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Abstract
Modelling the propagation of electromagnetic sig-
nals is critical for designing modern communica-
tion systems. While there are precise simulators
based on ray tracing, they do not lend themselves
to solving inverse problems or the integration in
an automated design loop. We propose to address
these challenges through differentiable neural sur-
rogates that exploit the geometric aspects of the
problem. We introduce the Wireless Geometric
Algebra Transformer (Wi-GATr), a generic E(3)
equivariant backbone architecture for simulating
wireless propagation in a 3D environment. Fur-
ther, we introduce two datasets of wireless signal
propagation in indoor scenes. On these datasets,
we show the data-efficiency of our model on sig-
nal prediction and inverse problem solving capa-
bilities using differentiable predictive modelling
as well as diffusion models.

1. Introduction
Innovations in modern wireless communication systems all
build upon electromagnetic wave propagation. Therefore,
modelling and understanding wave propagation in space is a
core research area in wireless communication. Wireless sig-
nal propagation follows Maxwell’s equations of electromag-
netism and is often modelled by state-of-the-art ray-tracing
simulation software. However, these simulators take sub-
stantial time to evaluate for each scene, cannot be fine-tuned
on measurements, and are (usually (Hoydis et al., 2022))
not differentiable. This limits their usefulness for solving
inverse problems.

In contrast, neural models of signal propagation can be
evaluated cheaply, can be trained on real measurements in
addition to simulation, and are differentiable. Several such
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approaches have been proposed recently, often using image-
based representations of the inputs and outputs and off-the-
shelf vision architectures (Bakirtzis et al., 2022; Gupta et al.,
2022; Lee et al., 2019; Levie et al., 2021; Qiu et al., 2022;
Ratnam et al., 2020; Sousa et al., 2022; Tian et al., 2021).
However, realistic training data is often scarce in practice,
requiring surrogate models to be data efficient. Aside from
that, wireless environments feature a variety of geometric
input/output data types, including the shape of extended 3D
objects, point coordinates, spatial orientation of antennas,
and information associated with the transmitted signal.

In this work we propose the Wireless Geometric Algebra
Transformer (Wi-GATr), a backbone architecture for wire-
less signal propagation problems. It is grounded in the ob-
servation that wireless propagation is inherently a geometric
problem: a directional signal is transmitted by an oriented
transmitting antenna, the signal interacts with surfaces in the
environment, and the signal eventually impinges an oriented
receiving antenna. A key component is a new tokenizer
for the diverse, geometric data of wireless scenes. The to-
kens are processed with a Geometric Algebra Transformer
(GATr) network (Brehmer et al., 2023). This architecture
is equivariant with respect to the symmetries of wireless
channel modelling, but maintains the scalability of a trans-
former architecture. We introduce two new datasets Wi3R
and WiPTR consisting of diverse indoor wireless scenes and
find that Wi-GATr gives us higher-fidelity predictions than
various baselines, generalizes robustly to unseen settings,
and requires up to 20 times less data for the same perfor-
mance than a transformer baseline.

2. The Wireless Geometric Algebra
Transformer (Wi-GATr)

For a short tour of related work, wireless signal propagation,
neural surrogates, geometric deep learning, and the GATr
architecture, we refer the reader to Appendix A.

Problem formulation. Our goal is to model the interplay
between 3D environments, transmitting and receiving an-
tennas, and the resulting transmitted wireless signals. More
precisely, we consider wireless scenes consisting of:

• The 3D geometry F of the environment. We specify
it through a triangular mesh with a discrete material
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Figure 1: Geometric surrogates for modelling wireless signal propagation. (a): Predictive modelling of channels from 3D geometry,
transmitter, and receiver properties. Wi-GATr is a fast and differentiable surrogate for ray tracers. (b): A probabilistic approach with
diffusion models lets us reconstruct 3D environments (c) and antenna positions (d) from the wireless signal.

class associated with each mesh face.
• A set of transmitting antennas ti for i = 1, . . . , nt.

Each ti is characterized by a 3D position, an orienta-
tion, and any antenna characteristics. We will often fo-
cus on the case of a single Tx and then omit the index i.

• Analogously, a set of receiving antennas ri for i =
1, . . . , nr.

• The channel or signal hij between each transmitter
i and each receiver j, which can be any observable
function of the CIR.

In this setting, we consider various downstream tasks:

• Signal prediction is about predicting the signal re-
ceived at a single antenna from a single receiver,
p(h|F, t, r) with nt = nr = 1. This is exactly the task
that ray-tracing simulators solve. Often, the signal is
modelled deterministically as a function h(F, t, r).

• Receiver localization: inferring the position and prop-
erties of a receiving antenna from one or multiple
transmitters, r ∼ p(r|F, {ti}, {hi}), with nr = 1.

• Geometry reconstruction or sensing: reconstructing a
3D environment partially, inferring p(Fu|Fk, t, r, h),
where Fu and Fk are the unknown and known subsets
of F , respectively.

The latter two problems are examples of inverse problems, as
they invert the graphical model that simulators are designed
for. They are not straightforward to solve with the simulators
directly, but we will show how neural surrogates trained on
simulator data can solve them.

