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Abstract
Machine learning plays an increasingly important
role in computational chemistry and materials sci-
ence, complementing expensive ab initio and first-
principles methods. However, machine-learned
interatomic potentials (MLIPs) often struggle
with generalization and robustness, leading to un-
physical energy and force predictions in atom-
istic simulations. To address this, we propose
a physics-informed, weakly supervised training
framework for MLIPs. Our method introduces
two novel loss functions: one based on Taylor
expansions of the potential energy and another
enforcing conservative force constraints. This
approach enhances accuracy, particularly in low-
data regimes, and reduces the reliance on large,
expensive training datasets. Extensive experi-
ments across benchmark datasets show up to 2×
reductions in energy and force errors for multi-
ple baseline models. Additionally, our method
improves the stability of molecular dynamics sim-
ulations and facilitates effective fine-tuning of ML
foundation models on sparse, high-accuracy ab
initio data. Code and scripts to reproduce the ex-
periments are available at https://github.
com/nec-research/PICPS-ML4Sci.

1. Introduction
Ab initio and first-principles methods are essential for the
computational exploration of molecular and material prop-
erties in the chemical sciences and engineering (Parrinello,
1997; Carloni et al., 2002; Iftimie et al., 2005). How-
ever, commonly employed ab initio and first-principles ap-
proaches such as coupled cluster (CC) (Purvis & Bartlett,
1982; Bartlett & Musiał, 2007) and density functional theory
(DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965),
respectively, require substantial computational resources.
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As a result, they are typically limited to small- or medium-
sized systems and short simulation times, which constrains
their applicability and the accuracy of predicted proper-
ties. Classical force fields can extend these length and time
scales, providing a computationally efficient alternative to
first-principles approaches but often lack accuracy. Machine-
learned interatomic potentials (MLIPs) offer a promising
compromise between the accuracy of first-principles meth-
ods and the efficiency of classical force fields (Smith et al.,
2017; Chanussot et al., 2021; Unke et al., 2021; Merchant
et al., 2023; Kovács et al., 2023; Batatia et al., 2023).

Despite their promise, MLIPs face significant challenges.
In particular, they require training datasets that compre-
hensively cover both configurational (atomic positions) and
compositional (atomic types) spaces, typically generated via
molecular dynamics (MD) simulations based on ab initio or
first-principles methods. Due to the high computational cost
of these simulations, the resulting datasets are often sparse,
limiting the ability of MLIPs to generalize to new molecular
and material systems.

Active learning has been used to address the challenge of
data sparsity (Li et al., 2015; Vandermause et al., 2020; Za-
verkin & Kästner, 2021; Zaverkin et al., 2022; van der Oord
et al., 2023; Zaverkin et al., 2024b), but it still relies on the
generation of a substantial amount of first-principles data,
typically using DFT, to train an initial model capable of
guiding phase space exploration through extended MD sim-
ulations. This motivates the development of methods that
can complement active learning by reducing the reliance on
expensive data acquisition. Moreover, MLIPs often suffer
from limited generalization and robustness during MD simu-
lations, exhibiting sensitivity to outliers and local structural
perturbations. These issues stem largely from the insuffi-
cient coverage of configurational and compositional spaces
in existing datasets and data generation workflows.

Contributions. This paper addresses the challenges of train-
ing machine-learned interatomic potentials (MLIPs) with
limited data by proposing a physics-informed weakly super-
vised learning (PIWSL) approach. The method enables an
accurate prediction of potential energies and atomic forces
in systems subjected to local perturbations. The main con-
tributions are: (i) We introduce PIWSL based on fundamen-
tal physical principles, such as the conservative nature of
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Figure 1: Schematic illustration of physics-informed weakly supervised losses used in this work. (a) Taylor-expansion-
based weak label (WL) loss with approximate labels obtained from reference energies and atomic forces (Cooper et al.,
2020). (b) Physics-inspired Taylor-expansion-consistency (PITC) loss with approximate labels obtained from energies and
atomic forces predicted by an MLIP. (c) Physics-inspired spatial consistency (PISC) loss with approximate labels obtained
from energies and atomic forces predicted by an MLIP. Here, E(S;θ) and Fi(S;θ) denote the potential energy and atomic
forces predicted by an MLIP parametrized by θ, S and Sδr define the original atomic structure and the one perturbed by δr.

forces. By leveraging a Taylor expansion of the potential en-
ergy, we derive two novel physics-informed loss functions,
physics-informed Taylor consistency (PITC) and physics-
informed spatial consistency (PISC), which form the core
of the PIWSL framework (illustrated in figure 1b and c).
(ii) Through extensive experiments, we demonstrate that
PIWSL enables effective training of MLIPs without access
to large datasets and enhances robustness during molecular
dynamics (MD) simulations. (iii) We show that PIWSL
improves the accuracy of total energy and atomic force pre-
dictions, even when force labels are unavailable. This is par-
ticularly relevant for fine-tuning MLIP foundation models
with reference ab initio energies, where force calculations
(e.g., at the CCSD(T)/CBS level) are often computationally
prohibitive (Smith et al., 2019; 2020; Zaverkin et al., 2023;
Hobza & Šponer, 2002; Feller et al., 2006). (iv) Finally, PI-
WSL reduces sensitivity issues in MD simulations caused by
small training datasets by explicitly modeling the response
of the potential energy to local atomic perturbations.

2. Related Work
Machine-Learned Interatomic Potentials. The field of
machine-learned interatomic potentials (MLIPs) emerged
over two decades ago (Blank et al., 1995) and has been one
of the most active research directions since then (Behler
& Parrinello, 2007; Artrith et al., 2011; Artrith & Urban,
2016; Smith et al., 2017; Shapeev, 2016; Schütt et al., 2017;
Thomas et al., 2018; Unke & Meuwly, 2019; Drautz, 2019;
Zaverkin & Kästner, 2020; Zaverkin et al., 2021; Thomas
et al., 2018; Schütt et al., 2021; Shuaibi et al., 2021a; Pas-
saro & Zitnick, 2023; Liao et al., 2023; Batatia et al., 2022;
Batzner et al., 2022; Musaelian et al., 2023; Duval et al.,
2023; Zaverkin et al., 2024a). The development of local

higher-body-order representations (Shapeev, 2016; Drautz,
2019; Zaverkin & Kästner, 2020; Zaverkin et al., 2021) and
the emergence of equivariant message-passing neural net-
works (MPNNs) (Thomas et al., 2018; Schütt et al., 2021;
Shuaibi et al., 2021a; Passaro & Zitnick, 2023; Liao et al.,
2023; Batzner et al., 2022; Musaelian et al., 2023; Batatia
et al., 2022; Zaverkin et al., 2024a) significantly advanced
the field. These methods enable the cost-efficient generation
of accurate MLIPs for modeling interactions in many-body
atomic systems and account for crucial inductive biases,
such as the invariance of the potential energy under rota-
tion. The evaluation of MLIPs for MD simulations has been
addressed in previous work (Fu et al., 2023; Bihani et al.,
2024).

Physics-Informed Machine Learning. Physics-informed
machine learning aims to embed known physical princi-
ples into the machine learning process. In the context of
MLIPs, models based on equivariant message passing neu-
ral networks (MPNNs) enforce rotational invariance of the
predicted potential energy by design. These models lever-
age equivariant features to capture and construct many-body
interactions in a manner consistent with the symmetries
of the underlying physical system (Thomas et al., 2018;
Batzner et al., 2022; Batatia et al., 2022; Musaelian et al.,
2023; Liao et al., 2023; Zaverkin et al., 2024a). Further-
more, physics constraints can be integrated via auxiliary loss
functions, prompting ML models to learn important phys-
ical relationships, as demonstrated for physics-informed
neural networks (PINNs) (Raissi et al., 2019; Cai et al.,
2022), which learn to model solutions of partial differen-
tial equations by minimizing residuals during training. The
application of physics-informed machine learning to molec-
ular modeling has garnered increasing interest in both the
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machine learning and computational chemistry communi-
ties (Godwin et al., 2022; Shui et al., 2022; Ni et al., 2024;
Liao et al., 2024). In particular, DeNS (Liao et al., 2024),
an extension of NoisyNode (Godwin et al., 2022) designed
for non-equilibrium structures, shares several similarities
with our approach. PIWSL differs from DeNS in two key
aspects: (1) PIWSL does not require force labels, allow-
ing it to fine-tune models using only energy data, which
is useful for high-accuracy methods like CCSD(T)/CBS;
and (2) PIWSL operates without modifying the underlying
model architecture, whereas DeNS introduces architectural
changes via an additional force module. The potential to
combine these two methods to enhance performance re-
mains an open and promising direction for future research.
Previous work by Cooper et al. (2020) has provided key
motivation for our current research and is discussed in more
detail in subsequent sections.

3. Background and Problem Definition
Machine-Learned Interatomic Potentials. An atomic con-
figuration, denoted as S = {ri, Zi}Nat

i=1, comprises Nat

atoms characterized by their positions ri ∈ R3 and atomic
numbers Zi ∈ N. We consider machine-learned interatomic
potentials (MLIPs) that map atomic configurations to scalar
energies, i.e., fθ : S 7→ E ∈ R, where θ denotes train-
able parameters. Let E(S;θ) be the energy predicted by an
MLIP for configuration S. In most MLIPs, atomic forces
are obtained as the negative gradient of the potential energy
with respect to atomic positions:

Fi (S;θ) = −∇riE (S;θ) .

Hence, these MLIPs ensure that the resulting forces are
conservative (curl-free) and the total energy is conserved
during a dynamic simulation. However, some models are
designed to predict atomic forces directly (Hu et al., 2021;
Passaro & Zitnick, 2023; Liao et al., 2023; Chanussot et al.,
2021). While this approach avoids expensive gradient com-
putations, it does not enforce energy conservation (Chmiela
et al., 2017).

Trainable parameters θ are optimized by minimizing loss
functions on training data D comprising a total of Ntrain

atomic configurations {S(k)}Ntrain

k=1 as well as their energies
{Eref

S }S∈D and atomic forces {{Fref
i,S}Nat

i=1}S∈D:

L (D;θ) =
∑
S∈D

L (S;θ)

=
∑
S∈D

[
Ceℓ

(
E (S;θ) , Eref

S
)

+ Cf

Nat∑
i=1

ℓ
(
Fi(S;θ),Fref

i,S
) ]

. (1)

Here, ℓ denotes a point-wise loss function such as the abso-
lute and squared error between the predicted and reference
total energies and atomic forces. Typically, reference en-
ergies Eref

S and atomic forces Fref
i,S are computed with ab

initio or first-principles methods such as CC or DFT, respec-
tively. The relative contributions of energies and forces in
the loss function of Eq. (1) are balanced by the weighting
coefficients Ce and Cf .

Weakly Supervised Learning. Generating many reference
labels with a first-principles approach is challenging due to
the high computational cost. Furthermore, the calculation
of atomic forces can be infeasible for some high-accuracy
ab initio methods, e.g., for CCSD(T)/CBS. In this work, we
focus on weakly supervised learning methods to improve
the performance of MLIPs in scenarios where only a limited
amount of data is available. These involve the generation
of approximate but physically motivated total energies for
atomic structures generated by small perturbations of their
atomic positions, i.e., Sδr = {ri + δri, Zi}Nat

i=1 with a per-
turbation vector δr, where δri is the perturbation vector
for atom i. Approximate labels are computed with MLIPs
during their training.

4. Physics-informed Weakly Supervised
Learning

Generating approximate labels for weakly supervised loss
functions for MLIPs is particularly challenging. Small
perturbations in atomic structures can lead to significant
changes in energies and atomic forces, making standard
weak supervision techniques, effective in many ML do-
mains (Yang et al., 2022), inapplicable in this context. To
overcome this, we propose a physics-informed weakly su-
pervised learning (PIWSL) approach that leverages known
physical principles. Specifically, our method incorporates
(i) a Taylor expansion of the potential energy to model the
system’s local response to atomic displacements, and (ii) a
spatial consistency loss that encourages consistent energy
differences along two distinct spatial paths, composed of
three perturbation vectors in total, from a common refer-
ence configuration to the same target structure. These two
components are combined into the PIWSL loss, which aug-
ments the supervised objective with physically grounded
weak supervision, improving both robustness and accuracy.

