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Abstract
While multi-agent LLM systems show strong001
capabilities in various domains, they are highly002
vulnerable to adversarial and low-performing003
agents. To resolve this issue, in this paper,004
we introduce a general and adversary-resistant005
multi-agent LLM framework based on credibil-006
ity scoring. We model the collaborative query-007
answering process as an iterative game, where008
the agents communicate and contribute to a009
final system output. Our system associates a010
credibility score that is used when aggregating011
the team outputs. The credibility scores are012
learned gradually based on the past contribu-013
tions of each agent in query answering. Our014
experiments across multiple tasks and settings015
demonstrate our system’s effectiveness in miti-016
gating adversarial influence and enhancing the017
resilience of multi-agent cooperation, even in018
the adversary-majority settings.019

1 Introduction020

Multi-agent LLM systems have risen as a pow-021

erful paradigm, exemplified by frameworks such022

as CAMEL, AutoGen, and MetaGPT (Wu et al.,023

2023; Hong et al., 2023; Li et al., 2023), demon-024

strating promising performance in crucial domains,025

including coding, mathematical problem-solving,026

and collaborative decision-making.027

Despite their advancements, the performance of028

multi-agent LLM systems is highly sensitive to ad-029

versarial and low-performing agents. Particularly, a030

subset of compromised team members with adver-031

sarial behavior can corrupt the system’s collective032

output. The susceptibility of LLM agents to persua-033

sive inputs further amplifies this risk, potentially034

leading to incorrect group consensus. Although035

prior studies have highlighted this vulnerability036

(Zhang et al., 2024b; Amayuelas et al., 2024; Xi037

et al., 2025), existing solutions are predominantly038

limited to specific, predefined architectures. These039

approaches and the related work are further dis-040

cussed in Appendix A.041

To the best of our knowledge, the literature lacks 042

a general framework that enables users to design 043

robust multi-agent systems resilient to adversar- 044

ial influence while minimizing the impact of such 045

attacks without the need to eliminate an agent. 046

In this paper, we fill this research gap by propos- 047

ing an adversary-resistant multi-agent LLM sys- 048

tem based on credibility scoring. 049

Specifically, we model the query-answering pro- 050

cess as an iterative cooperative game, where a team 051

of agents is formed to find the answer to a given 052

query. The team members may have different roles 053

and communicate based on the team’s topology to 054

finalize their individual answers, which are then 055

aggregated into the system’s answer to the query. 056

Instead of equally trusting all agents, our sys- 057

tem follows a credibility-score aware aggregation 058

strategy that weighs each agent’s individual output 059

proportional to their trustworthiness. The credibil- 060

ity scores reflect the collective performance of each 061

agent in answering the previous queries and are 062

learned on the fly during the lifetime of the system. 063

For each query, the team receives a reward (or 064

gets penalized) based on the quality of the gener- 065

ated output. In order to fairly distribute the reward 066

among the team members, we introduce the contri- 067

bution scores, with larger values reflecting a larger 068

impact of an agent in the generated output. We 069

propose two approaches based on Shapley values 070

and LLM-as-Judge for measuring the contribution 071

scores. At the end of each round, the credibility 072

scores are updated by distributing the reward to the 073

agents proportional to their contribution. 074

Our system has a unique ability to tolerate 075

adversary-majority settings, a more extreme case 076

than the typically considered settings that assume 077

the adversaries are in the minority. We emphasize 078

a critical yet under-explored challenge: when ad- 079

versaries constitute more than 50% of the agents, 080

honest agents must either exert disproportionate 081

influence or possess superior capabilities to avoid 082
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Figure 1: System architecture.

being outvoted or manipulated.083

Our approach is applicable across different team084

structures and integration mechanisms for existing085

methods. It empowers users to minimize the im-086

pact of low-performing and malicious agents within087

the teams with various formations and communi-088

cations topologies. By leveraging this adaptability,089

our method enhances the resilience of multi-agent090

systems, ensuring more robust and reliable coop-091

eration of the agents. We conduct comprehensive092

experiments on various tasks, benchmark datasets,093

and settings to evaluate our system. Our experi-094

ment results verify the effectiveness of credibility095

scoring, demonstrating the ability of our system096

in detecting and minimizing the effect of the ad-097

versary agents, even for the adversary-majority set-098

tings.099

Paper Organization: We first introduce the con-100

cepts and provide an overview of our system in101

Section 2. Next in Section 3, we discuss the com-102

position details of a team of agents, followed by103

the explanation of the credibility-score aware ag-104

gregation of the team outputs in Section 4. We then105

conclude our technical discussions in Section 5 by106

explaining how the credibility scores are gradually107

learned in our system. The experimental evalua-108

tions are provided in Section 6, followed by the109

concluding remarks and a discussion of our sys-110

tem’s limitations in Sections 7 and 8.111

2 System Overview112

We consider a system, with the architecture shown113

in Figure 1, that uses a universe A of LLM agents114

for answering user queries specified in the form of115

natural language instructions, known as prompts.116

The answer to each query q is generated by a 117

team of agents A = {a1, · · · , aN} ⊆ A. 118

We model this system as an iterative coopera- 119

tive game, where at each iteration t, a team At is 120

formed based on a specific topology that specifies 121

the communication rules, while the agents may 122

have various roles in the team. The team members 123

collaborate, and each agent, in the end, generates 124

an output. In Section 3, we shall further discuss the 125

structure of the teams of agents. 126

Our system then aggregates the individual out- 127

puts to generate the final output for the user query, 128

using the Credibility Score: we allocate each agent 129

aj with a credibility score CrS(j) ∈ [0, 1], a nu- 130

merical value that reflects the collective reliability 131

of aj over the previous iterations. The credibility 132

scores of the agents are gradually “learned” during 133

the life time of the system (see Section 5). 134

Introducing the credibility scores gives our sys- 135

tem the unique feature to be able to tolerate and 136

detect malicious agents with adversarial behaviors. 137

While faithful agents pursue a correct solution, the 138

adversarial agents deliberately attempt to mislead 139

or derail the group to generate wrong answers. We 140

extensively evaluate the robustness of our system 141

in our experiments (Section 6). 142

For each generated answer (final output) ot for 143

the query qt, we consider a reward rt ∈ [−1, 1], 144

specified based on the “quality” of ot as an answer 145

for qt. Specifically, a negative value of rt penal- 146

izes the team At for generating a misleading result, 147

while a positive rt rewards the team for generating 148

a good answer. 149

We view ot as the outcome of the team’s collec- 150

tive effort and distribute the reward among agents 151

in proportion to their, “contribution” to generating 152

ot. We introduce the Contribution Score (CSc) to 153

measure each team member’s contribution. 154

Finally, we update the credibility score of each 155

team member ai ∈ At, using a learning step, based 156

on the amount of the reward ai collected by collab- 157

orating in answering the query qt. In Section 5, we 158

shall provide the technical details of this process. 159

3 Team of Agents 160

In this section, we explain the key components in 161

the formation of a team of agents, including the 162

topology and the gent roles. 163

Agent Roles. In a multi-agent LLM system 164

all team members may be assigned to the same 165

task (Liu et al., 2023; Liang et al., 2023a), or they 166
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may have different roles aligned with their specific167