Backbone. Core to our approach to this family of inference
problems is the Wireless Geometric Algebra Transformer
(Wi-GATr) backbone. It consists of a novel tokenizer and a
network architecture.

The tokenizer takes as input some subset of the information
characterizing a wireless scene and outputs a sequence of
tokens that can be processed by the network. A key chal-
lenge in the neural modelling of wireless problems is the di-
versity of types of data involved. A wireless scene consists
of the 3D environment mesh F , featuring three-dimensional
objects such as buildings and trees, antennas t and r char-
acterized through a point-like position, an antenna orienta-
tion, and additional information about the antenna type, and
the characteristics of the channel h. To support all of these
data types, we propose a new tokenizer that outputs a se-
quence of geometric algebra (GA) tokens. Each token con-
sists of a number of elements (channels) of the projective
geometric algebra G3,0,1 in addition to the usual unstruc-
tured scalar channels. We define the GA precisely in Ap-
pendix B. Its main characteristics are that each element is a
16-dimensional vector and can represent various geometric
primitives: 3D points including an absolute position, lines,
planes, and so on. This richly structured space is ideally
suited to represent the different elements encountered in a
wireless problem. Our tokenization scheme is specified in
Tbl. 2 in the appendix.

After tokenizing, we process the input data with a Geometric
Algebra Transformer (GATr) (Brehmer et al., 2023). This ar-
chitecture naturally operates on our G3,0,1 parameterization
of the scene. It is equivariant with respect to permutations
of the input tokens as well as E(3), the symmetry group of
translations, rotations, and reflections. These are exactly the
symmetries of wireless signal propagation, with one excep-
tion: wireless signals have an additional reciprocity symme-
try that specifies that the signal is invariant under an role
exchange between transmitter and receiver. We will later
show how we can incentivize this additional symmetry prop-
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erty through data augmentation.1 Finally, because GATr is
a transformer, it can process sequences of variable lengths
and scales well to systems with many tokens. Both proper-
ties are crucial for complex wireless scenes, which can in
particular involve a larger number of mesh faces.

Predictive modelling. We focus on the prediction of the
time-averaged non-coherent received power h =

∑
p |ap|2,

disregarding delay or directional information that may be
available in real measurements. We train predictive surro-
gates hθ(F, t, r) that predict the power as a function of the
Tx position and orientation t, Rx position and orientation r,
and 3D environment mesh F . All models are trained with
reciprocity augmentation, i. e., randomly flipping Tx and
Rx labels during training. This improves data efficiency
slightly, especially for the transformer baseline. Compared
to a simulator based on ray tracing, hθ has three advantages:
it can be evaluated in microseconds rather than seconds or
minutes, it can be finetuned on real measurements, and it is
differentiable.

The differentiability also makes our surrogate model well-
suited to solve inverse problems. For instance, we can
use it for receiver localization. Given a 3D environment
F , transmitters {ti}, and corresponding signals {hi}, we
can find the most likely receiver position and orientation
as r̂ = argminr

∑
i∥hθ(F, ti, r) − h∥2, by performing

gradient descent through the model.

Probabilistic modelling. Predictive models are determin-
istic and do not allow us to model stochastic forward pro-
cesses or express the inherent uncertainty in inverse prob-
lems. To overcome this, we draw inspiration from the in-
verse problem solving capabilities of diffusion models us-
ing guidance (Chung et al., 2022). In this case, we formu-
late the learning problem as a generative modelling task of
the joint distribution pθ(F, t, r, h) between 3D environment
mesh F , transmitter t, receiver r, and channel h, for a sin-
gle transmitter-receiver pair, using the DDPM framework
(Ho et al., 2020). By using an invariant base density and
Wi-GATr as an equivariant denoising network, we define an
invariant generative model. See Appendix C for a details.

A diffusion model trained to learn the joint density
pθ(F, t, r, h) does not only allow us to generate uncondi-
tional samples of wireless scenes, but also lets us sample
from various conditionals: given a partial wireless scene,
we can fill in the remaining details using the inpainting
approach proposed by Sohl-Dickstein et al. (2015). This
lets us solve signal prediction (sampling from pθ(h|F, t, r)),
receiver localization (from pθ(r|F, t, h)), geometry recon-
struction (from pθ(Fu|Fk, t, r, h)), or any other inference

1We also experimented with a reciprocity-equivariant variation
of the architecture, but that led to a marginally worse performance
without a significant gain in sample efficiency.

task in wireless scenes. Furthermore, this inference pro-
cedure models uncertainty, which is important for inverse
problems, where measurements often underspecify the solu-
tions. Finally, to improve the performance of inpainting, we
combine training on the unconditional diffusion objective
with conditional diffusion objectives by randomly selecting
tokens to condition on and evaluate the diffusion loss only
on the remaining tokens. See Appendix C for details.

3. New datasets
While several datasets of wireless simulations and mea-
surements exist (Alkhateeb, 2019; Alkhateeb et al., 2023;
Orekondy et al., 2022b; Zhang et al., 2023), they either do
not include geometric information, are not diverse, are at a
small scale, or the signal predictions are not realistic. To fa-
cilitate the development of machine learning methods with
a focus on geometry, we generate two new datasets of simu-
lated wireless scenes.2 Both feature indoor scenes and chan-
nel information generated with a state-of-the-art ray-tracing
simulator (rem) at a frequency of 3.5 GHz.