4.1. Physics-Informed Taylor-Expansion-Based
Consistency Loss

This section introduces the physics-informed Taylor-
expansion-based consistency (PITC) loss. Particularly, we
relate the energy predicted directly for a displaced atomic
configuration with the energy obtained by the Taylor expan-
sion from the original configuration; see figure 1 (b). We
estimate the energy for an atomic structure S drawn from
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the training dataset with atomic positions displaced by a
vector δr: Sδr = {ri + δri, Zi}Nat

i=1. For this atomic config-
uration, we expand the energy predicted by an MLIP in its
second-order Taylor series around the atomic perturbation
vector δri and obtain

E (Sδr;θ) ≈ E (S;θ)−
Nat∑
i=1

[⟨δri,Fi (S;θ)⟩

+k2nd⟨δri,Fi (Sδr;θ)− Fi (S;θ)⟩] +O
(
∥δr∥3

)
, (2)

where ⟨·⟩ denotes the inner product, and we used the fol-
lowing relation between forces and gradients of the energy
Fi ≡ −∇iE, i.e., defined as the negative gradients of the
potential energy. The parameter k2nd controls the contribu-
tion of the second-order term. Setting k2nd = 1/2 recovers
the exact second-order Taylor expansion, while k2nd = 0
leads to the first-order approximation1. Using approximate
labels E (Sδr;θ), we define the PITC loss as

LPITC (S;θ) = ℓ
(
E (Sδr;θ) , E (S;θ)

−
Nat∑
i=1

⟨δri, (1− k2nd)Fi (S;θ) + k2ndFi (Sδr;θ)⟩
)
, (3)

where ℓ denotes a point-wise loss for regression problems
and δr is either randomly sampled or determined adversari-
ally; see section 4.4 for more details. Hence, whenever we
encounter a structure S in a batch during training, a new δr
is computed for each S. Empirically, second-order terms
become important when MLIP prediction errors approach
the accuracy limit of first-order approximations, i.e., when
first-order terms alone no longer suffice to improve accu-
racy, or when the dataset predominantly consists of relaxed
structures.

4.2. Physics-Informed Spatial-Consistency Loss

We propose a physics-informed approach for generating
weak labels, grounded in the principle of conservative forces.
Specifically, we leverage the property that the energy dif-
ference between two points on a potential energy surface is
independent of the path taken. To construct the weak super-
vision signal, we consider two distinct paths from a common
reference point to the same target point, each composed of a
sequence of perturbation vectors. An example of two such
paths is illustrated in 1(c). The proposed loss compares the
energy obtained by directly displacing the atomic positions
of the original configuration S (denoted as A) by δr (from
A to C), with the energy obtained through two consecutive
perturbations: δr′ (from A to B) followed by δr′′ (from B
to C).

For the first path, we directly predict the energy with an
MLIP, i.e., E (Sδr;θ), which is related to the approximated

1A more detailed derivation is provided in section D.2.2.

energy at r+δr using Eq. (3) through the PITC loss. For the
second path, we directly compute the energy E (Sδr′ ;θ) for
atomic positions displaced by δr′, and use it to approximate
E (Sδr;θ) after applying the second perturbation vector
δr′′ ≡ δr− δr′. The physics-informed spatial consistency
(PISC) loss is formally defined as

LPISC (S;θ) = ℓ
(
E (Sδr;θ) , EPITC (Sδr′ , δr

′′;θ)
)
, (4)

where EPITC (Sδr, δr
′;θ) is the potential energy estimated

via PITC formula in Eq. (2) from the configuration Sδr

perturbed by δr′. After jointly training with the PITC and
PISC losses, the three distinct estimations at Sδr become
spatially consistent. Importantly, our approach, grounded
in the conservative nature of interatomic forces, is not re-
stricted to configurations involving two perturbation paths
or three perturbation vectors. We explore several alternative
consistency configurations in section D.2.

4.3. Combined Physics-Informed Weakly Supervised
Loss

Together with the usual MLIP loss function defined in
Eq. (1), the overall objective, which we refer to as the PI-
WSL loss, can be written as

argmin
θ

L̃ (D;θ) = argmin
θ

∑
S∈D

(L (S;θ)

+CPITCLPITC (S;θ) + CPISCLPISC (S;θ)) , (5)

where CPITC and CPISC are the weights of the weakly
supervised PITC and PISC losses.

4.4. Perturbation Directions and Magnitudes

The effectiveness of the proposed approach depends on
appropriate choices of the perturbation vectors δr. We in-
troduce and justify various strategies for generating the
perturbations used in Eq. (3) and Eq. (4). Any vector δr can
be written as δr ≡ ϵg/∥g∥2, where ϵ is the magnitude of δr
and g/∥g∥2 is its direction. Physical constraints can limit
ϵ. Specifically, we can obtain the maximum perturbation
length from the validity of the Taylor expansion in Eq. (2),
which, as discussed in section 5.3, is typically given as at
most 30% of the original bond length whose shortest exam-
ple is the bond between carbon and hydrogen atoms, about
1.09 Å; see also figure 2 (c) and (d). The specific values of
ϵ chosen for our experiments are provided in section B.1.

To determine g/∥g∥2 we explore two strategies. First, we
compute it as the unit vector of a perturbation vector sam-
pled from the uniform distribution on the interval (−1, 1)
for each direction

δrrnd ≡ ϵg/∥g∥2. (6)

Second, we compute an adversarial direction following the
approach proposed by Goodfellow et al. (2014); Miyato
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et al. (2018). This direction is defined as the gradient of the
loss with respect to the atomic coordinates r, indicating the
direction in which the prediction error increases most rapidly
for the current predicted energy. Assuming an L2-norm
constraint on the perturbation magnitude, the adversarial
direction can be approximated as in Miyato et al. (2018)

δradv ≡ ϵg/∥g∥2, where g = ∇rLdist(y
pred,yref), (7)

where Ldist denotes a distance-based objective function that
is maximized by introducing the adversarial perturbation
δradv with ypred and yref representing the model prediction
and reference values, respectively. For computational effi-
ciency, we primarily employ the random perturbation strat-
egy defined in Eq. (6) in our experiments. A quantitative
comparison between random and adversarial perturbation
directions is presented in section E.

5. Experiments
We evaluate our method through extensive experiments de-
signed to address the following objectives: (1) compare
PIWSL with established baselines, (2) analyze the effect of
PIWSL using the aspirin molecule, including molecular dy-
namics (MD) simulations, and (3) assess PIWSL’s ability to
enhance foundation model finetuning on sparse datasets, par-
ticularly for energy and force prediction tasks where force
labels are unavailable.2 Unless otherwise noted, our experi-
ments use the first-order PITC. For the MD17 and MD22
datasets, however, the second-order term is incorporated to
meet target accuracy requirements.3

5.1. Models and datasets

We trained the following representative models that are
provided in the Open Catalyst code base (Chanussot et al.,
2021): SchNet (Schütt et al., 2017), PaiNN (Schütt et al.,
2021), SpinConv (Shuaibi et al., 2021a), eSCN (Passaro
& Zitnick, 2023), and Equiformer v2 (Liao et al., 2023),
covering MLIPs with a smaller (SchNet, SpinConv, PaiNN)
and larger number of parameters (eSCN, Equiformer v2).
Moreover, we also considered the MACE model (Batatia
et al., 2022), a state-of-the-art model that we use to evaluate
the impact of PIWSL on the MD17(CCSD) and MD22
dataset. Unless otherwise mentioned and except for SchNet,
forces are directly predicted and not computed through the
negative gradient of the energy. The results where forces
are computed as negative energy gradients are analyzed in
section E.1 and section D.9.

2Additional results are presented in section E, including: (4) a
comparison with a prior weakly supervised method, (5) an ablation
study, and (6) an analysis of random versus adversarial perturbation
vectors.

3The impact of the second-order term is discussed in sec-
tion E.5.

To evaluate the effect and dependency of the physics-
informed weakly supervised approach in detail, we per-
formed the training on various datasets: ANI-1x as a hetero-
geneous molecular dataset (Smith et al., 2020), TiO2 as a
dataset for inorganic materials (Artrith & Urban, 2016)4, the
revised MD17 (rMD17) dataset containing small molecules
with sampled configurational spaces for each (Chmiela et al.,
2017; 2018; Christensen & von Lilienfeld, 2020), the MD22
dataset containing larger molecules (Chmiela et al., 2023),
and LMNTO as another material dataset (Cooper et al.,
2020); the benchmark results for rMD17, MD22, and LM-
NTO are provided in section D.1. The detailed description
of each dataset is provided in section B.3.

5.2. Benchmark Results

We compare models trained using the PIWSL loss (see
Eq. (5)) with baseline models trained using the standard
supervised loss only (see Eq. (1)). We also compare our
approach to a recently proposed data augmentation method
that incorporates the task of denoising random perturba-
tions of the atomic coordinates into the learning objective
(NoisyNode) (Godwin et al., 2022). A comparison with
weak label method (Cooper et al., 2020) is provided in sec-
tion E. More details on the setup are provided in section B.1.
In the following, all evaluation metrics are computed for the
test dataset.

Heterogeneous Molecular Dataset – ANI-1x. The re-
sults provided in Table 1 show that our approach improves
the baseline models’ performance in almost all cases. In
particular, the error reduction for the predicted energies is
often between 10 % and more than 50 %. Interestingly, we
observe an improved accuracy for potential energies and
atomic forces because we include force prediction in PITC
and PISC losses, different from the previous work (Cooper
et al., 2020). In most cases, except for SchNet, the data aug-
mentation method (NoisyNode) deteriorates the accuracy
of the MLIPs because it does not incorporate the proper
response of the energy and atomic forces to the perturbation
of atomic positions.

Dependence on Size of Training Data – ANI-1x. We train
MLIPs with training set sizes of [50, 102, 103, 104, 105,
106, 5 × 106]. The results for training data sizes of 105,
106, and 5 × 106 are provided in section D.1. The results
are plotted in figure 2 (a) and (b). Although the observed
error reduction depends strongly on the type of MLIP used,
the benefit of the weakly supervised losses often decreases
slightly with the number of training samples. This result can
be expected as the area covered by the weakly supervised
losses is also gradually covered by the reference data as the
number of training samples increases. Moreover, the gain in

4A review of solid-state materials datasets for MLIP training
can be found in (Lee et al., 2023), for example.
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Table 1: Energy (E) and force (F) root-mean-square errors (RMSEs) for the ANI-1x dataset. The results are obtained
by averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNet E 65.09 ± 2.42 57.39 ± 0.05 60.30 ± 1.77 31.49 ± 0.01 31.10 ± 0.00 31.50 ± 0.00
F 29.06 ± 0.19 25.62 ± 0.01 28.20 ± 0.60 18.94 ± 0.01 18.10 ± 0.00 18.93 ± 0.00

PaiNN E 168.01 ± 1.22 464.55 ± 6.91 109.89 ± 11.46 56.62 ± 2.80 305.76 ± 33.93 24.53 ± 0.48
F 21.33 ± 0.10 20.82 ± 0.03 18.76 ± 0.30 12.96 ± 0.06 14.25 ± 0.18 11.43 ± 0.05

SpinConv E 162.14 ± 7.55 147.73 ± 2.23 130.97 ± 8.58 43.59 ± 1.71 299.33 ± 419.10 39.44 ± 1.31
F 21.22 ± 0.43 21.08 ± 0.43 21.61 ± 0.44 14.51 ± 1.07 15.83 ± 0.75 13.59 ± 0.20

eSCN E 214.52 ± 7.55 521.92 ± 12.05 183.70 ± 9.79 59.59 ± 8.92 241.34 ± 20.16 21.03 ± 0.56
F 20.07 ± 0.27 23.68 ± 0.11 19.69 ± 0.05 12.50 ± 0.78 14.42 ± 0.84 11.83 ± 0.12