expertise or subtasks (Zhang et al., 2024a; Qian168

et al., 2024). Another important consideration is169

the agents’ adaptability: whether they can learn,170

adapt, or modify their strategies over time by up-171

dating internal parameters. These aspects have172

been explored in varying degrees across existing173

research. For instance, Alfonso et al. (Amayuelas174

et al., 2024) demonstrated that models could be175

influenced to alter their behavior in ways that ulti-176

mately degrade overall system performance. Such177

interference may occur through direct manipulation178

of agents’ individual contributions or deceptive179

communication tactics (Amayuelas et al., 2024).180

Further details about incentives and adversarial be-181

havior of LLM agents is discussed in Appendix B.182

Therefore, establishing robust mechanisms to183

mitigate adversarial threats is essential to main-184

taining the integrity and reliability of multi-agent185

collaborations. A major benefit of our systems is186

the robustness against adversarial agents. Specif-187

ically, allocating the agents with credibility scores,188

our system gradually penalizes the agents with ad-189

versarial behaviors (see Section 5). In Section 6,190

we demonstrate that our system can tolerate even191

more than half of the agents being adversary.192

Communication Structure (Topology). The193

topology of a multi-agent system defines the ar-194

rangement and interconnections among agents, ef-195

fectively determining which agents can directly196

communicate. This structure can be conceptual-197

ized as a graph, where each node represents an198

agent, and each edge represents a direct communi-199

cation link between two agents. Previous research200

has investigated various topological arrangements201

from (a) no connection to (b) fully-connected struc-202

tures, including (c) chain, (d) ring, (e) hierarchi-203

cal, and (f) randomly-connected networks (Wang204

et al., 2024; Huang et al., 2024; Qian et al., 2024;205

Liu et al., 2023). The choice of topology signifi-206

cantly impacts both scalability and robustness of207

the multi-agent system. For example, fully con-208

nected topologies facilitate rapid consensus due to209

their direct communication paths, yet they exhibit210

vulnerability when faced with adversarial agents211

or limited network resources (Amayuelas et al.,212

2024). Conversely, sparse topologies, such as ring213

or chain structures, lower communication overhead214

but might be more susceptible to localized adver-215

sarial influence, potentially compromising subsets216

of agents (Shoham and Leyton-Brown, 2008).217

Our system is flexible to the choice of communi- 218

cation structures: we assume each agent first drafts 219

a candidate solution (local inference). Then, during 220

the peer interaction phase, the agents optionally 221

exchange information according to the communica- 222

tion graph prescribed by the topology. 223

4 CrS-Aware Aggregation 224

As illustrated in Figure 1, after peer interactions, 225

each agent ai ∈ At generates an output. Exist- 226

ing coordination mechanisms (discussed in Ap- 227

pendix C) integrate these outputs into an answer 228

to the user query, following the strategies such as 229

majority voting. 230

Building on top of the existing aggregation 231

schemes, our system adds credibility-scores (CrS) 232

to make the final output more reliable and robust 233

against adversaries and low-performing agents. 234

Formally, the credibility score CrS(j) ∈ [0, 1] 235

of an agent aj ∈ A is a non-negative number that 236

reflects how reliable the system views the agent ai 237

according to its performance in the previous query 238

answering rounds. 239

The credibility scores can be used in various co- 240

ordination mechanism by replacing the unweighted 241

aggregation with the weighted aggregation using 242

the CrS scores. Without loss of generality, in the 243

following, we illustrate their integration into two 244

integration mechanisms: 245

(a) centroid-based aggregation: (Ebrahimi et al., 246

2024) proposes an aggregation strategy that first 247

finds the centroid of the generated outputs in the 248

embedding space, and then returns the closest an- 249

swer to the centroid as the final output (see Ap- 250

pendix A for more details). We use the CrS scores 251

to find the CrS-aware centroid x⃗+ as the weighted 252

average of the generated outputs: 253

x⃗+ =
1

N

∑︂
i:ai∈At

CrS
(i)
t−1v⃗ (O(ai, qt)) (1) 254

Where O(ai, qt) is the output of agent ai for qt, 255

v⃗(o) is the embedding of an output o, and CrS
(i)
t−1 256

is the current credibility score of ai. 257

(b) LLM-assisted aggregation: Instead of using a 258

specific formula for aggregation, one can use an 259

LLM for this step, where in addition to the out- 260

puts o1, · · · , oN , the CrS scores of the participating 261

agents are sent to a Credibility-aware Coordina- 262

tor LLM, which we trust. The coordinator then 263

aggregates the individual outputs and generates the 264

final output while considering the CrS scores. 265
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5 Learning Credibility Scores On-The-Fly266

Our system learns the credibility scores of the267

agents on the fly based on their performance in268

answering previous queries {q1, · · · , qt−1}.269

Initially, assuming there are no prior information270

about the reliability of the agents, all credibility271

scores are set to a default value (e.g., 0.5). Then,272

at the end of each round t, the system computes273

a contribution score CSc(i) for each of the team274

members ai ∈ At.275

Depending on the quality of the generated an-276

swer ot for the query qt, the team is rewarded with277

a value rt ∈ [−1, 1]. The contribution scores and278

the reward value are then used for updating the279

credibility scores. The computation of the reward280

values is discussed in Appendix D.281

In the following, we first discuss the computation282

of the contribution scores, and then explain how283

the credibility scores are updated.284

5.A Calculating the agent contributions285

Given a query qt, we model the process of generat-286

ing the output ot as a game, where the team mem-287

bers collaboratively obtain the reward rt. Since the288

team members may have different impacts in the289

generation of the output, their share of the reward290

should be proportional to their contribution.291

We propose the following approaches for com-292

puting the contribution scores (CSc):293

(i) Shapley Values for CSc computation: Our first294

approach for computing the contribution scores295

is based on Shapley values – the popular con-296

cept in Game Theory for fairly distributing the297

reward among a team of players who have collab-298

orated (Shapley, 1951). Specifically, we consider299

Shapley values for no-communication topologies300

and when the aggregation strategy is not LLM-301

assisted.302

Let O = {o1, · · · , oN} be the set of indi-303

vidual responses generated by a agents At =304

{a1, · · · , aN}. Let Σ(S) be the final output gen-305

erated by aggregating the responses of a subset of306

responses S ⊆ O. Also, let R(ot) be the reward307

allocated based on the quality of ot as the answer308

of the query qt. The contribution score of the agent309

ai is then computed using the following equation:310

CSc(i) =
∑︂

S⊆R\oi

|S|!(N−|S|−1)!
N !