The first dataset, Wi3R, features 5000 floor plans of the
same size, the same number of rooms and homogeneous
wall materials. Different layouts, Tx and Rx positions are
taken from Wi3Rooms (Orekondy et al., 2022b). The sec-
ond dataset, WiPTR, is based on the floor layouts in the
ProcTHOR-10k dataset for embodied AI research (Deitke
et al., 2022) and features 12k realistic floor layouts. We ex-
tract the 3D mesh information including walls, windows,
doors, and door frames and assign 6 different dielectric ma-
terials for different groups of objects. For details of the
datasets, we refer to the Appendix D.

4. Experiments

Predictive modelling. We compare Wi-GATr against
several baselines, including a vanilla transformer (Vaswani
et al., 2017) using the same tokenization scheme, the E(3)-
equivariant SEGNN (Brandstetter et al., 2022b), though
we were only able to fit this model into memory for the
Wi3R dataset, and an image-based PLViT model, which is
a state-of-the-art neural surrogate for wireless scenes (Hehn
et al., 2023). Finally, we attempt to compare Wi-GATr also
to WiNeRT (Orekondy et al., 2022b), but this architecture
was developed to be trained on several measurements on
the same floor plan and thus was not able to achieve useful
predictions on our diverse datasets. Our experiment setup
and the baselines are described in detail in Appendix E.

We study the data efficiency of the surrogates in Fig. 2. Wi-
GATr is more data-efficient than any other method with the
exception of the E(3)-equivariant SEGNN, which performs

2We are preparing the publication of the datasets.

3



Geometric Wireless Simulation with Equivariant Transformers

10 100 1000 4500
Training rooms

0.5

1

2

5

10

M
AE

 [d
Bm

]

Wi3R

PLViT
Transformer
SEGNN
Wi-GATr (ours)

10 100 1000 10k
Training rooms

0.5

1

2

3

M
AE

 [d
Bm

]

WiPTR

Figure 2: Signal prediction. We show the mean absolute error
on the received power as a function of the training data on Wi3R
(left) and WiPTR (right).
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Figure 3: Rx localization error, as a function of the number of
Tx, on Wi3R (left) and WiPTR (right). Lines and error band show
mean and its standard error over 240 measurements.

similarly well for a small number of training samples, con-
firming that equivariance is a useful inductive bias. But Wi-
GATr scales better than SEGNN to larger number of sam-
ples, showing that our architecture combines small-data ad-
vantages of strong inductive biases with the large-data ad-
vantages of a transformer architecture. For a visualization
of predictions and out of distribution evaluations, we refer
to Fig. 5 and Tbl. 5 in the Appendix. Furthermore, we note
that both Wi-GATr and a transformer are over a factor of 20
faster than the ground-truth ray tracer (see Appendix E).

Next, we show how differentiable surrogates let us solve
inverse problems, focusing on the problem of receiver lo-
calization. We infer the Rx position with the predictive sur-
rogate models by optimizing through the neural surrogate
of the simulator as discussed in Sec. 2. The performance of
our surrogate models is shown in Fig. 3 and Appendix E.3

The two neural surrogates achieve a similar performance
when only one or two transmitters are available, a setting
in which the receiver position is highly ambiguous. With
more measurements, Wi-GATr lets us localize the transmit-
ter more precisely.

Probabilistic modelling. For the probabilistic approach,

3Neither SEGNN nor PLViT are fully differentiable w.r.t.
object positions when using the official implementations from
Refs. (Brandstetter et al., 2022a; Hehn et al., 2023). We could there-
fore not use these architectures to infer the transmitter positions.

Wi-GATr (ours) Transformer

default data augm.

Canonicalized scenes
Signal pred. 1.62 3.00 15.66
Receiver loc. 3.64 8.28 14.42
Geometry reco. -3.95 -3.61 -2.10

Scenes in arbitrary rotations
Signal pred. 1.62 9.57 17.65
Receiver loc. 3.64 105.68 14.45
Geometry reco. -3.95 389.34 -2.34

Table 1: Probabilistic modelling results. We show variational
upper bounds on the negative log likelihood for different condi-
tional inference tasks (lower is better, best in bold).

we train diffusion models on the Wi3R dataset and compare
to Wi-GATr to a transformer baseline, as well as a trans-
former trained on the same data augmented with random
rotations. Both models are trained with the DDPM pipeline
with 1000 denoising steps and samples from with the DDIM
solver (Song et al., 2021a) (see details in Appendix E).

For each of the conditional inference tasks described in
Sec. 2, we quantitatively evaluate our models through the
variational lower bound on the log likelihood of test data
under the model. To further analyze the effects of equivari-
ance, we separate testing the model on canonicalized scenes,
in which all walls are aligned with the x and y axis, and
scenes that are arbitrarily rotated. The results in Tbl. 1 show
that Wi-GATr outperforms the transformer baseline across
all three tasks, even in the canonicalized setting or when the
transformer is trained with data augmentation. The gains of
Wi-GATr are particularly clear on the signal prediction and
receiver localization problems. Finally, we also show quali-
tative results for the different inference tasks in Fig. 1, Fig. 7,
and Appendix E.2. We observe that Wi-GATr can infer mul-
timodal densities for Rx localization, as well as sample di-
verse floorplans consistent with the transmitted signals.

