting behavior
of Dκ as κ → ∞; i.e., (x, y) ∼ D∞ implies y follows
uniform distribution on {0, 1} and x = (2y − 1)µ.

Separability Constant κ. Our data generating distribu-
tion Dκ with larger κ is more separable in the sense that the
two Gaussian distributions overlap less and they are more
likely to generate well-separated training data. This separa-
bility constant κ is of great importance in our analysis, as
we will demonstrate the curse of separability phenomenon
based on the dependency of sample complexity on κ.
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Bayes Optimal Classifier. The Bayes optimal classifier
is a classifier achieving the lowest possible test error on
the data population. In other words, any other classifier
cannot outperform the Bayes optimal classifier in terms of
test accuracy. For the specific form of data generating distri-
bution Dκ that we consider in this paper, it is well-known
that for any κ ∈ (0,∞), decision boundary of the Bayes
optimal classifier for Dκ is a hyperplane with normal vec-
tor Σ−1µ. For completeness, we provide proof for this in
Appendix D.1. The fact that we have a closed-form solu-
tion of the optimal decision boundary motivates us to study
finding a decision boundary close enough to that optimal
one. Since we are mainly interested in linear models, for
our “closeness” metric, we use cosine similarity between
the two linear decision boundaries, or equivalently, the two
normal vectors.

Comparison to the Setting of Chidambaram et al. (2021).
Chidambaram et al. (2021) also consider the linear model
and a special type of data generating distributions to com-
pare training ERM loss vs. Mixup loss. Our setting is differ-
ent from theirs in several aspects. First, there is a difference
in data generating distributions; we draw positive and nega-
tive data from two symmetric Gaussian distributions while
Chidambaram et al. (2021) consider the distribution that
obtains data from a single spherical Gaussian distribution.
Chidambaram et al. (2021) show that training ERM loss and
Mixup loss can lead to the same solution by considering
the highly overparametrized regime. On the other hand,
we consider the underparametrized regime and show the
gap between the two training methods. In addition, Chi-
dambaram et al. (2021) only consider the optimal classifier
in terms of training loss while we investigate the number of
required training data to get close to the optimal solution of
population loss.

Notation. We denote taking expectation on training data
S = {(xi, yi)}ni=1

i.i.d∼ Dκ and any other randomness, if
any, as Eκ for each κ ∈ (0,∞]. We use [k] for the in-
dex set {1, 2, . . . , k} for each k ∈ N. For two nonzero
vectors u,v ∈ Rd, let us denote their cosine similarity
as sim(u,v) = u⊤v

∥u∥∥v∥ and the angle between them as
∠(u,v) = cos−1(sim(u,v)). We use support(·) to denote
the support of a probability distribution or a random variable
and 1(·) denotes the 0-1 indicator function. We also use ⊙ to
denote element-wise multiplication between two vectors or
two matrices having the same size. We use O(·),Θ(·),Ω(·)
to represent asymptotic behavior as κ grows and to hide
terms related to d,µ,Σ. In addition, whenever we ex-
press the κ dependency in O(·),Θ(·),Ω(·) notation, we
only write the most dominant factor; for example, we
say κmpolylog(κ) = Θ(κm) and exp (cκm) poly(κ) =
exp(Θ(κm)).

3. ERM Suffers the Curse of Separability
In this section, we investigate a solution of ERM loss in
Equation 1. The ERM loss function LS(w) is a stochastic
function that depends on the random samples in the training
set S = {(xi, yi)}ni=1

i.i.d∼ Dκ. We will first characterize the
minimizer of the expected value Eκ[LS(w)] of the ERM
loss1 and show that the unique optimum of the expected
ERM loss has the same direction as the Bayes optimal clas-
sifier. Next, we study the sample complexity for the ERM
loss optimum to align closely enough to the Bayes optimal
classifier and conclude that ERM without Mixup suffers the
curse of separability.

Our first theorem below analyzes the optimum of expected
ERM loss Eκ[LS(w)].

Theorem 3.1. For any κ ∈ (0,∞), the expectation of ERM
loss Eκ[LS(w)] has a unique minimizer w∗(κ). In addi-
tion, its direction is the same as the Bayes optimal solution
Σ−1µ.

Proof Sketch. We will only sketch main proof ideas and full
proof can be found in Appendix A.1. We can rewrite the
expected ERM loss as

Eκ[LS(w)] = E
[
l
(
κ−1/2

(
w⊤Σw

)1/2
Z +w⊤µ

)]
,

where Z ∼ N(0, 1). The following Lemma 3.2 implies
that for a fixed value of w⊤µ, a smaller value of w⊤Σw
induces a smaller Eκ[LS(w)].

Lemma 3.2. Let X1 ∼ N(m,σ2
1), X2 ∼ N(m,σ2

2), m ∈
R and σ1 > σ2 > 0. Then, E[l(X1)] > E[l(X2)].

Lemma 3.3 below concludes that the unique minimizer
should be parallel to Σ−1µ.

Lemma 3.3. For any constant C, a unique solution of
minw∈Rd,w⊤µ=C

1
2w

⊤Σw is a rescaling of Σ−1µ.

Any remaining details can be found in Appendix A.1.

Our Theorem 3.1 implies that the minimizer w∗(κ) of ex-
pected ERM loss Eκ[LS(w)] induce the Bayes optimal
classifier. This may look obvious to some readers be-
cause Eκ[LS(w)] is in fact equal to Eκ[yl(w

⊤x) + (1 −
y)l(−w⊤x)], the population loss. However, notice that the
optimal classifier in terms of the population loss is depen-
dent on the loss l, and hence is not always equal to the
Bayes optimal classifier. Also, we will see theorems similar
to Theorem 3.1 in later sections; in particular, Theorem 5.3
reveals how masking-based augmentation can distort the
optimal classifier of the corresponding expected training
loss; thus, characterizing such optima is of importance.

1The expected ERM loss is equal to the population loss, which
is independent of n. However, for Mixup loss, its expected value
becomes dependent on n, as we will see later.
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Notice that the minimizer characterized in Theorem 3.1 is
for expected ERM loss Eκ[LS(w)]. Since Dκ is not known
to us and we only observe training data {(xi, yi)}ni=1

i.i.d∼
Dκ, we can only hope to get close to the minimizer by
optimizing the training loss LS(w), and sufficiently many
data samples are required to obtain a “close enough” one.
Thus, a natural question arises:

How many data points are required to find
a near Bayes optimal classifier using the ERM loss?

We present two theorems that answer the question above.
The first one (Theorem 3.4) shows that the number of sam-
ples growing exponentially with κ2 is sufficient, and the
next one (Theorem 3.7) proves that this exponential growth
with κ is necessary. In other words, as the data distribution
becomes more separable, the sample complexity for getting
a Bayes optimal classifier grows exponentially.
Theorem 3.4. Let ϵ, δ ∈ (0, 1). Suppose the training set

S = {(xi, yi)}ni=1
i.i.d∼ Dκ with large enough κ ∈ (0,∞),

and

n =
exp(Ω(κ2))

ϵ4

(
1 + log

1

ϵ
+ log

1

δ

)
.

Then, with probability at least 1− δ, the unique minimizer
ŵ∗

S of LS(w) exists and sim(ŵ∗
S ,Σ

−1µ) ≥ 1− ϵ.

Proof Sketch. A useful tool for proving Theorem 3.4 is
Lemma 3.5 inspired by the proof techniques used in Dai
et al. (2000) and Shapiro & Xu (2008).

Lemma 3.5. Let f(·, ·) : Rk × Rm → R be a real-valued
function. Define functions FN : Rk → R and F̂N : Rk →
R as

F (θ) = Eη∼P [f(θ,η)], F̂N (θ) =
1

N

∑N

i=1
f(θ,ηi),

where P is a probability distribution on Rm and
{ηi}Ni=1

i.i.d.∼ P . Let C be a nonempty compact subset of Rk

with diameter D. Suppose the following assumptions hold:

• The functions F and F̂N have unique minimizers on C
named θ∗ and θ̂∗

N , respectively.

• The function F is α-strongly convex on C (α > 0).

• For any θ ∈ C, Eη∼P
[
e|f(θ,η)−Eη∼P [f(θ,η)]|] < M .

• There exists a function g(·) : Rk → R such that for any
θ ∈ C and η ∈ Rk, it holds that ∥∇θf(θ,η)∥ ≤ g(η)
and ∥∇θEη∼P [f(θ,η)]∥ ≤ Eη∼P [g(η)]. In addition,
Eη∼P

[
eg(η)

]
< L.

For each 0 < ϵ < α−1/2, we have ∥θ̂∗
N − θ∥ < ϵ with

probability at least 1− δ if N is greater than

C1M

α2ϵ4
log

(
3

δ
max

{
1,

(
C2k

1/2DL

αϵ2

)k
})

,

where C1, C2 > 0 are universal constants.

We use Lemma 3.5 by considering {ηi}ni=1
i.i.d.∼ P as our

training dataset S = {(xi, yi)}ni=1
i.i.d.∼ Dκ, θ as weight

vector w, and f(θ,ηi) as (w, (xi, yi)) 7→ yil(w
⊤xi) +

(1 − yi)l(−w⊤xi). When we apply Lemma 3.5, several
quantities are sensitive to ∥w∗(κ)∥, the ℓ2 norm of w∗(κ)
defined in Theorem 3.1, which we characterize in the fol-
lowing lemma.
Lemma 3.6. The unique minimizer w∗(κ) of expected ERM
loss Eκ[LS(w)] satisfies

∥w∗(κ)∥ = Θ(κ).

Full proof of Theorem 3.4 appears in Appendix A.4.

Our sufficient sample complexity in Theorem 3.4 grows
exponentially with κ. The sufficient number of data points
for the minimizer ŵ∗

S of the ERM loss LS(w) to be close
to the Bayes optimal classifier becomes exponentially larger
for more well-separable data distributions.

One may think that this exponential dependency may be
just an artifact of our analysis and the exponential growth
in κ is in fact avoidable. As an answer to this question,
we introduce Theorem 3.7 indicating that the exponential
growth of sample complexity is inevitable, dashing hopes
for sub-exponential sample complexity bounds.

Theorem 3.7. Assume S = {(xi, yi)}ni=1
i.i.d∼ Dκ with

large enough κ ∈ (0,∞). If n = exp(O(κ)), then
{(xi, yi)}ni=1 is linearly separable and sim(w̄S ,Σ

−1µ) <
1+sim(µ,Σ−1µ)

2 with probability at least 0.99, where w̄S is
the ℓ2 max margin solution:

w̄S = argminw∈Rd ∥w∥2

subject to (2yi − 1)w⊤xi ≥ 1.
(2)

Proof Sketch. If κ is large, then (2y − 1)x will be concen-
trated near µ where (x, y) ∼ Dκ. Hence, if n is not large
enough, (2yi−1)xi’s will be located inside a small ball cen-
tered at µ, with high probability. Therefore, {(xi, yi)}ni=1

is likely to be linearly separable. From the KKT condition
of the ℓ2 max margin problem (Equation 2), w̄S is a ho-
mogeneous combination of (2yi − 1)xi’s. It implies w̄S is
directionally close to µ, not Σ−1µ. The detailed proof is
in Appendix A.7. We note that the numbers 1+sim(µ,Σ−1µ)

2
and 0.99 in the statement are not strictly necessary; they can
be replaced by any other feasible constants.

Theorem 3.7 states that if we do not have sufficiently many
data points, then the training dataset becomes linearly sepa-
rable: there exists a direction w such that (2yi−1)w⊤xi >
0 for all i ∈ [n]. However, this in fact means that there exist
infinitely many directions w that classify the data perfectly.
Then why do we care about the specific ℓ2 max margin clas-
sifier in Theorem 3.7? Soudry et al. (2018); Ji & Telgarsky
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(2019) study the implicit bias of gradient descent on a lin-
ear model with logistic loss and show that this algorithm
converges in direction to the ℓ2 max margin classifier when
training data is linearly separable. In other words, if we run
gradient descent on LS(w), then the algorithm will return a
linear classifier defined by the direction of w̄S . This is why
we analyze the ℓ2 max margin solution.

The Curse of Separability. Theorem 3.7 implies that
without the number of samples exponentially growing with
κ, the solution found by gradient descent can be far from
the Bayes optimal classifier. Combining Theorems 3.4 and
3.7, we have an interesting conclusion that even though
it is easier to correctly classify training dataset when κ
is larger, finding the theoretically optimal model becomes
much harder. We refer to this interesting phenomenon as
the curse of separability; without Mixup, ERM training
suffers the curse of separability due to its sample complexity
growing exponentially in κ.

Intuitive Explanations. What causes this phenomenon?
When the data distribution is well-separable, limited training
data can result in many decision boundaries having high
training accuracy. However, among these, there is only one
optimal decision boundary in terms of test accuracy, which
is difficult to locate due to the scarcity of data points near
it; this causes the curse of separability. We believe that this
intuition extends beyond our simple setup; see Section 6.

4. Mixup Provably Mitigates the Curse of
Separability in ERM

In this section, we study a unifying framework of Mixup-
style data augmentation techniques and show that Mixup
significantly alleviates the curse of separability. We will
first define the unifying framework along with Mixup loss,
study the location of the minimizer of expected Mixup loss,
and then study the sample complexity for Mixup training to
achieve near Bayes optimal classifier.

We start by defining the Mixup loss in the following frame-
work. From this point on, we assume n ≥ 2.
Definition 4.1 (Mixup Loss). Mixup loss with training set
S = {(xi, yi)}ni=1 is defined by

Lmix
S (w)=

1

n2

n∑
i,j=1

ỹi,j l(w
⊤x̃i,j)+(1−ỹi,j)l(−w⊤x̃i,j),

where

λi,j
i.i.d∼ Λ,

x̃i,j = g(λi,j)xi + (1− g(λi,j))xj ,

ỹi,j = λi,jyi + (1− λi,j)yj .

The probability distribution Λ satisfies support(Λ) ⊂ [0, 1]
and Pλ∼Λ

[
λ /∈ {0, 1} ∧ g(λ) ̸= 1

2

]
> 0. Also, the function

g : [0, 1] → [0, 1] satisfies g(z) > 1
2 if and only if z > 1

2 .

Our definition is a broad framework that covers the original
Mixup by choosing Λ as the Beta distribution and g(·) as
the identity function.

Similar to ERM loss LS(w), Mixup loss Lmix
S (w) is also a

stochastic function depending on the training set S. Unlike
ERM loss, the expectation of Mixup loss depends on n, as
can be checked in Appendix B.1. As we did in Section 3,
we first characterize the minimizer of expected Mixup loss
Eκ[Lmix

S (w)].

Theorem 4.2. For each κ ∈ (0,∞) and n ∈ N, the expec-
tation of Mixup loss Eκ[Lmix

S (w)] has a unique minimizer
w∗

mix(n, κ). In addition, its direction is the same as the
Bayes optimal solution Σ−1µ.

Proof Sketch. We can rewrite Eκ[Lmix
S (w)] as the form

E

[
k∑

i=1

ail
(
biκ

−1/2(w⊤Σw)1/2Z + ciw
⊤µ
)]

,

where Z ∼ N(0, 1) and ai, bi, ci’s are real-valued random
variables depending on Λ; in particular, ai, bi’s are positive.
Then, the same proof idea of Theorem 3.1 works.

Mixup Does Not Distort Training Loss. Theorem 4.2
shows that the expected Mixup loss also has its unique
minimizer pointing to the Bayes optimal direction. In other
words, this theorem implies that the pair-wise mixing done
in Mixup does not introduce any bias or distortion in the
training loss, at least in our setting. This is one benefit that
Mixup has compared to other masking-based augmentations,
as we will see in Section 5.

In order to investigate the sample complexity for achieving
a near Bayes optimal classifier when we train with Mixup
loss, one could speculate that the same approach using
Lemma 3.5 should work. However, this is not the case;
analysis of the Mixup loss has to overcome a significant
barrier because the mixed data points {(x̃i,j , ỹi,j)}ni,j=1 are
no longer independent of one another. To overcome this
difficulty, we prove the following lemma in Appendix B.4,
which could be of independent interest:

Lemma 4.3. Let f(·, ·) : Rk × Rm → R be a real-valued
function. Define functions FN : Rk → R and F̂N : Rk →
R as

FN (θ) =
1

N2

∑
i,j∈[N ]

f(θ,ηi,j), FN (θ) = E
[
F̂N (θ)

]
where Pi,j are probability distributions on Rm,ηi,j ∼ Pi,j ,
and expectation is taken over all randomness. Let C be a
nonempty compact subset of Rk with diameter D. Suppose
the following assumptions hold:

• For i1, i2, j1, j2 ∈ [N ], if {i1} ∪ {j1} and {i2} ∪ {j2}
are disjoint, then ηi1,j1 and ηi2,j2 are independent.
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• The functions FN and F̂N have unique minimizers on C
named θ∗

N and θ̂∗
N , respectively.

• The function FN is α-strongly convex on C (α > 0).

• For any θ ∈ C and i, j ∈ [N ],

Eη∼Pi,j

[
e|f(θ,η)−Eη∼Pi,j

[f(θ,η)]|
]
< M.

• There exists a function g(·) : Rk → R such that for any
θ ∈ C and η ∈ Rk, it holds that ∥∇θf(θ,η)∥ ≤ g(η).
In addition, ∥∇θEη∼Pi,j [f(θ,η)]∥ ≤ Eη∼Pi,j [g(η)]

and Eη∼Pi,j

[
eg(η)

]
< L for each θ ∈ C and i, j ∈ [N ].

For each 0 < ϵ < α−1/2, we have ∥θ̂∗
N − θ∥ < ϵ with

probability at least 1− δ if N is greater than

C ′
1M

α2ϵ4
log

(
3

δ
max

{
1,

(
C ′

2k
1/2DL

αϵ2

)k
})

,

where C ′
1, C

′
2 > 0 are universal constants.

Proof Sketch. When we follow the proof of Lemma 3.5, the
challenging part is that we cannot use the fact that the ex-
pected value of a product of independent random variables
is equal to a product of expectations of individual random
variables. We overcome this by partitioning the N2 random
variables into batches such that random variables belong-
ing to the same batch are independent (Lemma D.9) and
then applying a generalized Cauchy-Schwartz inequality
(Lemma D.10) to bound an expectation of a product of de-
pendent random variables (each corresponding to a batch)
with a product of expectations of the random variables. A
formal proof can be found in Appendix B.4.

Similar to the proof of Theorem 3.4, considering {ηi,j}ni,j=1

as the “mixed” dataset {(x̃i,j .ỹi,j)}ni.j=1, θ as weight vector
w, and f(θ,ηi,j) as (w, (x̃i,j , ỹi,j)) 7→ ỹil(w

⊤x̃i,j+(1−
ỹi)l(−w⊤x̃i,j) induces the following theorem.

Theorem 4.4. Let ϵ, δ ∈ (0, 1). Suppose the training set

S = {(xi, yi)}ni=1
i.i.d∼ Dκ with large enough κ ∈ (0,∞)

and

n =
Ω(κ2)

ϵ4

(
1 + log

1

ϵ
+ log

1

δ

)
.

Then, with probability at least 1− δ, the unique minimizer
ŵ∗

mix,S of Lmix
S (w) exists and sim(ŵ∗

mix,S ,Σ
−1µ) ≥ 1−

ϵ.

Theorem 4.4 indicates that the sample complexity for find-
ing a near Bayes optimal classifier with Mixup training
grows only quadratically in κ. Compared to the necessity
of exponential growth demonstrated in Theorem 3.7, The-
orem 4.4 shows that there is a provable exponential gap
between ERM training and Mixup training.

Intuition on the Smaller Sample Complexity of Mixup.
We would like to provide some intuition on our result be-
fore we introduce technical aspects. Unlike ERM training,
Mixup training uses mixed training points and these can be
located near the optimal decision boundary when we mix
two data points having distinct labels. This closeness of
mixed points to the Bayes optimal decision boundary makes
it easier to correctly locate the boundary.

Different Scaling of w∗(κ) and w∗
mix(n, κ). On the

technical front, the difference in sample complexity from
Theorem 3.4 stems from the difference between the
norm of expected loss minimizers w∗(κ) and w∗

mix(n, κ),
which determine several meaningful terms when we apply
Lemma 4.3. The following lemma characterizes the ℓ2 norm
of w∗

mix(n, κ), defined in Theorem 4.2:
Lemma 4.5. The unique minimizer w∗

mix(n, κ) of expected
Mixup loss Eκ[Lmix

S (w)] satisfies

∥w∗
mix(n, κ)∥ = Θ(1).2

Comparison with Lemma 3.6 reveals that the minimizer
w∗

mix(n, κ) of expected Mixup loss is much closer to zero
compared to that of the expected ERM loss. For ERM loss,
large scaling of weight leads to smaller loss for correctly
classified data points. Also, for larger κ, larger portion
of population data will be correctly classified by Σ−1µ.
Hence, ∥w∗(κ)∥ increases as κ increases. However, in case
of Mixup, mixed labels prevent w∗

mix(n, κ) from growing
with κ. To illustrate why, consider the case ỹi,j = 0.5,
which leads to a Mixup loss

0.5l(w⊤x̃i,j) + 0.5l(−w⊤x̃i,j).