(︂
R(Σ

(︁
S ∪ xn)

)︁
311

−R
(︁
Σ(S)

)︁)︂
312

(ii) LLM-as-Judge for CSc computation: Despite 313

their advantages such as theoretical guarantees, it 314

is #P-hard to compute Shapley values. As a result, 315

computing the CSc values based on Shapley values 316

require a combinatorial number of reward value 317

computations for the aggregated outputs generated 318

by each subset of (At\ai). This makes it practi- 319

cally infeasible to compute the contribution scores 320

for the following cases. (A) When the team mem- 321

bers communicate, their output may be impacted 322

by the composition of the team. As a result, for 323

each subset S ⊆ At, one would need to form a 324

new team and observe new outputs. (B) When the 325

aggregation of reward value computation is LLM- 326

assisted, an LLM query would be needed for each 327

subset S ⊆ At to compute the reward. 328

Therefore, we instead use an LLM Judge to com- 329

pute the contribution scores in such settings. Specif- 330

ically, given a query qt, we send the final answer ot, 331

the dialogue log, and the agent outputs to the LLM 332

Judge, and ask the judge to quantify the contribu- 333

tion of each agent in the generation of the final out- 334

put ot. The judge can analyze the message-passing 335

log and observe which agents changed their re- 336

sponse after the communication. The Agents never 337

see these numbers to prevent strategic gaming. 338

5.B Updating the CrS values 339

Once the contribution scores are computed, the 340

credibility score of each agent gets updated by dis- 341

tributing the reward rt among the agents propor- 342

tional to their contribution. Specifically, using a 343

learning rate η, the credibility scores are updated 344

using Equation 2. 345

CrS
(i)
t = CrS

(i)
t−1

(︁
1 + η.CSc(i) .rt

)︁
(2) 346

Before concluding this section, we would like 347

to remind that our scoring mechanism for comput- 348

ing CSc and CrS values is orthogonal to the team 349

formation details including the agent roles and com- 350

munication structure, making it easy to operate on 351

top of the existing multi-agent toolkits such as AU- 352

TOGEN and CAMEL. Source code and prompts 353

are provided in the supplementary material. 354

6 Experiment Results 355

6.A Experiments Setting 356

Backbone Models & Datasets. We deploy three 357

lightweight open-source LLMs; Llama3.2(3B) (Ol- 358

lama, 2024b), Mistral(7B) (AI, 2023) and 359

Qwen2.5(7B) (Yang et al., 2024) as both agents 360
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Table 1: Accuracy results for multi-agent LLMs using LLaMA 3.2 3B, Mistral 7B, and Qwen2.5 7B. CrS indicates
use of the Credibility Scoring mechanism, and the accuracy gain over naive coordination is denoted by ∆.

Backbone Model Architecture GSM8K MMLU-MS MATH Research QA

CrS ∆ CrS ∆ CrS ∆ CrS ∆

LLaMA 3.2(3B) SIA 47.5 +8% 35.5 +15% 40.0 +7% 52.0 +51%
CrS-ordered Chain 43.0 +20% 44.0 +16% 32.0 +15% 84.0 +20%

Mistral(7B) SIA 12.0 +6% 21.0 +9% 11.5 +5.5% 86.0 +14%
CrS-ordered Chain 13.0 +11% 32.0 +6% 08.0 +6% 77.0 −7%

Qwen2.5(7B) SIA 75.5 +10.5% 43.0 +25.5% 65.0 - 59.0 +17%
CrS-ordered Chain 60.0 +10% 52.0 +10% 59.8 +9% 90.0 +5%

and coordinator, allowing cost-efficient scaling361

while testing models that remain susceptible to362

adversarial noise. A stronger GPT-4o mini (Ol-363

lama, 2024a) acts as an external judge, evaluating364

and scoring the team’s final answers. We evalu-365

ate our framework on five benchmarks: MMLU-366

MS (Hendrycks et al., 2020) (Math and Statistics),367

MATH (Hendrycks et al., 2021), GSM8K (Cobbe368

et al., 2021)(open-ended mathematical reasoning),369

HumanEval (Chen et al., 2021)(code comple-370

tion), and Research Questions (Rosset et al.,371

2024)(non-factoid, search-style questions requiring372

contextual judgment). Together, these benchmarks373

evaluate the system’s robustness, mathematical and374

factual reasoning skills, and coding competence.375

Comprehensive information on model selection,376

data preprocessing, and evaluation procedures is377

available in Appendix E.378

Compared Methods. For comparison, we imple-379

ment three baseline methods: single-agent response380

generation, naive coordination, majority voting,381

and similarity-based ensemble approaches. In the382

similarity-based ensemble of (Li et al., 2024a),383

each answer is compared with every other answer,384

and the one with the largest total pairwise sim-385

ilarity is selected as the final response. In the386

single-agent baseline scenario, the final team re-387

sponse is selected from one of the faithful agents,388

randomly designated as the coordinator, after com-389

pleting multi-agent communication. All reported390

experimental results represent the final output pro-391

duced after comprehensive internal communication392

among agents. Finally, the naive coordination uses393

the same LLM coordinator, but it produces the final394

answer without receiving the agents’ credibility.395

6.B Collaboration Setup396

We run our primary experiments with five agents.397

Two faithful and three adversarial ones, that inject398
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Figure 2: CrS convergence for an adversary-dominated
team with 3 adversarial and 2 faithful agents.

subtle errors, are prompted using similar prompt 399

template across tasks. We evaluate our method 400

across three communication topologies1: 401

Stochastic Interaction Architecture (SIA). For 402

each question, six undirected links are sampled 403

at random from the
(︁
5
2

)︁
possible pairs, yielding 404

diverse topologies such as trees, rings, etc. Agents 405

may review or maintain their own answers after 406

reading the messages from their neighbors. 407

Standalone Agent Architecture (SAA). Each 408

agent responds independently without any peer 409

interaction. Finally a centroid-based aggregation 410

(Ebrahimi et al., 2024) is used to select the team’s 411

1The implementation details are provided in Appendix E.
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answer by choosing the nearest response to the412

