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Abstract
Pulmonary opacification is the inflammation in
the lungs caused by many respiratory ailments,
including the novel corona virus disease 2019
(COVID-19). Chest X-rays (CXRs) with such
opacifications render regions of lungs impercepti-
ble, making it difficult to perform automated im-
age analysis on them. In this work, we focus on
segmenting lungs from such abnormal CXRs as
part of a pipeline aimed at automated risk scoring
of COVID-19 from CXRs. We treat the high opac-
ity regions as missing data and present a modified
CNN-based image segmentation network that uti-
lizes a deep generative model for data imputation.
We train this model on normal CXRs with ex-
tensive data augmentation and demonstrate the
usefulness of this model to extend to cases with
extreme abnormalities. ∗

1. Introduction
Acute respiratory distress syndrome (ARDS) is character-
ized by rapid onset of inflammation in the lungs resulting
in acute lung injury (Ware & Matthay, 2000). The extent of
lung infection is often used as a marker for measuring the
disease severity.

Imaging techniques are routinely employed to measure
volume of lung infection due to ARDS (Bordley et al.,
2004); this has also been attempted in detection of COVID-
19 (Wong et al., 2020; Shi et al., 2020; Cohen et al., 2020).
As chest X-rays (CXRs) are easier to obtain than computed
tomography (CT) scans, they are more regularly used to
perform early stage triaging of patients with ARDS and
currently with COVID-19 symptoms. Obtaining accurate
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Figure 1. a) Normal chest X-ray showing the lungs clearly b) Ab-
normal CXR with high opacity where the right lung is hardly seen.
Brighter regions are tissue-like as they attenuate X-rays whereas
darker regions indicate presence of air, in this case inside the lungs.

segmentation of lung fields from CXRs is an essential first
step in this process. However, extreme levels of opacifi-
cation obfuscate large regions in the lungs making even
manual segmentation of lungs difficult (Jacobi et al., 2020).

Prior to deep learning, automatic segmentation of lungs
from CXRs was primarily based on active shape analy-
sis (Xu et al., 2012) and deformable models (Candemir
et al., 2013). With the advancement of fully convolutional
neural (FCN) networks, CNN based methods have become
state-of-the-art in various medical imaging tasks, including
in lung segmentation tasks (Long et al., 2015; Ronneberger
et al., 2015; Shin et al., 2016). However, most of these
methods operate based on a strong (and commonly used)
assumption that the out-of-sample/test data points are also
from the same distribution as the training set (Wen et al.,
2014). As a consequence, in lung segmentation tasks, seg-
mentation models trained on CXRs with low opacification
could fail to segment abnormal CXRs as their features can
be vastly different as seen in Figure 1.

Two recent methods have focused on segmenting lungs from
high opacity CXRs, to the best of our knowledge (Souza
et al., 2019; Tang et al., 2019). In (Souza et al., 2019), ini-
tial segmentations are obtained from a patch classification
network and refined further using a reconstruction network.
However, this method requires a reasonable amount of la-
beled examples for the abnormal cases. In (Tang et al.,
2019), the authors build on the capability of deep generative
models to obtain realistic synthetic abnormal CXRs using
adversarial training (Dai et al., 2018) and use these synthetic
scans to train their segmentation model. This is a form of
data augmentation, and it can also be limiting as the diver-
sity of opacifications that can be realized using adversarial
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Figure 2. Overview of the proposed model with a variational en-
coder for data imputation, Vφ(·) and a U-net type segmentation
network with encoder Eθ(·) and decoder Dψ(·) (highlighted inside
the grey box). The decoder is shared between the data imputation
block and the segmentation network.

training are largely decided by the training samples. A thor-
ough review of lung segmentation methods from CXRs is
reported in (Candemir & Antani, 2019).

In this work, we aim to segment high opacity CXRs at test
time by training primarily on normal CXRs. We treat this
setting as dealing with incomplete data, as the training set
does not contain high opacity images. Further, the opacifica-
tion in CXRs itself is treated as the missing data that is to be
inferred (Figure 1). While we also rely on specialized data
augmentation similar to (Tang et al., 2019), presented in
Section 2.2, we take up an alternative approach that builds
on the strengths of deep latent variable generative models
such as variational autoencoders (Kingma & Welling, 2014).
We add a variational encoder to impute data by concatenat-
ing samples from the learnt latent space to a standard CNN
based segmentation network, which is then jointly decoded
to obtain the segmentations. We demonstrate the usefulness
of the proposed approach by training on labeled examples of
normal CXRs and testing on extreme cases of opacification.