Notice here that the loss becomes large whenever w⊤x̃i,j

is large in magnitude, no matter the sign is. For this reason,
w∗

mix(n, κ) should not increase with κ and this leads to the
smaller sample complexity of Mixup.

In this section, we showed that Mixup training does not
distort the training loss (Theorem 4.2) and also that Mixup
provides a great remedy to the curse of separability phe-
nomenon (Theorem 4.4), because the sample complexity
only grows in κ2 while ERM suffers at least exponential
growth in κ. Thus, Mixup provably mitigates the curse of
separability and helps us find a model with the best general-
ization performance.

5. Masking-based Mixup Can Distort Training
Recent Mixup variants for image data (Yun et al., 2019;
Kim et al., 2020; 2021; Liu et al., 2022) use masking on
input data. In this section, we investigate how masking-
based augmentation techniques work in our data distribution
setting. We consider the class of masking-based Mixup
variants formulated as follows.

2We stress that the upper/lower bounds are independent of n.
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Definition 5.1. (Masking-based Mixup Loss) Masking-
based Mixup loss with training set S = {(xi, yi)}ni=1 is
defined as

Lmask
S (w) :=

1

n2

n∑
i,j=1

ỹmask
i,j l(w⊤x̃mask

i,j )

+ (1− ỹmask
i,j )l(−w⊤x̃mask

i,j ),

where
(Mi,j , λi,j)

i.i.d∼ M,

x̃mask
i,j = Mi,j ⊙ xi + (1−Mi,j)⊙ xj ,

ỹmask
i,j = λi,jyi + (1− λi,j)yj .

Here, support(M) ⊂ {0, 1}d × [0, 1].
In our definition of masking-based mixup loss, we formu-
late the masking operation on data points by element-wise
multiplication with vectors having entries from only 0 and 1.
This formulation includes CutMix (Yun et al., 2019) which
is simplest type of masking-based Mixup. State-of-the-art
Mixup variants having more complex masking strategies
(Kim et al., 2020; 2021; Liu et al., 2022) are out of the scope
of this paper. We also introduce the following assumption
on masking.

Assumption 5.2. The set support(µ⊙ (2M − 1)) spans
Rd and P[λ1M=M0 ̸∈ {0, 1}] > 0 for each M0 ∈
support(M) where (M , λ) ∼ M.

Before we move on to our main results, we demonstrate why
our formulation and assumption hold for CutMix. CutMix
samples mixing ratio λi,j from beta distribution and mask-
ing vector Mi,j is uniformly sampled from vectors in which
the number of 1’s is proportional to λi,j . Since the support
of beta distribution is [0, 1], support of Mi,j contains the
standard basis of Rd. Hence if all the components of µ are
nonzero, Assumption 5.2 holds.

Recall that we defined D∞ as a limit behavior of Dκ as
κ → ∞ and it is independent of Σ. Hence, E∞[Lmask

S (w)]
is independent of Σ. The following theorem investigates
the minimizer of the expected masking-based Mixup loss
Eκ[Lmask

S (w)], focusing on large enough κ.

Theorem 5.3. Suppose Assumption 5.2 holds and the train-
ing set S = {(xi, yi)}ni=1

i.i.d∼ Dκ with κ ∈ (0,∞].
Then, the expected loss Eκ[Lmask

S (w)] has a unique mini-
mizer w∗

mask(n, κ). In addition, limκ→∞ w∗
mask(n, κ) =

w∗
mask(n,∞).

Proof Sketch. For the uniqueness of the minimizer, we use
almost the same strategy as the uniqueness parts of Theo-
rem 3.1 and Theorem 4.2. The only part that requires a dif-
ferent strategy is the uniqueness for κ = ∞; in this case, we
exploit Assumption 5.2. Also, from Assumption 5.2, we can
show that E∞

[
Lmask
S (w)

]
is α-strongly convex with some

α > 0. Using strong convexity constant α, we establish
upper bound on ∥w∗

mask(n, κ)−w∗
mask(n,∞)∥ represented

by Eκ

[
Lmask
S (w)

]
−E∞

[
Lmask
S (w)

]
for several values of

w contained in a bounded set. We finish up by showing
Eκ

[
Lmask
S (w)

]
− E∞

[
Lmask
S (w)

]
→ 0 uniformly on the

bounded set as κ → ∞.

Masking-based Mixup Can Distort Training Loss. Un-
like ERM loss and Mixup loss, characterizing the exact di-
rection of w∗

mask(n, κ) is challenging since Eκ

[
Lmask
S (w)

]
has a more complicated form because of masking. How-
ever, our Theorem 5.3 implies that w∗

mask(n, κ) leads to a
solution only depending on µ and deviates from the Bayes
optimal solution for sufficiently large κ. Even though Theo-
rem 5.3 guarantees deviation of w∗

mask(n, κ) from the Bayes
optimal direction only for large κ, our experimental results
in Section 6.1 suggest that our result holds even for moder-
ately sized κ.

One might be wondering whether the same thing can
be said for the minimizer of the expected Mixup loss
E∞[Lmix

S (w)]; we illustrate why the proof idea of Theo-
rem 5.3 does not work for Mixup. While E∞[Lmask

S (w)]
is strongly convex and has a unique minimizer, minimiz-
ers of E∞[Lmix

S (w)] are not unique since if u ∈ Rd

is a minimizer of E∞[Lmix
S (w)], u + v is also a mini-

mizer of E∞[Lmix
S (w)] for any v ∈ Rd orthogonal to µ.

Therefore, w∗
mix(n, κ) maintains its direction even though

E∞[Lmix
S (w)] is independent of Σ; since there are many

minimizers in E∞[Lmix
S (w)], w∗

mix(n, κ) converges to the
Bayes optimal minimizer (among the many) as κ → ∞.

While masking-based Mixup training does not necessarily
lead to Bayes optimal classifiers, the sample complexity
proof still works. In fact, we can find the solution near the
minimizer w∗

mask(n, κ) of the expected loss Eκ[Lmask
S (w)]

with fewer samples.

Theorem 5.4. Let ϵ, δ ∈ (0, 1). Suppose Assumption 5.2

holds and the training set S = {(xi, yi)}ni=1
i.i.d∼ Dκ with

large enough κ ∈ (0,∞). If

n =
Ω(1)

ϵ4

(
1 + log

1

ϵ
+ log

1

δ

)
,

then with probability at least 1 − δ, the unique
minimizer ŵ∗

mask,S of Lmask
S (w) exists and

sim(ŵ∗
mask,S ,w

∗
mask(n, κ)) ≥ 1− ϵ.

Theorem 5.4 indicates masking-based Mixup also mitigates
the curse of separability (even better than Mixup).

Why Even Smaller Sample Complexity? We consider a
simple case µ = [1, 1]⊤, which is sufficient to convey our
intuition. When κ is large, most of the data points are likely
to be concentrated around µ and −µ. Since Mixup uses
linearly interpolated data points, all the mixed training data
will be close to a line that passes through the origin and has
direction µ. It means that all raw data points or mixed points

7
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are almost orthogonal to [1,−1]⊤. Consequently, both ERM
and Mixup training loss will be less sensitive to perturba-
tions orthogonal to µ: i.e., LS(w) ≈ LS(w + t[1,−1]⊤)
and Lmix

S (w) ≈ Lmix
S (w + t[1,−1]⊤) for any small t,

which makes it difficult to locate the exact minimizer of the
objective loss. In contrast, masking-based Mixup uses cut-
and-pasted data points such as z1 ≈ [1,−1]⊤, constructed
by pasting the first coordinate of positive data and the second
coordinate of negative data. Masking-based Mixup also uses
z2 ≈ [1, 1]⊤, obtained from mixing two positive data points.
We observe that z1, z2 span the whole space R2. Therefore,
for any perturbation v ∈ R2, v⊤z1 ̸≈ 0 and/or v⊤z2 ̸≈ 0
should hold, which implies that Lmask

S (w) ̸≈ Lmask
S (w+v)

for any perturbation v. In other words, the masking-based
Mixup loss is sensitive to perturbations in any direction.
This makes it easier to locate the exact minimizer of the
objective loss, even when κ is large.

In this section, we showed that masking-based Mixup miti-
gates the curse of separability even better than Mixup, but
unfortunately, making-based Mixup can find a classifier that
is far from being Bayes optimal due to Theorem 5.3. One
may think that these results are contradictory to the empiri-
cal success of masking-based Mixup such as CutMix (Yun
et al., 2019) on image data. However, the regularization
effect of Mixup variants is highly dependent on the data, as
also noted by Park et al. (2022). Therefore, our conclusion
in Section 5 does not necessarily contradict the success of
masking-based Mixup on practical image data. We specu-
late that the distortion effect of masking-based Mixup on
complex image data may be small or even beneficial (e.g.,
by increasing the chance of co-occurrence of some use-
ful features). In this case, the small sample complexity of
masking-based Mixup would be helpful. However, a rigor-
ous theoretical analysis is beyond the scope of our current
work and is an essential direction for future research.

6. Experiments
In this section, we present several experimental results to
support our findings.

6.1. Experiments on Our Setting Dκ

First, we provide empirical results on our setting. We prop-
erly choose µ and Σ with ∥µ∥2 = ∥Σ∥ so that µ and the
Bayes optimal direction Σ−1µ have different directions, i.e.,
µ is not an eigenevector of Σ. We provide exact values of
our choice of µ and Σ in Appendix E.1. We compare three
training methods ERM, Mixup, and Mask Mixup. Mask
Mixup we considered is a kind of masking-based Mixup
with M defined by the following: we say (M , λ) ∼ M
when λ is drawn from beta distribution Beta(α, α) and each
component of M follows Bernoulli(λ).
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(b) κ = 2.0

Figure 1. Cosine similarity between learned weight and the Bayes
optimal direction Σ−1µ. ERM successfully finds the Bayes op-
timal classifier when κ is small (κ = 0.5) and fails when κ is
larger (κ = 2.0) because of the curse of separability. Meanwhile,
Mixup succeeds in both cases since Mixup mitigates the curse of
separability. Mask Mixup fails in both cases due to distortion.

We compare two different values of κ; κ = 0.5 and κ = 2.0.
We train for 1500 epochs using randomly sampled 500 train-
ing samples from each Dκ and full gradient descent with
learning rate 1 and we choose α = 1 for the hyperparameter
of Mixup and Mask Mixup. We run 500 times with fixed
initial weight but different samples of training sets and we
plot cosine similarity between the trained weight and the
Bayes optimal direction during training in Figure 1.

For the case κ = 0.5, ERM and Mixup lead to the Bayes
optimal classifier. However, for the case κ = 2.0, ERM
finds a solution deviating from the Bayes optimal solution,
while Mixup still finds almost accurate solutions. This
result is predicted by our theoretical findings; ERM suffers
the curse of separability and Mixup mitigates it. Also, we
can check the minimizers of the Mask Mixup loss deviate
significantly from the Bayes optimal direction for both cases
κ = 0.5 and κ = 2.0, even though our theoretical result
(Theorem 5.3) focus on large κ. We provide additional
results on more various values of κ, the number of samples
n, and the dimension of data d in Appendix E.2.

6.2. 2D Classification on Synthetic Data
We also provide empirical results supporting that the intu-
itions gained from our analysis extend beyond our settings.
We consider training a two-layer ReLU network with 500
hidden nodes on 2D synthetic data with binary labels having
sine-shaped noise3 from its mean for each class. As a result
of the noise, the optimal decision boundary is also sine-
shaped. We consider two settings with different magnitudes
of noise while keeping the means the same. Using three
methods ERM, Mixup, and Mask Mixup (which we intro-
duced in the previous subsection), we train for 1500 epochs
using 500 samples of data points and Adam (Kingma & Ba,
2014) with full batch, learning rate 0.001 and using default
hyperparameters of β1 = 0.9, β2 = 0.999. We also use
α = 1 for the hyperparameter of Mixup and Mask Mixup.

3The noise consists of uniformly sampled x-coordinate and
y-coordinate having sine value with additional Gaussian noise.

8



Provable Benefit of Mixup for Finding Optimal Decision Boundaries
ERM Mixup Mask Mixup

(a) Large noise, less separable setting

ERM Mixup Mask Mixup

(b) Small noise, well separable setting

Figure 2. Boundary decision of trained models with ERM loss, Mixup loss and Mask Mixup loss

Figure 2(a) plots the decision boundaries (red vs. blue) of
trained models in the setting with larger noise, which corre-
sponds to a less separable setting. We also draw the Bayes
optimal boundaries with black solid lines. All ERM, Mixup,
and Mask Mixup find decision boundaries that reflect the
sine-shaped optimal decision boundary. Figure 2(b) shows
the results with smaller noise, i.e., a more separable set-
ting. The decision boundary of ERM degenerates to a linear
boundary, ignoring the sine-shaped noise. However, even
though Mixup slightly distorts training,4 Mixup finds a non-
linear boundary that captures sine shape even when data is
highly separated. This result is consistent with our findings
that Mixup mitigates the curse of separability, even outside
our simple settings. Also, the decision boundary of models
trained by using Mask Mixup is nonlinear, which may come
from smaller sample complexity, but it seems to suffer more
distortion compared to Mixup.

6.3. Classification on CIFAR-10
We also conduct experiments on the real-world data CIFAR-
10 (Krizhevsky et al., 2009). To compare three methods
ERM, Mixup, and CutMix, we train VGG19 (Simonyan
& Zisserman, 2014) and ResNet18 (He et al., 2016) for
300 epochs on the training set with batch size 256 using
SGD with weigh decay 10−4 and we choose α = 1 for
the hyperparameter of Mixup and CutMix. Also, we use a
learning rate 0.1 at the beginning and divide it by 10 after
100 and 150 epochs. Unlike linear models and 2D classifica-
tion tasks, the decision boundaries of deep neural networks
trained with complex data are intractable. Hence, following
the method considered in Nar et al. (2019); Pezeshki et al.
(2021), we use the norm of input perturbation5 required
to cross the decision boundary to investigate the complex
decision boundary.

Figure 3 indicates that Mixup tends to find decision bound-
aries farther from overall data points than decision bound-
aries obtained by ERM. This is consistent with our intuition
on the curse of separability and how Mixup mitigates it. In
addition, the plots of CutMix are placed between the plots

4One may check that the optimal decision boundary becomes
similar to a sine-shaped curve with a slightly smaller amplitude.

5We apply the projected gradient descent attack implemented
by Rauber et al. (2017) to compute the perturbation on input.
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Figure 3. Estimation of decision boundaries of (a) VGG19 and (b)
ResNet18 trained with CIFAR-10

of ERM and Mixup. As also observed in Figure 2(b), we be-
lieve that the combination of distortion and smaller sample
complexity results in such a trend.

7. Conclusion
We analyzed how Mixup-style training influences the sam-
ple complexity for getting optimal decision boundaries in
logistic regression on data drawn from two symmetric Gaus-
sian distributions with separability constant κ. Interestingly,
we proved that vanilla training suffers the curse of sepa-
rability. More precisely, ERM requires an exponentially
increasing number of data with κ for finding a near Bayes
optimal classifier. We proved that Mixup mitigates the curse
of separability and the sample complexity for finding opti-
mal classifier grows only quadratically with κ. We further
investigated masking-based Mixup methods and showed
that they can cause training loss distortion and find a sub-
optimal decision boundary while having a small sample
complexity. One interesting future direction is analyzing
when and how state-of-the-art masking-based Mixup works,
by considering more sophisticated data distributions cap-
turing image data and complicated models such as neural
networks.
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A. Proofs for Section 3
A.1. Proof of Theorem 3.1

We prove the existence and uniqueness of a minimizer of Eκ[LS(w)] first. Next, we characterize a direction of a unique
minimizer of Eκ[LS(w)].

Step 1: Existence and Uniqueness of a Minimizer of Eκ[LS(w)]

From convexity of l(·), for any z ∈ R, l(z) ≥ − 1
2z + log 2 ≥ − 1

2z since z 7→ − 1
2z + log 2 is tangent line of the graph of

l(z) at z = 0. Thus, we have

Eκ[LS(w)] = Ex∼N(µ,κ−1Σ)[l(w
⊤x)] ≥ Ex∼N(µ,κ−1Σ)[l(w

⊤x) · 1w⊤x<0] ≥ Ex∼N(µ,κ−1Σ)

[
−1

2
w⊤x · 1w⊤x<0

]
.

Claim A.1. For any κ ∈ (0,∞), a mapping w 7→ Ex∼N(µ,κ−1Σ)[w
⊤x · 1w⊤x<0] is continuous.

Proof of Claim A.1. For any ϵ > 0, let δϵ :=
(
κ−1∥Σ∥+ ∥µ∥2

)−1/2 · ϵ/2 > 0. Then, for any ∆ ∈ Rd with ∥∆∥ ≤ δϵ
and w ∈ Rd, we are going to show that∣∣Ex∼N(µ,κ−1Σ)[(w +∆)⊤x · 1(w+∆)⊤x<0]− Ex∼N(µ,κ−1Σ)[w

⊤x · 1w⊤x<0]
∣∣ ≤ ϵ,

to conclude that the mapping w 7→ Ex∼N(µ,κ−1Σ)[w
⊤x · 1w⊤x<0] is continuous.

To this end, we start by∣∣Ex∼N(µ,κ−1Σ)[(w +∆)⊤x · 1(w+∆)⊤x<0]− Ex∼N(µ,κ−1Σ)[w
⊤x · 1w⊤x<0]

∣∣
≤ Ex∼N(µ,κ−1Σ)

[∣∣(w +∆)⊤x · 1(w+∆)⊤x<0 −w⊤x · 1w⊤x<0

∣∣]
= Ex∼N(µ,κ−1Σ)

[∣∣∆⊤x · 1(w+∆)⊤x<0 +w⊤x · (1(w+∆)⊤x<0 − 1w⊤x<0)
∣∣]

≤ Ex∼N(µ,κ−1Σ)

[∣∣∆⊤x · 1(w+∆)⊤x<0

∣∣]+ Ex∼N(µ,κ−1Σ)

[∣∣w⊤x · (1(w+∆)⊤x<0 − 1w⊤x<0)
∣∣] .

It is clear that Ex∼N(µ,κ−1Σ)

[∣∣∆⊤x · 1(w+∆)⊤x<0

∣∣] ≤ Ex∼N(µ,κ−1Σ)

[∣∣∆⊤x
∣∣]. Also, for each x ∈ Rd,

w⊤x · (1(w+∆)⊤x<0 − 1w⊤x<0) =


w⊤x ≤ −∆⊤x = |∆⊤x| if(w +∆)⊤x < 0,w⊤x ≥ 0,

−w⊤x ≤ ∆⊤x = |∆⊤x| if(w +∆)⊤x ≥ 0,w⊤x < 0,

0 ≤ |∆⊤x| otherwise.

Therefore, Ex∼N(µ,κ−1Σ)

[∣∣w⊤x · (1(w+∆)⊤x<0 − 1w⊤x<0)
∣∣] ≤ Ex∼N(µ,κ−1Σ)

[∣∣∆⊤x
∣∣]. Also, by Jensen’s inequality,

Ex∼N(µ,κ−1Σ)

[∣∣∆⊤x
∣∣] ≤ Ex∼N(µ,κ−1Σ)

[
(∆⊤x)2

]1/2
=
(
κ−1∆⊤Σ∆+ (∆⊤µ)2

)1/2
≤
(
κ−1∥Σ∥∥∆∥2 + ∥µ∥2∥∆∥2

)1/2
≤
(
κ−1∥Σ∥+ ∥µ∥2

)1/2 · δϵ
= ϵ/2.

Hence, we have
∣∣Ex∼N(µ,κ−1Σ)[(w +∆)⊤x · 1(w+∆)⊤x<0]− Ex∼N(µ,κ−1Σ)[w

⊤x · 1w⊤x<0]
∣∣ ≤ ϵ, as desired. □

From Claim A.1 and compactness of the unit sphere {w ∈ Rd : ∥w∥ = 1} ⊂ Rd, it follows that for any given κ ∈ (0,∞),
a mapping w 7→ Ex∼N(µ,κ−1Σ)[w

⊤x · 1w⊤x<0] has the maximum value (over the unit sphere) −mκ with mκ > 0. For
any w satisfying ∥w∥ > 2m−1

κ , we have

Eκ[LS(w)] ≥ Ex∼N(µ,κ−1Σ)

[
−1

2
w⊤x · 1w⊤x<0

]
12
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= ∥w∥ · Ex∼N(µ,κ−1Σ)

[
−1

2
· w

⊤x

∥w∥
· 1w⊤x

∥w∥ <0

]
(3)

≥ mκ∥w∥
2

> 1 > log 2

= Eκ[LS(0)].

Therefore, a minimizer of Eκ[LS(w)] has to be necessarily contained in a compact set {w ∈ Rd : ∥w∥ ≤ 2m−1
κ }. Since

Eκ[LS(w)] is a continuous function of w, there must exist a minimizer. The existence part is hence proved.