centroid of all outputs as discussed in Section 4.413

Credibility-ordered Chain. We additionally414

evaluate a CrS-ordered chain topology. In this set-415

ting, agents are arranged by their current credibility416

scores and exchange messages only with neighbors.417

6.C Insights from Experimental Observations418

6.C.1 Credibility Scores Drive Consistent419

Gains420

Across all four benchmarks (MMLU, GSM8K,421

MATH, ResearchQA) and for every backbone422

(LLaMA3.2, Mistral7B, Qwen2.57B), introduc-423

ing our Credibility Score (CrS) raises accuracy by424

6–30 percentage points. In high–noise settings425

such as GSM8K with three adversaries, CrS lifts426

LLaMA3.2 from 23%→42% in CrS-ordered chain427

and Qwen2.5 from 65%→75.5% in SIA. These428

patterns confirm that weighting agent opinions by429

empirically-measured reliability is a general mech-430

anism for mitigating adversarial influence.431

Table 2 presents results for Standalone Agent432

Architecture (SAA), which features no inter-agent433

interactions and utilizes a centroid-based aggrega-434

tor inspired by (Ebrahimi et al., 2024) as the coordi-435

nator. Our findings reveal consistent improvements436

in the number of correct responses. Specifically,437

in mathematical reasoning tasks such as GSM8K438

and MATH, the use of CrS coordination enhances439

the rate of fully correct responses (r = 1.0). This440

improvement occurs primarily by reducing the par-441

tially correct responses (0.5 ≤ r < 1.0), achieved442

through assigning higher weights to answers from443

more credible agents.444

6.C.2 Reasoning vs Multi-Choice Tasks445

We implement all three baseline models on an iden-446

tical topology, utilizing the same agents to ensure447

consistency. Thus, the sole differentiating factor448

across these baselines is the coordination mecha-449

nism, allowing for a fair and precise comparison450

among models. Figure 3a, 3b and 3c illustrates451

that across 100 evaluated questions, the CrS co-452

ordinator consistently outperforms other baseline453

methods when confronted with a majority of ad-454

versarial agents. Interestingly, Majority Voting455

emerges as the second most effective coordination456

method after CrS. This result may initially seem457

counterintuitive, given that a majority of agents458

are adversarial and therefore expected to provide459

incorrect responses. However, as demonstrated460

Table 2: Standalone Agent Architecture with
LLaMA3.2(3B) agents. The table shows coordinator
accuracy using credibility-score (CrS) weights versus

uniform weights across all tasks; numbers in
parentheses indicate the resulting performance gap.

Dataset Correct
(r = 1.0)

Partially
Correct(0.5 ≤
r < 1.0)

GSM8K 57.6(+3.6%) 9.9(−1.6%)
MATH 32.75(+5.75%) 13.3(−5.7%)
ResearchQA 0.0 89.0(+2%)
MMLU-MS 37.0(+2%) -

in Table 4, adversaries occasionally alter their ini- 461

tial responses, eventually aligning with the cor- 462

rect solution. This phenomenon can be explained 463

in two ways: 1) adversaries sometimes strategi- 464

cally shift their responses after misleading other 465

agents to avoid revealing their adversarial nature; 466

and 2) adversaries can be influenced and per- 467

suaded by faithful agents, prompting them to cor- 468

rect their earlier mistakes. Consequently, if at least 469

one faithful agent consistently maintains the cor- 470

rect response, Majority Voting can yield accurate 471

outcomes in specific scenarios. Nonetheless, these 472

occasional successes are insufficient to prevent an 473

overall decline in accuracy, reinforcing the superior 474

robustness of the CrS coordinator against adversar- 475

ial influence on MMLU-MS. Figures 3d, 3e, and 3f 476

illustrate the performance of CrS on mathematical 477

reasoning tasks using the GSM8K dataset. In these 478

experiments, CrS achieves the second-best results, 479

trailing behind Majority Voting. We attribute this 480

performance gap to the intricate process of calcu- 481

lating Contribution Scores (CSc) in mathematical 482

reasoning, where the complexity of reasoning sig- 483

nificantly increases the likelihood of errors. These 484

inaccuracies can corrupt the credibility score cal- 485

culations and weighting mechanisms used by the 486

CrS coordinator, occasionally resulting in the inad- 487

vertent prioritization of adversarial responses. This 488

issue does not arise in Majority Voting. Neverthe- 489

less, despite these challenges, the CrS coordinator 490

consistently outperforms Single Agent, Similarity 491

Ensemble and naive coordination(Table 1). 492

6.C.3 Model Capacity Matters But Only With 493

Coordination 494

Small models (e.g., Mistral7B on MATH) suffer the 495

steepest drops when exposed to adversaries: their 496

multi-agent accuracy falls by up to 50% (6/12, Ta- 497

ble 1). CrS partially restores performance (~6pp 498

gain), yet never reaches the ceiling attained by 499

larger or instruction-tuned models. This suggests 500
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Figure 3: Performance comparison of baseline methods versus CrS-based coordinators.
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Figure 4: Baseline accuracy for a five-agent
chain (one faithful, four adversarial). The
“CrS Coordinator” (green) curve reflects a

CrS-ordered chain, whereas all other
methods use an unordered chain topology.

that coordination cannot fully compensate for insuf-501

ficient backbone reasoning capacity; future work502

might explore knowledge-distillation style training503

to narrow this gap.504

6.C.4 Judge-Computed CrS Imitates the505

Shapley Value506

We illustrate the progression of CrS in Figures 2507

and 8. Specifically, Figure 2 presents the CrS evo-508

lution for Qwen2.5 agents on GSM8K—achieving509

the highest overall accuracy—and LLaMA3.2510

agents on ResearchQA—demonstrating the great-511

est accuracy improvements, as detailed in Table 1.512

The calculated CrS values effectively reflect agent513

credibility by appropriately down-weighting adver-514

sarial agents based on their contribution and reward515

metrics. Importantly, these CrS values closely ap-516

proximate the Shapley value-based CrS used in517

the Standalone Agent Architecture (SAA), as evi-518

denced by the consistent patterns in CrS progres-519

sion and empirical outcomes. Further comparative 520

results for both SAA and Stochastic Interaction Ar- 521

chitecture (SIA) involving two agents (including 522

one adversarial agent) are presented in Figures 8a 523

and 8b in Appendix F. 524

6.C.5 Judge Alters the Outcome 525

Pre-Communication Post-Communication
Chain Random

CrS Coord. - 0.16 0.12
Single Agent-LLaMa3.2(3B) 0.32 0.16 0.16

Table 3: Comparison of accuracies before and after
communication on a sample of 50 questions from

HumanEval dataset.

Replacing GPT-4o mini with a less capable 526

judge, such as LLaMa3.2 (3B), leads to signif- 527

icant declines in accuracy—even when employ- 528

ing CrS—as erroneous evaluations of contribution 529

scores (CSc) corrupt the credibility metrics essen- 530

tial for updating agent credibility. For instance, 531

Qwen2.5 achieves the highest accuracy on GSM8K, 532

as indicated in Table 1, but using Llama3.2 (3B) 533

as the evaluator decreases this accuracy by 54%. 534

This clearly demonstrates the critical dependence 535

of CrS effectiveness on the evaluator’s quality. A 536

comparison between Figure 7 in Appendix F and 537

Figure 2 further supports this conclusion. 538

Another issue arises when the judge is not capa- 539

ble of accurately evaluating the final response and 540

providing a correct reward signal (r). This problem 541

was particularly noticeable in our experiments on 542

the HumanEval code completion benchmark using 543

the GPT-4o mini judge (Table 3). These inaccurate 544

evaluations, and the resulting miscalculations of 545
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Contribution Scores (CSc), significantly distort the546

Credibility Score (CrS) updates, ultimately under-547

mining the overall effectiveness of the framework.548

While employing a more specialized and capable549

judge could reduce such inaccuracies, it also raises550

concerns about the practicality and necessity of the551

multi-agent configuration itself since directly as-552

signing the task to a stronger evaluator might be553

more effective 2.554

6.C.6 Topology and Link Density555
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Figure 5: Impact of the number of
communication links on accuracy across
baseline methods compared to the CrS

coordination mechanism on MMLU-MS.