Equiformer E 398.71 ± 13.69 632.38 ± 0.11 154.98 ± 8.83 54.52 ± 4.52 854.33 ± 317.7 20.89 ± 0.50
F 20.71 ± 0.05 21.82 ± 0.01 20.55 ± 0.05 10.10 ± 0.00 24.79 ± 2.05 9.68 ± 0.03

Table 2: Energy (F) and force (F) root-mean-square errors (RMSEs) for the TiO2 dataset. The results are obtained by
averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 2000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNeta E 17.21 ± 0.00 19.68 ± 0.00 17.08 ± 0.00 10.16 ± 0.00 44.44 ± 0.00 10.14 ± 0.00
F 2.84 ± 0.00 2.70 ± 0.00 2.83 ± 0.00 1.87 ± 0.00 7.45 ± 0.00 1.85 ± 0.00

PaiNNb E 14.41 ± 0.16 n/ab 13.95 ± 0.09 2.44 ± 0.03 n/ab 2.30 ± 0.10
F 1.59 ± 0.01 n/ab 1.56 ± 0.01 0.27 ± 0.02 n/ab 0.24 ± 0.00

SpinConv E 20.00 ± 0.42 18.76 ± 0.74 16.98 ± 0.99 2.78 ± 0.67 2.76 ± 0.42 2.05 ± 0.39
F 1.58 ± 0.03 1.53 ± 0.03 1.59 ± 0.03 0.67 ± 0.15 0.61 ± 0.09 0.61 ± 0.05

eSCN E 16.41 ± 1.10 20.92 ± 0.00 12.63 ± 0.78 1.78 ± 0.07 20.90 ± 0.00 0.90 ± 0.09
F 1.57 ± 0.04 1.66 ± 0.00 1.44 ± 0.03 0.42 ± 0.17 1.66 ± 0.00 0.16 ± 0.01

Equiformer E 18.21 ± 0.02 19.06 ± 0.02 13.93 ± 0.09 1.73 ± 0.05 18.54 ± 0.10 1.27 ± 0.02
F 1.56 ± 0.01 1.64 ± 0.00 1.51 ± 0.19 0.13 ± 0.01 1.59 ± 0.00 0.13 ± 0.00

a We used a larger batch size of 32 for SchNet since we obtained extremely high errors for the batch size of 4. A more detailed discussion
of the experimental results for SchNet is provided in section D.1.
b Because of a numerical instability of PaiNN when perturbing atomic coordinates, the cutoff radius is reduced from 12 Å to 5 Å in this
experiment. Predicted values become n/a when atomic configurations are perturbed.

accuracy of energy predictions is more significant than that
for forces trained only indirectly through the consistency
constraint in PITC; see Eq. (3). Finally, it is shown that the
improvement is more significant for highly parameterized
MLIPs, which benefit the most from increasing the training
data size through PIWSL.

Inorganic Bulk Materials – TiO2. Titanium dioxide (TiO2)
is a highly relevant metal oxide for industrial applications,
featuring several high-pressure phases. Thus, ML models
should be able to predict total energies and atomic forces for
various high-pressure phases of TiO2, considering periodic
boundaries (relevant when aggregating over the local atomic
neighborhood). The results for trained models are provided
in Table 2. Similar to the ANI-1x dataset, our approach
improves the accuracy of predicted energies and atomic
forces. Interestingly, even when the error in the potential
energy for 2000 training configurations reaches small RMSE

values, close to or even less than 1 kcal/mol in predicted
energy, the PIWSL still reduces the error. This observation
indicates strong evidence of the effectiveness of PIWSL
applied to bulk materials.

5.3. Qualitative Impact of PIWSL

We evaluate the prediction variance and robustness of an
MLIP model trained with PIWSL using the aspirin molecule,
focusing on the potential energy’s dependence on the C–H
bond length. In this work, robustness refers to the prediction
robustness of an MLIP to perturbations in atomic coordi-
nates. In the literature, the robustness of MLIPs also means
their stability during MD simulations. We train PaiNN on
the rMD17 aspirin dataset using 100 and 200 configurations
with and without the PIWSL loss. The detailed training
setup and errors of the used MLIPs are summarized in sec-
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Figure 2: (a, b) Relative performance gains for MLIPs trained with PIWSL compared to those trained without it and
(c, d) potential energy profiles for a C–H bond of the aspirin molecule. Relative performance gains are evaluated for (a)
energy (E-) and (b) force (F-) RMSEs as: RMSEPIWSL/RMSEBaseline. These results are presented for the ANI-1x dataset.
Potential energy profiles for a C–H bond of the aspirin molecule are presented for models trained using (c) 100 and (d) 200
configurations. The red and blue arrows indicate the direction from the original structure (E(S;θ)) to the perturbed one
(E(Sδr;θ)), as defined by Eq. (2), for the baseline and PIWSL model predictions, respectively.
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Figure 3: Stability analysis of the MLIP models during MD simulations. (a) Stability during MD simulations is assessed
for the baseline MLIP models and those trained with PIWSL. Left/Middle: Models with the direct force branch. Right:
Models with forces computed as negative gradients of the energy. All results are obtained for the aspirin molecule and MD
simulations in the microcanonical (NVE) statistical ensemble. We measure stability during MD simulations according to Fu
et al. (2023). (b) Plots of the total energy conservation observed in MD simulations using MLIP models with a force branch
trained on 1,000 samples, with and without the proposed loss.

tion D.3.1. We examine the potential energy varying the
length of a C–H bond from 0.9 Å to 1.4 Å. The equilibrium
C–H bond length is about 1.09 Å. The results in figure 2
(c) and (d) demonstrate that the PIWSL method improves
the predicted potential energy profile, indicating improved
robustness under perturbations of atom coordinates.

Although the estimated potential energies do not always
match the reference values, the direction between the orig-
inal and perturbed configurations, indicated by arrows in
figure 2, consistently follows the gradient of the reference
potential energy, corresponding to the negative force. In fig-
ure 2, we use a perturbation length of ||δr|| = 0.01 Å. This
consistency with the energy gradient underscores the effec-
tiveness of the PIWSL method, ensuring alignment between
predicted total energies and forces, and improving the corre-
sponding RMSE values. As discussed in section 4.2, PIWSL
also addresses a key limitation of MLIPs that employ sepa-

rate force branches and do not guarantee the prediction of
conservative forces. The proposed method reduces the curl
of the predicted forces, as detailed in section D.10, although
complete elimination of the curl remains a challenge. In
summary, PIWSL minimizes individual energy and force
errors, thereby enhancing the overall accuracy of MLIPs.

To further assess PIWSL’s impact, we evaluate the robust-
ness during MD simulations of the MLIP models trained
with and without PIWSL. We consider MD simulations of
the aspirin molecule, with corresponding results presented
in figure 3. We measured stability following the approach
proposed in Fu et al. (2023). A detailed experimental setup
is provided in section D.3.2. The results demonstrate that
PIWSL improves the stability of MD simulations for both
the direct and gradient-based force prediction models. The
simulation times in figure 3 are shorter than those reported
by Fu et al. (2023). This difference arises from our choice
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to perform MD simulations in the microcanonical (NVE)
statistical ensemble instead of the canonical (NVT) statis-
tical ensemble in Fu et al. (2023) to assess stability more
accurately without the influence of a thermostat. Results
for MD simulations conducted in the canonical statistical
ensemble are provided in section D.3.2. Figure 3 shows the
time evolution of the total energy during MD simulations,
demonstrating that total energy is conserved within a 0.05 %
deviation until molecular degradation occurs. These results
indicate that PIWSL enhances the stability of MD simula-
tions without compromising total energy conservation.

5.4. Fine-Tuning of Foundation Models

In this section, we present a case study demonstrating the
application of PIWSL to the fine-tuning of foundation mod-
els using a sparse dataset. The detailed experimental setup
is provided in section D.4. First, we consider fine-tuning
MACE-OFF (large) (Kovács et al., 2023), a MACE model
pre-trained on the SPICE dataset (Eastman et al., 2023),
including QMugs and liquid water subsets (Isert et al., 2022;
Schran et al., 2021).5 The foundation model is fine-tuned
using the aspirin dataset with energies and forces evaluated
at the CCSD level of theory (CCSD/cc-pVDZ) (Chmiela
et al., 2018). In the following, we consider a more challeng-
ing scenario, e.g., where CC energies are extrapolated to the
CBS limit, where force labels are typically unavailable due
to the high computational cost.

We follow the fine-tuning procedure outlined in the official
repository,6, adjusting the learning rate from 10−2 to 10−3

to enhance the final accuracy of the model. The results,
presented in Table 3, show that PIWSL significantly im-
proves model accuracy, achieving approximately 40 % lower
RMSE values. Notably, the model trained with PIWSL on
512 samples performs similarly to the model trained without
it, using nearly doubled training set size, i.e., 950 configu-
rations. These results highlight the data efficiency of our
approach. Furthermore, both fine-tuned MACE-OFF mod-
els outperform models trained from scratch.

We further evaluate the effectiveness of PIWSL on datasets
comprising conformations of a single large molecule.
Specifically, we consider the buckyball catcher molecule
from the MD22 dataset (Chmiela et al., 2023), which con-
tains 148 atoms. For this experiment, we fine-tune two
foundation models, MACE-MP (large) (Batatia et al., 2023)
and MACE-OFF (large) (Kovács et al., 2023), using only
50 samples to explore the sparse data regime. As shown
in Table 4, PIWSL consistently improves fine-tuning per-
formance. Notably, MACE-OFF outperforms MACE-MP,

5As the official MACE repository supports only a gradient-
based force model, our analysis is restricted to this case.

6https://mace-docs.readthedocs.io/en/
latest/guide/finetuning.html

Table 3: Results for models trained on the MD17(CCSD)
dataset without reference atomic forces. All models are
trained on aspirin data without force labels. Energy RMSE
is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Model Samples Epoch Baseline PIWSL

MACE-OFF 950 100 E 1.21 ± 0.00 0.72 ± 0.01
Fa 6.90 ± 0.01 3.77 ± 0.13

MACE-OFF 512 100 E 2.03 ± 0.03 1.21 ± 0.02
Fa 10.96 ± 0.13 6.55 ± 0.27

MACE (scratch) 950 1000 E 3.27 ± 0.16 2.10 ± 0.30
Fa 18.05 ± 0.82 10.99 ± 0.18

a We evaluated the accuracy of predicted atomic forces using
corresponding force labels provided in the test dataset (CCSD/cc-
pVDZ level accuracy).

Table 4: Energy (E) and force (F) mean-absolute errors
(MAEs) for MACE, MACE-OFF, and MACE-MP mod-
els fine-tuned on the MD22 dataset. All models are fine-
tuned using 50 training samples of the buckyball-catcher
molecule from MD22. Energy MAE is given in kcal/mol,
while force MAE is in kcal/mol/Å.

Model Train Epoch Baseline PIWSL

MACE (scratch) 800 E 1.046 ± 0.095 0.745 ± 0.031
F 0.294 ± 0.002 0.290 ± 0.002

MACE-MP 100 E 2.111 ± 0.453 2.033 ± 0.149
F 0.716 ± 0.009 0.700 ± 0.011

MACE-OFF 100 E 1.159 ± 0.154 0.992 ± 0.051
F 0.346 ± 0.003 0.337 ± 0.001

underscoring the importance of selecting an appropriate pre-
trained model (Kjeldal & Eriksen, 2024). While a more
exhaustive hyperparameter search could potentially yield
further gains, such tuning is beyond the scope of this work.
Our primary aim is to demonstrate the relative efficacy of
the PIWSL approach.