2. Methods
Consider input images x ∈ X and their corresponding
segmentations s ∈ S, then the task of supervised image
segmentation can be formulated as obtaining a mapping
f(·) : X → S.

For a U-net type model (Ronneberger et al., 2015) the map-
ping function is composed of an encoder and decoder, such
that f(·) = Eθ(Dψ(·)) where Eθ, Dψ are encoder and de-
coder neural networks parameterised by θ and ψ respec-
tively, as shown in Figure 2.

2.1. Variational Data Imputation

Variational autoencoders have been used widely in genera-
tive settings as they can capture rich latent representations,
which also make them a good fit for performing data impu-
tation (Nazabal et al., 2018; Ham et al.). In the generative
setting the optimization objective of a VAE is the evidence
lower bound (ELBO) given by

LV AE
(
x, x̂

)
= Lrec(x, x̂) +KL

[
qφ(z|x)||p(z)

]
(1)

where the first term, interpreted as reconstruction loss, is the
negative expected log likelihood,

Lrec(x, x̂) = −Eqz|x [log(pψ(x|z))]. (2)

where x̂ is the reconstructed input. The second term is the
KL divergence between the approximating variational den-
sity qφ(z|x) = N(z;µφ, σ

2
φ) with the standard normal prior

on the latent variable p(z) = N (z; 0, 1). The parameters
of the axis aligned Gaussian (µφ, σ

2
φ) are predicted by the

encoder neural network Vφ(·) with parameters φ.

In this work, the VAE is not used as an autoencoder but as
a method to perform cross-domain mapping between the
input X and the target segmentation S domains. This is
in contrast with (Myronenko, 2018), where the VAE was
used to reconstruct the input image to have a regularizing
effect on the encoder layers. The proposed use of VAE bears
similarities with the non-adversarial domain mapping work
such as in (Hoshen & Wolf, 2018; Hoshen, 2018).

We introduce the latent random variable z to obtain low di-
mensional representations of the data, x. We train the model
with different augmentation strategies (Sec. 2.2) to learn a
latent representation that can perform data imputation, han-
dle missing data and possibly capture other task specific
features such as shape information (Esser et al., 2018).

As depicted in Figure 2, the variational encoder, Vφ(·), maps
input images to a low dimensional latent space and samples
from the latent space are concatenated to the output of the
encoder of the segmentation network, Eθ(·), depicted in
Fig. 2. The decoder Dψ(·) is shared between the U-net and
the VAE such that they can jointly decode the segmentation
s, resulting in the following objective (Hoshen, 2018):

L
(
s, ŝ

)
= Lrec(s, ŝ) +KL

[
qφ(z|x)||p(z)

]
(3)

where the predicted segmentation, ŝ, is obtained from the
decoder:

ŝ = Dψ

[
Eθ(x) ‡ Vφ(x)

]
= Dψ

[
h ‡ z

]
(4)

where ‡ is used to indicate concatenation, h = Eθ(x) is the
output of the U-net encoder and z ∼ qφ(z|x) is a sample
from the latent space learnt by the variational encoder. Note
that the objective in Eq. (3) is similar to the ELBO objective
in Eq. (1) except for the reconstruction loss, which is the
standard segmentation loss computed between ŝ, the pre-
dicted segmentation and s, the target segmentation. As the
segmentation masks are binary we use binary cross entropy
loss as the reconstruction loss. A reasonable interpretation
of the objective in Eq. (3) is that the first term helps in
segmentation while the second term has a regularisation
effect (Kingma & Welling, 2014; Myronenko, 2018) and
helps with data imputation.



Lung Segmentation from CXR with high opacity

Figure 3. Chest X-rays with and without augmentation.
(a) No augmentation (b) With block masking (c) With diffused
noise marked with red ellipses (d) Test image with high opacity

2.2. Augmentation strategies

Data augmentation strategies are now common practice
when training deep learning models. They are primarily
used to alleviate overfitting when labeled examples are
scarce (Shorten & Khoshgoftaar, 2019). In self-supervised
learning, data augmentation techniques are utilised to un-
cover expressive latent representations that could be useful
in downstream tasks (Kolesnikov et al., 2019).