Figure 5 demonstrates that increasing the com-556

munication link count in SIA beyond six edges557

results in diminishing returns. Specifically, accu-558

racy saturates at six links and notably decreases559

when exceeding seven links, likely due to informa-560

tion overload. Conversely, increasing the link count561

extends the length of the communication history562

shared with the judge for computing the Contribu-563

tion Score (CSc). This extension raises two primary564

concerns: 1) Activation of the token compressor565

becomes necessary to reduce token count to ad-566

here to the judge’s token limit requirements. This567

will increase the runtime. 2) If one round of token568

summarization is insufficient to meet these token569

requirements, subsequent rounds of compression570

may be triggered. Multiple rounds of compression571

risk losing information deemed non-essential by572

the compressor, ultimately affecting the accuracy573

and reliability of the contribution score.574

Our empirical results indicate that a configura-575

tion with six links represents the optimal balance,576

effectively facilitating the study of adversarial im-577

pacts while minimizing the frequency of triggering578

more than one compression cycle. Figure 5 also579

highlights the stability of the CrS coordinator with580

increased intra-group communication compared to581

2A detailed analysis of the HumanEval results is provided
in Appendix E.

other baseline methods, which exhibit a sharp de- 582

cline in accuracy and significant negative impacts 583

from additional communication rounds. The CrS 584

coordinator’s performance surpasses other aggre- 585

gation methods by approximately 10 percentage 586

points. 587

6.C.7 Adversary Proportion 588
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Figure 6: Impact of adversarial agent count
on accuracy across baseline methods

compared to the CrS coordination
mechanism on MMLU-MS.

Figure 6 demonstrates performance stability 589

when employing CrS weighting: even with one 590

to four adversaries present, accuracy consistently 591

stays within a narrow range around 31% (±2 per- 592

centage points). In contrast, naive strategies experi- 593

ence significant fluctuations and never surpass 24%. 594

This stability indicates that reliability-based agent 595

weighting effectively reduces sensitivity to adver- 596

sary count, a promising outcome for scalability to 597

larger and potentially noisier teams. 598

Figure 4 further supports this conclusion by 599

demonstrating the superior performance of the CrS 600

coordinator within a chain architecture, even under 601

extreme adversarial conditions where 4 out of 5 602

agents are adversaries. These results validate our 603

earlier findings in the Stochastic Interaction Archi- 604

tecture and suggest that the advantages of the CrS 605

coordination mechanism extend reliably to struc- 606

tured communication topologies as well. 607

7 Conclusion 608

In this paper, we introduced a general framework 609

for building adversary-resistant multi-agent LLM 610

systems using credibility scoring. By dynamically 611

evaluating and weighting agents based on their con- 612

tributions, our method enhances robustness against 613

low-performing and adversarial agents, including 614

in adversary-majority settings. This approach is 615

adaptable to various team structures and task do- 616

mains, offering a practical solution for securing 617

multi-agent collaboration in LLM-based systems. 618

8



8 Limitations619

Our study advances multi-agent LLM coordination620

through Credibility Scores (CrS), yet several im-621

portant limitations must be acknowledged.622

Limited Evaluation Domains. Our evaluation623

focused exclusively on four benchmarks: MMLU,624

GSM8K, MATH, and ResearchQA. While these625

datasets collectively assess reasoning, coding, and626

factual question-answering capabilities, they do not627

encompass dialogue interactions, vision-language628

tasks, or real-time communication scenarios. Con-629

sequently, the generalizability of our findings to630

other contexts is limited.631

Judge Dependence. The effectiveness of the CrS632

mechanism critically relies on the capabilities of633

the evaluator (judge). We observed significant634

performance degradation when employing weaker635

judges (e.g., LLaMA3.2 compared to GPT-4oMini).636

In such cases, Contribution Scores become noisy637

and lead to reduced accuracy (see Section 6.C.4).638

Future research could mitigate this sensitivity by639

developing self-calibrating judges or employing640

ensembles of judges.641

Synthetic Adversaries. Our adversarial agents642

were explicitly instructed to exhibit adversarial be-643

haviors and typically became easier to influence644

after multiple rounds of interaction. However, real-645

world adversaries, whether human actors or LLMs646

specifically fine-tuned for deceptive behaviors, may647

exhibit more sophisticated and unpredictable pat-648

terns. Such advanced adversaries could potentially649

evade detection or mitigation through CrS.650

Computational and Cost Overheads. The com-651

putation of Shapley-like CrS scales quadratically652

with the number of agents involved, posing signifi-653

cant computational challenges. Each communica-654

tion round necessitates two API calls to an external655

judge—one to evaluate the group’s final response656

and another to review the interaction logs and com-657

pute Contribution Scores. These repeated calls658

incur substantial financial costs, limiting our abil-659

ity to experiment with more powerful judges such660

as GPT-4o. This constraint particularly impacts661

tasks like HumanEval, where judge proficiency sig-662

nificantly influences reward calculation accuracy.663

Additionally, as the number of agents and commu-664

nication links increases, interaction logs lengthen,665

triggering token-compression mechanisms. Such666

compression introduces additional latency and may667

result in the loss of critical context, further exac- 668

erbating evaluation inaccuracies. Exploring cost- 669

effective approximations or more efficient evalu- 670

ation techniques represents valuable avenues for 671

future research. 672
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APPENDIX853