5.5. Computational Cost Analysis

Training time. Table 5 presents the measured training
times for experiments conducted with and without PIWSL.
For all models except MACE-OFF, the reported training
time corresponds to a single training epoch, averaged over
five epochs. These experiments use 1000 training configura-
tions from the ANI-1x dataset with a mini-batch size of six.
For MACE-OFF, the training time is measured per epoch
on the MD17(CCSD) dataset and averaged over ten epochs,
following the setup described in section 5.4.

Table 5 shows that PIWSL increases training time by a factor
of approximately two to three relative to the baseline. This
increase is primarily due to PIWSL effectively doubling
or tripling the number of training labels, which leads to a
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Table 5: Training time comparison for experiments with
and without PIWSL. We measure the time required for a
single training epoch and provide the results obtained as an
average over five epochs. All training times are provided in
seconds.

SchNet PaiNN SpinConv eSCN Equiformer v2 MACE-OFF

Baseline 7.51 8.02 33.46 100.71 57.79 18.5
PIWSL 12.84 23.48 86.28 328.48 177.55 31.7

proportional rise in computational cost.7

Importantly, the additional training time introduced by PI-
WSL is negligible compared to the substantial cost and time
required for data generation using methods such as DFT or
CC, especially as the number of atoms in atomic systems
increases. Furthermore, even the large MACE-OFF model
requires less than double the training time while achieving
an approximately 40 % reduction in error. Finally, it is im-
portant to emphasize that PIWSL affects only the training
time; the inference time remains unchanged.

Total number of training epochs. Table A19 compares
extended training iterations, showing that while the baseline
model begins to overfit, PIWSL continues to improve perfor-
mance. Table A20 extends the results from Table 3, further
confirming the robustness of PIWSL even under prolonged
training of the baseline model. A more detailed discussion is
provided in section D.8. This finding is particularly relevant
in the sparse data regime, which is the focus of this work.

Training sample efficiency. Throughout this section, we
have demonstrated that PIWSL enhances model perfor-
mance. This improvement also implies greater sample ef-
ficiency during training. Notably, Table 3 illustrates that
PIWSL achieves comparable or superior accuracy while
using only half the training data for fine-tuning a foundation
model. This property makes PIWSL especially advanta-
geous in data-scarce scenarios, which are central to our
investigation.

Conclusion. In summary, although PIWSL leads to an
increase in training time due to the effective expansion of
training samples, the corresponding performance gains jus-
tify the additional computational cost—especially when
compared to the high cost of generating new labels via DFT
or CC. Moreover, PIWSL enables achieving lower errors
with a smaller number of training epochs.

7We can reduce this overhead by employing the 2pt-PISC loss
introduced in section D.2.2, which removes the need to estimate
the third conformation.

6. Discussion and Limitations
This work introduces the PIWSL method, encompassing
two distinct physics-informed weakly supervised loss func-
tions, for learning MLIPs. These losses provide the physics-
informed weak labels based on the Taylor expansion (PITC
loss) and the spatial consistency (PISC loss) of the potential
energy. These physics-informed weak labels enable any
MLIP to improve its accuracy and robustness, particularly
in scenarios characterized by sparse training data, which are
common when investigating a new molecular or material
system. The improved accuracy and robustness of MLIPs
can allow running sufficiently long MD simulations, result-
ing in a more effective use of active learning approaches.
Our extensive experiments demonstrate notable efficacy and
efficiency of our method from various aspects: (i) depen-
dence on the training dataset size, (ii) the potential energy
prediction variance and robustness in terms of a perturba-
tion on a C–H bond length as well as robustness during MD
simulations, and (iii) application to the fine-tuning of foun-
dation models. In particular, it is shown that our PIWSL
method enables MLIPs to improve the accuracy of their
force predictions even without force labels used explicitly
during training. Therefore, PIWSL opens a new possibility
for training MLIPs using highly accurate reference methods,
such as CCSD(T)/CBS.

Limitations. The proposed PIWSL method is tailored to
ML models that predict atomic forces and total energies of
atomic systems. It cannot be applied to other ML problems
unrelated to computational chemistry or materials science.
Although this work uses up to the second-order Taylor ex-
pansion to obtain weak labels in Eq. (2), employing more
sophisticated higher-order ordinary differential equations is
a viable alternative. Furthermore, while PIWSL was evalu-
ated on the heterogeneous molecular dataset (ANI-1x), a po-
tential limitation of our analysis is that we performed it only
on homogeneous inorganic datasets (TiO2 and LMNTO),
which may not fully capture the method’s generalizability
across diverse inorganic systems.
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This paper presents work whose goal is to advance the field
of machine learning, in particular, machine learning for
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are many potential societal consequences of our work in
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A. Related Work
Addressing Data Sparsity in MLIPs. Generating training datasets suitable for learning reliable MLIPs is challenging,
especially when considering unexplored molecular and material systems. Numerous computationally expensive calculations
with either ab initio or first-principles approaches are required for the latter. To mitigate this challenge, active learning (AL)
methods, which utilize prediction uncertainty, can be applied (Li et al., 2015; Podryabinkin & Shapeev, 2017; Vandermause
et al., 2020; Shuaibi et al., 2021b; Briganti & Lunghi, 2023; Zaverkin et al., 2024b). Furthermore, equivariant MLIPs often
reduce required training dataset sizes through improved data efficiency (Batzner et al., 2022; Batatia et al., 2022).

B. Experimental Setup, Baselines, and Datasets
B.1. Experimental Setup

Code for Experiments. The code used to run our experiments builds upon the recent work (Fu et al., 2023) and extends it to
integrate the latest Open Catalyst Project code (Chanussot et al., 2021). We adopt hyper-parameters from the Open Catalyst
(OC) project, tuned to the corresponding OC dataset. Note that we do not use this dataset in the presented work, whose
main focus is training general-purpose MLIPs that can be used to run molecular dynamics (MD) simulations and geometry
optimization. However, the OC dataset has been designed to investigate the latter, making it less suitable for the current
study. Our modifications include adjusting the learning rate scheduler, details of which can be found in our repository. For
potential energy and force prediction, we utilize mean-absolute error (MAE) and L2-norm (L2MAE) losses with coefficients
of 1 and 100, respectively. More details on the model hyperparameters are provided in our repository. For the PITC and
PISC loss functions, we use the mean square error (MSE) loss based on an experiment in section D.5. When noise is applied
to inorganic material datasets with periodic boundary conditions, atoms outside the unit cell are wrapped back into the cell
when noise is applied.

Training Details. For training MLIPs, we followed the setup in the Open Catalyst Project. We kept the mini-batch size
consistent across all models, as shown in Table A1. We have chosen the mini-batch size based on the maximum memory
needed by the most demanding models, such as eSCN and Equiformer v2. All experiments are performed on a single
NVIDIA A100 GPU with 81.92 GB memory. To avoid overfitting, we stopped training when the validation loss stopped
improving—the specific number of training iterations is provided in Table A2.

We used perturbation vectors δr drawn from a uniform random distribution; see also section 4.4. Particularly, we defined
δr ≡ ϵg, with each component of g drawn from a uniform random distribution in the interval (−1, 1). The magnitude
ϵ is also drawn from a uniform random distribution and ϵ < ϵmax. This definition of δr differs from the one in Eq. (6),
improving the computational efficiency of PIWSL by avoiding the calculation of square root and division.

The remaining hyper-parameters are the coefficients for the PITC and PISC losses (CPITC, CPISC) and the maximum
magnitude ϵmax of the perturbation vector δr; see Table A3. These hyper-parameters are tuned using Optuna (Akiba et al.,
2019) for PaiNN and Equiformer v2. We used 1000 configurations drawn randomly from the original ANI-1x dataset for
training. Due to multiple local minima, Optuna identified several optimal hyper-parameter sets in each run. We selected
the following representative combinations (CPITC, CPISC, ϵmax) = Case A: (1.2, 0.8, 0.025), Case B: (1.0, 0, 0.01), Case
C: (0.1, 0.01, 0.01), Case D: (1.2, 0.01, 0.025), Case E: (1.2, 0.01, 0.01), Case F: (1.2, 0.01, 0.015), Case G: (0.01, 0.001,
0.025), and Case H: (0.1, 0.01, 0.025). We selected the hyper-parameters listed in Table A3 based on the validation dataset
performance.

Splitting Datasets. We split the original datasets into training, validation, and test sets for our experiments. We shuffled the
original datasets using a random seed and selected the training datasets of predefined sizes. For validation, we selected
the same number of configurations as in the training dataset if it exceeded 100 configurations; otherwise, we used 100

Table A1: Employed mini-batch sizes. We provide mini-batch sized for all datasets and models employed in this work.

ANI-1x TiO2
a rMD17 LMNTO

Mini-batch size 6 4 16 4
a As explained in Table 2, the mini-batch size of the SchNet model was changed to 32 due to high RMSE values observed with a mini-batch
size of four as the training dataset size increased. A more detailed discussion of the results for SchNet is provided in section D.1.
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Table A2: Total number of training iterations. We provide the total number of training iterations for all datasets and
training set sizes employed in this work. The number in the parentheses demonstrates the corresponding total number of
training epochs.

Ntrain ANI-1x TiO2 rMD17 LMNTO

50 7500 (900) – – –
100 10,000 (600) 10,000 (400) 7500 (1200) 10,000 (400)

1000 40,000 (240) 10,000 (100) 10,000 (160) 10,000 (100)
10,000 100,000 (60) – – –

100,000 400,000 (30) – – –
1,000,000 400,000 (3) – – –
5,000,000 420,000 (1) – – –

Table A3: Hyper-parameters for the PIWSL loss. We selected the following hyper-parameter combinations using
Optuna (Akiba et al., 2019): (CPITC, CPISC, ϵmax)= Case A: (1.2, 0.8, 0.025), Case B: (1.0, 0, 0.01), Case C: (0.1, 0.01,
0.01), Case D: (1.2, 0.01, 0.025), Case E: (1.2, 0.01, 0.01), Case F: (1.2, 0.01, 0.015), Case G: (0.01, 0.001, 0.025), and
Case H: (0.1, 0.01, 0.025).

Dataset Size Equiformer v2 eSCN PaiNN SpinConv SchNet

ANI-1x

50 A C B A A
100 A C A D A

1000 D D D B B
10,000 G C B C C

100,000 – – C – –
1,000,000 – – C – –
5,000,000 – – B – –

TiO2 100 A A A A H
1000 G A C A C

LMNTO 100 B B B A B
1000 B A B B B

configurations to ensure sufficient validation size. For the rMD17 dataset, following (Fu et al., 2023), we used 9000
configurations as a validation dataset and another 10,000 for testing. We used the same test dataset across different sizes of
the training datasets for a fair performance comparison. We used 10,000 test configurations for ANI-1x and 1000 for TiO2

and LMNTO.

Training with Adversarial Directions. In our experiments, which defined perturbation vectors adversarially (see section E),
we determined adversarial directions using Eq. (7). More concretely, we only considered the potential energy, i.e., ypred and
ylabel, to avoid Hessian calculations. In addition, we considered the loss function for the potential energy as Ldist in Eq. (7).
The expression of g = ∇rLdist is then

gS = ∇ri

√
(E (S;θ)− Eref

S )2 = − 1

2Ldist
(Fi (S;θ)− Fref

i,S)(E (S;θ)− Eref
S ). (A1)

Note that we used the relation ∇riE
ref
S = −Fref

i,S to obtain the final expression. Though Eref can also be interpreted as a
constant regarding atom positions. We have chosen this expression to avoid the case where the adversarial direction g points
to Fref

i,S other than the very beginning of the training. Our experiments indicate that the employed expression is slightly better
than its alternative. In our experiment, we also randomly flip the sign of gS to avoid overfitting to adversarial directions.