We use data augmentation extensively in this work. This is
to simulate missing data instances such that the variational
data imputation block can learn robust latent representations
that can generalize well enough to high opacity CXRs at test
time. We experiment with three types of data augmentations:
1) Standard 2) Block masking 3) Diffused noise.

The standard augmentation techniques used are random
rotations, random horizontal and vertical flips. The block
masking technique simply leaves out one half of the input
image either horizontally or vertically (Fig. 3-b). Block
masking simulates extreme opacifications where either en-
tire lungs or large portions of it are missing due to opacifi-
cation. This is similar to the class of random erasing tech-
niques have been found to be useful in other image analysis
tasks (Zhong et al., 2017). Finally, the diffused noise model
is task specific to segmenting the high opacity in CXRs. We
utilize a Strauss process realization (Descombes & Zerubia,
2002) to obtain random sets of disks of varying radii al-
lowing overlap, and smoothen them with a Gaussian kernel.
This noise is then added to saturate the intensity values to
reflect higher opacity (Fig. 3-c). All augmentations are per-
formed with a probability paug. Additional visualizations
of augmented input data are shown in Section 6.2 in the
Appendix.

3. Data and Experiments
We use publicly available CXR datasets with lung masks
– from Shenzhen and Montgomery hospitals – curated for
tuberculosis detection (Jaeger et al., 2014) †. We use 528
CXRs for training and 176 for validation purposes. These

†https://www.kaggle.com/kmader/
pulmonary-chest-xray-abnormalities

datasets do not contain extreme opacification (Fig. 3-a)
when compared to cases with opacification (Fig. 3-d). We
pool 30 diverse CXRs with high opacification to create a
test set from different public repositories being curated in
response to developing methods useful in detecting COVID-
19 (Cohen et al., 2020; Pereira et al., 2020) and a relevant
pneumonia detection dataset (Irvin et al., 2019). As these
test set images did not have lung masks, we obtained lung
masks from expert annotators which are used to validate the
proposed method.

We use a U-net (Ronneberger et al., 2015) with modifica-
tions as the baseline method which operates at four reso-
lutions, kernel size 3 and has an initial feature map of 24
which are doubled with each of the four downsampling op-
erations. To increase the receptive field of the U-net, the
first two resolutions are obtained with a scaling factor of 4
and the other two by a factor of 2. The modifications were
based on experiments on the training data where we found
increasing the receptive field to be beneficial.

The proposed model utilizes a segmentation network like in
the baseline U-net, and an additional variational encoder for
data imputation. The variational encoder uses an encoder
similar to the one in the baseline model and also operates
at four resolutions. The variational encoder also utilizes a
sequence of 4 1-D convolution layers to transform the 2-D
feature maps to predict µφ, σ2

φ of the variational density. We
use a latent dimension of 8. As the proposed model has an
additional encoder, we reduce the initial feature map to 16
when compared to 24 in the baseline to make the models
comparable. This results in about 4.2M parameters for the
baseline and about 3.3M parameters for the proposed model.

Both models were developed in PyTorch (Paszke et al.,
2019), trained with a batch size of 12, learning rate of 10−4

with Adam optimizer (Kingma & Ba, 2014) for a maximum
of 200 epochs on Nvidia-TitanX GPU with 12 GB memory.
Convergence was assumed when there was no improvement
in validation loss for 20 consecutive epochs. Model with the
minimum validation loss is used for testing. We use a high
probability for performing data augmentation, paug = 0.9.
The average CO2 footprint of developing and training the
baseline and proposed models is estimated to be 7.3 kg or
equivalently about 60 km traveled by a car, measured using
Carbontracker (Anthony et al., 2020).

Pre- and Post-processing: All input images are all rescaled
to 640x512 px and are histogram equalized to improve the
contrast in the images. The predicted segmentations are post-
processed with connected component analysis to exclude
small erroneous regions and binary morphological closing
is done to fill any small holes of radius upto 10 pixels in the
segmentation. Example visualizations for these steps are
shown in Figures 6 and 7 included in the Appendix.

https://www.kaggle.com/kmader/pulmonary-chest-xray-abnormalities
https://www.kaggle.com/kmader/pulmonary-chest-xray-abnormalities
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Figure 4. Box plot of test set performance for the baseline and
proposed models using block masking and diffused noise data
augmentations (last two rows of Table 1)