To show uniqueness, we will prove strict convexity of Eκ[LS(w)]. From strict convexity of l(·), for any t ∈ [0, 1],
w1,w2 ∈ Rd with w1 ̸= w2 and y ∈ {0, 1}, we have

t[yl(w⊤
1 x) + (1− y)l(−w⊤

1 x)] + (1− t)[yl(w⊤
2 x) + (1− y)l(−w⊤

2 x)]

> yl((tw1 + (1− t)w2)
⊤x) + (1− y)l(−(tw1 + (1− t)w2)

⊤x),

and any x ∈ Rd except for a Lebesgue measure zero set (i.e., the set of points x ∈ Rd satisfying w⊤
1 x = w⊤

2 x).

By taking expectation, we have for any t ∈ [0, 1], and w1,w2 ∈ Rd,

tEκ[LS(w1)] + (1− t)Eκ[LS(w2)] > Eκ[LS(tw1 + (1− t)w2)].

Therefore, Eκ[LS(w)] is strictly convex. Since a strictly convex function has at most one minimizer, we conclude that
Eκ[LS(w)] has a unique minimizer w∗(κ) for any given κ ∈ (0,∞).

Step 2: Direction of a Unique Minimizer of Eκ[LS(w)]

We rewrite Eκ[LS(w)] as

Eκ[LS(w)] = Ex∼N(µ,κ−1Σ)

[
l
(
w⊤x

)]
= EX∼N(w⊤µ,κ−1w⊤Σw) [l(X)]

= EZ∼N(0,1)

[
l
(
κ−1/2

(
w⊤Σw

)1/2
Z +w⊤µ

)]
. (4)

We recall two lemmas we described in our proof sketch.
Lemma 3.2. Let X1 ∼ N(m,σ2

1), X2 ∼ N(m,σ2
2), m ∈ R and σ1 > σ2 > 0. Then, E[l(X1)] > E[l(X2)].

Lemma 3.3. For any constant C, a unique solution of minw∈Rd,w⊤µ=C
1
2w

⊤Σw is a rescaling of Σ−1µ.

Let Cκ := w∗(κ)⊤µ. By Equation 4 and Lemma 3.2, w∗(κ) is a solution for the problem minw⊤µ=Cκ

1
2w

⊤Σw. Hence,
Lemma 3.3 implies that there exists cκ ∈ R such that w∗(κ) := cκΣ

−1µ. The only remaining part is showing cκ > 0. If
cκ < 0, we have

Eκ[LS(w
∗(κ))] = EZ∼N(0,1)

[
l
(
κ−1/2(w∗(κ)⊤Σw∗(κ))1/2Z + cκµ

⊤Σ−1µ
)]

> EZ∼N(0,1)

[
l
(
κ−1/2(−w∗(κ))⊤Σ(−w∗(κ)))1/2Z − cκµ

⊤Σ−1µ)
)]

= E [LS (−w∗(κ))] ,

where the inequality holds because l(·) is strictly decreasing and cκµ
⊤Σ−1µ < 0. It is contradictory to w∗(κ) being a

unique minimizer of Eκ[LS(w)], so we conclude cκ ≥ 0. Showing cκ is strictly positive will be handled in the proof of
Lemma 3.6 which can be found in Appendix A.6. □

A.2. Proof of Lemma 3.2

Define a function f : (0,∞) → R as f(σ) := EZ∼N(0,1)[l(m+ σZ)]. It suffices to show that f is strictly increasing. For

each σ ∈ (0,∞) and z ∈ R,
∣∣ ∂
∂σ l(m+ σz)

∣∣ = |l′(m+ σz)z| =
∣∣∣ z
1+em+σz

∣∣∣ ≤ |z| and EZ∼N(0,1)[|Z|] < ∞. Thus, by
Lemma D.1,

d

dσ
f(σ) = EZ∼N(0,1)

[
∂

∂σ
l(m+ σZ)

]
= EZ∼N(0,1)[l

′(m+ σZ)Z]

13
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= − 1√
2π

∫ ∞

−∞

z

1 + em+σz
e−z2/2dz

= − 1√
2π

(∫ ∞

0

z

1 + em+σz
e−z2/2dz +

∫ 0

−∞

z

1 + em−σz
e−z2/2dz

)
= − 1√

2π

(∫ ∞

0

z

1 + em+σz
e−z2/2dz −

∫ ∞

0

z

1 + em−σz
e−z2/2dz

)
= − 1√

2π

∫ ∞

0

(
z

1 + em+σz
− z

1 + em−σz

)
e−z2/2dz

> 0.

The last inequality holds since z
1+em+σz < z

1+em−σz for each z > 0. Therefore, f is strictly increasing as we desired. □

A.3. Proof of Lemma 3.3

Consider a function f : Rd → R defined as f(w) = 1
2w

⊤Σw. Since ∇2
wf(w) = Σ is positive definite, f is strictly convex.

The strict convexity continues to hold even when we restrict the domain to {w | w⊤µ = C}, so minw∈Rd,w⊤µ=C f(w)

has at most one minimizer. Let w̄ = C
µ⊤Σ−1µ

Σ−1µ. Then, for any w ∈ Rd such that w⊤µ = C, we have

f(w)− f(w̄) ≥ ∇f(w̄)⊤(w − w̄) = (Σw̄)
⊤
(w − w̄) =

C

µ⊤Σ−1µ
µ⊤
(
w − C

µ⊤Σ−1µ
Σ−1µ

)
= 0.

Therefore, w̄ = C
µ⊤Σ−1µ

Σ−1µ, a rescaling of Σ−1µ, is the unique minimizer. □

A.4. Proof of Theorem 3.4

Since we consider sufficiently large κ, we may assume n ≥ d and let Rκ := 2∥w∗(κ)∥. By Lemma 3.6, we know that
Rκ = Θ(κ). Next, define a compact set Cκ := {w ∈ Rd : ∥w∥ ≤ Rκ}, which trivially contains w∗(κ). For any w ∈ Rd

and nonzero v ∈ Rd, we have

v⊤∇2
wLS(w)v =

1

n

n∑
i=1

(yil
′′(w⊤xi)(v

⊤xi)
2 + (1− yi)l

′′(−w⊤xi)(v
⊤xi)

2) > 0,

almost surely, since {xi}i∈[n] spans Rd almost surely. Therefore, LS(w) is strictly convex on Rd almost surely and we
conclude that LS(w) has a unique minimizer ŵ∗

S on Cκ almost surely. Note that, if ŵ∗
S belongs to interior of C, it is a

unique minimizer of LS(w) over the entire Rd. We prove high probability convergence of ŵ∗
S to w∗(κ) using Lemma 3.5

and convert ℓ2 convergence into directional convergence. For simplicity, we define

fi(w) := yil(w
⊤xi) + (1− yi)l(w

⊤xi),

for each i ∈ [n]. We start with the following claim which is useful for estimating quantities described in assumptions of
Lemma 3.5 for our setting.
Claim A.2. For any t > 0, we have

Eκ

[
et∥xi∥

]
≤
(
2d/2 + e4κ

−1t2∥Σ∥
)
et∥µ∥,

for all i ∈ [n].

Proof of Claim A.2. By applying triangular inequality and Lemma D.6, we have

Eκ

[
et∥xi∥

]
= Ex∼N(µ,κ−1Σ)

[
et∥x∥

]
≤ Ex∼N(µ,κ−1Σ)

[
et∥x−µ∥

]
et∥µ∥

= Ez∼N(0,κ−1t2Σ)

[
e∥z∥

]
et∥µ∥

≤
(
2d/2 + e4κ

−1t2∥Σ∥
)
et∥µ∥,

for each i ∈ [n].

14
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Step 1: Estimate Upper Bound of Eκ

[
e|fi(w)−Eκ[fi(w)]|] on Cκ

For any w ∈ Cκ and i ∈ [n],

|fi(w)| = |yil(w⊤xi) + (1− yi)l(−w⊤xi)| ≤ l(−|w⊤xi|) ≤ l(−Rκ∥xi∥).

Hence, we have Eκ

[
e|fi(w)|] ≤ Eκ

[
1 + eRκ∥xi∥

]
. By applying Claim A.2 for t = Rκ, there exists M ′

κ such that
Eκ

[
e|fi(w)|] ≤ M ′

κ and M ′
κ = exp(Θ(κ)) since Rκ = Θ(κ) by Lemma 3.6. By triangular inequality and Jensen’s

inequality, we have

Eκ

[
e|fi(w)−Eκ[fi(w)]|

]
≤ Eκ

[
e|fi(w)|+|Eκ[fi(w)]|

]
≤ Eκ

[
e|fi(w)|

]2
≤ M ′

κ
2
.

Defining Mκ := M ′
κ
2, it follows that Mκ = exp(Θ(κ)) and Eκ

[
e|fi(w)−Eκ[fi(w)]|] ≤ Mκ for any w ∈ Cκ.

Step 2: Estimate Upper Bound of ∥∇wfi(w)∥ and ∥∇wEκ[fi(w)]∥

For each w ∈ Cκ and i ∈ [n],

∥∇wfi(w)∥ =
∥∥∇w(yil(w

⊤xi) + (1− yi)l(−w⊤xi))
∥∥ =

∥∥yil′(w⊤xi)xi − (1− yi)l
′(−w⊤xi)xi

∥∥ ≤ ∥xi∥.

The last inequality holds since 0 < l′(z) < 1 for any z ∈ R. In addition, by Lemma D.2,

∥∇wEκ[fi(w)]∥ =
∥∥∇wEκ[(yil(w

⊤xi) + (1− yi)l(−w⊤xi))]
∥∥

=
∥∥Eκ[∇w(yil(w

⊤xi) + (1− yi)l(−w⊤xi))]
∥∥

= ∥Eκ[(yil
′(w⊤xi) + (1− yi)l

′(−w⊤xi))xi]∥
≤ Eκ[∥xi∥].

Also, applying Claim A.2 with t = 1, there exists Lκ such that Eκ

[
e∥xi∥

]
< Lκ and Lκ = Θ(1).

Step 3: Estimate Strong Convexity Constant of Eκ[LS(w)] on Cκ
By Lemma D.2 and Lemma D.3, for any w ∈ Cκ and unit vector v ∈ Rd, we have

v⊤∇2
wEκ[LS(w)]v = Ex∼N(µ,κ−1Σ)[l

′′(w⊤x)(v⊤x)2] ≥ 1

4
Ex∼N(µ,κ−1Σ)[e

−(w⊤x)2/2(v⊤x)2].

By Lemma D.5,

Ex∼N(µ,κ−1Σ)[e
−(w⊤x)2/2(v⊤x)2]

≥ κd/2∥Σ∥−d/2
(
κ∥Σ−1∥+ ∥w∥2

)−(d+2)/2
exp

(
−∥w∥2∥Σ∥∥Σ−1∥∥µ∥2

)
≥ κd/2∥Σ∥−d/2

(
κ∥Σ−1∥+R2

κ

)−(d+2)/2
exp

(
−R2

κ∥Σ∥∥Σ−1∥∥µ∥2
)
,

and substituting Rκ = Θ(κ) to the RHS of the inequality above gives

κd/2∥Σ∥−d/2
(
κ∥Σ−1∥+R2

κ

)−(d+2)/2
exp

(
−R2

κ∥Σ∥∥Σ−1∥∥µ∥2
)
=

1

exp(Θ(κ2))
.

Since this hold for any unit vector v ∈ Rd, Eκ[LS(w)] is ακ-strongly convex with ακ = 1
exp(Θ(κ2)) on Cκ.
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Step 4: Sample Complexity for Directional Convergence

Since ∥w∗(κ)∥ = Θ(κ) and ακ = 1
exp(Θ(κ2)) , we assume κ is large enough so that ακ∥w∗(κ)∥2 < 1, which is quite easy

to satisfy given the rate of decay in ακ. Assume the unique existence of ŵ∗
S which occurs almost surely. By Lemma 3.5, for

each 0 < ϵ < 1, if

n ≥ C1Mκ

α2
κ∥w∗(κ)∥4ϵ4

log

(
3

δ
max

{
1,

(
2C2d

1/2RκLκ

ακ∥w∗(κ)∥2ϵ2

)d
})

=
exp(Θ(κ2))

ϵ4

(
1 + log

1

ϵ
+ log

1

δ

)
,

then we have ∥w∗(κ)− ŵ∗
S∥ ≤ ∥w∗(κ)∥ϵ with probability at least 1− δ. Also, if ∥w∗(κ)− ŵ∗

S∥ ≤ ∥w∗(κ)∥ϵ, then ŵ∗
S

belongs to interior of Cκ. Hence, ŵ∗
S is a minimizer of LS(w) over the entire Rd. Also, we have

sim
(
ŵ∗

S ,Σ
−1µ

)
= sim (ŵ∗

S ,w
∗(κ)) =

(
1− sin2

(
∠
(
ŵ∗

S ,w
∗(κ)

)))1/2

≥ 1− sin
(
∠
(
ŵ∗

S ,w
∗(κ)

))
= 1− ∥w∗(κ)− ŵ∗

S∥
∥w∗(κ)∥

≥ 1− ϵ.

Hence, we conclude that if n = exp(Ω(κ2))
ϵ4

(
1 + log 1

ϵ + log 1
δ

)
, then with probability at least 1− δ, the ERM loss LS(w)

has a unique minimizer ŵ∗
S and sim(ŵ∗

S ,Σ
−1µ) ≥ 1− ϵ. □

A.5. Proof of Lemma 3.5

By Lemma D.8, there exists a universal constant C1 > 0 such that for any fixed θ ∈ C independent of the draws of ηi’s,

P
[∣∣∣F̂N (θ)− F (θ)

∣∣∣ > αϵ2

8

]
= P

[
1

N

N∑
i=1

f(θ,ηi)− Eη∼P [f(θ,η)] >
αϵ2

8

]
+ P

[
1

N

N∑
i=1

f(θ,ηi)− Eη∼P [f(θ,η)] < −αϵ2

8

]

≤ 2 exp

(
− α2ϵ4

C1M
N

)
. (5)

Notice that from the given condition and Jensen’s inequality,

Eη∼P [g(η)] ≤ logEη∼P

[
eg(η)

]
< logL < L,

and from triangular inequality, we have

P
[
sup
θ∈C

∥∥∥∇θ

(
F̂N (θ)− F (θ)

)∥∥∥ > 3L

]
≤ P

[
1

N

N∑
i=1

sup
θ∈C

∥∇θ (f(θ,ηi)− E[f(θ,ηi)])∥ > 3L

]

≤ P

[
1

N

N∑
i=1

(g(ηi) + E[g(ηi)]) > 3L

]

≤ P

[
1

N

N∑
i=1

(g(ηi)− E[g(ηi)]) > L

]
. (6)

Since we have Eη∼P
[
e|g(η)−Eη∼P [g(η)]|] ≤ Eη∼P

[
eg(η)

]
·eEη∼P [g(η)] < L2 by our assumption, we can apply Lemma D.8

to the RHS of Equation 6. Therefore, we have

P
[
sup
θ∈C

∥∥∥∇θ

(
F̂N (θ)− F (θ)

)∥∥∥ > 3L

]
≤ exp

(
− 1

C ′
1

N

)
, (7)
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where C ′
1 > 0 is a universal constant. Without loss of generality, we can choose C1 = C ′

1 that works for both Equation 5
and Equation 7.

We choose θ̄1, . . . , θ̄m ∈ C with m ≤ max

{
1,
(

C2k
1/2DL
αϵ2

)k}
where C2 is a universal constant and satisfies following:

For any θ ∈ C, there exists iθ ∈ [m] such that
∥∥θ − θ̄iθ

∥∥ < αϵ2

24L . In other words, θ̄1, . . . , θ̄m form an αϵ2

24L -cover of C.

Suppose |F̂N (θ̄k)− F (θ̄k)| < αϵ2

8 for each k ∈ [m] and supθ∈C

∥∥∥∇θ

(
F̂N (θ)− F (θ)

)∥∥∥ < 3L which implies F̂N (θ)−
F (θ) is 3L-Lipschitz. Then, for any θ ∈ C, we have∣∣∣F̂N (θ)− F (θ)

∣∣∣
≤
∣∣∣F̂N (θ̄iθ )− F (θ̄iθ )

∣∣∣+ ∣∣∣(F̂N (θ)− F (θ)
)
−
(
F̂N (θ̄iθ )− F (θ̄iθ )

)∣∣∣
≤ αϵ2

8
+ 3L∥θ − θ̄iθ∥ <

αϵ2

8
+

αϵ2

8

=
αϵ2

4
.

By applying union bound, we conclude

P
[
sup
θ∈C

|F̂N (θ)− F (θ)| > αϵ2

4

]
≤ 2max

{
1,

(
C2k

1/2DL

αϵ2

)k
}
exp

(
− α2ϵ4

C1M
N

)
+ exp

(
− 1

C1
N

)

≤ 3max

{
1,

(
C2k

1/2DL

αϵ2

)k
}
exp

(
−min

{
α2ϵ4

C1M
,
1

C1

}
N

)

= 3max

{
1,

(
C2k

1/2DL

αϵ2

)k
}
exp

(
− α2ϵ4

C1M
N

)
,

where the last equality is due to αϵ2 ≤ 1 and M ≥ 1 which are implied by given conditions.

Suppose supθ∈C |F̂N (θ)− F (θ)| < αϵ2

4 and
∥∥∥θ̂∗

N − θ∗
∥∥∥ > ϵ. Then, from the strong convexity of F (θ), we have

F̂N (θ̂∗
N )− F̂N (θ∗)

=
(
F̂N (θ̂∗

N )− F (θ̂∗
N )
)
+
(
F (θ∗)− F̂N (θ∗)

)
+
(
F (θ̂∗

N )− F (θ∗)
)

≥ −αϵ2

2
+

α

2

∥∥∥θ̂∗
N − θ∗

∥∥∥2
> 0.

This is a contradiction to the fact that θ̂N is a minimizer of F̂N (θ). Hence, we have

P
[∥∥∥θ̂∗

N − θ∗
∥∥∥ > ϵ

]
≤ 3max

{
1,

(
C2k

1/2DL

αϵ2

)k
}
exp

(
− α2ϵ4

C1M
N

)
,

and equivalently, if

N ≥ C1M

α2ϵ4
log

(
3

δ
max

{
1,

(
C2k

1/2DL

αϵ2

)k
})

,

then
∥∥∥θ̂∗

N − θ∗
∥∥∥ < ϵ with probability at least 1− δ. □
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A.6. Proof of Lemma 3.6

By Theorem 3.1, there exists c∗κ ≥ 0 (strict positivity of c∗κ will be proved here) such that w∗(κ) = c∗κΣ
−1µ. For any c ≥ 0,

we have
Eκ[LS(cΣ

−1µ)] = EX∼N(µ⊤Σ−1µ,κ−1µ⊤Σ−1µ)[l(cX)] = EX∼N(s,κ−1s)[l(cX)],

where we define s := µ⊤Σ−1µ for simplicity. By Lemma D.2, we have

− ∂

∂c
Eκ[LS(cΣ

−1µ)] = −EX∼N(s,κ−1s) [l
′(cX)X]

= EX∼N(s,κ−1s)

[
X

1 + ecX

]
= EX∼N(s,κ−1s)

[
X

1 + ecX
· 1X≥0

]
+ EX∼N(s,κ−1s)

[
X

1 + ecX
· 1X<0

]
.

For any c ≥ 0, 1 + ect ≥ 2ect/2 for all t ∈ R by the AM-GM inequality and 1 + ect ≤ 2 if t < 0. Then, we have

− ∂

∂c
E[LS(cΣ

−1µ)]

≤ 1

2

(
EX∼N(s,κ−1s)[Xe−cX/2 · 1X≥0] + EX∼N(s,κ−1s)[X · 1X<0]

)
=

1

2

∫ ∞

0

1√
2π(κ−1s)1/2

x exp

(
− (x− s)

2

2κ−1s
− cx

2

)
dx+

1

2

∫ 0

−∞

1√
2π(κ−1s)1/2

x exp

(
− (x− s)

2

2κ−1s

)
dx

=
1

2

∫ ∞

0

1√
2π(κ−1s)1/2

x exp

(
− (x− s)

2

2κ−1s
− cx

2

)
dx− 1

2

∫ ∞

0

1√
2π(κ−1s)1/2

x exp

(
− (x+ s)

2

2κ−1s

)
dx

=
1

2

∫ ∞

0

1√
2π(κ−1s)1/2

x(e−cx/2 − e−2κx) exp

(
− (x− s)

2

2κ−1s

)
dx.

If c > 4κ, then e−cx/2 − e−2κx < 0 for each x > 0 and − ∂
∂cEκ

[
LS(cΣ

−1µ)
]
< 0. Thus, c∗κ ≤ 4κ.

For c ≥ 0, 1 + ect ≤ 2ect if t ≥ 0 and 1 + ect ≥ 2ect/2 for all t ∈ R by AM-GM inequality. Therefore, we have

− ∂

∂c
Eκ[LS(cΣ

−1µ)]

≥ 1

2

(
EX∼N(s,κ−1s)[Xe−cX · 1X≥0] + EX∼N(s,κ−1s)[Xe−cX/2 · 1X<0]

)
=

1

2

∫ ∞

0

1√
2πκ−1s

x exp

(
− (x− s)

2

2κ−1s
− cx

)
dx+

1

2

∫ 0

−∞

1√
2πκ−1s

x exp

(
− (x− s)

2

2κ−1s
− cx

2

)
dx

=
1

2

∫ ∞

0

1√
2πκ−1s

x exp

(
− (x− s)

2

2κ−1s
− cx

)
dx− 1

2

∫ ∞

0

1√
2πκ−1s

x exp

(
− (x+ s)

2

2κ−1s
+

cx

2

)
dx

=
1

2

∫ ∞

0

1√
2πκ−1s

x(e−cx − e−(2κ−c/2)x) exp

(
− (x− s)

2

2κ−1s

)
dx.