B.2. Baseline Methods

Data Augmentation with NoisyNode. In our experiments, we used the NoisyNode approach (Godwin et al., 2022) as
one of the baseline methods. This method aims to improve the performance of ML models by adding a perturbation to
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node features, i.e., atomic coordinates, and makes ML models recover original labels. This approach enables ML models
to be more robust to noise in the data. Although the original method recommends adding a decoder network to learn the
denoising process, we do not utilize it following previous work (Liao et al., 2023) and add the perturbation vector to atomic
coordinates similar to PIWSL losses, fixing energy and force labels. We implement the NoisyNode approach in our code.
Thus, we can expect slightly different behavior compared to the recent work (Godwin et al., 2022; Liao et al., 2023) 8.

Taylor-Expansion-Based Weak Labels. Recent work proposed a similar Taylor-expansion-based weak label ap-
proach (Cooper et al., 2020). Nonetheless, the loss is different from the one in Eq. (3) as the authors used reference
energy and atomic force labels to estimate weak energy labels Eref

Sδr
for perturbed atomic configurations Sδr

Eref
Sδr

≈ Eref
S −

Nat∑
i=1

〈
δri,F

ref
i,S
〉
+O

(
||δr||2

)
. (A2)

The trainable parameters of MLIPs are optimized by minimizing the weak label (WL) loss

LWL (S;θ) = ℓ

(
E (Sδr;θ) , E

ref
S −

Nat∑
i=1

〈
δri,F

ref
i,S
〉)

. (A3)

Figure 1 (a) illustrates the corresponding approach (Cooper et al., 2020), which computes the energy of a perturbed atomic
configuration using a Taylor expansion based on reference energy and atomic force labels. This approach was originally
applied to train MLIPs without explicit force labels.

B.3. Description of the Datasets

ANI-1x Dataset. The ANI-1x dataset is a heterogeneous molecular dataset and includes 63,865 organic molecules (with
chemical elements H, C, N, and O) whose size ranges from 4 to 64 atoms (Smith et al., 2020). The ML model requires
learning total energies and atomic forces for various molecules and their conformations. Total energies and atomic forces
are obtained through DFT calculations.

TiO2 Dataset. Titanium dioxide (TiO2) is an industrially relevant and well-studied material. TiO2 dataset includes 7815
bulk structures of several TiO2 phases whose reference energies and forces are obtained through DFT calculations (Artrith
& Urban, 2016). The number of atoms in a single configuration ranges from 6 to 95.

rMD17 Dataset. The rMD17 dataset includes ten small organic molecules, including 100,000 configurations obtained by
running MD simulations for each (Christensen & von Lilienfeld, 2020). The ML model requires learning the total energies
and atomic forces for each molecule. In this revised version of the MD17 dataset, the molecules are taken from the original
MD17 dataset (Chmiela et al., 2017; 2018). However, the energies and forces are recalculated at the PBE/def2-SVP level of
theory using very tight SCF convergence and a very dense DFT integration grid.

LMNTO Sataset. The Li-Mo-Ni-Ti oxide (LMNTO) is of technological significance as a potential high-capacity positive
electrode material for lithium-ion batteries. It exhibits substitutional disorder, with Li, Mo, Ni, and Ti all sharing the same
sub-lattice. This dataset includes LMNTO with the composition Li8Mo2Ni7Ti7O32 and configurations obtained from an
MD simulation, resulting in approximately 2600 structures in total (Cooper et al., 2020).

MD22 Dataset. The MD22 dataset (Chmiela et al., 2023) includes seven larger organic molecules, such as a small peptide
and a double-walled nanotube, whose size ranges from 42 to 370 atoms. The dataset consists of MD trajectories sampled
at temperatures between 400 and 500 K. The ML model requires learning the total energies and atomic forces for each
molecule. The energies and forces are calculated at the PBE+MBD level of theory.

8Note that NoisyNode assumes the unperturbed state to be the equilibrium structure, which may have contributed to the limited
performance improvements observed in our experiments. Recently, efforts have been underway to develop an extended version of
NoisyNode tailored for non-equilibrium structures, such as (Liao et al., 2024).
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Table A4: Energy (E) and force (F) root-mean-square errors (RMSEs) for the ANI-1x dataset. The results are obtained
by averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 50 Ntrain = 10, 000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

Schnet E 90.08 ± 1.24 76.83 ± 0.75 83.90 ± 2.82 24.88 ± 0.01 24.86 ± 0.00 24.88 ± 0.00
F 35.49 ± 0.36 31.13 ± 0.13 35.30 ± 0.87 13.36 ± 0.01 13.36 ± 0.00 13.36 ± 0.00

PaiNN E 212.64 ± 1.14 440.11 ± 11.68 121.36 ± 4.13 19.14 ± 0.38 165.25 ± 4.87 14.10 ± 0.14
F 22.61 ± 0.04 22.50 ± 0.22 20.83 ± 0.28 8.24 ± 0.10 9.22 ± 0.09 7.89 ± 0.02

SpinConv E 222.75 ± 7.12 219.85 ± 6.99 175.38 ± 9.77 19.42 ± 0.67 46.31 ± 10.31 18.81 ± 0.60
F 24.88 ± 0.88 24.61 ± 0.35 25.12 ± 0.58 10.31 ± 0.33 10.78 ± 0.66 9.94 ± 0.12

eSCN E 517.17 ± 31.98 583.90 ± 33.04 454.40 ± 11.10 12.65 ± 0.63 165.30 ± 33.11 10.66 ± 0.31
F 22.51 ± 0.09 24.04 ± 0.15 22.28 ± 0.08 5.11 ± 0.30 11.51 ± 0.23 4.35 ± 0.15

Equiformer E 498.58 ± 17.44 630.32 ± 0.32 433.88 ± 79.63 8.03 ± 0.21 970.95 ± 236.90 7.77 ± 0.14
F 22.86 ± 0.04 22.92 ± 0.00 22.72 ± 0.04 2.97 ± 0.00 29.28 ± 5.63 2.98 ± 0.00

C. Differences in Gradients for Physics-Informed Losses
The following considers the gradients of the proposed two losses. First, considering squared errors, we obtain the following
gradients of the loss in Eq. (A2) with respect to trainable parameters

dLWL

dθ
= 2

(
E (Sδr;θ)− Eref

S +

Nat∑
i=1

⟨δri,Fref
i,S⟩
)
dE (Sδr;θ)

dθ
. (A4)

In contrast, for the PITC loss in Eq. (3) we obtain

dLPITC

dθ
=2

(
E (Sδr;θ)− E (S;θ) +

Nat∑
i=1

⟨δri,Fi (S;θ)⟩
)
×(

dE (Sδr;θ)

dθ
− dE (S;θ)

dθ
+

Nat∑
i=1

d⟨δri,Fi (S;θ)⟩
dθ

)
.

(A5)

The above equations indicate that the direction of the derivative of the PITC loss in Eq. (A5) is different from that of the
weak label loss because of the incorporation of the predicted potential energy at the original and the force at the reference
point. The gradient of PISC loss in Eq. (4) reads

dLPISC

dθ
= 2

(
E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩ − E (Sδr′ ;θ) +

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)

×
(
dE (S;θ)

dθ
−

Nat∑
i=1

d⟨δri,Fi (S;θ)⟩
dθ

− dE (Sδr′ ;θ)

dθ
+

Nat∑
i=1

d⟨δr′′i ,Fi (Sδr′ ;θ)⟩
dθ

)
.

(A6)

D. Experiments
D.1. Benchmark Results

The following section provides additional results, complementing those provided in the main text.

Additional Results for ANI-1x. Table A4 provides results for ANI-1x dataset and a training set sizes of 50 or 10,000; see
also figure 2. The table demonstrates a considerable reduction of energy and force RMSEs for models trained using small
training dataset sizes of 50 configurations. Furthermore, we find around 5 to 25 % error reduction for a larger training set
size of 10,000, indicating the effectiveness of the PIWSL method for relatively large training set sizes. Finally, we provide
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Table A5: Energy and force erorrs of PaiNN model trained on the ANI-1x dataset with 100,000, 1,000,000, and
5,000,000 samples. The results are obtained by averaging over three independent runs. Energy errors are given in kcal/mol,
while force errors are in kcal/mol/Å.

Ntrain Force MAE Force RMSE Energy MAE Energy RMSE

Baseline 100,000 0.92 ± 0.00 3.70 ± 0.01 4.28 ± 0.15 6.14 ± 0.21
PIWSL 0.91 ± 0.01 3.72 ± 0.04 4.07 ± 0.17 5.83 ± 0.20

Baseline 1,000,000 0.67 ± 0.00 2.74 ± 0.01 4.90 ± 0.23 6.56 ± 0.26
PIWSL 0.68 ± 0.00 2.77 ± 0.04 4.48 ± 0.05 6.06 ± 0.01

Baseline 5,000,000a 0.53 2.18 3.94 5.24
PIWSL 0.55 2.24 3.25 4.75

a Because of the computational cost, we performed only one training in the case of 5,000,000 training samples.

Table A6: Energy (F) and force (F) root-mean-square errors (RMSEs) for the TiO2 dataset obtained for the SchNet
model with a mini-batch size of four. The results are obtained by averaging over three independent runs. Energy RMSE is
given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNet E 18.85 ± 0.00 17.48 ± 0.00 17.58 ± 0.00 35.58 ± 0.00 58.08 ± 18.44 15.28 ± 0.12
F 2.74 ± 0.00 2.51 ± 0.00 2.74 ± 0.00 6.54 ± 0.00 18.40 ± 0.00 3.61 ± 0.27

a result of PaiNN model trained on ANI-1x dataset with 100,000, 1,000,000, and 5,000,000 samples in Table A5, which
demonstrates that PIWSL still improves the performance around 5% to 10%of the energy RMSE.

Additional Results for SchNet Applied to TiO2. In Table 2, we set the mini-batch size to 32 for training the SchNet
model. This adjustment was made because training SchNet with a small mini-batch size of four increases RMSE values
with a growing training dataset size. Table A6 demonstrates the performance of the SchNet model for a mini-batch size
of four. Table A7 provides the results obtained for the SchNet model with a mini-batch size of four for the following
training set sizes: 100, 200, 500, and 1000. This figure demonstrates that SchNet, with a mini-batch size of four, reaches
its best performed with Ntrain = 200. These results indicate the difficulty of learning training data statistics from small
mini-batches, probably due to the limited expressive power of SchNet.

Results for LMNTO. Table A8 presents RMSE errors for LMNTO (Cooper et al., 2020). PIWSL shows the error reduction
for most cases for this benchmark dataset, especially for small training set sizes (i.e., a training set of 100 configurations).

Molecular Dynamics Trajectories for Large Molecules – MD22. Table A9 evaluates the impact of PIWSL on datasets
containing conformations of a single large molecule. For this purpose, we selected the buckyball catcher molecule with
natom = 148 atoms. To demonstrate the applicability of PIWSL, we trained a MACE model (Batatia et al., 2022) to
prove that PIWSL enhances even the performance of a recent state-of-the-art model. The model structure and training
configuration were based on those provided in the official repository9 with slight modifications: “max_L” was set to one and
mini-batch size was adjusted to four. Following the original training setup (Chmiela et al., 2023), we randomly sampled 600
configurations for the training dataset and 400 for the validation dataset and retained the remaining 5102 configurations for
testing. To further validate PIWSL’s effectiveness in sparse data scenarios, we prepared a smaller training dataset comprising
only 50 configurations while keeping the validation dataset size unchanged. The model was trained for 450 and 800 epochs
for the 600-sample and 50-sample training datasets, respectively. The results presented in Table A9 demonstrate that our
approach remains effective on average, particularly in the sparse data regime. In this study, the coefficient of the PITC and
PISC losses are set as 0.01 and 0.001 with ϵmax = 0.01.