4. Results and Discussions

Table 1. Performance measures on the test set

Models Augmentation Dice Overlap Accuracy

Baseline Standard 0.7335± 0.17 0.8449± 0.09
Proposed Standard 0.7204± 0.18 0.8392± 0.10
Baseline Block 0.7563± 0.15 0.8522± 0.09
Proposed Block 0.7688± 0.17 0.8552± 0.10
Baseline Diffuse 0.7757± 0.15 0.8654± 0.10
Proposed Diffuse 0.7965± 0.11 0.8652± 0.11
Baseline Block+Diffuse 0.8173± 0.12 0.8654± 0.11
Proposed Block+Diffuse 0.8503 ± 0.07 0.8815 ± 0.11

We compare the baseline model with the proposed model
with variational data imputation in several configurations by
varying the data augmentation strategies discussed in Sec-
tion 2.2. We measure the segmentation performance with
two measures: dice overlap and binary accuracy. Results
from these experiments are reported in Table 1. Significant
performance improvements, based on two-sided paired sam-
ple t-tests, when compared to all other configurations are
highlighted in bold.

The best dice overlap (p < 0.05) and binary accuracy
(p < 0.001) is obtained by the proposed model with varia-
tional data imputation when augmented with block masking
and diffused noise, reported in the last row of Table 1. Box
plots with performance measures comprising all 30 test set
images for the two models used with block masking and
diffused noise augmentations are shown in Figure 4. Pre-
dicted segmentations for three test set images are visualized
in Figure 5 along with the ground truth annotations.

The reported numbers in Table 1 indicate the usefulness of
using data augmentation and the use of variational data im-
putation in a consistent manner. We observe improvements
in performance of the baseline model with increasing com-
plexity of data augmentations, in the order listed in Table 1.

Figure 5. a) Three test set samples with highest and least dice
accuracy for both methods (rows 1 & 2) along with an input CXR
with additional variations in pose (row-3). b) baseline model
predictions, c) proposed model predictions and d) the ground truth.
Both predictions are for models trained with block and diffused
noise.
Green:True positive, Blue: False Negative, Red: False Positive.

With standard augmentation the baseline model obtains a
dice accuracy of 0.7335 which improves to 0.8173 when
using the block masking and diffused noise based augmen-
tations. This trend is also noticed for the proposed model
which shows a dice overlap improvement from 0.7204 to
0.8503.

Further, the proposed model with variational data imputation
shows improvements within each proposed data augmenta-
tion category when compared to the baseline method. The
lowest p-value was obtained with the block masking and
diffused noise reported in the last two rows. This aligns with
the hypothesis that the variational data imputation is more
effective in learning representations that can handle missing
data. The stochastic variational block can be thought of as a
data dependent noise model that perturbs the learnt feature
maps of the U-net encoder, making it robust to missing data,
similar to denoising auto-encoders which inject noise to the
data to learn useful representations (Vincent et al., 2008).

The qualitative examples shown in Figure 5 show the pro-
posed model is able to output more complete segmentations
when compared to the baseline. The predictions in second
row show a case of incomplete segmentation predicted by
the proposed model for a case with severe opacity. However,
the shape of the lungs in this prediction is largely correct
when compared to the baseline. This is another consequence
of using the variational latent representation as it could help
to learn useful features of the desired outputs, which in this
case is to predict shapes that are close to lungs. This can
also be interpreted as a form of shape regularisation (Esser
et al., 2018).
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5. Conclusions
Several high quality datasets comprising normal CXRs with
expert segmentations are publicly available to train segmen-
tation models. However, models trained solely on these data
do not generalize well when new data with diverse varia-
tions, either due to acquisition or disease, are encountered.
We treat such variations as instances of incomplete data
and proposed to impute such missing information using the
latent representations obtained using a variational encoder.
Our trained model which is publicly available now is being
used on COVID-19 datasets to obtain lung masks (Cohen,
2020). The quality of the segmentations obtained with this
method has been judged to be sufficient and we aim to use
them to score COVID-19 risk from CXRs.
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6. Appendix
6.1. Pre- and Post-processing

Figure 6. Input images a) before and b) after histogram equaliza-
tion

Figure 7. a) Input image b) Predicted segmentation overlaid with
reference c) Post-processed prediction. Notice the removal of the
false positive in the center and closing of a hole in the lower right
lung.

6.2. Validation visualization

Prediction for some validation set images at convergence for the
proposed model with variational data imputation when trained with
different augmentations.
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Figure 8. Block masking augmentation

Figure 9. Diffused noise augmentation

Figure 10. Block masking and diffused noise augmentation