5. Conclusion
Wireless signal transmission through electromagnetic wave
propagation is an inherently geometric problem. We de-
veloped Wi-GATr, a class of neural models grounded in
geometric representations and strong inductive biases. In
our experiments, we demonstrated the data efficiency of
our approach as well as the inverse problem solving capa-
bilities using gradient descent and generative modelling.
While deeper analysis in terms of data diversity (e. g., more
materials, outdoor scenarios) and realistic target signals
(e. g., CIR) is needed, Wi-GATr highlights the benefits of a
geometric treatment of wave propagation modelling on two
novel geometric datasets of diverse wireless scenes.
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A. Background and related work

Wireless signal propagation. How do wireless signals
propagate from a transmitting antenna (Tx) to a receiver
antenna (Rx) in a (static) 3D environment? While the sys-
tem is fundamentally described by Maxwell’s equations, for
many realistic problems the ray approximation of geomet-
ric optics suffices (Keller). It approximates the solution to
Maxwell’s equations as a sum of planar waves propagating
in all directions from Tx. Each planar wave is represented as
a ray, characterized by various attributes (e. g., power, phase,
delay) since transmission. As a ray reaches an object—that
is, it intersects with its mesh—the interaction is modelled
as reflection, refraction, or diffraction. During such interac-
tions, the power, phase, polarization, and propagation direc-
tion of the wave can change in complex, material-dependent
ways. In addition, new rays can emanate from the point of
interaction. After multiple interactions, the rays eventually
reach the receiving antenna. The Tx and Rx are then linked
by a connected path p of multiple rays. The effects on the re-
ceived signal are described by the channel impulse response
(CIR) h(τ) =

∑
p apδ(τ − τp), where ap ∈ C is the com-

plex gain and τp the delay of the incoming rays (Tse and
Viswanath, 2005).

Maxwell’s equations and in extension ray propagation are
highly symmetric. The received signal does not change
under rotations, translations, and reflections of the whole
scene, as well as the exchange of transmitter and receiver.
The latter property is known as reciprocity (Marzetta and
Hochwald, 2006).

Wireless simulators. Wireless propagation models play
a key role in design and evaluation of communication sys-
tems, for instance by characterizing the gain of competitive
designs in realistic settings or by optimizing systems perfor-
mance as in base station placement for maximal coverage.
Statistical approaches (3GPP TR 38.901) represent propaga-
tion as a generative model where the parameters of a proba-
bilistic model are fitted to measurements. On the other hand,
wireless ray-tracing approaches (rem; Amiot et al., 2013;
Hoydis et al., 2022) are increasingly popular due to their
high accuracy and because they do not require expensive
field measurement collection campaigns.

Neural wireless simulations. Both statistical and ray-
tracing simulation techniques are accompanied by their own
shortcomings, subsequently mitigated by their neural coun-
terparts. Neural surrogates for statistical models (Dörner
et al., 2020; Orekondy et al., 2022a; O’Shea et al., 2019;
Ye et al., 2018) reduce the amount and cost of measure-
ments required. Neural ray tracers (Hoydis et al., 2022;
Orekondy et al., 2022b; Zhao et al., 2023) address the non-
differentiability of simulators using a NeRF-like strategy
(Mildenhall et al., 2020) by parameterizing the scene us-

ing a spatial MLP and rendering wireless signals using clas-
sic ray-tracing or volumetric techniques. While these tech-
niques are faster than professional ray tracers, they are simi-
larly bottlenecked by expensive bookkeeping and rendering
steps (involving thousands of forward passes). In contrast,
we propose a framework to simulate wireless signals with a
single forward pass through a geometric transformer that is
both sample-efficient and generalizes to novel scenes.

Geometric deep learning. The growing field of geomet-
ric deep learning (Bronstein et al., 2021) aims to incorpo-
rate structural properties of a problem into neural network
architectures and algorithms. A central concept is equivari-
ance to symmetry groups (Cohen, 2021): a network f(x)
is equivariant with respect to a group G if its outputs trans-
form consistently with any symmetry transformation g ∈ G
of the inputs, f(g · x) = g · f(x), where · denotes the group
action. Of particular interest to us is the Euclidean group
E(3) of isometries of 3D space, that is, transformations that
leave Euclidean distances invariant. This group includes
spatial translations, rotations, reflections, and their combi-
nations. As we argued above, the physics of wireless signal
propagation are invariant under this group.

GATr. The Geometric Algebra Transformer
(GATr) (Brehmer et al., 2023) is an E(3)-equivariant archi-
tecture for geometric problems. Among equivariant archi-
tectures, it stands out in two ways. First, it uses geometric
(or Clifford) algebras (Clifford, 1878; Grassmann, 1844) as
representations. For a rigorous introduction to these alge-
bras, we refer the reader to Dorst (2020). From a practical
machine learning perspective, these algebras define embed-
dings for various geometric primitives like 3D points, planes,
or E(3) transformations. We will show that this represen-
tation is particularly well-suited for wireless channel mod-
elling. Second, GATr is a transformer architecture (Vaswani
et al., 2017). It computes the interactions between multiple
tokens through scaled dot-product attention. With efficient
backends like FlashAttention (Dao et al., 2022), the archi-
tecture is scalable to large systems, without any restrictions
on the sparsity of interactions like in message-passing net-
works.