9https://mace-docs.readthedocs.io/en/latest/examples/training_examples.html
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Table A7: Training dataset size dependence of SchNet with a mini-batch size of four. The results are presented for the
TiO2 dataset and are obtained by averaging over three independent runs. Energy RMSE is given in kcal/mol, while force
RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 200 Ntrain = 500 Ntrain = 1000

SchNet E 18.85 ± 0.00 16.28 ± 0.00 24.42 ± 0.00 35.58 ± 0.00
F 2.74 ± 0.00 2.56 ± 0.00 4.43 ± 0.00 6.54 ± 0.00

Table A8: Energy (E) and force (F) root-mean-square errors (RMSEs) for the LMNTO dataset. The results are obtained
by averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Model Baseline NoisyNode PIWSL Baseline NoisyNode PIWSL

SchNet E 4.46 ± 0.00 6.10 ± 0.00 4.45 ± 0.00 3.09 ± 0.00 3.25 ± 0.00 3.09 ± 0.00
F 9.24 ± 0.00 8.31 ± 0.00 9.24 ± 0.00 5.09 ± 0.00 5.21 ± 0.00 5.09 ± 0.00

PaiNN E 6.91 ± 0.02 7.09 ± 0.04 5.99 ± 0.02 3.26 ± 0.01 4.61 ± 0.03 2.98 ± 0.01
F 4.75 ± 0.00 7.20 ± 0.01 4.75 ± 0.00 2.03 ± 0.00 2.55 ± 0.00 2.03 ± 0.00

SpinConv E 7.90 ± 0.00 7.83 ± 0.04 7.83 ± 0.01 4.90 ± 0.33 7.20 ± 0.06 3.95 ± 0.02
F 4.63 ± 0.01 5.14 ± 0.04 4.71 ± 0.02 1.81 ± 0.01 2.33 ± 0.00 1.74 ± 0.00

eSCN E 7.92 ± 0.00 7.92 ± 0.00 7.92 ± 0.00 7.93 ± 0.00 7.93 ± 0.00 6.40 ± 0.14
F 4.67 ± 0.01 7.59 ± 0.02 4.64 ± 0.01 1.54 ± 0.00 1.98 ± 0.06 1.53 ± 0.00

Equiformer v2 E 7.40 ± 0.03 7.92 ± 0.00 7.32 ± 0.08 3.57 ± 0.05 7.04 ± 0.03 3.60 ± 0.02
F 4.26 ± 0.00 7.60 ± 0.02 4.24 ± 0.02 1.34 ± 0.00 1.99 ± 0.00 1.34 ± 0.00

In addition to the experiment of training from scratch, we conducted an additional study using the MACE foundation model
to evaluate whether PIWSL could be effectively applied in the context of foundation models with finetuning. Specifically, we
utilized two foundation models: MACE-MP ("large") (Batatia et al., 2023), a universal model, and MACE-OFF ("large_off")
(Kovács et al., 2023), a model designed for organic force fields. Training was performed on the buckyball catcher molecule
from the MD22 dataset. To simulate finetuning on a smaller dataset, the models were trained using 50 samples, consistent
with the previous experiment. The official settings from the respective repositories were used, with adjustments made to the
mini-batch size (set to 4) and the number of epochs (set to 100).

The results, presented in Table 4, demonstrate that PIWSL is effective for the fine-tuning of foundation models. Moreover,
the result indicates that the MACE-MP model provides worse results than MACE-OFF, emphasizing the importance of
selecting an appropriate pre-trained model. For this experiment, we employed the second-order PITC loss and the two-point
consistency loss defined in Eq. (A14) and Eq. (A11), with the coefficients set to 0.08.

Table A9: Energy (E) and force (F) mean-absolute errors (MAEs) for the MD22 dataset. We have chosen buckyball
catcher for our experiments. The results are obtained by averaging over three independent runs. Energy MAE is given in
kcal/mol/atom, while force MAE is in kcal/mol/Å.

Ntrain = 50 Ntrain = 600
Dataset Model Baseline PIWSL Baseline PIWSL

Buckyball catcher MACE E 1.046 ± 0.095 0.745 ± 0.031 0.587 ± 0.107 0.548 ± 0.015
F 0.294 ± 0.002 0.290 ± 0.002 0.082 ± 0.001 0.082 ± 0.001
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D.2. Different Configurations for the Physics-Informed Spatial-Consistency Loss

D.2.1. TRIANGLE-BASED

Table A10: Results for different configurations of the PISC loss. The presented numerical values are the root mean
square errors (RMSEs) for the ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors
are obtained by averaging over three independent runs. All models are trained using 1000 configurations. The case 1, 2, and
3 correspond to Eq. (4), Eq. (A8) and Eq. (A9), respectively.

Model Baseline PISC (Case 1) PISC (Case 2) PISC (Case 3)

PaiNN E 60.11 45.24 46.32 57.29
F 13.10 12.33 12.42 13.28

In section 4.2, we consider the following form of the PISC loss

LPISC (S;θ) = ℓ

(
E (Sδr;θ) , E (Sδr′ ;θ)−

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
, (A7)

where δr, δr′, δr′′ are related as δr′ + δr′′ = δr. In this section, as a variant of Eq. (4), we also consider the following three
PISC losses

LPISC,Case 2 (S;θ) = ℓ

(
E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩, E (Sδr′ ;θ)−
Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
, (A8)

LPISC,Case 3 (S;θ) = ℓ

(
E (Sδr′ ;θ) , E (Sδr;θ)−

Nat∑
i=1

⟨−δr′′i ,Fi (Sδr;θ)⟩
)
, (A9)

where the point at r+ δr is the point where PIRC loss is imposed (see Eq. (3)). The results are provided in Table A10 and
indicate that Eq. (4) (Case 1) shows a better performance than the other cases for both the potential energy and the force
predictions. In this study, we used the ANI-1x dataset with 1000 training samples different from the one used to train the
model used in the main body to avoid overfitting on the test dataset. For the coefficient of the PITC and PISC losses, we
used 0.1 and 0.001 with ϵmax = 0.01.

D.2.2. FURTHER VARIATIONS

Two-Point Spacial Consistency. The flexibility of the PISC loss allows us to explore additional forms of spatial consistency.
For example, instead of using a triangular configuration, we can impose spatial consistency between two points at r and
r+ δr, leading to the following expression:

LPISC,2pt (S;θ) = ℓ

(
E (S;θ) , E (Sδr;θ)−

Nat∑
i=1

⟨−δri,Fi (Sδr;θ)⟩
)
. (A10)

While not thoroughly investigated, we empirically observed that this loss delivers competitive performance when applied
with the same coefficient value as the PITC loss.

Two-Point Spacial Consistency with Label. Since the training sample includes a label, we can utilize this label
information instead of predicting the potential energy of the original conformation to enforce two-point spatial consistency.

LPISC,2ptwl (S;θ) = ℓ

(
Eref

S , E (Sδr;θ)−
Nat∑
i=1

⟨−δri,Fi (Sδr;θ)⟩
)
. (A11)

We observed that this loss function performs well when applying the MACE model to datasets without force labels, as
discussed in subsection 5.4.
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Second-order Term Consideration for PITC Loss. In Eq. (2), we considered only the first-order Taylor expansion. Here,
we introduce a straightforward approach to approximately account for the second-order term. Using the energy and forces at
r+ δr, the second-order derivative of the potential energy can be approximated using the explicit finite difference method as:

δrµδrν∂µ∂νE = δrµδrν∂µFν ≃ ⟨δr,F (Sδr;θ)− F (S;θ)⟩, (A12)

Then, Eq. (2) with the above second-order term can be written as:

E (Sδr;θ) ≈ E (S;θ)

−
Nat∑
i=1

[⟨δri,Fi (S;θ)⟩+ k2nd⟨δri,Fi (Sδr;θ)− Fi (S;θ)⟩] +O
(
∥δr∥3

)
,

= E (S;θ)−
Nat∑
i=1

⟨δri, (1− k2nd)Fi (S;θ) + k2ndFi (Sδr;θ)⟩+O
(
∥δr∥3

)
, (A13)

where k2nd is a numeric parameter that controls the contribution of the second-order term. Note that setting k2nd = 0.5
recovers the exact second-order expression, while k2nd = 0 reverts to the first-order approximation.

Using Eq. (A13), the expression of the second-order PITC loss is given as:

LPITC (S;θ) = ℓ
(
E (Sδr;θ) , E (S;θ)−

Nat∑
i=1

⟨δri, (1− k2nd)Fi (S;θ) + k2ndFi (Sδr;θ)⟩
)
, (A14)

Note that the second-order term becomes significant under the following conditions: (1) the accuracy of the MLIP model
surpasses the contribution of the first-order term, and (2) the original conformation is near the equilibrium state. The latter
can be understood as follows. Considering a spring model as a two-body interaction, the potential energy can be expressed
as:

V (r) =
kbond
2

(r− r0)
2, (A15)

where kbond is the constant characterizing the strength of the two-body interaction, and r0 denotes the equilibrium bond
length. Introducing a small perturbation δr in the bond length, the potential energy becomes:

V (r+ δr) =
kbond
2

(r− r0 + δr)2 = V (r) + 2kbond⟨r− r0, δr⟩+
kbond
2

δr2. (A16)

At the equilibrium state (r = r0), the above equation demonstrates that the second-order term becomes dominant. Conse-
quently, the second-order accuracy of the PITC loss function becomes crucial in such scenarios.

PITS for Curl of Forces Another potential direction is enforcing a reduction in the curl of the forces. This can be
achieved by leveraging Stokes’ theorem:

∫
Σ
∇× F · dS =

∮
∂Σ

F · dl = 0 where Σ represents a specific surface regime,
and ∂Σ denotes its boundary. Similar to the PISC loss, the right-hand side of this equation can be effectively described by
considering a triangular configuration, where the midpoints of the three sides correspond to r, r+ δr, r+ δr′.

D.3. Detailed Setups for Qualitative Analysis

D.3.1. C–H POTENTIAL ENERGY PROFILE OF ASPIRIN

This section describes the detailed setup and procedure for section 5.3. First, we trained PaiNN with and without
PIWSL losses using the aspirin data from rMD17 with training set sizes of 100 and 200. For PIWSL, we used
(CPITC, CPISC, ϵmax) = (1.2, 0.01, 0.015). The other experimental setups are the same as for rMD17 experiments
presented in section B.1. We used the PaiNN model with gradient-based forces to obtain the reference model and tuned
the model hyper-parameter with Optuna (Akiba et al., 2019). The obtained models’ performance is provided in Table A11.
Then, we prepared the aspirin molecule structures, including the corresponding atomic coordinates and atomic types. For
these structures, we perturbed one of the C-H bonds with a bond length from 0.8 Å to 1.8 Å. We prepared 100 structures
and estimated the corresponding potential energy with the pre-trained models. The aspirin data is provided in our publicly
available source code.
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Table A11: Performance of PaiNN employed in figure 2 (c, d). All the models other than the reference model (Ntrain =
1000) use the OC20’s hyper-parameters. For the reference model, we tuned the hyper-parameters of PaiNN model following
the original paper (Schütt et al., 2021).

Ntrain = 100 Ntrain = 200 Ntrain = 1000
Baseline PIWSL Baseline PIWSL Baseline

PaiNN E 6.55 5.64 5.11 4.48 0.68
F 7.38 7.36 3.95 3.97 1.44

D.3.2. MD SIMULATION STABILITY ANALYSIS

NVE-Ensembles This section describes the detailed setup and the procedure for our analysis of MD simulations in
section 5.3. Because our implementation builds upon the source code provided by Fu et al. (2023), we used their scripts for
performing MD simulations. However, we added a minor modification to enable MD simulations in the microcanonical
(NVE) statistical ensemble, i.e., the particle position and velocity are updated with velocity Verlet algorithm(Verlet, 1967) 10.
We set the initial temperature to 300 K and the integration time step to 0.5 fs for all simulations. As defined by Fu et al.
(2023), the stability of an MD simulation for a target molecule is defined as the time T during which the bond lengths satisfy
the following condition

max
(i,j)∈B

|(||xi(T )− xj(T )||)− bi,j | > ∆ , (A17)

where B denotes the set of all bonds, {i, j} denote the pair of bonded atoms, and bi,j denotes the equilibrium bond length.
Following Fu et al. (2023), we set ∆ = 0.5Å. This definition indicates when the molecule experiences significant structural
changes during the MD simulation.