A Related Work854

As large language models (LLMs) continue to ex-855

hibit impressive capabilities in text comprehension856

(Xiao et al., 2023), language generation, and rea-857

soning (Yao et al., 2023), there is an increasing in-858

clination to treat them as autonomous agents, akin859

to humans. This perspective is reinforced by their860

ability to demonstrate human-like social behaviors861

that align with foundational theories in social psy-862

chology (Zhang et al., 2023). However, despite863

these advancements, numerous studies (Xiao et al.,864

2023; Bhat et al., 2023; Li et al., 2024b; Zhang865

et al., 2024a) highlight persistent challenges in866

key areas, including mathematical reasoning, cod-867

ing, and complex logical inference, as well as dif-868

ficulties in processing long texts and generating869

extended narratives.870

To overcome these limitations and improve fac-871

tuality and reasoning, researchers have increasingly872

explored collaborative problem-solving among873

multiple LLM agents rather than relying on a single874

model (Bhat et al., 2023; Li et al., 2024b; Guo et al.,875

2024; Xi et al., 2025). Similar to human teams that876

enhance their performance through collaboration,877

discussion, and iterative refinement, recent studies878

investigate whether LLMs can benefit from coop-879

erative interactions. This paradigm shift leverages880

collective intelligence among LLM agents, allow- 881

ing them to divide complex problems into manage- 882

able subtasks, particularly for more demanding and 883

intricate problems. In these works, multiple LLM 884

agents have been assembled to improve task per- 885

formance through structured debate (Liang et al., 886

2023b; Du et al., 2023; Liang et al., 2023a) or en- 887

semble methods (Li et al., 2024a). 888

Research in multi-agent LLM systems has 889

yielded significant advancements, leading to the 890

development of powerful frameworks such as 891

CAMEL, AutoGen, and MetaGPT (Wu et al., 2023; 892

Hong et al., 2023; Li et al., 2023). These sys- 893

tems have demonstrated promising performance 894

in crucial domains, including coding, mathemat- 895

ical problem-solving, and collaborative decision- 896

making among multiple agents. 897

Despite these advancements, multi-agent LLM 898

systems introduce inherent risks. If a subset of 899

agents within the team is compromised—whether 900

through poisoning attacks or adversarial in- 901

tent—the collective output of the system can be 902

corrupted. LLM agents are susceptible to persua- 903

sion, potentially leading them to reach incorrect 904

consensus within the group. While previous stud- 905

ies (Zhang et al., 2024b; Amayuelas et al., 2024; Xi 906

et al., 2025) have identified this vulnerability, ex- 907

isting solutions are primarily designed for specific, 908

predefined architectures. 909

This approach enhances prior multi-agent meth- 910

ods like the one by Yang et al. (2025), which used 911

adversarial debate and credibility-weighted vot- 912

ing to reduce hallucinations. Instead of relying 913

solely on inter-model disagreement, each LLM 914

agent in this framework first undergoes internal 915

self-refinement: tracking its own errors, measuring 916

variance across multiple responses, and triggering 917

self-reflection if thresholds are exceeded. Only 918

after this process do agents engage in weighted 919

voting, with conflicting outputs resolved through 920

chain-of-thought comparisons. A final summariz- 921

ing model then verifies consistency and coherence 922

across agents. While this multi-phase design aims 923

to improve robustness and factual accuracy, it im- 924

plicitly assumes cooperative agents, making it vul- 925

nerable in adversarial settings. Moreover, the re- 926

liance on a summarization model that is stronger 927

than the regular agents for final validation raises 928

the question of why the task isn’t delegated to that 929

model entirely. 930

To the best of our knowledge, there is currently 931
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no general framework that enables users to design932

robust multi-agent systems resilient to adversar-933

ial influence while minimizing the impact of such934

attacks without the need to eliminate an agent.935

One approach, proposed by (Liu et al., 2023),936

introduces a query-based method to dynamically937

select the most influential agents within a multi-938

step feedforward network. However, this method939

relies on agents evaluating both themselves and940

their peers to assign Agent Importance Score, mak-941

ing it particularly vulnerable in adversarial settings942

where malicious agents can manipulate the selec-943

tion process and consensus within the group.944

In summary, existing literature proposes various945

coordination mechanisms—such as weight-based946

voting, expert specialization, and moderated de-947

bate—to improve robustness against adversarial948

agents, showing promising initial results (Yang949

et al., 2025; Liang et al., 2023a). However, no950

single solution effectively addresses all adversarial951

conditions; these mechanisms may still fail when952

adversaries form the majority or when the moderat-953

ing model lacks significant superiority over adver-954

sarial agents.955

B Incentives and Adversarially-behaving956

Agents957

In multi-agent systems, the interplay between in-958

centives and adversarial behavior significantly in-959

fluences how agents interact and collectively func-960

tion. Malicious agents pose a substantial risk by po-961

tentially undermining collective outcomes through962

tactics such as data or communication "poisoning."963

To mitigate these threats, robust defensive mea-964

sures, including credibility or trust scores, are cru-965

cial for limiting the negative influence of adversar-966

ial agents. Carefully structured incentive mecha-967

nisms can either promote cooperation when agents968

share common objectives or effectively regulate969

the influence of self-interested agents with differ-970

ing goals on the final outcome.971

A multi-agent system requires mechanisms to972

assess reliability, reward trustworthy behavior, and973

penalize dishonest or consistently erroneous agents.974

This approach ensures that agents engaging in ma-975

licious or detrimental actions gradually lose their976

ability to influence collective decisions. Similar977

to human social dynamics, we propose that Large978

Language Model (LLM) agents also adopt distinct979

roles and vary in their levels of influence within a980

collaborative group.981

To systematically evaluate an agent’s signifi- 982

cance in collaborative scenarios, we introduce the 983

Contribution Score (CSc). Inspired by the Shap- 984

ley value—originally employed to measure the im- 985

portance of individual features in linear regression 986

tasks—the Contribution Score quantifies the impact 987

each agent has on the group’s overall performance 988

(Lundberg and Lee, 2017). While this metric effec- 989

tively captures an agent’s overall influence within 990

the group, it does not inherently differentiate be- 991

tween positive and negative contributions. Conse- 992

quently, an agent can attain a high Contribution 993

Score despite disseminating adversarial or mislead- 994

ing information, adversely affecting the group’s fi- 995

nal outcomes. To effectively address this challenge, 996

we introduce the Credibility Score (CrS), which is 997

initially assigned uniformly across all agents and 998

dynamically evolves throughout successive itera- 999

tions, serving as an agent profiling mechanism. 1000

C Coordination Mechanisms 1001

In multi-agent systems, coordination mechanisms 1002

determine how individual agents’ outputs are in- 1003

tegrated. A critical component of coordination is 1004

the aggregation approach, which may include tech- 1005

niques such as majority voting, weighted averaging, 1006

or the utilization of specialized coordinator agents 1007

responsible for synthesizing multiple agent solu- 1008

tions into a cohesive outcome. In the following we 1009

briefly discuss each method. 1010

Majority Voting Each LLM agent produces an 1011

answer, and the ensemble selects the option most 1012

frequently proposed. In both self-consistency de- 1013

coding where multiple independent samples from 1014

a single model—and true multi-model ensembles, 1015

majority vote reliably boosts accuracy because un- 1016

correlated errors are out-voted by repeated correct 1017

answers (Wang et al., 2022). Its effectiveness scales 1018

with the number of agents, allowing a group of 1019

small LLMs to rival a single larger model (Li et al., 1020

2024a). However, previous studies indicate that 1021

when adversarial or malicious behaviors are present 1022

in at least half (N/2) of the agents in a group of 1023

size N , traditional aggregation methods like major- 1024

ity voting become considerably less effective (Li 1025

et al., 2024a; Amayuelas et al., 2024). 1026

Weighted Averaging A generalization of major- 1027

ity vote assigns each agent a reliability weight, and 1028

the ensemble picks the answer backed by the high- 1029

est total weight from all agents. Systems such as 1030
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ReConcile (Chen et al., 2023) and Boosted Prompt1031