If c < 4
3κ, e−cx − e−(2κ−c/2)x < 0 for each x > 0 and ∂

∂cEκ[LS(cΣ
−1µ)] < 0. Hence, c∗κ ≥ 4

3κ and we conclude
∥w∗(κ)∥ = Θ(κ). □

A.7. Proof of Theorem 3.7

We first show that for sufficiently large κ ∈ (0,∞) and if n is not sufficiently large, S can be linearly separable because data
points usually concentrated around µ and −µ. Next, we characterize cosine similarity between ℓ2 max-margin vector and
the Bayes optimal solution. In our analysis, we use the following well-known lemma (See Hanson & Wright (1971); Lugosi
& Mendelson (2019)).
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Lemma A.1. For positive definite matrix M , let x ∼ N(0,M). For any δ ∈ (0, 1)

∥x∥ ≤ Tr(M)1/2 + (2∥M∥ log(1/δ))1/2,

with probability at least 1− δ.

First, we introduce some technical quantities. Let δ = 0.99 and t =
(
Tr(Σ)1/2 + (2∥Σ∥ log(n/δ))1/2

)
/∥µ∥ with

n ≤ δ exp

(
1

2
∥Σ∥−1

(
κ1/2∥µ∥ · 1− sim(µ,Σ−1µ)

2
− Tr(Σ)1/2

)2
)

= exp(Θ(κ)), (8)

and we assume κ is large enough so that κ1/2∥µ∥ · 1−sim(µ,Σ−1µ)
2 −Tr(Σ)1/2 > 0. Then, by substituting n in the definition

of t by RHS of Equation 8 we have

∥µ∥t = Tr(Σ)1/2 + (2∥Σ∥ log(n/δ))1/2

≤ Tr(Σ)1/2 +

[
2∥Σ∥ log

(
exp

(
1

2
∥Σ∥−1

(
κ1/2∥µ∥ · 1− sim(µ,Σ−1µ)

2
− Tr(Σ)1/2

)2
))]1/2

= Tr(Σ)1/2 +

[
2∥Σ∥

{
1

2
∥Σ∥−1

(
κ1/2∥µ∥ · 1− sim(µ,Σ−1µ)

2
− Tr(Σ)1/2

)2
}]1/2

= Tr(Σ)1/2 +

[(
κ1/2∥µ∥ · 1− sim(µ,Σ−1µ)

2
− Tr(Σ)1/2

)2
]1/2

= κ1/2∥µ∥ · 1− sim(µ,Σ−1µ)

2
.

Thus,

κ−1/2t ≤ 1− sim(µ,Σ−1µ)

2
<
√

1− sim(µ,Σ−1µ)2. (9)

Next, we investigate how much positive and negative data points are concentrated near their means µ and −µ. By applying
Lemma A.1 with M = κ−1Σ, for each i ∈ [n], ∥(2yi − 1)xi − µ∥ ≤ κ−1/2t∥µ∥ with probability at least 1 − δ/n; to
see why, recall the definition of t. Hence, by union bound, we have ∥(2yi − 1)xi − µ∥ ≤ κ−1/2t∥µ∥ for all i ∈ [n], with
probability at least 1− δ. We now condition that this event occurred and we prove that our conclusion holds. First, S is
strictly linearly separable by µ since

(2yi − 1)µ⊤xi = µ⊤((2yi − 1)xi − µ
)
+ ∥µ∥2

≥ (−∥(2yi − 1)xi − µ∥+ ∥µ∥) ∥µ∥
≥ (1− κ−1/2t)∥µ∥2

≥ 1 + sim(µ,Σ−1µ)

2
· ∥µ∥2

> 0.

Hence, there exists ℓ2 max-margin vector

w̄S = argmin
w∈Rd

∥w∥2 subject to (2yi − 1)w⊤xi ≥ 1 ∀i ∈ [n].

From the KKT condition of problem above, we have w̄S =
∑n

i=1 αi(2yi − 1)xi where αi ≥ 0 for all i ∈ [n]. By triangular
inequality, we have

sim(w̄S ,µ) =
µ⊤w̄S

∥µ∥∥w̄S∥
=

µ⊤(
∑n

i=1 αi(2yi − 1)xi)

∥µ∥∥
∑n

i=1 αi(2yi − 1)xi∥
≥

∑n
i=1 αiµ

⊤(2yi − 1)xi∑n
i=1 αi∥µ∥∥(2yi − 1)xi∥

.
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Also, for all i ∈ [n],

µ⊤(2yi − 1)xi

∥µ∥∥(2yi − 1)xi∥
= sim(µ, (2yi − 1)xi) =

(
1− sin2 ∠(µ, (2yi − 1)xi)

)1/2
≥

(
1−

(
∥(2yi − 1)xi − µ∥

∥µ∥

)2
)1/2

≥
√

1− κ−1t2

≥ sim(µ,Σ−1µ),

where the last inequality used Equation 9. Hence, we have sim(w̄S ,µ) ≥
√
1− κ−1t2 ≥ sim(µ,Σ−1µ). By triangular

inequality for angle,

∠(w̄S ,Σ
−1µ) ≥ ∠(µ,Σ−1µ)− ∠(w̄S ,µ) ≥ cos−1(sim(µ,Σ−1µ))− cos−1

(√
1− κ−1t2

)
≥ 0,

and we have

sim(w̄S ,Σ
−1µ)

≤ cos
(
cos−1(sim(µ,Σ−1µ))− cos−1

(√
1− κ−1t2

))
= cos

(
cos−1(sim(µ,Σ−1µ))

)
· cos

(
cos−1

(√
1− κ−1t2

))
+ sin

(
cos−1(sim(µ,Σ−1µ))

)
· sin

(
cos−1

(√
1− κ−1t2

))
= sim(µ,Σ−1µ) ·

√
1− κ−1t2 +

√
1− sim(µ,Σ−1µ)2 · κ−1/2t

= sim(µ,Σ−1µ) ·
(√

1− κ−1t2 − 1
)
+
√
1− sim(µ,Σ−1µ)2 · κ−1/2t+ sim(µ,Σ−1µ). (10)

It is clear that s 7→ s
(√

1− κ−1t2 − 1
)
+

√
1− s2 · κ−1/2t is a decreasing function on [0, 1] for each fixed t ∈ [0, 1].

Therefore, by changing s = sim(µ,Σ−1µ) to s = 0, we have

sim(µ,Σ−1µ) ·
(√

1− κ−1t2 − 1
)
+
√
1− sim(µ,Σ−1µ)2 · κ−1/2t+ sim(µ,Σ−1µ)

≤ κ−1/2t+ sim(µ,Σ−1µ)

≤ 1 + sim(µ,Σ−1µ)

2
, (11)

where the last inequality used Equation 9. Combining Equation 10 and Equation 11, we have our conclusion. □

B. Proofs for Section 4
B.1. Proof of Theorem 4.2

We first prove the existence and uniqueness of a minimizer of Eκ[Lmix
S (w)] and characterize its direction in the next part.

Step 1: Existence and Uniqueness of a Minimizer of Eκ[Lmix
S (w)]

Since (x̃i,i, ỹi,i) = (xi, yi) for each i ∈ [n] and l(·) is non-negative, for each w ∈ Rd, we have

Eκ[Lmix
S (w)] ≥ Eκ

[
1

n2

n∑
i=1

yil(w
⊤xi) + (1− yi)l(−w⊤xi)

]
=

1

n
Eκ[LS(w)].

As we discussed in Equation 3, if ∥w∥ ≥ 2nm−1
κ , we have

Eκ[Lmix
S (w)] ≥ 1

n
Eκ[LS(w)] ≥ 1

n
Ex∼N(µ,κ−1Σ)

[
−1

2
w⊤x · 1w⊤x<0

]
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=
1

n
∥w∥Ex∼N(µ,κ−1Σ)

[
−1

2
· w

⊤x

∥w∥
· 1w⊤x

∥w∥ <0

]
≥ mκ

2n
∥w∥ > 1 ≥ log 2

= Eκ[Lmix
S (0)].

Therefore, a minimizer of Eκ[Lmix
S (w)] necessarily contained in a compact set {w ∈ Rd : ∥w∥ ≤ 2nm−1

κ }. Since
Eκ[Lmix

S (w)] is a continuous function of w, there must exist a minimizer. The existence part is hence proved.

To show uniqueness, we prove strict convexity of Eκ[LS(w)]. From strict convexity of l(·), for any t ∈ [0, 1], w1,w2 ∈ Rd

with w1 ̸= w2, and y ∈ [0, 1], we have

t[yl(w⊤
1 x) + (1− y)l(−w⊤

1 x)] + (1− t)[yl(w⊤
2 x) + (1− y)l(−w⊤

2 x)]

> yl((tw1 + (1− t)w2)
⊤x) + (1− y)l(−(tw1 + (1− t)w2)

⊤x),

and any x ∈ Rd except for a Lebesgue measure zero set (i.e., the set of points x ∈ Rd satisfying w⊤
1 x = w⊤

2 x).

By taking expectations, we have

tEκ[Lmix
S (w1)] + (1− t)Eκ[Lmix

S (w2)] > Eκ[Lmix
S (tw1 + (1− t)w2)].

We conclude Eκ[Lmix
S (w)] is strictly convex. Since a strictly convex function has at most one minimizer, we conclude that

Eκ[Lmix
S (w)] has a unique minimizer for any given κ ∈ (0,∞).

Step 2: Direction of the Unique Minimizer of Eκ[Lmix
S (w)]

We express expected losses Eκ[Lmix
S (w)] as the form

EZ∼N(0,1)

[
k∑

i=1

ail
(
biκ

−1/2
(
w⊤Σw

)1/2
Z + ciw

⊤µ
)]

, (12)

where ai, bi, ci’s are real valued random variables depending on Λ and ai, bi’s are positive. Note that (x̃i,i, ỹi,i) = (xi, yi)
for each i ∈ [n] and for each i, j ∈ [n] with i ̸= j,

ỹi,j | λi,j =


1 with probability 1

4 ,

λi,j with probability 1
4 ,

1− λi,j with probability 1
4 ,

0 with probability 1
4 .

(13)

and the conditional probability distribution of the random variable x̃i,j given ỹi,j and λi,j can be formulated as the following
four cases, depending on the outcome of ỹi,j :

x̃i,j | ỹi,j = 1, λi,j ∼ N
(
µ, (g(λi,j)

2 + (1− g(λi,j))
2)κ−1Σ

)
,

x̃i,j | ỹi,j = λi,j , λi,j ∼ N
(
(2g(λi,j)− 1)µ, (g(λi,j)

2 + (1− g(λi,j))
2)κ−1Σ

)
,

x̃i,j | ỹi,j = 1− λi,j , λi,j ∼ N
(
−(2g(λi,j)− 1)µ, (g(λi,j)

2 + (1− g(λi,j))
2)κ−1Σ

)
,

x̃i,j | ỹi,j = 0, λi,j ∼ N
(
−µ, (g(λi,j)

2 + (1− g(λi,j))
2)κ−1Σ

)
.

(14)

For simplicity, we denote Σλ = (g(λ)2 + (1− g(λ))2)Σ for each λ ∈ [0, 1]. Then, we have

Eκ[Lmix
S (w)]

=
1

n2

n∑
i,j=1

Eκ[ỹi,j l(w
⊤x̃i,j) + (1− ỹi,j)l(−w⊤x̃i,j)]

=
1

n2

 n∑
i,j=1

i ̸=j

Eκ

[
ỹi,j l(w

⊤x̃i,j) + (1− ỹi,j)l(−w⊤x̃i,j)
]
+

n∑
i=1

Eκ

[
yil(w

⊤xi) + (1− yi)l(−w⊤xi)
]
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=
n− 1

2n
EZ∼N(0,1),λ∼Λ

[
l
(
(κ−1w⊤Σλw)1/2Z +w⊤µ

)]
+

n− 1

2n
EZ∼N(0,1),λ∼Λ

[
λl
(
(κ−1w⊤Σλw)1/2Z + (2g(λ)− 1)w⊤µ

)]
+

n− 1

2n
EZ∼N(0,1),λ∼Λ

[
(1− λ)l

(
(κ−1w⊤Σλw)1/2Z − (2g(λ)− 1)w⊤µ

)]
+

1

n
EZ∼N(0,1)

[
l
(
(κ−1w⊤Σw)1/2Z +w⊤µ

)]
. (15)

This is the form in Equation 12. Let Cκ = w∗
mix(n, κ)

⊤µ, then by Lemma 3.2, w∗
mix(n, κ) have to be a solution of the

problem minw⊤µ=Cκ

1
2w

⊤Σw, and by Lemma 3.3, there exists cmix,n,κ such that w∗
mix(n, κ) := cmix,n,κΣ

−1µ be the
unique minimizer of Eκ[Lmix

S (w)].

The only remaining part is showing cmix,n,κ > 0. For simplicity, we will omit κ and n in w∗
mix(n, κ). If cmix,n,κ < 0,

Eκ

[
Lmix
S (w∗

mix)
]

=
n− 1

2n
EZ∼N(0,1)

λ∼Λ

[
l

((
κ−1w∗

mix
⊤Σλw

∗
mix

)1/2
Z + cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(a)

+
n− 1

2n
EZ∼N(0,1)

λ∼Λ

[
λl

((
κ−1w∗

mix
⊤Σλw

∗
mix

)1/2
Z + (2g(λ)− 1)cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(b)

+
n− 1

2n
EZ∼N(0,1)

λ∼Λ

[
(1− λ)l

((
κ−1w∗

mix
⊤Σλw

∗
mix

)1/2
Z − (2g(λ)− 1)cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(c)

+
1

n
EZ∼N(0,1)

[
l

((
κ−1w∗

mix
⊤Σw∗

mix

)1/2
Z + cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(d)

>
n− 1

2n
EZ∼N(0,1)

λ∼Λ

[
l

((
κ−1w∗

mix
⊤Σλw

∗
mix

)1/2
Z − cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(a)’

+
n− 1

2n
EZ∼N(0,1)

λ∼Λ

[
λl

((
κ−1w∗

mix
⊤Σλw

∗
mix

)1/2
Z − (2g(λ)− 1)cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(b)’

+
n− 1

2n
EZ∼N(0,1)

λ∼Λ

[
(1− λ)l

((
κ−1w∗

mix
⊤Σλw

∗
mix

)1/2
Z + (2g(λ)− 1)cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(c)’

+
1

n
EZ∼N(0,1)

[
l

((
κ−1w∗

mix
⊤Σw∗

mix

)1/2
Z − cmix,n,κµ

⊤Σ−1µ

)]
︸ ︷︷ ︸

(d)’

= Eκ[Lmix
S (−w∗

mix)].

The inequality holds by comparing (a), (b), (c), and (d) with (a)’, (b)’, (c)’, and (d)’ respectively. This contradicts the
assumption that w∗

mix is a unique minimizer of Eκ[Lmix
S (w)], letting us to conclude cmix,n,κ ≥ 0. Showing cmix,n,κ is

strictly positive will be handled in the proof of Lemma 4.5 which can be found in Appendix B.3. □

B.2. Proof of Theorem 4.4

Since we consider sufficiently large κ, we may assume n ≥ d and n ≥ 2. By Lemma 4.5, we can choose Rκ = Θ(1)
such that ∥w∗

mix(n, κ)∥ < Rκ for any n ∈ N. Let us define a compact set Cκ := {w ∈ Rd | ∥w∥ ≤ Rκ}. For any vector
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w ∈ Rd and nonzero vector v ∈ Rd, we have

v⊤∇2
wLmix

S (w)v =
1

n2

n∑
i,j=1

(ỹi,j l
′′(w⊤x̃i,j)(v

⊤x̃i,j)
2 + (1− ỹi,j)l

′′(−w⊤x̃i,j)(v
⊤x̃i,j)

2)

≥ 1

n2

n∑
i=1

(yil
′′(w⊤xi)(v

⊤xi)
2 + (1− yi)l

′′(−w⊤xi)(v
⊤xi)

2)

> 0,

almost surely since {xi}ni=1 spans Rd almost surely. Therefore, Lmix
S (w) is strictly convex almost surely and we conclude

that Lmix
S (w) has a unique minimizer ŵ∗

mix,S on C almost surely. Also, if ŵ∗
mix,S belongs to the interior of C, then it is a

unique minimizer of Lmix
S (w) on Rd. We prove high probability convergence of ŵ∗

mix,S to w∗
mix(n, κ) using Lemma 4.3

and convert ℓ2 convergence into directional convergence. For simplicity, we define

fi,j(w) := ỹi,j l(w
⊤x̃i,j) + (1− ỹi,j)l(w

⊤x̃i,j),

for each i, j ∈ [n]. We start with the following claim which is useful for estimating quantities described in assumptions of
Lemma 4.3 for our setting.

Claim B.1. For any t > 0, we have

Eκ

[
et∥x̃i,j∥

]
≤
(
2d/2 + e4κ

−1t2∥Σ∥
)
et∥µ∥,

for all i, j ∈ [n].

Proof of Claim B.1. We first consider the case i = j. By applying triangular inequality and Lemma D.6, we have

Eκ

[
et∥x̃i,i∥

]
= Ex∼N(µ,κ−1Σ)

[
et∥x∥

]
≤ Ex∼N(µ,κ−1Σ)

[
et∥x−µ∥

]
et∥µ∥

= Ez∼N(0,κ−1t2Σ)

[
e∥z∥

]
et∥µ∥

≤
(
2d/2 + e4κ

−1t2∥Σ∥
)
et∥µ∥,

for each i ∈ [n].

Next, we handle the case i ̸= j. For simplicity, we denote Σλ = (g(λ)2 + (1− g(λ))2)Σ for each λ ∈ [0, 1]. Equation 13
and Equation 14 imply that for each i, j ∈ [n] with i ̸= j,

Eκ

[
et∥x̃i,j∥

]
= Eλ∼Λ

[
1

2
Ex∼N(µ,κ−1Σλ)

[
et∥x∥

]
+

1

2
Ex∼N((2g(λ)−1)µ,κ−1Σλ)

[
et∥x∥

]]
≤ 1

2
Eλ∼Λ

[
Ex∼N(µ,κ−1Σλ)

[
et∥x−µ∥

]
et∥µ∥ + Ex∼N((2g(λ)−1)µ,κ−1Σλ)

[
et∥x−(2g(λ)−1)µ∥

]
et∥(2g(λ)−1)µ∥

]
≤ Eλ∼Λ

[
Ez∼N(0,κ−1Σλ)

[
et∥z∥

]]
et∥µ∥.

By Lemma D.6 for each λ ∈ [0, 1]

Ez∼N(0,κ−1Σλ)

[
et∥z∥

]
≤ 2d/2 + e4κ

−1t2∥Σλ∥ ≤ 2d/2 + e4κ
−1t2∥Σ∥.

and we have our conclusion.
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Step 1: Estimate Upper Bound of Eκ

[
e|fi,j(w)−Eκ[fi,j(w)]|] on Cκ

For any w ∈ C and i, j ∈ [n], we have

|fi,j(w)| = |ỹi,j l(w⊤x̃i,j) + (1− ỹi,j)l(−w⊤x̃i,j)| ≤ l(−|w⊤x̃i,j |) ≤ l(−Rκ∥x̃i,j∥) = log
(
1 + eRκ∥x̃i,j∥

)
.

By Lemma 4.5, Rκ = Θ(1) and by applying Claim B.1 for t = Rκ, we obtain M ′
κ such that Eκ

[
e|fi,j(w)|] < M ′

κ and
M ′

κ = Θ(1). Also, by triangular inequality and Jensen’s inequality, we have

Eκ

[
e|fi,j(w)−Eκ[fi,j(w)]|

]
≤ Eκ

[
e|fi,j(w)|+|Eκ[fi,j(w)]|

]
≤ Eκ

[
e|fi,j(w)|

]2
≤ M ′

κ
2
.

Letting Mκ = M ′2
κ , we have

Eκ

[
e|fi,j(w)−Eκ[fi,j(w)]|

]
≤ Mκ,

for any w ∈ Cκ and Mκ = Θ(1).

Step 2: Estimate Upper Bound of ∥∇wfi,j(w)∥ and ∥∇wEκ[fi,j(w)]∥

For each w ∈ Cκ and i, j ∈ [n],

∥∇wfi,j(w)∥ =
∥∥∇w(ỹi,j l(w

⊤x̃i,j) + (1− ỹi,j)l(−w⊤x̃i,j))
∥∥

=
∥∥ỹi,j l′(w⊤x̃i,j)x̃i,j − (1− ỹi,j)l

′(−w⊤x̃i,j)x̃i,j

∥∥
≤ ∥x̃i,j∥.