Diffusion models. Diffusion models (Ho et al., 2020; Sohl-
Dickstein et al., 2015; Song et al., 2021b) are a class of
generative models that iteratively invert a noising process.
They have become the de-facto standard in image and video
generation (Ho et al., 2022; Ramesh et al., 2022). Recently,
they have also shown to yield promising results in the gener-
ation of spatial and sequential data, such as in planning (Jan-
ner et al., 2022) and puzzle solving (Hossieni et al., 2024).
Aside from their generative modelling capabilities, diffusion
models provide a flexible way for solving inverse problems
(Chung et al., 2022; Lugmayr et al., 2022) through multipli-
cation with an appropriate likelihood term (Sohl-Dickstein
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et al., 2015). Furthermore, by combining an invariant prior
distribution with an equivariant denoising network, one ob-
tains equivariant diffusion models (Köhler et al., 2020).
These yield a sampling distribution that assigns equal prob-
ability to all symmetry transformations of an object, which
can improve performance and data efficiency in symmetry
problems like molecule generation (Hoogeboom et al., 2022)
and planning (Brehmer et al., 2024). We will demonstrate
similar benefits in modelling wireless signal propagation.

B. Geometric algebra
As representation, Wi-GATr uses the projective geometric
algebra G3,0,1. Here we summarize key aspects of this
algebra and define the canonical embedding of geometric
primitives in it. For a precise definition and pedagogical
introduction, we refer the reader to Dorst (2020).

Geometric algebra. A geometric algebra Gp,q,r consists
of a vector space together with a bilinear operation, the
geometric product, that maps two elements of the vector
space to another element of the vector space.

The elements of the vector space are known as multivectors.
Their space is constructed by extending a base vector space
Rd to lower orders (scalars) and higher-orders (bi-vectors,
tri-vectors, . . . ). The algebra combines all of these orders
(or grades) in one 2d-dimensional vector space. From a
basis for the base space, for instance (e1, e2, e3), one can
construct a basis for the multivector space. A multivector
expressed in that basis then reads, for instance for d = 3,
x = x∅ + x1e1 + x2e2 + x3e3 + x12e1e2 + x13e1e3 +
x23e2e3 + x123e1e2e3.

The geometric product is fully defined by bilinearity, asso-
ciativity, and the condition that the geometric product of a
vector with itself is equal to its norm. The geometric prod-
uct generally maps between different grades. For instance,
the geometric product of two vectors will consist of a scalar,
the inner product between the vectors, and a bivector, which
is related to the cross-product of R3. In particular, the con-
ventional basis elements of grade k > 1 are constructed as
the geometric product of the vector basis elements ei. For
instance, e12 = e1e2 is a basis bivector. From the defining
properties of the geometric products it follows that the geo-
metric product between orthogonal basis elements is anti-
symmetric, eiej = −ejei. Thus, for a d-dimensional basis
space, there are

(
d
k

)
independent basis elements at grade k.

Projective geometric algebra. To represent three-
dimensional objects including absolute positions, we use a
geometric algebra based on a base space with d = 4, adding
a homogeneous coordinate to the 3D space.4 We use a basis

4A three-dimensional base space is not sufficient to represent
absolute positions and translations acting on them in a convenient

(e0, e1, e2, e3) with a metric such that e20 = 0 and e2i = 1
for i = 1, 2, 3. The multivector space is thus 24 = 16-
dimensional. This algebra is known as the projective geo-
metric algebra G3,0,1.

Canonical embedding of geometric primitives. In G3,0,1,
we can represent geometric primitives as follows:

• Scalars (data that do not transform under transla-
tion, rotations, and reflections) are represented as the
scalars of the multivectors (grade k = 0).

• Oriented planes are represented as vectors (k = 1),
encoding the plane normal as well as the distance from
the origin.

• Lines or directions are represented as bivectors (k =
2), encoding the direction as well as the shift from the
origin.

• Points or positions are represented as trivectors (k =
3).

For more details, we refer the reader to Tbl. 1 in Brehmer
et al. (2023), or to Dorst (2020).

C. Probabilistic model
Formally, we employ the standard DDPM framework (Song
et al., 2021b) to train a latent variable model pθ(x0) =∫
pθ(x0:T )dx1:T

, where x0 = [rsrp, tx, rx,mesh] de-
notes the joint vector of variables following the dataset
distribution pdata(x0). In DDPM, the latent variables
x1:T are noisy versions of the original data, defined
by a discrete forward noise process q(xt|xt−1) =
N

(
xt;

√
1− βtxt−1, βtI

)
and βi > 0. We approximate

the reverse distribution q(xt−1xt) with pθ(xt−1|xt) =∑
x̂0

q(xt−1|xt, x̂0)pθ(x̂0|xt, t), where q(xt−1|xt,x0) is a
normal distribution with closed-form parameters (Ho et al.,
2020). The forward and backward distributions q and p
form a variational auto-encoder (Kingma and Welling, 2014)
which can be trained with a variational lower bound loss. Us-
ing the above parametrization of pθ(xt−1|xt), however, al-
lows for a simple approximation of this lower bound by train-
ing on an MSE objective L = Ext,x0

[
||fθ(xt, t)− x0||2

]
which resembles denoising score matching (Vincent, 2011).