Ensembles (Pitis et al., 2023) show that empha-1032

sizing historically accurate agents achieves higher1033

overall accuracy and partial robustness to noisy1034

or malicious peers. However, performance hinges1035

on correct weight estimation; if adversaries obtain1036

high weights, they can still dominate the ensemble.1037

Similarity-Based Ensemble Rather than relying1038

on explicit voting, similarity-based ensemble meth-1039

ods select the response that is most semantically1040

aligned with all others, assuming that the correct1041

answer will form the tightest consensus cluster.1042

Smoothie (Guha et al., 2024) and Agent-Forest1043

(Li et al., 2024a) operationalize this by embedding1044

candidate answers into a vector space and choos-1045

ing the one with the lowest average distance to its1046

peers, achieving strong performance without the1047

need for supervised weights. These approaches1048

naturally filter out outliers but remain vulnerable to1049

coordinated adversarial agents that produce highly1050

similar incorrect responses.1051

Centroid-based Aggregation Ebrahimi et al.1052

(Ebrahimi et al., 2024) extend similarity-based1053

ensemble by combining weighted averaging with1054

similarity-based selection. They propose a Monte1055

Carlo-based strategy that selects the response clos-1056

est to a weighted centroid of all answers, where1057

the weights wi reflect the agents’ reliability. The1058

centroid vector, x⃗+, is computed as a weighted av-1059

erage of the generated responses in the embedding1060

space, i.e., x⃗+ = 1
|R|

∑︁|R|
i=1wi.v⃗(xi). Then, the1061

final answer is identified as1062

x⋆ = argmin
x∈R

d(v⃗x, x⃗
+) (3)1063

where d(·, ·) is the cosine distance between em-1064

beddings. In our work, we adopt this aggregation1065

method in a no inter-agent communication setting,1066

using credibility scores as weights to guide the1067

centroid-based coordination process.1068

LLM-based Coordination Recent works sug-1069

gest that an llm-based coordinator agent is an1070

effective aggregation mechanism for multi-agent1071

systems. (Liang et al., 2023b) show that letting1072

the agent debate before a coordinator renders the1073

final verdictcan improve the overall accuracy. Yet,1074

they warn that malicious participants may still1075

steer the group toward suboptimal answers. Subse-1076

quent studies explore two types of task distribution1077

paradigms: i) redundant solving, where the agents1078

tackle same prompt to gain robustness through ma- 1079

jority consensus and ii) divide-and-conquer where 1080

a complex task is broken into subtasks whose an- 1081

swers must be carefully integrated. In both setting 1082

a coordinator (or a manager) LLM synthesises the 1083

individual responses into a coherent final answer, 1084

mitigating inconsistencies and guarding local er- 1085

rors. This manager-style coordination has been 1086

adopted in recent multi-agent LLM frameworks 1087

such as (Zhang et al., 2024a) and (Wang et al., 1088

2024), which report higher overall accuracy and 1089

improved resilience to adversarial or noisy agents 1090

compared with uncoordinated ensembles. 1091

D Reward Calculation 1092

Evaluation and feedback ensure that agents’ con- 1093

tributions are measured against some reliable stan- 1094

dard. Often, a ground truth or external judge is 1095

used to compare the collective, final solution with 1096

a correct reference or quality metric. This judge 1097

can be an oracle, a human evaluator, or a special- 1098

ized LLM that scores how accurate or useful each 1099

solution is (Rosset et al., 2024). The resulting re- 1100

ward/penalty can then guide learning, credibility 1101

score updates, ultimately improving the system’s 1102

performance over time. 1103

We propose a comprehensive framework suit- 1104

able for a variety of scenarios, emphasizing pre- 1105

ventive measures to penalize adversarial behavior 1106

and facilitating informed aggregation to improve 1107

decision-making reliability. Our framework com- 1108

prises three key components: 1) a team of agents 1109

organized into diverse topologies to accommodate 1110

multiple modes of multi-agent collaboration, 2) 1111

an evaluation mechanism designed to objectively 1112

assess the performance of individual agents, and 1113

3) a coordination mechanism that systematically 1114

integrates agent responses. Furthermore, we intro- 1115

duce two critical metrics—the Credibility Score 1116

(Src) and the Contribution Score—to effectively 1117

measure each agent’s reliability and contribution. 1118

These components are designed flexibly, allowing 1119

our method to adapt seamlessly to any collabora- 1120

tion graph topology and coordination strategy. 1121

E Experiments Setting Details 1122

Backbone Models. Although powerful models 1123

such as GPT-4 exhibit notable robustness to adver- 1124

sarial interference, smaller and less sophisticated 1125

models remain highly vulnerable, experiencing sig- 1126

nificant accuracy drop under adversarial conditions. 1127
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To effectively assess the robustness and efficiency1128