In addition, by Lemma D.2,

∥∇wEκ[fi,j(w)]∥ =
∥∥∇wEκ[(ỹi,j l(w

⊤x̃i,j) + (1− ỹi,j)l(−w⊤x̃i,j))]
∥∥

=
∥∥Eκ[∇w(ỹi,j l(w

⊤x̃i,j) + (1− ỹi,j)l(−w⊤x̃i,j))]
∥∥

=
∥∥Eκ[ỹi,j l

′(w⊤x̃i,j)x̃i,j − (1− ỹi,j)l
′(−w⊤x̃i,j)x̃i,j

]
∥

≤ Eκ[∥x̃i,j∥].

Also, applying Claim B.1 with t = 1, there exists Lκ such that Eκ

[
e∥x̃i,j∥

]
< Lκ and Lκ = Θ(1).

Step 3: Estimate Strong convexity Constant of Eκ[Lmix
S (w)] on Cκ

For each λ ∈ [0, 1], denote Σλ := (g(λ)2 + (1− g(λ))2)Σ, for simplicity. By Lemma D.2, Lemma D.3 and Equation 15,
we have

v⊤∇2
wEκ[Lmix

S (w)]v ≥ n− 1

2n
Eλ∼Λ[Ex∼N(µ,κ−1Σλ)[l

′′(w⊤x)(v⊤x)2]]

≥ 1

16
Eλ∼Λ[Ex∼N(µ,κ−1Σλ)[e

−(w⊤x)2/2(v⊤x)2]],

for any vector w ∈ C and unit vector v ∈ Rd. By Lemma D.5 and Lemma 4.5, for each λ ∈ [0, 1],

Ex∼N(µ,κ−1Σλ)[e
−(w⊤x)2/2(v⊤x)2]

≥ κd/2∥Σλ∥−d/2(κ∥Σ−1
λ ∥+R2

κ)
−(d+2)/2 exp(−R2

κ∥Σλ∥∥Σ−1
λ ∥∥µ∥2)

= Θ(κ−1).

Hence, Eκ[Lmix
S (w)] is ακ-strongly convex with ακ = Θ(κ−1).
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Step 4: Sample Complexity for Directional Convergence

By Lemma 4.5, we can choose rκ = Θ(1) such that rκ ≤ ∥w∗
mix(n, κ)∥ for any n. Since rκ = Θ(1), we assume κ is large

enough so that rκϵ < rκ < α
−1/2
κ . Assume the unique existence of ŵ∗

mix,S which occurs almost surely. By Lemma 4.3, if

n ≥ C ′
1Mκ

α2
κr

4
κϵ

4
log

(
3

δ
max

{
1,

(
2C ′

2d
1/2RκLκ

ακr2κϵ
2

)d
})

=
Θ(κ2)

ϵ4

(
1 + log

1

ϵ
+ log

1

δ

)
,

then we have ∥w∗
mix(n, κ)−ŵ∗

mix,S∥ ≤ rκϵ ≤ ∥w∗
mix(n, κ)∥ϵ with probability at least 1−δ. Furthermore, if ∥w∗

mix(n, κ)−
ŵ∗

mix,S∥ ≤ ∥w∗
mix(n, κ)∥ϵ, then ŵ∗

mix,S belongs to interior of Cκ. Hence, ŵ∗
mix,S is a minimizer of Lmix

S (w) over the
entire Rd. Also, we have

sim(ŵ∗
mix,S ,Σ

−1µ) = sim(ŵ∗
mix,S ,w

∗
mix(n, κ))

=

(
1− sin2

(
∠
(
ŵ∗

mix,S ,w
∗
mix(n, κ)

)))1/2

≥ 1− sin
(
∠
(
ŵ∗

mix,S ,w
∗
mix(n, κ)

))
≥ 1− ϵ.

Hence, we conclude that if n = Ω(κ2)
ϵ4

(
1 + log 1

ϵ + log 1
δ

)
, then with probability at least 1 − δ, the Mixup loss Lmix

S (w)
has a unique minimizer ŵ∗

mix,S and sim(ŵ∗
mix,S ,Σ

−1µ) ≥ 1− ϵ. □

B.3. Proof of Lemma 4.5

By Theorem 4.2, let w∗
mix(n, κ) = c∗mix,n,κΣ

−1µ where c∗mix,n,κ ≥ 0. For any c ∈ R, from Equation 15, we have

Eκ[Lmix
S (cΣ−1µ)] =

n− 1

2n
Eλ∼Λ[EX∼N(s,κ−1sλ)[l(cX)]]

+
n− 1

2n
Eλ∼Λ[λ · EX∼N((2g(λ)−1)s,κ−1sλ)[l(cX)]]

+
n− 1

2n
Eλ∼Λ[(1− λ) · Ex∼N(−(2g(λ)−1)s,κ−1sλ)[l(cX)]]

+
1

n
EX∼N(s,κ−1s) [l(cX)] .

where we denote sλ = (g(λ)2 + (1− g(λ))2)µ⊤Σµ for each λ ∈ [0, 1] and s = µ⊤Σµ, for simplicity.

By Lemma D.2, we have

− ∂

∂c
Eκ[Lmix

S (cΣ−1µ)]

= −n− 1

2n
Eλ∼Λ[EX∼N(s,κ−1sλ)[l

′(cX)X]]

− n− 1

2n
Eλ∼Λ[λ · EX∼N((2g(λ)−1)s,κ−1sλ)[l

′(cX)X]]

− n− 1

2n
Eλ∼Λ[(1− λ) · EX∼N(−(2g(λ)−1)s,κ−1sλ)[l

′(cX)X]]

− 1

n
EX∼N(s,κ−1s) [l

′(cX)X]

=
n− 1

2n
Eλ∼Λ

[
EX∼N(s,κ−1sλ)

[
X

1 + ecX

]]
+

n− 1

2n
Eλ∼Λ

[
λ · EX∼N((2g(λ)−1)s,κ−1sλ)

[
X

1 + ecX

]]
+

n− 1

2n
Eλ∼Λ

[
(1− λ) · EX∼N(−(2g(λ)−1)s,κ−1sλ)

[
X

1 + ecX

]]
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+
1

n
EX∼N(s,κ−1s)

[
X

1 + ecX

]
,

and if c ≥ 0, by applying Lemma D.4 with z = cX , we have

− ∂

∂c
E[Lmix

S (cΣ−1µ)]

≥ n− 1

2n
Eλ∼Λ

[
EX∼N(s,κ−1sλ)

[
1

2
X − 1

4
cX2

]]
+

n− 1

2n
Eλ∼Λ

[
λ · EX∼N((2g(λ)−1)s,κ−1sλ)

[
1

2
X − 1

4
cX2

]]
+

n− 1

2n
Eλ∼Λ

[
(1− λ) · EX∼N(−(2g(λ)−1)s,κ−1sλ)

[
1

2
X − 1

4
cX2

]]
+

1

n
EX∼N(s,κ−1s)

[
1

2
X − 1

4
cX2

]
=

s

4n
·
(
(n− 1)Eλ∼Λ[1 + (2λ− 1)(2g(λ)− 1)] + 2

)
− c

8n
·
(
κ−1 (2(n− 1)Eλ∼Λ[sλ] + 2s) + s2

(
(n− 1)Eλ∼Λ[(2g(λ)− 1)2 + 1] + 2

))
≥ s

8
·

(
Eλ∼Λ[(2λ− 1)(2g(λ)− 1)]− c

(
κ−1

(
2Eλ∼Λ

[
g(λ)2 + (1− g(λ))2

]
+ 1
)
+ s

(
Eλ∼Λ[(2g(λ)− 1)2 + 2]

) ))
.

Thus, if 0 ≤ c < Eλ∼Λ[(2λ−1)(2g(λ)−1)]
κ−1(2Eλ∼Λ[g(λ)2+(1−g(λ))2]+1)+s(Eλ∼Λ[(2g(λ)−1)2+2]) , then E[Lmix

S (cΣ−1µ)] is decreasing as a function of

c and we conclude cmix,n,κ ≥ Eλ∼Λ[(2λ−1)(2g(λ)−1)]
κ−1(2Eλ∼Λ[g(λ)2+(1−g(λ))2]+1)+s(Eλ∼Λ[(2g(λ)−1)2+2]) which implies ∥w∗

mix(n, κ)∥ = Ω(1),
and one can note that this lower bound is independent of n.

In order to get the upper bound, we use the following inequality: For each z ∈ R, we have

l(z) + l(−z) = log(1 + e−z) + log(1 + ez) = log(2 + ez + e−z) > |z|.

For each c ≥ 0, we have

Eκ[Lmix
S (cΣ−1µ)] =

1

n2

n∑
i,j=1

Eκ

[
ỹi,j l(cµ

⊤Σ−1x̃i,j) + (1− ỹi,j)l(−cµ⊤Σ−1x̃i,j)
]

>
1

n2

n∑
i,j=1

i ̸=j

Eκ

[
ỹi,j l(cµ

⊤Σ−1x̃i,j) + (1− ỹi,j)l(−cµ⊤Σ−1x̃i,j)
]

≥ 1

n2

n∑
i,j=1

i ̸=j

Eκ

[
min{ỹi,j , 1− ỹi,j}(l(cµ⊤Σ−1x̃i,j) + l(−cµ⊤Σ−1x̃i,j))

]

≥ 1

n2

n∑
i,j=1

i ̸=j

Eκ

[
min{ỹi,j , 1− ỹi,j}|cµ⊤Σ−1x̃i,j |

]

=
1

n2

n∑
i,j=1

i ̸=j

Eκ

[
|min{ỹi,j , 1− ỹi,j}cµ⊤Σ−1x̃i,j |

]

=
1

n2

n∑
i,j=1

i ̸=j

Eκ [|min{ỹi,j , 1− ỹi,j}(2g(ỹi,j)− 1)s|] c

=
n− 1

n
Eλ∼Λ[min{λ, 1− λ}|2g(λ)− 1|]sc
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≥ 1

4
Eλ∼Λ[min{λ, 1− λ}|2g(λ)− 1|]sc.

From our assumption Pλ∼Λ

[
λ /∈ {0, 1} ∧ g(λ) ̸= 1

2

]
> 0, we have Eλ∼Λ[min(λ, 1 − λ)]|2g(λ) − 1| > 0. Thus, if

c ≥ 4 log 2
Eλ∼Λ[min(λ,1−λ)|2g(λ)−1|]s , then Eλ[Lmix

S (cΣ−1µ)] > log 2 = Eλ[Lmix
S (0)], so cΣ−1µ cannot be a minimizer. Hence,

c∗mix,n,κ < 4 log 2
Eλ∼Λ[min(λ,1−λ)|2g(λ)−1|]s = O(1), which is also independent of n. Combining the lower and upper bounds, we

have our conclusion that c∗mix,n,κ = Θ(1). □

B.4. Proof of Lemma 4.3

The challenging part is that we cannot directly apply Lemma D.8 to show pointwise convergence of F̂N (θ) to FN (θ) on C
since ηi,j’s are not independent and not identically distributed. We can overcome this problem by using Lemma D.11 which
is the alternative version of Lemma D.8. We prove Lemma D.11 in Appendix D.4.

By Lemma D.11, there exists a universal constant C ′
1 > 0 such that for any θ ∈ C, we have

P
[∣∣∣F̂N (θ)− FN (θ)

∣∣∣ > αϵ2

8

]
≤ 2 exp

(
− α2ϵ4

C ′
1M

N

)
.

Notice that from the given condition and Jensen’s inequality, for each i, j ∈ [N ],

Eη∼Pi,j
[g(η)] ≤ logEη∼Pi,j

[
eg(η)

]
< logL < L,

and from triangular inequality, we have

P
[
sup
θ∈C

∥∥∥∇θ

(
F̂N (θ)− FN (θ)

)∥∥∥ > 3L

]

≤ P

 1

N2

N∑
i,j=1

sup
θ∈C

∥∇θ (f(θ,ηi,j)− E[f(θ,ηi,j)])∥ > 3L


≤ P

 1

N2

N∑
i,j=1

(g(ηi,j) + E[g(ηi,j)]) > 3L


≤ P

 1

N2

N∑
i,j=1

(g(ηi,j)− E[g(ηi,j)]) > L

 . (16)

Since we have Eη∼Pi,j

[
e|g(η)−Eη∼Pi,j

[g(η)]|
]
≤ Eη∼Pi,j

[
eg(η)

]
· eEη∼Pi,j

[g(η)] < L2 by our assumption, we can apply
Lemma D.11 to the RHS of Equation 16. Therefore, we have

P
[
sup
θ∈C

∥∥∥∇θ

(
F̂N (θ)− FN (θ)

)∥∥∥ > 3L

]
≤ exp

(
− 1

C ′′
1

N

)
, (17)

where C ′′
1 > 0 is a universal constant. Without loss of generality, we can choose C ′′

1 = C ′
1 that works for both Equation 16

and Equation 17.

We choose θ̄1, . . . , θ̄m ∈ C with m ≤ max

{
1,
(

C′
2k

1/2DL
αϵ2

)k}
where C ′

2 > 0 is a universal constant and satisfies following:

For any θ ∈ C, there exists iθ ∈ [m] such that
∥∥θ − θ̄iθ

∥∥ < αϵ2

24L . In other words, θ̄1, . . . , θ̄m form an αϵ2

24L -cover of C.

Suppose |F̂N (θ)− FN (θ)| < αϵ2

8 for each k ∈ [m] and supθ∈C

∥∥∥∇θ

(
F̂N (θ)− FN (θ)

)∥∥∥ < 3L which implies F̂N (θ)−
FN (θ) is 3L-Lipschitz. Then, for any θ ∈ C, we have∣∣∣F̂N (θ)− FN (θ)

∣∣∣
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≤
∣∣∣F̂N (θ̄iθ )− FN (θ̄iθ )

∣∣∣+ ∣∣∣(F̂N (θ)− FN (θ)
)
−
(
F̂N (θ̄iθ )− FN (θ̄iθ )

)∣∣∣
≤ αϵ2

8
+ 3L∥θ − θ̄iθ∥ <

αϵ2

8
+

αϵ2

8
=

αϵ2

4
.

By applying union bound, we conclude

P
[
sup
θ∈C

|F̂N (θ)− FN (θ)| > αϵ2

4

]
≤ 2max

{
1,

(
C ′

2k
1/2DL

αϵ2

)k
}
exp

(
− α2ϵ4

C ′
1M

N

)
+ exp

(
− 1

C ′
1

N

)

≤ 3max

{
1,

(
C ′

2k
1/2DL

αϵ2

)k
}
exp

(
−min

{
α2ϵ4

C ′
1M

,
1

C ′
1

}
N

)

= 3max

{
1,

(
C ′

2k
1/2DL

αϵ2

)k
}
exp

(
− α2ϵ4

C ′
1M

N

)
,

where the last equality equality is due to αϵ2 ≤ 1 and M ≥ 1 which are implied by given conditions.

Suppose supθ∈C |F̂N (θ)− FN (θ)| < αϵ2

4 and
∥∥∥θ̂∗

N − θ∗
N

∥∥∥ > ϵ. Then, from the strong convexity of FN (θ), we have

F̂N (θ̂∗
N )− F̂N (θ∗

N )

=
(
F̂N (θ̂∗

N )− FN (θ̂∗
N )
)
+
(
FN (θ∗

N )− F̂N (θ∗
N )
)
+
(
FN (θ̂∗

N )− FN (θ∗
N ))
)

≥ −αϵ2

2
+

α

2

∥∥∥θ̂∗
N − θ∗

N

∥∥∥2 > 0.

This is a contradiction to the fact that θ̂N is a minimizer of F̂N (θ). Hence, we have

P
[∥∥∥θ̂∗

N − θ∗
N

∥∥∥ > ϵ
]
≤ 3max

{
1,

(
C ′

2k
1/2LD

αϵ2

)k
}
exp

(
− α2ϵ4

C ′
1M

N

)
,

and equivalently, if

N ≥ C ′
1M

α2ϵ4
log

(
3

δ
max

{
1,

(
C ′

2k
1/2LD

αϵ2

)k
})

,

then
∥∥∥θ̂∗

N − θ∗
N

∥∥∥ < ϵ with probability at least 1− δ. □

C. Proofs for Section 5
Before moving on to proof of the main results of Section 5, We would like to represent Eκ[Lmask

S (w)] in a simpler form.
Note that (x̃mask

i,i , ỹmask
i,i ) = (xi, yi) for each i ∈ [n]. For i, j ∈ [n] with i ̸= j, conditioning on (Mi,j , λi,j) ∼ M, we have

ỹi,j = 1, x̃i,j ∼ N(µ,Σ⊙
(
Mi,jM

⊤
i,j + (1−Mi,j)(1−Mi,j)

⊤)
)

with probability 1
4

ỹi,j = λi,j , x̃i,j ∼ N((2Mi,j − 1)⊙ µ,Σ⊙
(
Mi,jM

⊤
i,j + (1−Mi,j)(1−Mi,j)

⊤)
)

with probability 1
4

ỹi,j = 1− λi,j , x̃i,j ∼ N(−(2Mi,j − 1)µ,Σ⊙
(
Mi,jM

⊤
i,j + (1−Mi,j)(1−Mi,j)

⊤)
)

with probability 1
4

ỹi,j = 0, x̃i,j ∼ N(−µ,Σ⊙
(
Mi,jM

⊤
i,j + (1−Mi,j)(1−Mi,j)

⊤)
)

with probability 1
4

.

Let support(M) =
{
M (1), . . . ,M (p)

}
where (M , λ) ∼ M. For each k ∈ [p], define

µ(k) = µ⊙ (2M (k) − 1),Σ(k) = Σ⊙
(
M (k)M (k)⊤ + (1−M (k))(1−M (k))⊤

)
,
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and

ak =
1

2
E(M ,λ)∼M [λ1M=M(k) ] , bk =

1

2
E(M ,λ)∼M [(1− λ)1M=M(k) ] , ck =

1

2
P(M ,λ)∼M

[
M = M (k)

]
.

By Assumption 5.2, a1, . . . , ap, b1, . . . , bp, c1, . . . , cp > 0. One can check that ak + bk = ck for each k ∈ [p] and∑p
k=1(ak + bk + ck) = 1. Then, for each κ ∈ (0,∞), we can rewrite Eκ[Lmask

S (w)] as the following form:

Eκ[Lmask
S (w)]

=
1

n2

 n∑
i=1

Eκ

[
yil(w

⊤xi) + (1− yi)l(−w⊤xi)
]
+
∑

i,j∈[n]

i ̸=j

Eκ

[
ỹmask
i,j l(w⊤x̃mask

i,j ) + (1− ỹmask
i,j )l(−w⊤x̃mask

i,j )
]

=
1

n
Ex∼N(µ,κ−1Σ)

[
l(w⊤x)

]
+

n− 1

n

(
p∑

k=1

Ex(k)∼N(µ(k),κ−1Σ(k))

[
akl
(
w⊤x(k)

)
+ bkl

(
−w⊤x(k)

)]
+ ckEz(k)∼N(µ,κ−1Σ(k))

[
l
(
w⊤z(k)

)])
,

(18)

and

E∞[Lmask
S (w)] =

1

n
l(w⊤µ) +

n− 1

n

p∑
k=1

(
akl
(
w⊤µ(k)

)
+ bkl

(
−w⊤µ(k)

)
+ ckl

(
w⊤µ

))
. (19)

In addition, notice that for each k ∈ [p], we have
x̃mask
i,j ∼ N

(
µ, κ−1Σ(k)

)
with probability ck

2

x̃mask
i,j ∼ N

(
−µ, κ−1Σ(k)

)
with probability ck

2

x̃mask
i,j ∼ N

(
µ(k), κ−1Σ(k)

)
with probability ck

2

x̃mask
i,j ∼ N

(
−µ(k), κ−1Σ(k)

)
with probability ck

2

. (20)

C.1. Proof of Theorem 5.3

We first prove the uniqueness of a minimizer w∗
mask(n, κ) of Eκ[Lmask

S (w)] for all κ ∈ (0,∞] and show that they are
bounded. Next, we prove that w∗

mask(n, κ) converges to w∗
mask(n,∞) as κ → ∞.

Step 1: Eκ[Lmask
S (w)] has a Unique Minimizer w∗

mask(n, κ) and {w∗
mask(n, κ) : κ ∈ (0,∞]} is Bounded

We prove the strict convexity of Eκ[Lmask
S (w)] for each κ ∈ (0,∞]. Consider the case κ ̸= ∞ first. For t ∈ [0, 1], and

w1,w2 ∈ Rd with w1 ̸= w2,

tl
(
w⊤

1 x
)
+ (1− t)l

(
w⊤

2 x
)
> l
(
(tw1 + (1− t)w2)

⊤x
)
,

and
tl
(
−w⊤

1 x
)
+ (1− t)l

(
−w⊤

2 x
)
> l
(
−(tw1 + (1− t)w2)

⊤x
)
,

for any x ∈ Rd except a Lebesgue measure zero set (hyperplane orthogonal to w1 −w2).

By Equation 18 and taking expectation, we have for any t ∈ [0, 1], and w1,w2 ∈ Rd,

tEκ[Lmask
S (w1)] + (1− t)Eκ[Lmask

S (w2)] > Eκ[Lmask
S (tw1 + (1− t)w2)].