We trained PaiNN and Equiformer v2 models with and without PIWSL losses using the aspirin data from rMD17. We used
training set sizes of 100 and 200 for PaiNN-GF and 1000 for PaiNN and Equiformer v2 with direct force. The corresponding
stability values are presented in Table A12. The hyperparameters for the PIWSL loss are provided in Table A13. To train
direct force model with 1000 samples, we used second-order PITC and PISC losses because of their good accuracy. The
results for the stability of the PaiNN (direct and gradient-based force) and Equiformer v2 models are shown in Table A14.
To select the hyperparameters in Table A13, a series of MD simulations with a fixed random number seed for the initial
atomic velocities was used. For our final stability results in Table A12, a series of MD simulations with three different
random seeds for velocities and the selected hyperparameters was used.

NVT-Ensembles To investigate the effect of thermostats, we also performed MD simulations in the canonical (NVT)
statistical ensemble, where temperature is maintained constant. To keep the temperature constant, we used Nosé-Hoover
thermostat (Nosé, 1984; Hoover, 1985). The initial and target temperatures were both set to 300 K for all simulations. The
integration time step was set to 0.5 fs and the characteristic parameter τ for the thermostat is set to 20 fs. The result, shown
in figure A1, demonstrate that the thermostat stabilizes the simulations by mitigating the increase in kinetic energy.

D.4. Training setup for MD17-CCSD(T) Experiments

In this section, we provide the training setup of finetuning of MACE-OFF discussed in section 5.4. The considered model is
MACE-OFF (large) (Kovács et al., 2023) which is the MACE model pretrained on SPICE (Eastman et al., 2023), QMugs
(Isert et al., 2022), and liquid water (Schran et al., 2021) datasets. The foundation model is finetuned on the aspirin molecule
data in CCSD dataset (Chmiela et al., 2018) whose potential energy is obtained at quantum-chemical CCSD level of
accuracy. The data includes 1500 samples which are split into 950/50/500 as train/validation/test datasets. To emulate
general coupling-cluster method dataset, we only use potential energy label for training. We utilize the set up provided in
the official repository11 with modifying learning rate from 10−2 to 10−3, to improve the performance. For the model trained
scratch, we use the same architecture with setting energy weight to 40 and learning rate to 10−3 to improve the performance.
For PIWSL, we used the second-order PITC and 2pt-with-label PISC losses Equation A10 with the following parameters:

10Note that the total energy conservation necessary for the microcanonical statistical ensemble is in general not perfectly satisfied due
to the numerical error, in particular, when the force is not calculated as the curl of the force.

11https://mace-docs.readthedocs.io/en/latest/guide/finetuning.html
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Table A12: Stability of the models employed in the MD analysis. The presented numerical values are the stability defined
by Eq. (A17) measured in ps. The results are obtained as an average over three different random seeds for the initial velocity
of the atoms in the target aspirin molecule. "GF" denotes the gradient-based force prediction.

Ntrain = 100 Ntrain = 200 Ntrain = 1000

PaiNN Baseline – – 2.68 ± 0.13
PIWSL – – 4.65 ± 0.72

Equiformer Baseline – – 14.53 ± 8.61
PIWSL – – 24.65 ± 8.24

PaiNN-GF Baseline 3.25 ± 3.98 220.5 ± 137.7 –
PIWSL 15.07 ± 10.09 267.7 ± 56.0 –

Table A13: Hyper-parameters for the PIWSL loss used in the MD analysis. We used the following hyper-parameter for
MD simulation analysis: (CPITC, CPISC, ϵmax)= Case α: (0.01, 0.001, 0.025), Case β: (1.2, 0.01, 0.01), Case γ: (1.2, 0.01,
0.025), Case δ: (1.2, 0.01, 0.015), Case ϵ: (0.1, 0.01, 0.01), and Case ζ: (1.0, 0., 0.01). "GF" denotes the gradient-based
force prediction.

Dataset Size Equiformer v2 PaiNN PaiNN-GF

rMD17 100 α δ ϵ
(Aspirin) 200 β β ζ

1000 ϵ γ –

(CPITC, CPISC, ϵ) = (0.55, 4.5, 0.01).

D.5. Metric Dependence of PITC

Table A15 provides the result of the metric dependence of PIWSL. For simplicity, we only consider the PITC loss (the
coefficient of the PITC and PISC losses are set as 0.1 and 0). For the ReLU metric, we consider

LReLU (S;θ) = ReLU

(∣∣∣∣∣E (S;θ)−
Nat∑
i=1

⟨δri,Fi (S;θ)⟩ − E (Sδr;θ)

∣∣∣∣∣− E (Sδr;θ) ||δr||2
)
. (A18)

This metric is zero when the difference between the two terms is less than the second-order term in δr. The results indicate
that taking the second-order term into account does not improve the performance (see PITC MAE Loss and PITC ReLU
Loss results), and the MSE loss function shows the best performance. In this study, we used the ANI-1x dataset and the
1000 training samples. These samples differ from the one used to train the model in the main text to avoid overfitting the test
dataset.

D.6. Perturbation Magnitude Dependence

In this section, we provide the result of the perturbation magnitude dependence of PIWSL, i.e., ∥δr∥ = ϵ. First, we consider
only the 1st-order PITC loss (the coefficient of the PITC and PISC losses are set as 0.1 and 0.0). The results are provided in
Table A16 and demonstrate that the longer perturbation vector length is fruitful for force predictions. However, values that
are too large are harmful to predicting potential energy. In this study, we used the ANI-1x dataset and the 1000 training
samples. These samples differ from the one used to train the model in the main text to avoid overfitting the test dataset.

Second, we examine the sensitivity of the second-order PIWSL in the finetuning of MACE-OFF on the MD17 (CCSD)
dataset, as discussed in section 5.4. The results, presented in Table A17, indicate that the model’s performance is not strongly
affected by the choice of ϵmax, even in the second-order setting.
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Table A14: Energy and force errors for the models employed in the MD analysis. The presented numerical values are
the root-mean-square errors (RMSEs) of energy (E) and force (F). Energy RMSE is given in kcal/mol, while force RMSE is
in kcal/mol/Å. "GF" denotes the gradient-based force prediction.

Ntrain = 100 Ntrain = 200 Ntrain = 1000
Baseline PIWSL Baseline PIWSL Baseline PIWSL

PaiNN-DF E 6.55 5.64 5.11 4.48 2.30 0.99
F 7.38 7.36 3.95 3.97 1.63 1.61

Equiformer v2 E 4.79 4.64 4.92 4.82 1.39 1.19
F 4.86 4.90 2.50 2.42 0.76 0.75

PaiNN-GF E 6.05 6.03 6.01 6.02 – –
F 6.41 6.33 3.50 3.53 – –

Table A15: Metric dependence of PITC. The presented numerical values are the root mean square errors (RMSEs) for the
ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors are obtained by averaging over
three independent runs. All models are trained using 1000 configurations. MAE refers to the mean absolute error, and MSE
denotes the mean square error.

Model Baseline PITC MAE Loss PITC MSE Loss PITC ReLU Loss

PaiNN E 60.11 58.84 47.09 60.47
F 13.10 13.18 12.19 13.06

D.7. Dependence of PITC on the Number of Perturbed Atoms

This section provides the result of the perturbed atom number dependence of PIWSL. For simplicity, we only consider the
PITC loss (the coefficient of the PIRC and PISC losses are set as 0.1 and 0). In this study, we randomly selected atoms in a
training sample following the ratio of 0 %, 10 %, 20 %, 50 %, 75 %, 90 %, 100 %. The results are provided in Table A18,
which indicates that around 75% to 100% ratio cases result in the best performance for the force and the potential energy
prediction. However, the number dependence is rather complicated. Therefore, in the main text, we perturbed all the atoms
(100 %) as a conservative choice. In this study, we used the ANI-1x dataset and the 1000 training samples. These samples
differ from the one used to train the model in the main text to avoid overfitting the test dataset.

D.8. Dependence on the Number of Training Iterations

To show the effectiveness of our approach even in the case of longer training, we provide the result of the dependence of
PIWSL on the number of training iterations. In this study, we performed training twice as long as in the main text, that
is, 80,000 iterations for ANI-1x with 1000 training samples. The results are provided in Table A19 and indicate that our
approach performs better in the longer training case. On the other hand, the training without PIWSL shows an overfitting to
the validation dataset, reducing its performance compared to the shorter training case. In this study, we used the ANI-1x
dataset and the 1000 training samples. These samples differ from the one used to train the model in the main text to avoid
overfitting the test dataset. The coefficients of the PITC and PISC losses are 1.2 and 0.01, respectively.

In Table A20, we also present the performance dependence on training length (measured in epochs) of MACE-OFF model
finetuned on MD17 aspirin data with CCSD label. The results demonstrate that PIWSL achieves substantially better
performance than the baseline, even when the latter is trained for ten times as many epochs.

D.9. Additional Experiments with Gradient-Based Forces

In this section, we provide the result of the training with the gradient-based force predictions. The results are provided
in Table A21 and demonstrate that our PIWSL loss enables a better force prediction, even in the case of gradient-based
force predictions. These results also indicate that our PIWSL method can improve the ML model performance in the case
of MLIPs commonly applied in computational chemistry and materials science. We consider that this is partly due to the
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Figure A1: Stability analysis of the MLIP models during MD simulations. Stability during MD simulations is assessed
for the baseline MLIP models and those trained with PIWSL. All results are obtained for the aspirin molecule and MD
simulations in the canonical (N V T) statistical ensemble. We measure stability during MD simulations according to (Fu
et al., 2023).

Table A16: Perturbation magnitude dependence of PITC. The presented numerical values are the root mean square errors
(RMSEs) for the ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors are obtained by
averaging over three independent runs. All models are trained using 1000 configurations.

Model Baseline ϵmax = 0.0005 ϵmax = 0.005 ϵmax = 0.05

PaiNN E 60.11 60.43 47.09 109.17
F 13.10 12.75 12.19 11.70

effectiveness of the weak label at r+ δr as indicated by the WL results, which show an improvement of the performance
different from the case with the direct force branch (see also section E). We hypothesize that the further improvement results
from the additional gradient calculation as indicated in Eq. (A5) and Eq. (A6). This observation also indicates that our
PIWSL method can potentially improve other generic property prediction tasks by calculating their first derivatives in terms
of the atomic coordinate and utilizing the proposed loss functions. In this study, the coefficient of the PITC and PISC losses
are set as 0.1 and 0.01 with ϵmax = 0.01. The weak label loss coefficient is set as 0.1.

D.10. Reducing Curl of Forces for Models with the Force Branch

In this section, we study the effect of our loss functions on the curl of forces in the case of the model with the force
branch. The results are provided in Table A22, which shows that our PITC loss reduces the curl of the predicted forces,
allowing potentially better energy conservation during MD simulations. In this study, we used the ANI-1x dataset and
the 1000 training samples. These samples differ from the one used to train the model in the main text to avoid overfitting
the test dataset. The hyper-parameters of the PITC and PISC losses are (CPITC, CPISC, ϵmax) = (1.2, 0.01, 0.025). It is
theoretically possible to define a loss function aimed at directly minimizing the absolute value of the curl of forces. However,
this approach necessitates calculating the Hessian matrix, which requires a substantial memory cost given the limitations
of current computational resources. Developing a method to train with such a loss function while mitigating memory
requirements is a promising direction for future research.
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Table A17: Performance dependence of the second order PIWSL on ϵmax. The numerical values are MAEs for the
energy in kcal/mol and force in kcal/mol/Åof MACE-OFF model finetuned on MD17-CC dataset.