To parametrize pθ(x̂0|xt, t), we pass the raw representa-
tion of xt through the wireless GA tokenizer of Wi-GATr
and, additionally, we embed the scalar t through a learned
timestep embedding (Peebles and Xie, 2022). The embed-
ded timesteps can then be concatenated along the scalar
channels in the GA representation in a straightforward man-
ner. Similar to GATr (Brehmer et al., 2023), the neural net-
work outputs a prediction in the GA representation, which
is subsequently converted to the original latent space. Note

form. See Brehmer et al. (2023); Dorst (2020); Ruhe et al. (2023)
for an in-depth discussion.
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Data type Input parameterization Tokenization Channels (G3,0,1 embedding)

3D environment F • Triangular mesh 1 token per mesh face • Mesh face center (point)
• Vertices (points)
• Mesh face plane (oriented plane)

• Material classes • One-hot material emb. (scalars)

Antenna ti / ri • Position 1 token per antenna • Position (point)
• Orientation • Orientation (direction)
• Receiving / transmitting • One-hot type embedding (scalars)
• Additional characteristics • Characteristics (scalars)

Channel hij • Antennas 1 token per link • Tx position (point)
• Rx position (point)
• Tx-Rx vector (direction)

• Received power • Normalized power (scalar)
• Phase, delay, . . . • Additional data (scalars)

Table 2: Wireless GA tokenizer. We describe how the mesh parameterizing the 3D environment and the information about antennas and
their links are represented as a sequence of geometric algebra tokens. The mathematical representation of G3,0,1 primitives like points or
orientated planes is described in Appendix B.

that this possibly simplifies the learning problem, as the GA
representation is inherently higher dimensional than our dif-
fusion space with the same dimensionality as x0.

Equivariant generative modelling. A diffusion model
with an invariant base density and an equivariant denoising
network defines an invariant density, but equivariant gener-
ative modelling has some subtleties (Köhler et al., 2020).
Because the group of translations is not compact, we cannot
define a translation-invariant base density. Previous works
have circumvented this issue by performing diffusion in the
zero center of gravity subspace of euclidean space (Hooge-
boom et al., 2022). However, we found that directly pro-
viding the origin as an additional input to the denoising net-
work also resulted in good performance, at the cost of full
E(3) equivariance. We also choose to generate samples in
the convention where the z-axis represents the direction of
gravity and positive z is “up”; we therefore provide this di-
rection of gravity as an additional input to our network.

Masking strategies. To improve the performance
of conditional sampling, we randomly sample condition-
ing masks during training which act as an input to the
model, as well as a mask on the loss terms. Namely,
we sample masks from a discrete distribution with prob-
abilities p = (0.2, 0.3, 0.2, 0.3) corresponding to masks
for unconditional, signal, receiver and mesh prediction
respectively. If we denote this distribution over masks
as p(m), the modified loss function then reads as L =
Em∼p(m),xt,x0

[
||m⊙ fθ(x

m
t , t,m)−m⊙ x0||2

]
, where

xm
t is equal to x0 along the masked tokens according to m.

D. Datasets
Table 3 summarizes major characteristics of the two datasets.
In the following we explain more details on data splits and
generation.

Wi3R dataset. Based on the layouts of the Wi3Rooms
dataset by Orekondy et al. (2022b), we run simulations
for 5000 floor layouts that are split into training (4500),
validation (250), and test (250). These validation and test
splits thus represent generalization across unseen layouts,
transmitter, and receiver locations. From the training set,
we keep 10 Rx locations as additional test set to evaluate
generalization only across unseen Rx locations. To evaluate
the generalization performance, we also introduce an out-
of-distribution (OOD) set that features four rooms in each
of the 250 floor layouts. In all layouts, the interior walls
are made of brick while exterior walls are made of concrete.
The The Tx and Rx locations are sampled uniformly within
the bounds of the floor layouts (10m × 5m × 3m).

WiPTR dataset. Based on the floor layouts in the
ProcTHOR-10k dataset for embodied AI research (Deitke
et al., 2022), we extract the 3D mesh information includ-
ing walls, windows, doors, and door frames. The layouts
comprise between 1 to 10 rooms and can cover up to 600
m2. We assign 6 different dielectric materials for different
groups of objects (see Tbl. 4). The 3D Tx and Rx loca-
tions are randomly sampled within the bounds of the lay-
out. The training data comprises 10k floor layouts, while
test and validation sets each contain 1k unseen layouts, Tx,
and Rx locations. Again, we introduce an OOD validation
set with 5 layouts where we manually remove parts of the
walls such that two rooms become connected. While the
multi-modality in combination with the ProcTHOR dataset
enables further research for joint sensing and communica-
tion in wireless, our dataset set is also, to the best of our
knowledge, the first large-scale 3D wireless indoor datasets
suitable for embodied AI research.
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Wi3R WiPTR

Total Channels 5M >5.5M
Materials 2 6
Transmitters per layout 5 1-15
Receivers per layout 200 Up to 200
Floor layouts 5k 12k
Simulated frequency 3.5 GHz 3.5 GHz
Reflections 3 6
Transmissions 1 3
Diffractions 1 1
Strongest paths retained 25 25
Antennas Isotropic Isotropic
Waveform Sinusoid Sinusoid

Table 3: Dataset details and simulation settings for dataset genera-
tion.