For the case κ = ∞, by Assumption 5.2, there exist i1, . . . , id ∈ [m] such that
{
µ(i1), . . . ,µ(id)

}
spans Rd and for any

t ∈ [0, 1] and w1,w2 ∈ Rd with w1 ̸= w2, at least one of k ∈ [d] satisfies

tl
(
w⊤

1 µ
(ik)
)
+ (1− t)l

(
w⊤

2 µ
(ik)
)
> l
(
(tw1 + (1− t)w2)

⊤µ(ik)
)
,
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and
tl
(
−w⊤

1 µ
(ik)
)
+ (1− t)l

(
−w⊤

2 µ
(ik)
)
> l
(
−(tw1 + (1− t)w2)

⊤µ(ik)
)
.

From Equation 19, we can conclude the strict convexity of Eκ[Lmask
S (w)].

In order to complete this step, we prove the existence of a ball containing all minimizers of Eκ[Lmask
S (w)]. For the case

κ ̸= ∞, from Equation 18, we have

Eκ[Lmask
S (w)] ≥ 1

2

d∑
k=1

min{aik , bik}Ex(k)∼N(µ(ik),κ−1Σ(ik))

[
l
(
w⊤x(k)

)
+ l
(
−w⊤x(k)

)]
.

Since l(z) + l(−z) ≥ |z| for each z ∈ R,

Eκ[Lmask
S (w)] ≥ 1

2

d∑
k=1

min{aik , bik}Ex(k)∼N(µ(ik),κ−1Σ(ik))

[∣∣∣w⊤x(k)
∣∣∣]

≥ 1

2

d∑
k=1

min{aik , bik}
∣∣∣Ex(k)∼N(µ(ik),κ−1Σ(ik))

[
w⊤x(k)

]∣∣∣
=

1

2

d∑
k=1

min{aik , bik}
∣∣∣w⊤µ(ik)

∣∣∣ .
Also, for the case κ = ∞, from Equation 19 and using similar argument, we have

E∞[Lmask
S (w)] ≥ 1

2

d∑
k=1

min{aik , bik}
(
l
(
w⊤µ(k)

)
+ l
(
−w⊤µ(k)

))
≥ 1

2

d∑
k=1

min{aik , bik}
∣∣∣w⊤µ(ik)

∣∣∣ .
Since

{
µ(i1), . . . , µ(id)

}
spans Rd, for any unit vector u ∈ Rd,

∑d
k=1 min{aik , bik}

∣∣u⊤µ(ik)
∣∣ > 0 and u 7→∑d

k=1 min{aik , bik}
∣∣u⊤µ(ik)

∣∣ has the minimum value m > 0 since {u ∈ Rd : ∥u∥ = 1} is compact and the map-
ping is continuous. If ∥w∥ > 2 log 2

m , then we have

Eκ[Lmask
S (w)] ≥ 1

2

d∑
k=1

min{aik , bik}
∣∣∣w⊤µ(ik)

∣∣∣
= ∥w∥

d∑
k=1

min{aik , bik}

∣∣∣∣∣
(

w

∥w∥

)⊤

µ(ik)

∣∣∣∣∣
≥ 1

2
∥w∥m ≥ log 2

= Eκ

[
Lmask
S (0)

]
.

Hence, for any κ ∈ (0,∞], the minimizer of Eκ[Lmask
S (w)] is contained in the ball centered at origin with radius R := 2 log 2

m .
Together with the strict convexity of Eκ[Lmask

S (w)], we have our conclusion. □

Step 2: w∗
mask(n, κ) Converges to w∗

mask(n,∞) as κ → ∞

For each w ∈ Rd with ∥w∥ ≤ R and unit vector v ∈ Rd, Equation 19 implies

v⊤∇2
wE∞[Lmask

S (w)]v

=
1

n
l′′(w⊤µ)(v⊤µ)2 +

n− 1

n

p∑
k=1

[(
akl

′′
(
w⊤µ(k)

)
+ bkl

′′
(
−w⊤µ(k)

))(
v⊤µ(k)

)2
+ ckl

′′ (w⊤µ
)
(v⊤µ)2

]
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≥ 1

2

p∑
k=1

(ak + bk)l
′′
(
R∥µ(k)∥

)(
v⊤µ(k)

)2
.

By Assumption 5.2, at least one of k ∈ [p] satisfies v⊤µ(k) ̸= 0 and thus, 1
2

∑p
k=1(ak + bk)l

′′ (R∥µ(k)∥
) (

v⊤µ(k)
)2

> 0.

Since v 7→ 1
2

∑p
k=1(ak + bk)l

′′ (R∥µ(k)∥
) (

v⊤µ(k)
)2

is continuous and {v ∈ Rd : ∥v∥ = 1} is compact, it has minimum
α > 0 on this set. Hence, E∞

[
Lmask
S (w)

]
is α-strongly convex on

{
w ∈ Rd : ∥w∥ ≤ R

}
and since w∗

mask(n, κ) ∈{
w ∈ Rd : ∥w∥ ≤ R

}
for each κ ∈ (0,∞), we have

α

2
∥w∗

mask(n, κ)−w∗
mask(n,∞)∥2

≤ E∞[Lmask
S (w∗

mask(n, κ))]− E∞[Lmask
S (w∗

mask(n,∞))]

≤ E∞[Lmask
S (w∗

mask(n, κ))]− Eκ[Lmask
S (w∗

mask(n, κ))]

+ Eκ[Lmask
S (w∗

mask(n, κ))]− Eκ[Lmask
S (w∗

mask(n,∞))]

+ Eκ[Lmask
S (w∗

mask(n,∞))]− E∞[Lmask
S (w∗

mask(n,∞))]

≤ E∞[Lmask
S (w∗

mask(n, κ))]− Eκ[Lmask
S (w∗

mask(n, κ))] + Eκ[Lmask
S (w∗

mask(n,∞))]− E∞[Lmask
S (w∗

mask(n,∞))].

The last inequality holds since w∗
mask(n, κ) is a minimizer of Eκ[Lmask

S (w)]. For any w ∈ Rd with ∥w∥ ≤ R, by
Lemma D.7, we have

Eκ[Lmask
S (w)]− E∞[Lmask

S (w)]

=
1

n
EX∼N(w⊤µ,κ−1w⊤Σw)[l(X)− l(w⊤µ)]

+
n− 1

n

(
p∑

k=1

EX(k)∼N(w⊤µ(k),κ−1w⊤Σ(k)w)

[
ak

(
l
(
X(k)

)
− l
(
w⊤µ(k)

))
+ bk

(
l
(
−X(k)

)
− l
(
−w⊤µ(k)

))]
+ ckEX(k)∼N(w⊤µ,κ−1w⊤Σ(k)w)

[
l
(
X(k)

)
− l(w⊤µ)

])

≤ κ−1/2

(
1

n
(w⊤Σw)1/2 +

n− 1

n

p∑
k=1

(ak + bk + ck)
(
w⊤Σ(k)w

)1/2)

≤ κ−1/2∥w∥

(
∥Σ∥1/2

n
+

n− 1

n

p∑
k=1

(ak + bk + ck)
∥∥∥Σ(k)

∥∥∥1/2)

≤ Rκ−1/2

(
∥Σ∥1/2

n
+

n− 1

n

p∑
k=1

(ak + bk + ck)
∥∥∥Σ(k)

∥∥∥1/2) ,

≤ Rκ−1/2

(
∥Σ∥1/2 +

p∑
k=1

(ak + bk + ck)
∥∥∥Σ(k)

∥∥∥1/2) .

Therefore,
α

2
∥w∗

mask(n, κ)−w∗
mask(n,∞)∥2 ≤ 2Rκ−1/2

(
∥Σ∥+

p∑
k=1

(ak + bk + ck)
∥∥∥Σ(k)

∥∥∥1/2) , (21)

and we conclude limκ→∞ w∗
mask(n, κ) = w∗

mask(n,∞). □

C.2. Proof of Theorem 5.4

Since our sample complexity bound contains Ω(1) which can hide d, we may assume n ≥ d and n ≥ 2. Let R be
the upper bound on {∥w∗

mask(n, κ)∥ : κ ∈ (0,∞]} which we defined in Appendix C.1. Next, define a compact set
C := {w ∈ Rd | ∥w∥ ≤ 2R}, which trivially contains w∗

mask(n, κ) for all κ ∈ (0,∞]. For any w ∈ Rd and nonzero
v ∈ Rd, we have

v∇2
wLmask

S (w)v =
1

n2

n∑
i,j=1

(ỹmask
i,j l′′

(
w⊤x̃mask

i,j

) (
v⊤x̃mask

i,j

)2
+
(
1− ỹmask

i,j

)
l′′
(
−w⊤x̃mask

i,j

) (
v⊤x̃mask

i,j

)2
)
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≥ 1

n2

n∑
i=1

(yil
′′(w⊤xi)(v

⊤xi)
2 + (1− yi)l

′′(−w⊤xi)(v
⊤xi)

2) > 0,

almost surely, since {xi}i∈[n] spans Rd almost surely. Therefore, Lmask
S (w) is strictly convex almost surely and we conclude

that Lmask
S (w) has a unique minimizer ŵ∗

mask,S on C almost surely. Also, if ŵ∗
mask,S belong to interior of C, it is minimizer

of Lmask
S (w) on Rd. We will prove high probability convergence of ŵ∗

mask,S to w∗
mask(n, κ) using Lemma 4.3 and convert

ℓ2 convergence into directional convergence. For simplicity, we define

fi,j(w) := ỹmask
i,j l(w⊤x̃mask

i,j ) + (1− ỹmask
i,j )l(w⊤x̃mask

i,j ),

for each i, j ∈ [n]. We start with the following claim which is useful for estimating quantities described in assumptions of
Lemma 4.3 for our setting.

Claim C.1. For any t > 0, we have

Eκ

[
et∥x̃

mask
i,j ∥

]
≤ max

{
2d/2 + e4κ

−1t2∥Σ∥,

p∑
k=1

2ck

(
2d/2 + e4κ

−1t2∥Σ(k)∥
)}

et∥µ∥,

for all i, j ∈ [n].

Proof of Claim C.1. We first consider the case i = j. By invoking triangular inequality and Lemma D.6, we have

Eκ

[
et∥x̃

mask
i,i ∥

]
= Eκ

[
et∥x∥

]
= Ex∼N(µ,κ−1Σ)

[
et∥x∥

]
= Ex∼N(µ,κ−1Σ)

[
et∥x∥

]
≤ Ex∼N(µ,κ−1Σ)

[
et∥x−µ∥

]
et∥µ∥

= Ez∼N(0,κ−1t2Σ)

[
e∥z∥

]
et∥µ∥

=
(
2d/2 + e4κ

−1t2∥Σ∥
)
et∥µ∥.

for each i ∈ [n]. Next, we handle the case i ̸= j. From Equation 20, for any i, j ∈ [n] with i ̸= j, we have

Eκ

[
et∥x̃

mask
i,j ∥

]
=

p∑
k=1

ck

(
Ex∼N(µ,κ−1Σ(k))

[
et∥x∥

]
+ Ex∼N(µ(k),κ−1Σ(k))

[
et∥x∥

])
≤

p∑
k=1

ck

(
Ex∼N(µ,κ−1Σ(k))

[
et∥x−µ∥

]
et∥µ∥ + Ex∼N(µ(k),κ−1Σ(k))

[
et∥x−µ(k)∥

]
et∥µ

(k)∥
)

=

p∑
k=1

2ckEz∼N(0,κ−1t2Σ(k))

[
e∥z∥

]
et∥µ∥.

By applying Lemma D.6,
Ez∼N(0,κ−1t2Σ(k))

[
e∥z∥

]
≤ 2d/2 + e4κ

−1t2∥Σ(k)∥,

and we have our conclusion.

Step 1: Estimate Upper Bound of Eκ

[
e|fi,j(w)−Eκ[fi,j(w)]|] on C

For any w ∈ C and i, j ∈ [n], we have

|fi,j(w)| = |ỹmask
i,j l(w⊤x̃mask

i,j ) + (1− ỹmask
i,j )l(−w⊤x̃mask

i,j )|
≤ l(−|w⊤x̃mask

i,j |)
≤ l(−2R∥x̃mask

i,j ∥)
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= log
(
1 + e2R∥x̃

mask
i,j ∥

)
.

By applying Claim C.1 for t = 2R, there exists M ′
κ such that M ′

κ = Θ(1) and

Eκ

[
e|fi,j(w)|

]
≤ Eκ

[
1 + e2R∥x̃mask

i,j ∥
]
< M ′

κ.

From triangular inequality and Jensen’s inequality, we have

Eκ

[
e|fi,j(w)−Eκ[fi,j(w)]|

]
≤ Eκ

[
e|fi,j(w)|+|Eκ[fi,j(w)]|

]
≤ Eκ

[
e|fi,j(w)|

]2
≤ M ′

κ
2
.

Letting Mκ = M ′
κ
2, it follows that Mκ = Θ(1) and Eκ

[
e|fi,j(w)−Eκ[fi,j(w)]|] < Mκ for all w ∈ C.

Step 2: Estimate Upper Bound of ∥∇wfi,j(w)∥ and ∥∇wEκ[fi,j(w)]∥

For each w ∈ C and i, j ∈ [n],

∥∇wfi,j(w)∥ =
∥∥∇w(ỹmask

i,j l(w⊤x̃mask
i,j ) + (1− ỹmask

i,j )l(−w⊤x̃mask
i,j ))

∥∥
=
∥∥ỹmask

i,j l′(w⊤x̃mask
i,j )x̃mask

i,j − (1− ỹmask
i,j )l′(−w⊤x̃mask

i,j )x̃mask
i,j

∥∥
≤
∥∥x̃mask

i,j

∥∥ .
In addition, by Lemma D.2,

∥∇wE[fi,j(w)]∥ =
∥∥∇wE

[
(ỹmask

i,j l(w⊤x̃mask
i,j ) + (1− ỹmask

i,j )l(−w⊤x̃mask
i,j ))

]∥∥
=
∥∥E [∇w(ỹmask

i,j l(w⊤x̃mask
i,j ) + (1− ỹmask

i,j )l(−w⊤x̃mask
i,j ))

]∥∥
=
∥∥E [ỹmask

i,j l′(w⊤x̃mask
i,j )x̃mask

i,j − (1− ỹmask
i,j )l′(−w⊤x̃mask

i,j )x̃mask
i,j

]∥∥
≤ E

[∥∥x̃mask
i,j

∥∥] .
Also, by applying Claim C.1 with t = 1, there exists Lκ such that Eκ

[
e∥x̃

mask
i,j ∥

]
< Lκ and Lκ = Θ(1).

Step 3: Estimate Strong Convexity Constant of Eκ[Lmask
S (w)] on C

By Lemma D.2, Lemma D.3 and Equation 18, we have

v∇2
wEκ

[
Lmask
S (w)

]
v ≥ n− 1

n

p∑
k=1

akEx(k)∼N(µ(k),κ−1Σ(k))

[
l′′
(
w⊤x(k)

)(
v⊤x(k)

)2]

≥ 1

8
min
k∈[p]

{ak}
p∑

k=1

Ex(k)∼N(µ(k),κ−1Σ(k))

[
e−(w

⊤x(k))
2
/2
(
v⊤x(k)

)2]
,

for any w ∈ C and unit vector v ∈ Rd.

For each k ∈ [p],

v⊤Σ(k)v

=
(
M (k) ⊙ v

)⊤
Σ
(
M (k) ⊙ v

)
+
((

1−M (k)
)
⊙ v

)⊤
Σ
((

1−M (k)
)
⊙ v

)
≥
∥∥Σ−1

∥∥−1
∥∥∥M (k) ⊙ v

∥∥∥2 + ∥∥Σ−1
∥∥−1

∥∥∥(1−M (k)
)
⊙ v

∥∥∥2
=
∥∥Σ−1

∥∥−1 ∥v∥2.
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Hence, Σ(k) is positive definite for all k ∈ [p] and by Lemma D.5,

Ex(k)∼N(µ(k),κ−1Σ(k))

[
e−(w

⊤x(k))
2
/2
(
v⊤x(k)

)2]
≥
(
1

2

(
v⊤µ(k)

)2
− κ−2

∥∥∥Σ(k)
∥∥∥2 ∥w∥4

∥∥∥µ(k)
∥∥∥2)

·
(
κ−1

∥∥∥Σ(k)
∥∥∥(κ∥∥∥∥(Σ(k)

)−1
∥∥∥∥+ ∥w∥2

))−d/2

exp

(
−∥w∥2

∥∥∥∥(Σ(k)
)−1

∥∥∥∥∥∥∥Σ(k)
∥∥∥∥∥∥µ(k)

∥∥∥2)
≥
(
1

2

(
v⊤µ(k)

)2
− 16κ−2

∥∥∥Σ(k)
∥∥∥2 R4

∥∥∥µ(k)
∥∥∥2)

·
(
κ−1

∥∥∥Σ(k)
∥∥∥(κ∥∥∥∥(Σ(k)

)−1
∥∥∥∥+ 4R2

))−d/2

exp

(
−4R2

∥∥∥∥(Σ(k)
)−1

∥∥∥∥∥∥∥Σ(k)
∥∥∥∥∥∥µ(k)

∥∥∥2)
=
(
v⊤µ(k)

)2
Θ(1).

By Assumption 5.2,
∑p

k=1

(
v⊤µ(k)

)2
> 0 for each unit vector v ∈ Rd and since v 7→

∑p
k=1

(
v⊤µ(k)

)2
is continuous, we

conclude that Eκ[Lmask
S (w)] is αk-strongly convex on C where ακ = Θ(1). In addition, we can choose ακ small enough

so that for sufficiently large κ, ∥w∗
mask(n, κ)∥ ≤ R < α

−1/2
κ since ∥w∗

mask(n, κ)∥ = Θ(1). This choice of ακ makes it
possible to apply Lemma 4.3.

Step 4: Lower Bounds on ∥w∗
mask(n, κ)∥ for Sufficiently Large n and κ

We need lower bounds on ∥w∗
mask(n, κ)∥ that are independent of n when we apply Lemma 4.3 in our final step. However,

finding such lower bounds is challenging since we do not know the exact direction of w∗
mask(n, κ) unlike w∗(κ) and

w∗
mix(n, κ). In addition, the fact that Lmask

S (w) is dependent on n also makes it hard. Instead, we will focus on sufficiently
large n and κ and look for lower bounds independent of n, which is sufficient for our analysis.

We introduce a function Lmask
∞ : Rd → R which corresponds to the limit case of E∞[Lmask

S (w)] as n → ∞ and defined as
follows (i.e., the limit when both n and κ approach ∞):

Lmask
∞ (w) := lim

n→∞
E∞[Lmask

S (w)] =

p∑
k=1

(
akl
(
w⊤µ(k)

)
+ bkl

(
−w⊤µ(k)

)
+ ckl

(
w⊤µ

))
. (22)

Analyzing a minimizer of Lmask
∞ (w) is helpful because it is independent of n and approximates Lmask

S (w) for large enough
n and κ.

Recall that we choose i1, . . . , id ∈ [m] such that
{
µ(i1), . . . ,µ(id)

}
spans Rd in Appendix C.1. For any t ∈ [0, 1] and

w1,w2 ∈ Rd with w1 ̸= w2, at least one of k ∈ [d] satisfies

tl
(
w⊤

1 µ
(ik)
)
+ (1− t)l

(
w⊤

2 µ
(ik)
)
> l
(
(tw1 + (1− t)w2)

⊤µ(ik)
)
,

and
tl
(
−w⊤

1 µ
(ik)
)
+ (1− t)l

(
−w⊤

2 µ
(ik)
)
> l
(
−(tw1 + (1− t)w2)

⊤µ(ik)
)
.

We can conclude the strict convexity of Lmask
∞ (w). Also, since l(z) + l(−z) ≥ |z| for each z ∈ R, we have

Lmask
∞ (w) ≥ 1

2

d∑
k=1

min{aik , bik}
(
l
(
w⊤µ(k)

)
+ l
(
−w⊤µ(k)

))
≥ 1

2

d∑
k=1

min{aik , bik}
∣∣∣w⊤µ(ik)

∣∣∣ .
In Appendix C.1, we have shown that for any unit vector u ∈ Rd,

∑d
k=1 min{aik , bik}

∣∣u⊤µ(ik)
∣∣ > 0 and u 7→∑d

k=1 min{aik , bik}
∣∣u⊤µ(ik)

∣∣ has the minimum value m > 0. If ∥w∥ > R, where we previously defined R := 2 log 2
m ,
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then we have

Lmask
∞ (w) ≥ 1

2

d∑
k=1

min{aik , bik}
∣∣∣w⊤µ(ik)

∣∣∣
= ∥w∥

d∑
k=1

min{aik , bik}

∣∣∣∣∣
(

w

∥w∥

)⊤

µ(ik)

∣∣∣∣∣
≥ 1

2
∥w∥m ≥ log 2

= Lmask
∞ (0).

Hence, a minimizer of Lmask
∞ (w) contained in the ball centered origin with radius R. Together with the strict convexity, we

can conclude that Lmask
∞ (w) has the unique minimizer w∗

mask and it satisfies ∥w∗
mask∥ ≤ R.