of our proposed framework, we select lightweight1129

open-source models as the backbone for both in-1130

dividual agents and the coordinator. Lightweight1131

models offer the advantage of resource-efficient1132

loading and execution, thus ensuring scalability and1133

practicality in multi-agent settings. Specifically, we1134

employ LLaMA 3.2 (3B) (Ollama, 2024b), Mistral1135

(7B) (AI, 2023), and Qwen2.5 (7B) (Yang et al.,1136

2024) as our backbone models. Moreover, we uti-1137

lize GPT-4o mini (Ollama, 2024a) as an external1138

judge to assess the quality and correctness of the1139

final responses generated by the multi-agent team.1140

Datasets. We evaluate the effectiveness of1141

our proposed framework across five benchmark1142

datasets: MMLU (Hendrycks et al., 2020),1143

MATH (Hendrycks et al., 2021), GSM8K (Cobbe1144

et al., 2021), HumanEval (Chen et al., 2021), and1145

Research Questions (Rosset et al., 2024). Specifi-1146

cally, we use high school mathematics and statistics1147

questions from the MMLU dataset, which are re-1148

ferred to as MMLU-MS, to assess the performance1149

of the model in multiple-choice question answering.1150

The MATH and GSM8K datasets are employed to1151

evaluate mathematical reasoning capabilities, while1152

HumanEval is used to assess coding proficiency.1153

The Researchy Questions dataset consists of non-1154

factoid questions derived from real-world search1155

engine queries, characterized by their subjective1156

nature and absence of a singularly correct answer.1157

In this context, a human judge or an external judge1158

must carefully evaluate agent responses, determin-1159

ing correctness based on provided instructions and1160

contextual information.1161

E.A Collaboration Setup1162

Our primary experiments involve a team of five1163

agents, comprising two faithful agents and three1164

adversarial agents explicitly instructed to introduce1165

subtle inaccuracies in their responses without re-1166

vealing their adversarial nature. We employ con-1167

sistent prompts across various tasks, adapting only1168

the task-specific details. Our analysis primarily1169

explores two main communication structures: a1170

Stochastic Interaction Architecture (SIA) , Stan-1171

dalone Agent Architecture (SAA) and a Credibility-1172

ordered Chain.1173

E.A.1 Standalone Agent Architecture (SAA)1174

In SAA every agent receives the same question Q1175

and produces an answer without any communica-1176

tion. The resulting communication graph is edge- 1177

less: G = (A, ∅). We aggregate the set of agent 1178

answers R = {x1, . . . , x|R|} using the centroid- 1179

based ensemble method of (Ebrahimi et al., 2024). 1180

Let v(x) be the embedding of answer x and let 1181

wi ∝ CrS(i) be the credibility weight of agent i. 1182

The credibility-weighted centroid is 1183

vc =
1

|R|

|R|∑︂
i=1

wi v(xi), 1184

and the final answer is the one whose embedding 1185

is closest (cosine distance d) to that centroid: 1186

x⋆ = argmin
x∈R

d
(︁
v(x),vc

)︁
. 1187

Finally, we calculate each agent’s Contribution 1188

Score (CSc)—derived from the Shapley value as de- 1189

scribed in§5.A—and, from these, obtain the Credi- 1190

bility Scores (CrS) for the entire set of responses. 1191

E.A.2 Stochastic Interaction Architecture 1192

(SIA) 1193

SIA adds a sparse, random communication graph 1194

Gt that is resampled for every query. For each ques- 1195

tion we draw m undirected edges from the
(︁
N
2

)︁
1196

possible pairs with replacment (N = 5,m = 6 in 1197

our experiments), typically creating six links. Con- 1198

nected agents exchange their current answers and 1199

may revise them, producing diverse topologies such 1200

as trees, rings, and other sparse structures—while 1201

avoiding full information saturation that would oth- 1202

erwise aid adversaries. 1203

E.A.3 Credibility-ordered Chain 1204

To further test our hypothesis within a specific, 1205

stable structure, we introduce the chain-based ar- 1206

chitecture. In the chain architecture agents are 1207

sorted in descending order of their credibility score 1208

in the beginning of the experiment. Communica- 1209

tion in this structure only occurs between adjacent 1210

agents. Positioning the most reliable agents ear- 1211

lier in the chain limits the influence of adversaries 1212

further down the chain. Although the communica- 1213

tion pattern remains fixed, CrS values continue to 1214

be updated throughout the interactions within the 1215

chain. 1216

E.B Why Three Architectures? 1217

SAA provides a lower bound on performance—no 1218

interactions means no adversarial persua- 1219

sion—while SIA explores the hard regime where 1220

14



adversaries may form majorities and hijack1221

discussions by persuading other agents. The1222

credibility-ordered chain tests our hypothesis in a1223

stable yet asymmetric structure. Experiments in §61224

demonstrate that CSc/CrS significantly improve1225

robustness across all three settings.1226

F Extended Experiment Results1227

F.A Judge Alters the Outcome1228

The effectiveness of the judge is highly task-1229

dependent. To illustrate this, we present results1230

on two different benchmarks: HumanEval for code1231

completion, and GSM8K for mathematical reason-1232

ing.1233

On the HumanEval benchmark, using GPT-4o1234

mini as the judge proves problematic. In this task,1235

the judge receives a reference solution, a set of test1236

functions, and the final response generated by the1237

CrS coordinator. However, it often fails to correctly1238

determine whether the generated code is function-1239

ally correct. This results in numerous cases where1240

incorrect solutions are mistakenly rewarded with1241

a score of 1, severely distorting the Contribution1242

Scores (CSc) and, consequently, the Credibility1243

Scores (CrS). As shown in Table 3, these misjudg-1244

ments ultimately hurt overall system accuracy.1245

For mathematical reasoning questions from1246

GSM8K, we observe a different failure mode when1247

using a weaker judge. Figure 7 shows the CrS1248

trajectories for five agents—two faithful and three1249

adversarial—when LLaMA 3.2’s is used as the1250

evaluator. Compared to the more stable CrS pat-1251

terns seen with GPT-4o mini (Figure 2), the scores1252

here fluctuate significantly. This instability stems1253

from LLaMA 3.2’s tendency to produce malformed1254

outputs or to incorrectly assess agent contribu-1255

tions—such as returning a two-element array (e.g.,1256

[0.2, 0.8]) in a five-agent setting—indicating its lim-1257

ited ability to follow contribution-scoring instruc-1258

tions accurately.1259
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Figure 7: CrS evolution with a LLaMA-3.2(3B) judge
supervising five Qwen2.5(7B) agents on

GSM8K—directly comparable to Figure2a.
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Agent L1 L2 L3 L4 L5 L6 CrS (curr→fut.) CSc

Agent 1: B B B B X X X 0.4593 → 0.4617 0.15
Agent 2: B B B D D C C 0.4143 → 0.4143 0.20
Agent 3: B B B B B B D 0.4224 → 0.4225 0.20
Agent 4: B B C X C C D 0.4711 → 0.4688 0.25
Agent 5: C C C C C C C 0.4655 → 0.4656 0.20

Final Answer C
Correct Answer D

Reward -1

Table 4: Compact illustration of agent response dynamics and credibility updates. Yellow cells indicate response
changes.

Agent L1 L2 L3 L4 L5 L6 CrS (→) CSc

Agent 1: D B B B B B A 0.4841 → 0.4940 0.00
Agent 2: B X X A A A A 0.3613 → 0.3686 0.00
Agent 3: B B B B X X X 0.4034 → 0.3951 0.40
Agent 4: B B A A C A C 0.4561 → 0.4468 0.40
Agent 5: C C C C C C C 0.5139 → 0.5139 0.20

Final Answer C
Correct Answer B

Reward -1

Table 5: Illustrative example from MMLU with two faithful agents. Although the final response was incorrect,
these agents were not penalized— the judge identified adversarial influence from Agent 4 based on the

communication history.
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(a) After exchanging messages, Each agent outputs a
revised solution, and an identical LLaMA-3.2 coordinator

produces the final response using CrS-weighted
aggregation of their answers.
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(b) The agents have no inter-agent communication (SAA).
Each agent generates a candidate answer, and the

coordination mechanism selects the answer nearest to their
CrS-weighted centroid.

Figure 8: CrS evolution for two independent LLaMA-3.2 (3B).

16