Object Material name

Ceiling ITU Ceiling Board
Floor ITU Floor Board
Exterior walls Concrete
Interior walls ITU Layered Drywall
Doors and door frames ITU Wood
Windows ITU Glass

Table 4: Dielectric material properties of objects in WiPTR.

E. Experiments
E.1. Predictive modelling

Models. We use an Wi-GATr model that is 32 blocks deep
and 16 multivector channels in addition to 32 additional
scalar channels wide. We use 8 attention heads and multi-
query attention. Overall, the model has 1.6 · 107 parameters.
These settings were selected by comparing five differently
sized networks on an earlier version of the Wi3R dataset,
though somewhat smaller and bigger networks achieved a
similar performance.

Our Transformer model has the same width (translating to
288 channels) and depth as the Wi-GATr model, totalling
16.7 · 106 parameters. These hyperparameters were inde-
pendently selected by comparing five differently sized net-
works on an earlier version of the Wi3R dataset.

For SEGNN, we use representations of up to ℓmax = 3, 8
layers, and 128 hidden features. The model has 2.6 · 105
parameters. We selected these parameters in a scan over
all three parameters, within the ranges used in Brandstetter
et al. (2022b).

The PLViT model is based on the approach introduced
by Hehn et al. (2023). We employ the same centering and
rotation strategy as in the original approach around the Tx.
Further, we extend the original approach to 3 dimensions by
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Figure 4: Rx localization error, as a function of the number of
Tx. Lines and error band show mean and its standard error over
240 measurements.

providing the difference in z-direction concatenated with the
2D x-y-distance as one token. Since training from scratch re-
sulted in poor performance, we finetuned a ViT-B-16 model
pretrained on ImageNet and keeping only the red channel.
This resulted in a model with 85.4 · 107 parameters and also
required us to use a fixed image size for each dataset that
ensures the entire floor layout is visible in the image data.

Optimization. All models are trained on the mean squared
error between the model output and the total received power
in dBm. We use a batch size of 64 (unless for SEGNN,
where we use a smaller batch size due to memory limita-
tions), the Adam optimizer, an initial learning rate of 10−3,
and a cosine annealing scheduler. Models are trained for
5 · 105 steps on the Wi3R dataset and for 2 · 105steps on the
WiPTR dataset.

Inference speed. To quantify the trade-off between infer-
ence speed and accuracy of signal prediction, we compare
the ray tracing simulation with our machine learning ap-
proaches. For this purpose, we evaluate the methods on a
single room of the validation set with 2 different Tx loca-
tions and two equidistant grids at z ∈ {2.3, 0.3} with each
1637 Rx locations. Figure 6 summarizes the average infer-
ence times per link with the corresponding standard devia-
tion. While Wireless InSite (6/3/1, i.e., 6 reflections/3 trans-
missions/1 diffraction) represents our method that was used
to generate the ground truth data, it is also by far the slowest
approach. Note that we only measure the inference speed of
Wireless InSite for each Tx individually without the prepro-
cessing of the geometry. By reducing the complexity, e.g.,
reducing the number of allowed reflections or transmissions,
of the ray tracing simulation the inference time can be re-
duced significantly. For example, the configuration 3/2/1
shows a significant increase in inference speed, but at the
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Figure 5: Qualitative signal prediction results. We show a single floor plan from the WiPTR test set. The black lines indicate the walls
and doors, the colors show the received power as a function of the transmitter location (brighter colours mean a stronger signal). The
transmitting antenna is shown as a black cross. The z coordinates of transmitter and receiver are all fixed to the same height. We compare
the ground-truth predictions (top left) to the predictions from different predictive models, each trained on only 100 WiPTR floor plans.
Wi-GATr is able to generalize to this unseen floor plan even with such a small training set.

Wi3R dataset WiPTR dataset

Wi-GATr Transf. SEGNN PLViT Wi-GATr Transf. PLViT(ours) (ours)

In distribution
Rx interpolation 0.63 1.14 0.92 4.52 0.39 0.62 1.27
Unseen floor plans 0.74 1.32 1.02 4.81 0.41 0.69 1.28

Symmetry transformations
Rotation 0.74 78.68 1.02 4.81 0.41 38.51 1.28
Translation 0.74 64.05 1.02 4.81 0.41 4.96 1.28
Permutation 0.74 1.32 1.02 4.81 0.41 0.69 1.28
Reciprocity 0.80 1.32 1.01 10.15 0.41 0.69 1.28

Out of distribution
OOD layout 7.03 14.06 2.34 5.89 0.43 0.86 1.23

Table 5: Signal prediction results. We show the mean absolute error on the received power in dBm (lower is better, best in bold). Top:
In-distribution performance. Middle: Generalization under symmetry transformations. Bottom: Generalization to out-of-distribution
settings. In almost all settings, Wi-GATr is the highest-fidelity surrogate model.
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Figure 6: Inference wall time vs signal prediction error per Tx/Rx
prediction on the first room of the WiPTR validation set.

same time we can already see that the simulation results
do not match the ground truth anymore. This effect is even
more pronounced for the case of Wireless InSite 3/1/1. Our
machine learning solutions outperform all tested configura-
tions of Wireless InSite in terms of inference speed, while
at the same time keeping competitive performance in terms
of prediction accuracy (MAE) compared to the data genera-
tion simulation itself in a simpler configuration setting.