In addition, we would like to prove that w∗
mask is nonzero. This will make our lower bounds on ∥w∗

mask(n, κ)∥ positive.
Since µ is nonzero, without loss of generality, we assume 1st coordinate of µ, namely µ1, is nonzero. We consider a weight
re1, where e1 is 1st standard basis and r > 0 which will be chosen later. We have

Lmask
∞ (re1)− Lmask

∞ (0)

=

p∑
k=1

[
ak

(
l
(
re⊤1 µ

(k)
)
− l(0)

)
+ bk

(
l
(
−re⊤1 µ

(k)
)
− l(0)

)
+ ck

(
l
(
re⊤1 µ

)
− l(0)

)]
=
∑
k∈I

[
ak
(
l (rµ1)− l(0)

)
+ bk

(
l (−rµ1)− l(0)

)
+ ck

(
l (rµ1)− l(0)

)]
,

where I ⊂ [p] is the index set satisfying 1st coordinate of M (k) is 1 for each k ∈ I. From our definition of ak, bk, ck’s,
ak + bk = ck, thus we have∑

k∈I

[
ak
(
l (rµ1)− l(0)

)
+ bk

(
l (−rµ1)− l(0)

)
+ ck

(
l (rµ1)− l(0)

)]
=
∑
k∈I

[
ak
(
l (rµ1)− l (−rµ1)

)
+ ck

(
l (rµ1)− l(0)

)]
=
∑
k∈I

[
− akrµ1 + ck

(
l (rµ1) + l (−rµ1)− 2l(0)

)]
=
∑
k∈I

ckrµ1

(
l (rµ1) + l (−rµ1)− 2l(0)

rµ1
− ak

ck

)
.

Since limz→0
l(z)+l(−z)−2l(0)

z = 0, we can choose r > 0 small enough so that l(rµ1)+l(−rµ1)−2l(0)
rµ1

< ak

ck
for all k ∈ I.

Then, we obtain Lmask
∞ (re1)− Lmask

∞ (0) < 0 and thus w∗
mask is nonzero.

Next, we would like to characterize the strong convexity of Lmask
∞ (w). For each w ∈ Rd with ∥w∥ ≤ R and unit vector

v ∈ Rd, Equation 22 implies

v⊤∇2
wLmask

∞ (w)v

=

p∑
k=1

[(
akl

′′
(
w⊤µ(k)

)
+ bkl

′′
(
−w⊤µ(k)

))(
v⊤µ(k)

)2
+ ckl

′′ (w⊤µ
)
(v⊤µ)2

]

≥ 1

2

p∑
k=1

(ak + bk)l
′′
(
R∥µ(k)∥

)(
v⊤µ(k)

)2
.

Recall that we have shown that v 7→ 1
2

∑p
k=1(ak + bk)l

′′ (R∥µ(k)∥
) (

v⊤µ(k)
)2

has minimum α > 0 on the unit sphere
{v ∈ Rd : ∥v∥ = 1} in Appendix C.1. Hence, Lmask

∞ (w) is α-strongly convex on
{
w ∈ Rd : ∥w∥ ≤ R

}
. Since

w∗
mask(n,∞) and w∗

mask are contained in
{
w ∈ Rd : ∥w∥ ≤ R

}
, we have

α

2
∥w∗

mask(n,∞)−w∗
mask∥2
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≤ Lmask
∞ (w∗

mask(n,∞))− Lmask
∞ (w∗

mask)

=
(
Lmask
∞

(
w∗

mask(n,∞)
)
− E∞

[
Lmask
S

(
w∗

mask(n,∞)
)] )

+
(
E∞

[
Lmask
S

(
w∗

mask(n,∞)
)]

− E∞
[
Lmask
S (w∗

mask)
] )

+
(
E∞

[
Lmask
S

(
w∗

mask

)]
− Lmask

∞
(
w∗

mask

))
≤
(
Lmask
∞

(
w∗

mask(n,∞)
)
− E∞[Lmask

S

(
w∗

mask(n,∞)
)
]
)
+
(
E∞[Lmask

S

(
w∗

mask

)
]− Lmask

∞
(
w∗

mask

))
.

For each w ∈ Rd with ∥w∥ ≤ R,∣∣Lmask
∞ (w)− E∞[Lmask

S (w)]
∣∣

≤ 1

n

∣∣l(w⊤µ)
∣∣+ 1

n

∣∣∣∣∣
p∑

k=1

(
akl
(
w⊤µ(k)

)
+ bkl

(
−w⊤µ(k)

)
+ ckl

(
w⊤µ

))∣∣∣∣∣
≤ 1

n

(
l(−R|µ∥) +

p∑
k=1

(
akl
(
−R

∥∥∥µ(k)
∥∥∥)+ bkl

(
−R

∥∥∥µ(k)
∥∥∥)+ ckl (−R∥µ∥)

))

=
l(−R∥µ∥)

n

(
1 +

p∑
k=1

(ak + bk + ck)

)

=
2l(−R∥µ∥)

n
.

The last two inequalities are due to
∥∥µ(k)

∥∥ = ∥µ∥ and definition of ak, bk, ck’s. Hence, we have

α

2
∥w∗

mask(n,∞)−w∗
mask∥2 ≤ 4l(−R∥µ∥)

n
. (23)

From triangular inequality, Equation 21, and Equation 23, we have

∥w∗
mask∥ ≤ ∥w∗

mask(n, κ)∥+ ∥w∗
mask(n,∞)−w∗

mask(n, κ)∥+ ∥w∗
mask −w∗

mask(n,∞)∥

≤ ∥w∗
mask(n, κ)∥+

(
8l(−R∥µ∥)

αn

)1/2

+

[
4R

ακ1/2

(
∥Σ∥1/2 +

p∑
k=1

(ak + bk + ck)
∥∥∥Σ(k)

∥∥∥1/2)]1/2 .
Thus, if

n ≥ 128l(−R∥µ∥)
α∥w∗

mask∥2
, κ ≥

64R
(
∥Σ∥1/2 +

∑p
k=1(ak + bk + ck)

∥∥Σ(k)
∥∥1/2)

α∥w∗
mask∥2

2

, (24)

then we have ∥w∗
mask(n, κ)∥ ≥ ∥w∗

mask∥
2 . Notice that the lower bounds in Equation 24 are numerical constants independent

of κ.

Step 5: Sample Complexity for Directional Convergence

Assume n and κ is large enough so that satisfies Equation 24 and ∥w∗
mask∥
2 ϵ ≤ ∥w∗

mask(n, κ)∥ϵ < ∥w∗
mask(n, κ)∥ < α

−1/2
κ

We also assume the unique existence of ŵ∗
mask,S which occurs almost surely. By Lemma 4.3, if

n ≥ 16C ′
1Mκ

α2
κ∥w∗

mask∥4ϵ4
log

(
3

δ
max

{
1,

(
8C ′

2d
1/2RLκ

ακ∥w∗
mask∥ϵ2

)d
})

=
Θ(1)

ϵ4

(
1 + log

1

ϵ
+ log

1

δ

)
,

then we have ∥w∗
mask(n, κ) − ŵ∗

mask,S∥ ≤ ∥w∗
mask∥
2 ϵ ≤ ∥w∗

mask(n, κ)∥ϵ with probability at least 1 − δ. Furthermore, if
∥w∗

mask(n, κ)− ŵ∗
mask,S∥ ≤ ∥w∗

mask(n, κ)∥ϵ, then ŵ∗
mask,S belongs to interior of C therefore, ŵ∗

mask,S is a minimizer of
Lmask
S (w) over the entire Rd. Also, we have

sim(ŵ∗
mask,S ,w

∗
mask(n, κ)) =

(
1− sin2

(
∠
(
ŵ∗

mask,S ,w
∗
mask(n, κ)

)))1/2
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≥ 1− sin
(
∠
(
ŵ∗

mask,S ,w
∗
mask(n, κ)

))
≥ 1− ϵ.

Hence, we conclude that if n = Ω(1)
ϵ4

(
1 + log 1

ϵ + log 1
δ

)
, then with probability at least 1− δ, the masking based Mixup

loss Lmask
S (w) has a unique minimizer ŵ∗

mask,S and sim(ŵ∗
mask,S ,w

∗
mask(n, κ)) ≥ 1− ϵ. □

D. Technical Lemmas
In this section, we introduce several technical lemmas that previously appeared. Before moving on, we define some
additional notation which will be used in this section.

Notation. For each (random) vector u ∈ Rk, we use (u)i to refer to the ith component of u and for each matrix
M ∈ Rk×k, we use (M)i to represent ith diagonal entry of M for i ∈ [k]. In addition, we use ∥u∥M for

(
u⊤Mu

)1/2
.

D.1. The Bayes Optimal Classifier for Dκ

To get the Bayes optimal classifier for Dκ for κ ∈ (0,∞), we have to solve the following problem:

min
w∈Rd

P(x,y)∼Dκ

[
(2y − 1)w⊤x > 0

]
. (25)

From our definition of Dκ we have

P(x,y)∼Dκ

[
(2y − 1)w⊤x > 0

]
= Px∼N(µ,κ−1Σ)

[
w⊤x > 0

]
= PZ∼N(0,1)

[
κ−1/2∥w∥ΣZ +w⊤µ > 0

]
= P

[
Z > −κ1/2w⊤µ

∥w∥Σ

]
.

Without loss of generality, consider the solution of Problem (25) with w⊤µ = 1. We can change Problem (25) to the
problem minw⊤µ=1 w

⊤Σw and by Lemma 3.3, we have our conclusion. □

D.2. Interchanging Differentiation and Expectation

We will introduce technical results related to interchanging differentiation and expectation. The following Lemma D.1 is a
slight variant of Leibniz’s rule.

Lemma D.1. Let f : U × Rk → R be a function where U is an open subset of R. Suppose a probability distribution P on
Rk satisfies the following conditions:

1. Eη∼P [f(θ,η)] < ∞ for all θ ∈ R.

2. For any θ ∈ U , ∂
∂θf(θ,η) exists for every η ∈ R.

3. There is g : Rk → R such that | ∂
∂θf(θ,η)| ≤ g(η) for each θ ∈ U and η ∈ Rk. In addition, Eη∼P [g(η)] < ∞.

Then, d
dθEη∼P [f(θ,η)] = Eη∼P

[
∂
∂θf(θ,η)

]
for all θ ∈ U .

Proof of Lemma D.1. Fix any θ ∈ U and let {hm}m∈N be any sequence of nonzero real numbers such that hm → 0 as m →
∞ and θ + hm ∈ U . Define fθ,m : R → R as fθ,m(η) = 1

hm
(f (θ + hm,η)− f (θ,η)). Then, fθ,m(η) → ∂

∂θf(θ,η)

as m → ∞. Therefore, for large enough m,
∣∣ ∂
∂θf(θ,η)− fθ,m(η)

∣∣ < 1 holds, which implies |fθ,m(η)| ≤ g(η) + 1 and
Eη∼P [g(η) + 1] = Eη∼P [g(η)] + 1 < ∞. Then, by dominated convergence theorem,

lim
m→∞

Eη∼P [f(θ + hm,η)]− Eη∼P [f(θ,η)]

hm
= lim

m→∞

Eη∼P [f(θ + hm,η)− f(θ,η)]

hm

= lim
m→∞

Eη∼P [fθ,m(η)]
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= Eη∼P

[
∂

∂θ
f(θ,η)

]
.

Since our choice of {hm}m∈N is arbitrary, d
dθEη∼P [f(θ,η)] = Eη∼P

[
∂
∂θf(θ,η)

]
.

By applying Lemma D.1, we can obtain the following lemma which makes us possible to investigate stationary points and
strong convexity constants of expected losses in the proof of our main theorems.

Lemma D.2. For any vector u ∈ Rk, positive definite matrix M ∈ Rk×k, functions f : [0, 1] → [−1, 1], g : [0, 1] → [0, 1]
and probability distribution P with support contained in [0, 1], we have

∇wEη∼P
[
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)]
]
= Eη∼P

[
Ex∼N(f(η)u,g(η)M)[l

′(w⊤x)x
]
,

and
∇2

wEη∼P
[
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)]
]
= Eη∼P

[
Ex∼N(f(η)u,g(η)M)[l

′′(w⊤x)xx⊤]
]
.

Proof of Lemma D.2. For each i ∈ [k] and x ∈ Rk, we have∣∣∣∣ ∂

∂(w)i
l(w⊤x)

∣∣∣∣ = |l′(w⊤x)(x)i| =
∣∣∣∣ (x)i

1 + ew⊤x

∣∣∣∣ ≤ |(x)i|.

Since Ex∼N(f(η)u,g(η)M)[|(x)i|] < ∞ for each η ∈ [0, 1], by Lemma D.1,

∂

∂(w)i
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)] = Ex∼N(f(η)u,g(η)M)[l
′(w⊤x)(x)i].

Also,

Ex∼N(f(η)u,g(η)M)[|(x)i|] ≤ Ex∼N(f(η)u,g(η)M)[(x)
2
i ]

1/2

=
(
g(η)(M)i + f(η)2(u)2i

)1/2
≤
(
(M)i + (u)2i

)1/2
.

Hence, Eη∼P
[
Ex∼N(f(η)u,g(η)M)[|(x)i|]

]
< ∞ because the inner expectation is uniformly bounded for all η ∈ [0, 1].

Applying Lemma D.1 again, we have

∂

∂(w)i
Eη∼P

[
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)]
]
= Eη∼P

[
Ex∼N(f(η)µ,g(η)κ−1Σ)[l

′(w⊤x)(x)i]
]
,

and we conclude

∇wEη∼P
[
Ex∼N(f(η)u,g(η)κ−1M)[l(w

⊤x)]
]
= Eη∼P

[
Ex∼N(f(η)u,g(η)κ−1M)[l

′(w⊤x)x]
]
.

For each i, j ∈ [k] and x ∈ Rk,∣∣∣∣ ∂2

∂(w)j∂(w)i
l(w⊤x)

∣∣∣∣ = ∣∣l′′(w⊤x)(x)i(x)j
∣∣ ≤ |(x)i(x)j |

4
.

Since Ex∼N(f(η)u,g(η)M)[|(x)i(x)j |] < ∞ for each η ∈ [0, 1], by Lemma D.1, we have

∂2

∂(w)j∂(w)i
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)] =
∂

∂(w)j
Ex∼N(f(η)u,g(η)M)

[
∂

∂(w)i
l(w⊤x)

]
= Ex∼N(f(η)u,g(η)M)

[
∂2

∂(w)j∂(w)i
l(w⊤x)

]
= Ex∼N(f(η)u,g(η)M)[l

′′(w⊤x)(x)i(x)j ].
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Also,
∣∣∣ ∂2

∂(w)j∂(w)i
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)]
∣∣∣ ≤ 1

4Ex∼N(f(η)u,g(η)M)[|(x)i(x)j |] and

1

4
Eη∼P

[
Ex∼N(f(η)u,g(η)M)[|(x)i(x)j |]

]
≤ 1

8
Eη∼P

[
Ex∼N(f(η)u,g(η)M)[(x)

2
i + (x)2j ]

]
=

1

8
Eη∼P

[
Ex∼N(f(η)u,g(η)M)[g(η)((M)i + (M)j) + f(η)2((u)2i + (u)2j )]

]
≤ 1

8
(Tr(M) + ∥u∥2) < ∞.

By applying Lemma D.1 again, for each i, j ∈ [k],

∂2

∂(w)j∂(w)i
Eη∼P

[
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)]
]
= Eη∼P

[
Ex∼N(f(η)u,g(η)M)

[
∂2

∂(w)j∂(w)i
l(w⊤x)

]]
,

and we conclude

∇2
wEη∼P

[
Ex∼N(f(η)u,g(η)M)[l(w

⊤x)]
]
= Eη∼P

[
Ex∼N(f(η)u,g(η)M)[l

′′(w⊤x)xx⊤]
]
.

D.3. Inequalities

Let us introduce some inequalities which are used in the proof of main theorems.

The following lemma provides us computable lower bound on the strong convexity constant.

Lemma D.3. For any z ∈ R,

l′′(z) =
ez

(ez + 1)2
≥ 1

4
e−z2/2.

Proof of Lemma D.3. Define a function f : R → R as f(z) = 1
2z

2 − 2 log(1 + ez) for each z ∈ R. Then, we have

f ′(z) = z − 2ez

1 + ez
, f ′′(z) = 1− 2ez

(ez + 1)2
> 0,

for each z ∈ R. Hence, f is a convex function and z 7→ −z − 2 log 2 is a tangent line of the graph of f(z) at z = 0.
Therefore, for each z ∈ R, we have

f(z) =
1

2
z2 − 2 log(1 + ez) ≥ −z − 2 log 2,

which implies
1

2
z2 ≥ −z + 2 log(1 + ez)− 2 log 2 = − log

(
4ez

(ez + 1)2

)
.

Thus, we conclude l′′(z) = ez

(ez+1)2 ≥ 1
4e

−z2/2 for each z ∈ R.

When we get lower bounds on ∥w∗(κ)∥ and ∥w∗
mask(n, κ)∥, the following lemma is useful.

Lemma D.4. For any z ∈ R,
z

1 + ez
≥ 1

2
z − 1

4
z2.

Proof of Lemma D.4. Define a function f : R → R as f(z) = 1
1+ez for each z ∈ R. We have

f ′(z) = − ez

(1 + ez)2
, f ′′(z) =

ez(ez − 1)

(1 + ez)3
.
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Therefore, f is convex on [0,∞) and concave on (−∞, 0]. Since z 7→ − 1
4z +

1
2 is tangent line of f(z) at z = 0, we have

f(z) =
1

1 + ez
≥ −1

4
z +

1

2
,

for any z ≥ 0 and

f(z) =
1

1 + ez
≤ −1

4
z +

1

2
,

for any z ≤ 0. By multiplying z to the inequalities above, we have our conclusion.

Together with Lemma D.3, the following lemma provide us lower bounds on strong convexity constant of expected loss
Eκ[LS(w)], Eκ[Lmix

S (w)] and Eκ[Lmask
S (w)].

Lemma D.5. Let u ∈ Rk be a vector and M ∈ Rk×k be a positive definite matrix. For any vector w ∈ Rk and unit vector
v ∈ Rk, we have

Ex∼N(u,M)

[
(v⊤x)2e−(w⊤x)2/2

]
≥max

{
(∥M−1∥+ ∥w∥2)−1,

1

2
(v⊤u)2 − ∥M∥2∥w∥4∥u∥2

}
·
(
∥M∥(∥M−1∥+ ∥w∥2)

)−k/2
exp

(
−∥w∥2∥M−1∥∥M∥∥u∥2

)
.

Proof of Lemma D.5. By changing expectation to integral form, we have

Ex∼N(u,M)

[
(v⊤x)2e−(w⊤x)2/2

]
=

∫
Rk

(2π)−k/2 det(M)−1/2︸ ︷︷ ︸
(a)

(v⊤x)2 exp

(
−1

2

(
∥x− u∥2M−1 + (w⊤x)2

))
︸ ︷︷ ︸

(b)

dx.

We can rewrite the term (a) as

det(M)−1/2 = det(M(M−1 +ww⊤)(M−1 +ww⊤)−1)−1/2

= det((I +Mww⊤)(M−1 +ww⊤)−1)−1/2

= det(I +Mww⊤)−1/2 det(M−1 +ww⊤)1/2,

and the term (b) as

exp

(
−1

2

(
∥x− u∥2M−1 + (w⊤x)2

))
= exp

(
−1

2

(
∥x∥M−1+ww⊤ − 2u⊤M−1x+ ∥u∥M−1

))
= exp

(
−1

2

(
∥x∥2M−1+ww⊤ − 2u⊤M−1(M−1 +ww⊤)−1(M−1 +ww⊤)x+ ∥u∥2M−1

))
= exp

(
−1

2

(
∥x∥2M−1+ww⊤ − 2u⊤(I +ww⊤M)−1(M−1 +ww⊤)x+ ∥u∥2M−1

))
= exp

(
−1

2

(∥∥∥x−
(
I +Mww⊤)−1

u
∥∥∥2
M−1+ww⊤

+ ∥u∥2M−1 −
∥∥∥(I +Mww⊤)−1

u
∥∥∥2
M−1+ww⊤

))
= exp

(
−1

2

∥∥∥x−
(
I +Mww⊤)−1

u
∥∥∥2
M−1+ww⊤

)
· exp

(
− 1

2

(
∥u∥2M−1 −

∥∥(I +Mww⊤)−1u
∥∥2
M−1+ww⊤

)
︸ ︷︷ ︸

(c)

)
.

Also, the term (c) can be simplified as

∥u∥2M−1 − ∥(I +Mww⊤)−1u∥2M−1+ww⊤

= u⊤M−1u− ((I +Mww⊤)−1u)⊤(M−1 +ww⊤)((I +Mww⊤)−1u)

= u⊤M−1u− (u⊤(I +ww⊤M)−1)(M−1(I +Mww⊤))((I +Mww⊤)−1u)
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= u⊤M−1u− u⊤(I +ww⊤M)−1M−1u

= u⊤(I +ww⊤M)(I +ww⊤M)−1M−1u− u⊤(I +ww⊤M)−1M−1u

= u⊤(ww⊤M)(I +ww⊤M)−1M−1u

= u⊤(ww⊤M)(M +Mww⊤M)−1u

= u⊤(ww⊤M)((I +Mww⊤)M)−1u

= u⊤ww⊤(I +Mww⊤)−1u.