Model Baseline ϵmax = 0.005 ϵmax = 0.01 ϵmax = 0.02

MACE-OFF E 1.21 0.73 0.72 0.75
F 6.90 4.20 3.77 4.04

Table A18: Dependence of PITC on the number of perturbed atoms. The presented numerical values are the root mean
square errors (RMSEs) for the ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors
are obtained by averaging over three independent runs. All models are trained using 1000 configurations.

Model Baseline 10% 20% 50% 75% 90% 100 %

PaiNN E 60.11 46.68 52.37 54.51 46.94 45.92 46.32
F 13.10 13.03 12.62 12.16 12.14 12.24 12.42

E. Further Analyses of PIWSL
The following provides further analyses of our approach. We provide the results for Equiformer v2 and PaiNN since these
models employ equivariant features and demonstrate a high accuracy on the ANI-1x dataset when trained using 1000
configurations.

E.1. Training MLIPs without Reference Forces

In the following, we explore scenarios where only potential energy labels are available. This situation commonly arises when
calculating energy labels with chemically accurate approaches, such as CCSD(T)/CBS (Hobza & Šponer, 2002; Feller et al.,
2006), for which force calculation is infeasible. To consider practical applications, we examine two cases: (1) predicting
force by a force branch (FB) and (2) predicting force as a gradient of the potential energy (GF). The former enables fast
force prediction and is popular in the machine learning community, while the latter requires additional gradient calculation
but yields curl-free force predictions. It is popular in computational chemistry as it ensures the conservation of the total
energy during MD simulations. The results are provided in Table A23; training without reference forces is achieved by
setting the relative force contribution to zero in Eq. (1). The PIWSL method consistently performs better than the baseline
for the FB and GF cases. However, a more significant improvement in the force prediction performance is observed in the
GF case. We attribute this phenomenon to the inherent nature of PIWSL, which requires consistency between the potential
energy and atomic forces, as discussed in section 5.3. This result aligns with our expectations, confirming the capability of
our PIWSL method to enable ML models to reduce the error in the predicted forces. Overall, PIWSL opens a new possibility
for training MLIP models using highly accurate reference methods, such as CCSD(T)/CBS.

E.2. Comparing PITC with the Taylor-Expansion-Based Weak Label Loss.

We compare the PIWSL method with the Taylor-expansion-based weak label (WL) approach (Cooper et al., 2020), whose
loss function is presented in Eq. (A3). For simplicity, we only consider the PITC loss in Eq. (3). For a fair comparison, we
consider the following two cases. First, we train with reference forces and energies (w. RF). Second, we train the methods
without reference forces and use only the reference energies. For the training with reference forces, we set the numeric
coefficient of the PITC loss to 1.0; for the training without reference forces, the coefficient is set to 0.1. Note that the WL
loss without the reference force is calculated using the predicted force labels. The results are provided in Table A24.

Our PITC loss demonstrates the best accuracy in all cases, with and without the reference forces. Interestingly, PaiNN
failed to learn the potential energy with the WL loss and reference forces. We hypothesize this to be due to the imbalance
of the training between the energies and forces. Specifically, the WL loss trains only the potential energy, resulting in an
inconsistency between the energy and force branches, which share the same readout layer that experiences more frequent
updates using the potential energy. This hypothesis is supported by the results for the training without reference forces,
where the error in energy is reduced compared to the baseline. A further validation in a similar experiment in the case of GF
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Table A19: Dependence on the number of training iterations. The presented numerical values are the root mean square
errors (RMSEs) for the ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors are
obtained by averaging over three independent runs. All models are trained using 1000 configurations.

Model Iteration Number Baseline PIWSL

PaiNN

40,000 E 56.62 ± 2.80 24.53 ± 0.16
F 12.96 ± 0.18 11.43 ± 0.05

80,000 E 59.92 ± 1.47 23.78 ± 0.16
F 13.10 ± 0.19 11.50 ± 0.04

Table A20: Dependence on the number of training iterations of MACE-OFF finetuning. The presented numerical
values are the mean absolute errors (MAEs) for the MD17-CC, in terms of energy (in kcal/mol) and force (in kcal/mol/Å).

Model Epoch Number Baseline PIWSL

MACE-OFF

100 E 1.21 0.72
F 6.90 3.77

1,000 E 1.19 –
F 6.24 –

is provided in section D.9. However, the proposed PITC loss still performs better here. In summary, the PITC loss enables
MLIPs to learn energies and forces consistent with each other and does it better than the previously proposed WL method.

E.3. Ablating the Impact of PITC and PISC Losses.

We conduct an ablation experiment to analyze the impact of PITC and PISC losses. Results in Table A25 indicate that the
PITC loss predominantly improves the accuracy of resulting models, especially for PaiNN. Using just the PISC loss does not
consistently improve accuracy but stabilizes training when combined with PITC. This combined approach notably benefits
Equiformer v2. For Equiformer v2, we repeated the experiment five times to reduce the effect from an outlier on the PITC
loss.

E.4. Adversarial Directions for Perturbing Atomic Positions.

The following discusses the dependence of the PIWSL’s performance on selecting the vector δr in Eq. (5) employed to
perturb atomic positions. The detailed implementation and setups are provided in section B.1. Table A26 compares the
results obtained for a randomly-sampled vector δr and for the one determined adversarially. The results demonstrate that
both approaches improve the performance compared to the baseline without weak supervision, though the results might
depend on the employed model.

E.5. Performance Difference Between First and Second order PIWSL

In this section, we present a comparison between first- and second-order PIWSL methods. We evaluate a foundation model,
MACE-OFF, fine-tuned on the MD17 Aspirin dataset with CCSC(T) labels and the MD22 buckyball catcher dataset, as well
as PaiNN-GF, a gradient-based force model trained on 1,000 samples from ANI-1x. The results are provided in Table A27.

Our findings indicate that the second-order term becomes more significant as model performance improves, particularly
when force prediction error becomes small. This suggests that the first-order term, which encourages the model to predict
the potential energy of neighboring conformations based on a first-order Taylor expansion, plays a crucial role in promoting
a smoother potential energy surface. This effect arises because, in MACE and PaiNN-GF models, force predictions are
derived as the gradient of the potential energy surface.
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Table A21: Results of PIWSL with gradient-based force predictions. The presented numerical values are the root mean
square errors (RMSEs) for the ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors
are obtained by averaging over three independent runs. All models are trained using 1000 configurations.

Model Baseline (GF) PIWSL (GF) WL (GF)

PaiNN E 23.57 ± 0.62 18.62 ± 0.09 22.61 ± 0.50
F 11.32 ± 0.08 10.94 ± 0.01 11.72 ± 0.06

Equiformer E 29.07 ± 2.32 19.53 ± 0.32 21.07 ± 0.86
F 11.90 ± 0.13 11.99 ± 0.03 11.90 ± 0.20

Table A22: Curl of forces for models with the force branch. The presented numerical values are the absolute values of the
total curl of the force evaluated for the ANI-1x dataset (Smith et al., 2020). Energy (in kcal/mol) and force (in kcal/mol/Å)
errors are obtained by averaging over three independent runs. All models are trained using 1000 configurations.

Model Baseline PITC

PaiNN 45.18 ± 4.07 39.06 ± 0.58
Equiformer 29.62 ± 0.28 23.42 ± 0.09

Table A23: Results for models trained on the ANI-1x dataset without reference forces. All models are trained using
1000 training samples. FB refers to the setting where the force branch estimates the force, and GF denotes the setting where
the force is estimated by the gradient of the potential energy with respect to the atomic coordinates.

Model Case Baseline PIWSL

PaiNN

FB E 42.36 ± 0.30 25.42 ± 0.72
F 24.25 ± 0.00 20.54 ± 0.08

GF E 41.83 ± 1.81 29.71 ± 0.55
F 83.36 ± 2.85 24.02 ± 0.95

Equiformer

FB E 43.14 ± 0.86 29.48 ± 0.51
F 24.25 ± 0.00 21.99 ± 0.49

GF E 42.55 ± 0.99 32.66 ± 1.11
F 35.70 ± 0.78 21.83 ± 0.27

Table A24: Comparison of PITC and the Taylor-expansion-based weak label loss. WL (+FP) denotes the Taylor-
expansion-based method using reference energies and either reference (w. RF) or predicted (w/o. RF) forces; see Eq. (A3).
The listed values are the RMSE values for energies in kcal/mol and atomic forces in kcal/mol/Å. All models are trained on
the ANI-1x dataset using 1000 configurations, with (w.) and without (w/o.) reference atomic forces (RF).

Model Case Baseline PITC WL (+FP)

PaiNN

(w. RF) E 56.62 ± 2.80 30.94± 0.56 81.86± 9.39
F 12.96± 0.06 12.04± 0.04 14.54± 0.12

(w/o. RF) E 42.36± 0.30 25.42± 0.72 41.77± 4.82
F 24.25± 0.00 20.54± 0.08 24.68± 0.54

Equiformer

(w. RF) E 54.52± 4.52 23.16± 0.19 31.02± 3.99
F 10.10± 0.00 10.03± 0.05 13.43± 0.92

(w/o. RF) E 43.14± 0.86 29.48± 0.51 88.59± 11.36
F 24.25± 0.00 21.99± 0.49 293.41± 26.96
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Table A25: Results for models with direct-force trained on the ANI-1x dataset with ablated weakly supervised losses.
All models are trained using 1000 training samples. All results are obtained by averaging over three independent runs.
Energy RMSE is given in kcal/mol, while force RMSE is given in kcal/mol/Å.

Model PITC PISC E F

PaiNN

✗ ✗ 56.62 ± 2.80 12.96 ± 0.06
✓ ✗ 24.60 ± 0.18 11.51 ± 0.03
✗ ✓ 58.30 ± 2.10 13.18 ± 0.29
✓ ✓ 24.53 ± 0.48 11.43 ± 0.05

Equiformer

✗ ✗ 54.52 ± 4.52 10.10 ± 0.00
✓ ✗ 32.64 ± 26.48 9.64 ± 0.03
✗ ✓ 48.96 ± 4.96 10.30 ± 0.06
✓ ✓ 20.89 ± 0.50 9.68 ± 0.03

Table A26: PIWSL’s performance dependence on the atomic position perturbation vector. The numerical values are
RMSEs for the energy in kcal/mol and force in kcal/mol/Å. All results are provided for the ANI-1x dataset and models
trained using 1000 configurations.

Baseline Random (Eq. (6)) Adversarial (Eq. (7))

PaiNN E 56.62 ± 2.80 24.53 ± 0.48 33.67 ± 1.12
F 12.96 ± 0.18 11.43 ± 0.05 12.74 ± 0.14

Equiformer E 54.52 ± 4.52 23.16 ± 0.50 20.54 ± 0.21
F 10.10 ± 0.00 10.03 ± 0.03 9.93 ± 0.04

Table A27: Performance difference between first and second order PIWSL. The numerical values are RMSEs (ANI-1x)
and MAE (MD17-CC/MD22-BB) for the energy in kcal/mol and force in kcal/mol/Å. MD17-CC denotes MD17 aspirin data
with CCSD label, MD22-BB denotes MD22 buckyball catcher data, and ANI-1x (1K) denotes 1000 samples from ANI-1x.

Dataset Model Baseline 1st-order PIWSL 2nd-order PIWSL

MD17-CC MACE-OFF E 1.21 ± 0.00 0.90 ± 0.03 0.72 ± 0.01
F 6.90 ± 0.01 4.59 ± 0.16 3.77 ± 0.13

MD22-BB MACE-OFF E 1.16 ± 0.15 1.16 ± 0.28 0.99 ± 0.05
F 0.35 ± 0.00 0.35 ± 0.00 0.34 ± 0.00

ANI-1x (1K) PaiNN-GF E 23.57 ± 0.62 18.62 ± 0.09 18.88 ± 0.23
F 11.32 ± 0.08 10.94 ± 0.01 11.01 ± 0.00
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