In addition, the differentiability of ML approches enables
them to solve inverse problems and such as finetuning to
real-world measurement data. Finetuning, often referred to
as calibration, remains challenging for simulation software
and will likely lead to increased MAE as the ground truth is
not given by Wireless InSite itself anymore.

E.2. Probabilistic modelling

Experiment setup. For all conditional samples involv-
ing p(Fu|Fk, t, r, h), we always choose to set Fk to be the
floor and ceiling mesh faces only and Fu to be the remain-
ing geometry. This amounts to completely predicting the
exterior walls, as well as the separating walls/doors of the
three rooms, whereas the conditioning on Fk acts only as a
mean to break equivariance. Since F is always canonical-
ized in the non-augmented training dataset, this allows for
direct comparison of variational lower bounds in Tbl. 1 with
the non-equivariant transformer baseline.

Models. For both Wi-GATr and the transformer baseline,
we follow similar architecture choices as for the predictive
models, using an equal amount of attention layers. To make
the models timestep-dependent, we additionally employ a
standard learnable timestep embedding commonly used in
diffusion transformers (Peebles and Xie, 2022) and concate-
nate it to the scalar channel dimension.

Optimization. We use the Adam optimizer with a learning

rate of 10−3 for the Wi-GATr models. The transformer
models required a smaller learning rate for training stability,
and thus we chose 3 ·10−4. In both cases, we linearly anneal
the learning rate and train for 7 · 105 steps with a batchsize
of 64 and gradient norm clipping set to 100.

Evaluation. We use the DDIM sampler using 100
timesteps for visualizations in Fig. 7 and for the error anal-
ysis in Fig. 8. To evaluate the variational lower bound in
Tbl. 1, we follow (Nichol and Dhariwal, 2021) and evaluate
Lvlb := L0 + L1 + . . . LT , where L0 := − log pθ(x0|x1),
Lt−1 := DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) and LT :=
DKL(q(xT |x0), p(xt)). To be precise, for each sample x0

on the test set, we get a single sample xt from q and evalu-
ate Lvlb accordingly. Table 1 reports the mean of all Lvlb

evaluations over the test set.

Additional results. Fig. 8, shows the quality of samples
from pθ(h|F, t, r) as a function of the amount of available
training data, where we average over 3 samples for each
conditioning input. It is worth noting that diffusion samples
have a slightly higher error than the predictive models. This
shows that the joint probabilistic modelling of the whole
scene is a more challenging learning task than a determinis-
tic forward model.

To further evaluate the quality of generated rooms, we an-
alyze how often the model generates walls between the re-
ceiver and transmitter, compared to the ground truth. Pre-
cisely, we plot the distribution of received power versus the
distance of transmitter and receiver in Fig. 9 and color each
point according to a line of sight test. We can see that, over-
all, Wi-GATr has an intersection error of 0.26, meaning that
in 26% of the generated geometries, line of sight was oc-
cluded, while the true geometry did not block line of sight
between receiver and transmitter. This confirms that the dif-
fusion model correctly correlates the received power and
receiver/transmitter positions with physically plausible ge-
ometries. While an error of 26% is non-negligible, we note
that this task involves generating the whole geometry given
only a single measurement of received power, making the
problem heavily underspecified. Techniques such as com-
positional sampling (Du et al., 2023) could overcome this
limitation by allowing to condition on multiple receiver and
received power measurements.

F. Discussion
Progress in wireless channel modelling is likely to lead to
societal impact. Not all of it is positive. The ability to re-
construct details about the propagation environment may
have privacy implications. Wireless networks are ubiqui-
tous and could quite literally allow to see through walls. At
the same time, we believe that progress in the development
of wireless channel models may help to reduce radiation ex-
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(a) Unconditional generation (b) Receiver localization (c) Geometry reconstruction
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Figure 7: Probabilistic modelling. We formulate various tasks as sampling from the unconditional or conditional densities of a single
diffusion model. (a): Unconditional sampling of wireless scenes p(F, t, r, h). (b): Receiver localization as conditional sampling from
p(r|F, t, h) for two different values of h and r. (c): Geometry reconstruction as conditional sampling from p(Fu|Fk, t, r, h) for two
different values of h, keeping t, r, Fk fixed.
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Figure 8: Mean absolute errors of received power as a function of number of training rooms for conditional diffusion model samples.

posure and power consumption of wireless communication
systems, and generally contribute to better and more acces-
sible means of communication.
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Figure 9: A scatter plot of normalized received power versus normalized distance between receiver and transmitter. Each point is colored
depending on having line of sight between the receiver and transmitter given the room geometry. Left: The geometry used for calculating
line of sight is given by conditional diffusion samples using Wi-GATr. Middle: The geometry used for calculating line of sight is given by
transformer samples. Right: The geometry used for calculating line of sight is taken from the test data distribution.
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