Therefore, we have

Ex∼N(u,M)

[
(v⊤x)2e−(w⊤x)2/2

]
=

∫
Rd

(2π)−d/2 det(M−1 +ww⊤)1/2(v⊤x)2 exp

(
−1

2

(
∥x− (I +Mww⊤)−1u

)
∥2M−1+ww⊤

)
dx︸ ︷︷ ︸

(d)

· det(I +Mww⊤)−1/2 exp

(
−1

2
u⊤ww⊤(I +Mww⊤)−1u

)
.

By changing integral into expectation, we have

(d) = Ex∼N((I+Mww⊤)−1u,(M−1+ww⊤)−1)

[(
v⊤x

)2]
= Ez∼N(v⊤(I+Mww⊤)−1u,v⊤(M−1+ww⊤)−1v)

[
z2
]
.

From Ez∼N(m,σ2)[z2] = m2 + σ2 for each m ∈ R, σ > 0, note that

Ez∼N(v⊤(I+Mww⊤)−1u,v⊤(M−1+ww⊤)−1v)[z
2]

≥ v⊤(M−1 +ww⊤)−1v ≥ ∥M−1 +ww⊤∥−1

≥
(
∥M−1∥+ ∥w∥2

)−1
,

and

Ez∼N(v⊤(I+Mww⊤)−1u,v⊤(M−1+ww⊤)−1v)[z
2]

≥ (v⊤(I +Mww⊤)−1u)2 = (v⊤u− v⊤Mww⊤(I +Mww⊤)−1u)2

≥ 1

2
(v⊤u)2 − (v⊤Mww⊤(I +Mww⊤)−1u)2

≥ 1

2
(v⊤u)2 − ∥Mww⊤∥2∥(I +Mww⊤)−1∥∥u∥2

≥ 1

2
(v⊤u)2 − ∥M∥2∥w∥4∥u∥2.

Also,

det(I +Mww⊤) = det(M) det(M−1 +ww⊤) ≤ (∥M∥∥M−1 +ww⊤∥)k ≤ (∥M∥(∥M−1∥+ ∥w∥2))k,

and

u⊤ww⊤(I +Mww⊤)−1u = u⊤ww⊤(M−1 +ww⊤)−1M−1u

≤ ∥ww⊤(M−1 +ww⊤)−1M−1∥∥u∥2

≤ ∥ww⊤∥∥(M−1 +ww⊤)−1∥∥M−1∥∥u∥2

≤ ∥w∥2∥M∥∥M−1∥∥u∥2.

Hence, we have our conclusion.
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The following lemma makes us obtain M value in Lemma 3.5 and Lemma 4.3 when we prove the sample complexity results.

Lemma D.6. Let M ∈ Rk×k be a positive definite matrix. Then, we have

Ez∼N(0,M)

[
e∥z∥

]
≤ e4∥M∥ + 2k/2.

Proof of Lemma D.6. We have

Ez∼N(0,M)

[
e∥z∥

]
= Ez∼N(0,M)

[
e∥z∥1∥z∥≤4∥M∥

]
+ Ez∼N(0,M)

[
e∥z∥1∥z∥>4∥M∥

]
≤ e4∥M∥ + EZ∼N(0,M)

[
e

1
4∥M∥−1∥z∥2

]
,

and

Ez∼N(0,M)

[
e

1
4∥M∥−1∥z∥2

]
=

∫
Rk

(2π)−k/2 det(M)−1/2 exp

(
−1

2
x⊤
(
M−1 − 1

2
∥M∥−1I

)
x

)
dx

= det

(
M−1 − 1

2
∥M∥−1I

)−1/2

det(M)−1/2 = det

(
I − 1

2
∥M∥−1

)−1/2

≤

∥∥∥∥∥
(
I − 1

2
∥M∥−1M

)−1
∥∥∥∥∥
k/2

≤ 2k/2.

Hence, we have our conclusion.

Lastly, we introduce the lemma used in showing uniform convergence of Eκ[Lmask
S (w)] to E∞[Lmask

S (w)] as κ → ∞.

Lemma D.7. For each m ∈ R and σ > 0,

0 ≤ EX∼N(m,σ2)[l(X)]− l(m) ≤ σ.

Proof of Lemma D.7. Since l(·) is convex, by Jensen’s inequality, we have

EX∼N(m,σ2)[l(X)] ≥ l(EX∼N(m,σ2)[X]) = l(m).

Also, we have

l(m)− EX∼N(m,σ2)[l(X)] = EX∼N(m,σ2)[l(m)− l(X)] ≥ EX∼N(m,σ2)[l
′(X)(m−X)] ≥ −E[|X −m|],

where the last inequality used |l′(z)| ≤ 1 for all z ∈ R. By Cauchy-Schwartz inequality, EX∼N(m,σ2)[|X − m|] ≤
EX∼N(m,σ2)[(X −m)2]1/2 = σ. Thus, we have our conclusion.

D.4. Concentration Bounds

We introduce concentration bounds for i.i.d. random variables which we use in the proof of Lemma 3.5.

Lemma D.8. Let X1, . . . , XN
i.i.d.∼ P where P is a probability distribution on R. Suppose EX∼P

[
e|X−EX∼P [X]|] ≤ M

for some constant M > 0. Then, for any 0 < ϵ < 1,

P

[
1

N

N∑
i=1

Xi − EX∼P [X] > ϵ

]
≤ exp

(
−Cϵ2N

M

)
,

and

P

[
1

N

N∑
i=1

Xi − EX∼P [X] < −ϵ

]
≤ exp

(
−Cϵ2N

M

)
,

where C > 0 is a universal constant.
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Proof of Lemma D.8. From our definition of M , we have M ≥ 1. Choose t = ϵ
16M , then we have 0 < t < 1

2 since
0 < ϵ < 1 and M ≥ 1. From Chernoff bound, we have

P

[
1

N

N∑
i=1

Xi − EX∼P [X] > ϵ

]
≤ E

[
et(

∑N
i=1 Xi−EX∼P [X])

]
e−tNϵ,

and

P

[
1

N

N∑
i=1

Xi − EX∼P [X] < −ϵ

]
≤ E

[
et(

∑N
i=1 EX∼P [X]−Xi)

]
e−tNϵ.

Since X1, . . . , XN
i.i.d.∼ P , we have

E
[
et(

∑N
i=1 Xi−EX∼P [X])

]
e−tNϵ = E

[
et

∑N
i=1(Xi−EX∼P [X]−ϵ)

]
= EX∼P

[
et(X−EX∼P [X]−ϵ)

]N
,

and
E
[
et(

∑N
i=1 EX∼P [X]−Xi)

]
e−tNϵ = E

[
et

∑N
i=1(EX∼P [X]−Xi−ϵ)

]
= EX∼P

[
et(EX∼P [X]−X−ϵ)

]N
.

For each x ∈ R, ex ≤ 1 + x+ 1
2x

2e|x|. Thus,

EX∼P

[
et(X−EX∼P [X]−ϵ)

]
≤ EX∼P

[
1 + t (X − EX∼P [X]− ϵ) +

t2

2
(X − EX∼P [X]− ϵ)

2
e|t(X−EX∼P [X]−ϵ)|

]
= 1− ϵt+

t2

2
EX∼P

[
(X − EX∼P [X]− ϵ)

2
e|t(X−EX∼P [X]−ϵ)|

]
,

and

EX∼P

[
et(EX∼P [X]−X−ϵ)

]
≤ EX∼P

[
1 + t (EX∼P [X]−X − ϵ) +

t2

2
(EX∼P [X]−X − ϵ)

2
e|t(EX∼P [X]−X−ϵ)|

]
= 1− ϵt+

t2

2
EX∼P

[
(EX∼P [X]−X − ϵ)

2
e|t(EX∼P [X]−X−ϵ)|

]
.

Also, since x2 ≤ 4e|x|/2 for each x ∈ R, we have

EX∼P

[
(X − EX∼P [X]− ϵ)

2
e|t(X−EX∼P [X]−ϵ)|

]
≤ 4EX∼P

[
e(t+

1
2 )|X−EX∼P [X]−ϵ|

]
≤ 4EX∼P

[
e|X−EX∼P [X]|+ϵ

]
≤ 16M,

and

EX∼P

[
(EX∼P [X]−X − ϵ)

2
e|t(EX∼P [X]−X−ϵ)|

]
≤ 4EX∼P

[
e(t+

1
2 )|EX∼P [X]−X−ϵ|

]
≤ 4EX∼P

[
e|X−EX∼P [X]|+ϵ

]
≤ 16M.

Therefore, by substituting t = ϵ
16M we get

EX∼P

[
et(X−EX∼P [X]−ϵ)

]
≤ 1− ϵt+ 8Mt2 = 1− ϵ2

32M
≤ exp

(
− ϵ2

32M

)
,

and

EX∼P

[
et(EX∼P [X]−X−ϵ)

]
≤ 1− ϵt+ 8Mt2 = 1− ϵ2

32M
≤ exp

(
− ϵ2

32M

)
.
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We conclude

P

[
1

N

N∑
i=1

Xi − EX∼P [X] > ϵ

]
≤ exp

(
−Cϵ2N

M

)
,

and

P

[
1

N

N∑
i=1

Xi − EX∼P [X] < −ϵ

]
≤ exp

(
−Cϵ2N

M

)
.

where C = 1
32 .

We extend Lemma D.8 to non i.i.d. setting random variables with special types of dependency using the following two
technical lemmas.

Lemma D.9. There are disjoint sets P1, . . . , Pm ⊂ [N ]× [N ] such that [N ]× [N ] =
⋃m

i=1 Pi ∪ {(1, 1), . . . , (N,N)} and

m =

{
2N if N is odd,
2(N − 1) if N is even,

|Pk| =

{
N−1
2 if N is odd,

N
2 if N is even,

for all k ∈ [m].

That is, P1, . . . , Pm and {(1, 1), . . . , (N,N)} together form a partition of [N ]× [N ]. Furthermore, for each k ∈ [m] and
for any distinct (i1, j1), (i2, j2) ∈ Pk, {i1} ∪ {j2} and {i2} ∪ {j2} are disjoint.

Proof of Lemma D.9.
Case 1: N is odd
For each k ∈ [N ], define

P2k−1 = {(i, j) | i+ j ≡ k (mod N), i < j},
P2k = {(i, j) | i+ j ≡ k (mod N), i > j}.

It can be easily checked that these P1, . . . , P2N are what we desired.
Case 2: N is even
For each k ∈ [N − 1], there is unique ik ∈ [N − 1] such that 2ik ≡ k (mod (N − 1)). For each k ∈ [N − 1], define

P2k−1 = {(i, j) | i+ j ≡ k (mod (N − 1)), i < j} ∪ {(ik, N)},
P2k = {(i, j) | i+ j ≡ k (mod (N − 1)), i > j} ∪ {(N, ik)},

and it can be easily checked that these P1, . . . , P2(N−1) are what we desired.

This is a generalized version of Cauchy-Schwartz inequality.

Lemma D.10. Suppose X1, . . . , Xk are nonnegative random variables. Then,

E

[
k∏

i=1

Xi

]
≤

(
k∏

i=1

E
[
Xk

i

]) 1
k

.

Proof of Lemma D.10. We prove this by using induction on k. Note that the case k = 1 is trivial and k = 2 is Cauchy-
Schwartz inequality. Suppose Lemma D.10 holds for k = m. Let X1, . . . , Xm+1 be nonnegative random variables. By
Hölder inequality,

E[X1X2 · · ·Xm+1] ≤ E
[
(X1 · · ·Xm)

m+1
m

] m
m+1 E

[
Xm+1

m+1

] 1
m+1 .

From the induction hypothesis, we have

E
[
(X1 · · ·Xm)

m+1
m

]
≤

(
m∏
i=1

E
[(

X
m+1
m

i

)m]) 1
m

=

(
m∏
i=1

E
[
Xm+1

i

]) 1
m

.
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Therefore, we have

E[X1X2 · · ·Xm+1] ≤

(
m+1∏
i=1

E
[
Xm+1

i

]) 1
m+1

.

By the principle of mathematical induction, our conclusion holds for all k ∈ N.

Using the two lemmas above, we prove the following lemma which is used in the proof of Lemma 4.3.

Lemma D.11. Let {Xi,j}i,j∈[N ] be real-valued random variables satisfy followings.

• E
[
e|Xi,j−E[Xi,j ]|

]
≤ M for some M > 0.

• If {i1} ∪ {j1} and {i2} ∪ {j1} are disjoint for i1, i2, j1, j2 ∈ [n], then Xi1,j1 and Xi2,j2 are independent.

Then, for any 0 < ϵ < 1,

P

 1

N2

N∑
i,j=1

(Xi,j − E[Xi,j ]) > ϵ

 ≤ exp

(
−C ′ϵ2N

M

)
,

and

P

 1

N2

N∑
i,j=1

(Xi,j − E[Xi,j ]) < −ϵ

 ≤ exp

(
−C ′ϵ2N

M

)
,

where C ′ > 0 is a universal constant.

Proof of Lemma D.11. From Chernoff bound, we have

P

 1

N2

N∑
i,j=1

(Xi,j − E[Xi,j ]) > ϵ

 ≤ E
[
et

∑N
i,j=1(Xi,j−E[Xi,j ]−ϵ)

]
,

and

P

 1

N2

N∑
i,j=1

(Xi,j − E[Xi,j ]) < −ϵ

 ≤ E
[
et

∑N
i,j=1(E[Xi,j ]−Xi,j−ϵ)

]
,

for any t > 0. We would like to get an upper bound on E
[
et

∑N
i,j=1(Xi,j−E[Xi,j ]−ϵ)

]
and E

[
et

∑N
i,j=1(E[Xi,j ]−Xi,j−ϵ)

]
,

but the problem is that {Xi,j}i,j∈[N ] are not independent of one another. We overcome this obstacle by applying the two
lemmas above.

For our N , consider m and P1, . . . , Pm ⊂ [N ]× [N ] that we can obtain from Lemma D.9. From our definition of M , we
have M ≥ 1 and then let t = ϵ

16(m+1)M . Since we have 0 < ϵ < 1 and M ≥ 1, we can check that 0 < (m+ 1)t < 1
2 .

By Lemma D.10, we have

E
[
et

∑N
i,j=1(Xi,j−E[Xi,j ]−ϵ)

]
= E

[
et

∑N
i=1(Xi,i−E[Xi,i]−ϵ)

m∏
k=1

e
t
∑

(i,j)∈Pk
(Xi,j−E[Xi,j ]−ϵ)

]

≤

(
E
[
e(m+1)t

∑N
i=1(Xi,i−E[Xi,i]−ϵ)

] m∏
k=1

E
[
e
(m+1)t

∑
(i,j)∈Pk

(Xi,j−E[Xi,j ]−ϵ))
]) 1

m+1

=

 N∏
i=1

E
[
e(m+1)t(Xi,i−E[Xi,i]−ϵ)

] m∏
k=1

 ∏
(i,j)∈Pk

E
[
e(m+1)t(Xi,j−E[Xi,j ]−ϵ)

] 1
m+1
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=

 N∏
i,j=1

E
[
e(m+1)t(Xi,j−E[Xi,j ]−ϵ)

] 1
m+1

,

and

E
[
et

∑N
i,j=1(E[Xi,j ]−Xi,j−ϵ)

]
= E

[
et

∑N
i=1(E[Xi,i]−Xi,i−ϵ)

m∏
k=1

e
t
∑

(i,j)∈Pk
(E[Xi,j ]−Xi,j−ϵ)

]

≤

(
E
[
e(m+1)t

∑N
i=1(E[Xi,i]−Xi,i−ϵ)

] m∏
k=1

E
[
e
(m+1)t

∑
(i,j)∈Pk

(E[Xi,j ]−Xi,j−ϵ))
]) 1

m+1

=

 N∏
i=1

E
[
e(m+1)t(E[Xi,i]−Xi,i−ϵ)

] m∏
k=1

 ∏
(i,j)∈Pk

E
[
e(m+1)t(E[Xi,j ]−Xi,j−ϵ)

] 1
m+1

=

 N∏
i,j=1

E
[
e(m+1)t(E[Xi,j ]−Xi,j−ϵ)

] 1
m+1

.

For each x ∈ R, ex ≤ 1 + x+ 1
2x

2e|x|and x2 ≤ 4e|x|/2. Thus, for each (i, j) ∈ [N ]× [N ], we have

E
[
e(m+1)t(Xi,j−E[Xi,j ]−ϵ)

]
≤ 1− ϵ(m+ 1)t+

1

2
(m+ 1)2t2E

[
(Xi,j − E[Xi,j ]− ϵ)2e|(m+1)t(Xi,j−E[Xi,j ]−ϵ)|

]
≤ 1− ϵ(m+ 1)t+ 2(m+ 1)2t2E

[
e((m+1)t+ 1

2 )|Xi,j−E[Xi,j ]−ϵ|
]

≤ 1− ϵ(m+ 1)t+ 8M(m+ 1)2t2 = 1− ϵ2

32M

≤ exp

(
− ϵ2

32M

)
.

and

E
[
e(m+1)t(E[Xi,j ]−Xi,j−ϵ)

]
≤ 1− ϵ(m+ 1)t+

1

2
(m+ 1)2t2E

[
(E[Xi,j ]−Xi,j − ϵ)2e|(m+1)t(E[Xi,j ]−Xi,j−ϵ)|

]
≤ 1− ϵ(m+ 1)t+ 2(m+ 1)2t2E

[
e((m+1)t+ 1

2 )|E[Xi,j ]−Xi,j−ϵ|
]

≤ 1− ϵ(m+ 1)t+ 8M(m+ 1)2t2 = 1− ϵ2

32M

≤ exp

(
− ϵ2

32M

)
.

Thus, we obtain

E
[
et

∑N
i,j=1(Xi,j−E[Xi,j ]−ϵ)

]
≤ exp

(
− ϵ2N2

32(m+ 1)M

)
≤ exp

(
−C ′ϵ2N

M

)
,

and

E
[
et

∑N
i,j=1(E[Xi,j ]−Xi,j−ϵ)

]
≤ exp

(
− ϵ2N2

32(m+ 1)M

)
≤ exp

(
−C ′ϵ2N

M

)
,

where C ′ > 0 is a universal constant, and we have our conclusion.
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E. Detailed Experimental Settings and Additional Results of Section 6.1
E.1. Detailed Settings

In Section 6.1, we intentionally selected values for µ and Σ such that µ is not an eigenvector of Σ. This was done to ensure
that µ is distinct in a direction from Σ−1µ. Our selected value for µ and Σ is as follows, but we note that any other general
choices would work.

µ =



−0.1067
0.2572
−0.2392
0.4135
−0.2179
−0.3995
−0.1437
0.5950
0.1786
−0.2839


,

Σ =



0.4481 0.0904 −0.0128 −0.0245 0.1082 −0.2444 0.1817 0.0881 0.0308 0.0450
0.0904 0.4727 0.0578 −0.1620 0.0481 −0.0629 0.0509 −0.1300 −0.1013 −0.1706
−0.0128 0.0578 0.2477 −0.0728 −0.0490 0.1214 0.0189 0.0159 0.0064 0.1649
−0.0245 −0.1620 −0.0728 0.4457 0.0462 −0.1026 0.1188 −0.0066 −0.0757 0.1065
0.1082 0.0481 −0.0490 0.0462 0.2892 0.0268 0.1117 −0.1799 0.0617 0.1787
−0.2444 −0.0629 0.1214 −0.1026 0.0268 0.4248 −0.0868 0.0565 0.0482 0.2182
0.1817 0.0509 0.0189 0.1188 0.1117 −0.0868 0.3638 −0.0980 −0.0279 0.1658
0.0881 −0.1300 0.0159 −0.0066 −0.1799 0.0565 −0.0980 0.4999 0.0010 −0.0318
0.0308 −0.1013 0.0064 −0.0757 0.0617 0.0482 −0.0279 0.0010 0.1550 0.1723
0.0450 −0.1706 0.1649 0.1065 0.1787 0.2182 0.1658 −0.0318 0.1723 0.6230


E.2. Addtional Results of Section 6.1

We provide additional experimental results of Section 6.1. We follow the same setting described in Section 6.1 and
Appendix E.1 without fixing initial weights for various choices on the number of samples n = 50, 100, 200, 500, 1000, 2000
and the separability constant κ = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0. We plot the average cosine similarity between the Bayes optimal
direction and learned weights in Figure 4(a) and one may check that the experiments align with our theoretical findings.

In addition, we provide results on d = 20 in Figure 4(b) in order to demonstrate a dependency of a sample complexity on a
data dimension d. For the results with d = 20, we use additional values on the number of samples n = 5000, 10000 and we
choose µ ∈ R20 and Σ ∈ R20×20 as

µ =
(
µ⊤

0 ,µ
⊤
0

)⊤
,Σ =

(
Σ0 0
0 Σ0

)
,

where µ0 ∈ R10 and Σ0 ∈ R10×10 is choice of µ and Σ described in Appendix E.1. This choice makes it easy to compare
two cases d = 10 and d = 20. Comparison between Figure 4(a) and Figure 4(b) shows that sample complexities for finding
optimal decision boundary significantly increase in dimension d.
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Figure 4. The average cosine similarity between the Bayes optimal direction and learned weights
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